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ABSTRACT

Shimizu, Cogan M.. M.S., Department of Computer Science and Engineering, Wright State Uni-
versity, 2017. Rendering OWL in LaTeX for Improved Readability: Extensions to the OWLAPI.

As ontology engineering is inherently a multidisciplinary process, it is necessary to

utilize multiple vehicles to present an ontology to a user. In order to examine the content

of an ontology, formal logic renderings of the axioms appear to be a very helpful approach

for some. This thesis introduces a number of incremental improvements to the OWLAPI’s

LATEX rendering framework in order to improve the readability, concision, and correctness

of OWL files translated into Description Logic and First Order Logic. In addition, we

examine the efficacy of these renderings as vehicles for understanding an ontology.
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Introduction

The Semantic Web is a dichotomy. It is both an active, growing area of research, as well a

as an expansive ecosystem for the delivery and linkage of machine-readable knowledge.

As a field of research, there is a breadth and depth of activity that is simply astounding.

This seems fitting for a field focused on the efficient representation of knowledge from

any and all domains, even introspectively. It drives results behind the scenes in many

applications, from Google’s Knowledge Vault [3, 2] to major NSF initiatives 1 to ”improve

access, sharing, visualization, and analysis of all forms. . . ” Ultimately, the Semantic Web,

as a field, drives how knowledge is linked, published, reused, and analyzed across all fields

of knowledge.

The Semantic Web, as an artifact, is closely related to the World Wide Web (WWW).

This is ultimately unsurprising as they share the same goal: to proliferate knowledge in a

widely accessible manner. They simply differ for whom they emphasize accessibility. Just

as the WWW is an ecosystem of technologies and standards for sharing data amongst its

human users, the Semantic Web is an analogous ecosystem for machines. Fundamentally,

the Semantic Web is a way to ascribe to web content meaning. That is, to carefully de-

scribe the semantics of the content in a machine-readable way. Consequently, this enables

1https://www.earthcube.org/group/geolink
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programmatic access, interpretation, and evaluation of knowledge previously encoded in

an only human-readable format. Such an encoding, or model, is called an ontology.

In order to model a complex concept, it is expressed in terms of simpler concepts.

These simpler concepts are used as building blocks and are heavily enriched with meta-

data that relate them to each other. In this way, we can represent a highly abstract and

complex concept in a way that a machine can easily interpret. To this point, the Semantic

Web thus enables computing with knowledge; a software system can leverage the relation-

ships between concepts in order to extract latent information and make inferences about

the content. Further, by reusing the same conceptual building blocks across multiple ap-

plications or knowledge bases, we can greatly increase our ability to link and share data

over the web. These three main topics, model building, computation with knowledge, and

information exchange and reuse, underpin the entire purpose of the Semantic Web.

The machine-readable formalisms that ontologies are based on are called ontology

languages [4]. An ontology language can be nearly any knowledge representation lan-

guage (e.g. taxonomies, modal logic, OWL, or first order logic). In some form or another,

however, each one is based on some logic. Methods for representing knowledge logically

have been incredibly rich and varied over the millenia, reaching all the way into antiq-

uity with Aristotle [?] and continue as a modern, academic mainstay in Computer Science.

Specific to the Semantic Web, there exist many standards for logic-based knowledge rep-

resentation languages put forth by the World Wide Web Consortium (W3C), such as the

Resource Description Framework (RDF) [11], the Rule Interchange Format (RIF) [7], and

the Web Ontology Language (OWL) [15].

Ontology engineering is the process of encoding domain knowledge into a machine-

readable format with respect to some (ideally) standardized, formalized ontology language.

For this thesis, we are particularly interested in the OWL family of knowledge representa-

tion languages, as well as the family of description logics that support them. We provide a

brief introduction in the next section. OWL is a popular, expressive ontology language that

2



benefits from a healthy community and active tool development.

Perhaps the most prominent of tools for the programmatic construction, manipulation,

and rendering of an ontology is Stanford’s Protégé 2 which is a sophisticated GUI tool

for designing ontologies that is powered by the OWLAPI [5]. We also provide a brief

introduction to the OWLAPI in the next section.

In order to promulgate the end goal of the Semantic Web, it is increasingly neces-

sary to make the ontology engineering process more accessible to domain experts without

necessitating that they also be experts in the Semantic Web.

There is a need to provide methods for visualizing the logical structure and formal

content of an ontology under construction. For example, graphical representations are

highly ambiguous and are therefore easy to misunderstand. In addition, some axiomatic

structures have no intuitive visual analog. One tool, Visual Notation for OWL (VOWL)

[12] attempts to render axioms graphically. However, there is some debate on the efficacy

of this approach, especially for complex axioms as it is difficult to adequately visually

represent some operations. We examine VOWL and the debate more closely in Section

3.1.

With no clear path forward in improving the graphical representation, this thesis in-

stead examines the efficacy of rendering the logical structures natively. That is, translating

the OWL syntax into DL or FOPL and rendering it in LATEX. There is already some prelimi-

nary work that shows that using rules in the ontology engineering process leads to increased

accuracy of the model [13].

For ontology developers and consumers intimately familiar with the logical and for-

mal semantic underpinnings of OWL, the presentation of OWL files in a description logic

syntax appears to be a very useful one for a quick assessment of expressivity and formal

content. For those developers and consumers not as familiar with the formalizations of

OWL, we intend to show that rules, written in FOPL, are even more useful over renderings

2https://protege.stanford.edu/
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in other logical syntaxes. In summary, this thesis aims to prove the following.

Hypotheses:

• When presented in a Description Logic Syntax, users will more

quickly and more correctly understand an ontology compared to ren-

derings in Manchester syntax.

• When presented in a FOPL-Rule-like (FOLR) Syntax, users will

more quickly and more correctly understand an ontology compared

to renderings in Description Logic syntax.

As such, we have made extensive changes to the LATEX rendering framework for the

OWLAPI in order to generate syntactically correct and human readable renderings of an

ontology in DL and FOPL.

Chapter Overview

The rest of the thesis is organized as follows.

Chapter 2: Preliminaries includes essential preliminary information. It briefly reviews

description logics, first order predicate logic, and OWL.

Chapter 3: Related Work introduces other attempts to streamline the ontology engi-

neering process. Specifically, we briefly examine alternative ways of specifying and inter-

preting the structure of an ontology (e.g. VOWL, ROWL, and OWLax [14]).

Chapter 4: Research Contributions gives an explanation into the changes made to the

OWLAPI in order to facilitate the human readable LATEX renderings in DL and FOL. We

also introduce two GUI tools developed to leverage the OWLAPI for rendering.

4



Chapter 5: Evaluation covers the design of our evaluation and its results.
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2

Preliminaries

As previously stated in the introduction, we intend to show that examining an ontology’s

axiomatization and formal content via description logic or rules syntax improves the on-

tology engineering process by facilitating ontology content understanding, for example,

reducing the time spent developing an iteration of ontology design. We utilize this chapter

to introduce (or provide an opportunity to re-acquaint with) some basic concepts of de-

scription logics (DL) in Section 2.1, first order predicate logic (FOPL) in Section 2.2, and

the Web Ontology Language (OWL) in Section 2.3.

2.1 Description Logics

In this section, we briefly introduce the syntax and semantics used for DLs (with emphasis

on SHOIN ), outline the motivation for using DLs for knowledge representation purposes,

and show how OWL is directly related to DLs. For a closer examination of Description

Logics and their history and applications, see [1].

6



2.1.1 Syntax & Semantics

Ontologies are constructed from two different semantic entities, atomic concepts and atomic

roles. Together they are referred to as atomic symbols. Atomic concepts and roles can be

considered to be the fundamental building blocks of an ontology, from which we can build

arbitrarily complex descriptions via concept and role constructors. The sorts of constructors

included in a language dictate its expressivity (and its decidability). Further, the allowed

constructors are denoted in the name. For example, the language ALC is AL extended

with C (for “complement”), thus allowing the negation of arbitrary concepts.

In this case, we are particularly interested in the DL SHOIN extended with datatypes.

S is used denote the language ALC extended with transitive roles. Then, the following ex-

tensionsHOIN allow role hierarchy (e.g. for two concepts R, S, we may express R v S),

nominals or individuals, inverse roles, and number restrictions, respectively. See Table 2.1

for a comprehensive list of possible extensions to DLs. To form SHOIN -concepts, letting

A be an atomic concept and R be an atomic role, we use the following syntax rule:

C,D → A | (atomic concept)
> | (top concept)
⊥ | (bottom concept)
¬A | (atomic negation)
¬C | (concept negation)
C uD | (intersection)
∀R.C | (value restriction)
∃R.C | (full existential quantification)
≤ nR | (at-least restriction)
≥ nR | (at-most restriction)
{a} (nominal)

To define a formal semantics for SHOIN -concepts, we consider an interpretation I

of some domain of interest ∆I . Then for some interpretation function each atomic concept

A is mapped to AI ⊆ ∆I and define a mapping for every atomic role R to a binary relation

such that RI ⊆ ∆I × ∆I . We then inductively define the semantics of the other allowed

concepts in Table 2.1.

7



{a} = a ∈ ∆I Nominal/Individual
>I = ∆I Universal Concept
⊥I = ∅ Bottom Concept
(¬A)I = ∆I \ AI Atomic Negation
(C uD)I = CI ∩DI Intersection
(C tD)I = CI ∪DI Union
(∀R.C)I =

{
a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI

}
Value Restriction

(∃R.C)I =
{
a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI

}
Full Existential Quantification

(≥ nR)I =
{
a ∈ ∆I | |

{
b|(a, b) ∈ RI

}
| ≥ n

}
At-least Restriction

(≤ nR)I =
{
a ∈ ∆I | |

{
b|(a, b) ∈ RI

}
| ≤ n

}
At-most Restriction

Figure 2.1: The semantics for the concept constructors included in SHOIN .

2.1.2 Knowledge Representation

DLs are decidable fragments of FOL enhanced with a formal semantics, thus allowing both

humans and machines to precisely and unambiguously interpret intended meanings within

the ontology. Additionally, the formal semantics enables inference of latent or implicit

knowledge from the explicitly stated facts in the ontology. The computation of these new

inferences is known as reasoning. How the ontology is logically structured dictates exactly

what can be inferred from its contents.

A DL ontology is split into two different components. Terminologies (also known as

the TBox) are collections of statements on how concepts and roles relate to each other. The

world description is eponymous: a description of the world, but in terms of the relations

specified in the terminology. The world description is also known as the ABox, as it contains

assertional axioms.

Terminologies

Terminologies consist of a set of terminological axioms. Generally, these axioms have the

form

C v D (R v S) or C ≡ D (R ≡ S)

8



AL Attributive Language

C Concept Negation

S AL with role transitivity

H Role hierarchy

O Nominals

I Inverse Roles

N Number Restriction

D Datatypes

F Role Functionality

Q Qualified Cardinality Restriction

R Generalized Role Inclusion

E Existential Role Restriction

Table 2.1: Above is a list of possible extensions in the AL-family of languages.

where C,D are concepts and R, S are roles. Respectively, these are known as inclusions

and equalities. We provide an example Terminology in Figure 2.2.

World Description

In the world description or ABox, the domain of interest is stated in terms of the concepts

and roles defined in the TBox. The statements included in the ABox are called concept

assertions and role assertions. Respectively, they have the form

C(a), R(b, c).

That is, for C(a), we say that a belongs to the interpretation of C. For R(b, c), we say that

c is a filler of the role R for b. In Figure 2.3, we provide an example ABox to accompany

9



fatherOf v parentOf (2.1)
motherOf v parentOf (2.2)

Woman ≡ Person u Female (2.3)
Man ≡ Person uMale (2.4)

Mother ≡Woman u ∃hasChild.Person (2.5)
Father ≡ Man u ∃hasChild.Person (2.6)
Parent ≡ Mother t Father (2.7)

Figure 2.2: An Example TBox (Terminology).

Father(Peter) (2.8)
hasChild(Mary, Paul) (2.9)

motherOf(Michelle, Peter) (2.10)
Man(Paul) (2.11)

Figure 2.3: An Example ABox (World Description).

the TBox in Figure 2.2.

2.2 First Order Predicate Logic

First order predicate logic is an extension of propositional logic. That is, FOPL allows one

to express certain notions that cannot be expressed in propositional logic.

Consider a set of arbitrary concepts of particular interest; we call this a universe which

is analogous to the domain of interest from the previous section. Now, consider two dis-

joint subsets of the universe. In propositional logic, it is not possible to express a relation

between these two subsets such that the relation is not surjective, that is to say, the rela-

tion only holds sometimes. FOPL allows us to express these sorts of relations in terms

of existential or universal quantifiers, denoted via the symbols ∃ and ∀, respectively. The

quantifiers, and thus FOPL, allow us a level of expressivity that more closely matches real-

ity. In the next section we see how these relations are constructed.

10



2.2.1 Syntax & Semantics

The following definitions are taken from [16].

First, we define terms inductively.

1. Each variable is a term.

2. If f is a function symbol with arity k, and if t1, . . . , tk are terms, then f(t1, . . . , tk)

is a term.

Then, formulas are defined inductively as follows.

1. If P is a predicate symbol with arity k, and if t1, . . . , tk are terms, then P (t1, . . . , tk)

is a formula.

2. For each formula F , ¬F is a formula.

3. For all formulas F and G, (F ∧G) and (F ∨G) are formulas.

4. If x is a variable and F is a formula, then ∃xF and ∀xF are formulas

A formula is considered to be atomic if it is constructed using only (1). Finally, we

describe the semantics of predicate logic. We note, too, the strong connections to the

semantics of Description Logic. We define a structure, to be a pair A = (UA, IA), where

UA is an arbitrary, non-empty set called the domain of interest and IA is a mapping such

that it maps

• each k-ary predicate symbol P to a k-ary predicate on UA (if IA is defined on P ).

• each k-ary function symbol f to a k-ary function on UA (if IA is defined on f ).

• each variable x to an element of UA (if IA is defined on P ).

For further examination, please see [4].

11



fatherOf(x, y)→ parentOf(x, y) (2.12)
motherOf(x, y)→ parentOf(x, y) (2.13)

Person(x) ∧ Female(x)→Woman(x) (2.14)
Person(x) ∧Male(x)→ Man(x) (2.15)

Woman(x) ∧ Person(y) ∧ hasChild(x, y)→ Mother(x) (2.16)
Man(x) ∧ Person(y) ∧ hasChild(x, y)→ Father(x) (2.17)

Parent(x) ∧ ¬Father→ Mother(x) (2.18)
Parent(x) ∧ ¬Mother→ Father(x) (2.19)

Figure 2.4: An example FOPL program showing the same information as Figure 2.2.

2.2.2 Knowledge Representation

First Order Predicate Logic is highly expressive. Unfortunately, its expressivity is a double

edged sword as, in general, FOPL is undecidable. However, that does not detract from its

usefulness as a vehicle for representation, in particular the use of FOPL rules.

A FOPL rule is a formula that contains a single implication. The left hand side (LHS)

of the implication is called the antecedent, or body, of the rule. The right hand side (RHS)

of the implication is called the consequence, or head, of the rule. The antecedent must be

in negation normal form and the consequence must be atomic.

It is a standing debate that rules are a more intuitive method for conveying logical

statements than description logic axioms [13, 17]. The strong restrictions on the rule’s

structure are partially what makes a rule so readable. In Section 4.4 we cover translations

from Description Logics to FOL rules.

2.2.3 Rule Conversion

From the previous section, we know that a rule, has the form F → G, where G is atomic.

Now, we briefly cover the conversion of a FOL formula, where G is non-atomic, to a rule.

There are two initial requirements that must be met in order for such a conversion to be

successful.

12



1. F must not contain a universal quantifier.

2. G must not contain an existential quantifier.

If these two requirements are met, then the following steps are taken for the formula-to-rule

conversion.

1. Disambiguate all implications (i.e. F → G ≡ ¬F ∨G).

2. Convert the resulting formula into negation normal form (NNF).

3. Move quantifiers to outermost scope.

4. Perform operations to move desired atomic concept to the end of the formula.

5. Convert resulting formula back into an implication.

The result has the desired rule form.

2.3 The Web Ontology Language

The Web Ontology Language is a family of knowledge representation languages specifi-

cally for modelling ontologies. The current specification, as endorsed by W3C, includes

three different variants- also called sublanguages or species- of OWL: OWL-Lite, OWL-

DL, and OWL-Full. In addition, there are two versions, OWL and OWL2. Each of the

OWL species has a different level of expressivity, and thus a different associated descrip-

tion logic. The expressivity of the sublanguage also determines its scalability, i.e. the

complexity of reasoning in the sublanguage.

This allows an ontology engineer or publisher to choose an expressivity (and thus

scalability) that more appropriately fits their use-case. Table 2.2 shows the different sub-

languages and to which DL they are paired. We note that each of the sublanguages is also
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OWL Variant DL Worst Case Complexity

OWL-Lite SHOIF (D) ExpTime-Complete

OWL-DL SHOIN (D) NExpTime-Complete

OWL2-DL SROIQ(D) NExpTime-Hard

OWL/OWL2-Full Not DLs Undecidable

Table 2.2: The OWL Family and their associated description logics. See Table 2.1 for
definitions of these DL extensions and the complexities2 of their concept satisfiability.

Ontology(<http://www.example.com/family.owl>

Declaration(Class(:Female))
Declaration(Class(:Person))
Declaration(Class(:Woman))
SubClassOf(:Woman ObjectIntersectionOf(:Female :Person))

)

Figure 2.5: OWL Functional Syntax

hierarchical. That is, every OWL-Lite ontology is a valid OWL-DL ontology and every

OWL-DL ontology is a valid OWL-Full Ontology.

The OWL family also supports many different syntaxes: OWL2 functional syntax,

OWL RDF/XML, OWL2 XML, and Manchester Syntax.

We provide a small example that is demonstrative of the flavor of each syntax in

Figures 2.5-2.8. The examples portray exactly the same information; we choose an excerpt

from the logic program in Figure 2.2. Each of these examples was generated using Protégé,

a popular ontology creation tool. We describe some of Protégé’s capabilities in Section

3.2.1. For a more in-depth examination of the syntaxes, semantics, and specification of the

OWL family, see [5, 15]. Additionally, we provide an example of an entire ontology in

OWL/XML in Appendix A.

14



<rdf:RDF xmlns=...>
<owl:Ontology rdf:about="family.owl"/>

<owl:Class rdf:about="\#Female"/>

<owl:Class rdf:about="\#Person"/>

<owl:Class rdf:about="\#Woman">
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<rdf:Description rdf:about="\#Female"/>
<rdf:Description rdf:about="\#Person"/>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

</rdf:RDF>

Figure 2.6: RDF/XML

<Ontology ontologyIRI="http://www.example.com/family.owl">
<Declaration>

<Class IRI="\#Person"/>
</Declaration>
<Declaration>

<Class IRI="\#Woman"/>
</Declaration>
<Declaration>

<Class IRI="\#Female"/>
</Declaration>
<SubClassOf>

<Class IRI="\#Woman"/>
<ObjectIntersectionOf>

<Class IRI="\#Female"/>
<Class IRI="\#Person"/>

</ObjectIntersectionOf>
</SubClassOf>

</Ontology>

Figure 2.7: OWL/XML Syntax
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Ontology: <http://www.example.com/family.owl>
Class: <http://www.example.com/family.owl\#Female>
Class: <http://www.example.com/family.owl\#Person>
Class: <http://www.example.com/family.owl\#Woman>

SubClassOf:
<http://www.example.com/family.owl\#Female>
and <http://www.example.com/family.owl\#Person>

Figure 2.8: Manchester Syntax

@prefix : <http://www.example.com/family.owl\#> .

<http://www.example.com/family.owl> rdf:type owl:Ontology .

:Female rdf:type owl:Class .
:Person rdf:type owl:Class .
:Woman rdf:type owl:Class ;

rdfs:subClassOf [ owl:intersectionOf ( :Female
:Person

) ;
rdf:type owl:Class

] .

Figure 2.9: RDF/Turtle Syntax
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3

Related Work

As previously mentioned, the ontology engineering process can be highly iterative. In this

chapter, we discuss a number of recently developed tools for streamlining this process.

Specifically, we chose technologies that provide alternative methods for visualizing an on-

tology during the design process. However, of these tools, none touch on translating OWL

to FOPL. In fact, to the author’s knowledge, and although the mechanisms for such transla-

tions are very well known [1, 9, 8], there is no existing tool that programmatically translates

OWL or DL to FOPL.

In Section 3.1, we introduce the Visual Notation for OWL (VOWL). Section 3.2 de-

scribes Protégé and two plugins providing alternative means for programmatic ontology

development, ROWL (FOL Rules to OWL) and OWLax (axioms from graphical relation-

ships). Finally, Section 3.3 provides a brief description of the OWLAPI and its rendering

framework.

3.1 Visual Notation for OWL: VOWL

The Visual Notation for OWL Ontologies (VOWL) is a specification for a visual language

that represents ontologies to a user [12]. The specification defines a number of graphical
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primitives that are used to build the alphabet of the visual notation. The alphabet is then

used to generate a force-directed graph that visualizes the ontology. VOWL is implemented

as a Protégé plugin and as a web service.

There has been some debate on the efficacy of representing complex axioms. Fig-

ure 3.2 is an exact copy of the rendering of an ontology benchmark utilized in [12]. Of

particular interest are the shaded areas labeled 2 and 10. In Area 2, the visual semantics

of a circle labeled “disjoint class” are not clear. Furthermore, axioms involving the tradi-

tional set operations (i.e. conjunction, disjunction, and complement) are unclear. Area 10,

and those edges emitted from the area, are good examples of this. The specification is not

forthcoming on the semantics of the dashed line. It is used to indicate set operators or class

disjointness, but does not impart directionality (i.e. does not exactly and unambiguously

show how the class is related to the set operator). For example, with respect to Figure 3.2

how is Class 1 related to the ¬ and the subsequent ∩? We argue that these inexact, graphical

primitives serve to obfuscate the relationships between concepts in the presence of com-

plex axioms. However, [12] does clearly and intuitively communicate which entities are

Classes, Properties, or Datatypes. An additional example, of a non-synthetic variety, of a

rendering in VOWL is provided in Figure 3.1. The graph itself is aesthetically pleasing, but

the overall structure is obscured by the level of detail. Additionally, subproperty relations

seem especially confusing amidst all the other visualized relations.

As a final remark, the force-directed graph visualization does not take into account

any semantics in the final visualization of the ontology. That is, the visualization itself is

dependent upon graph metrics such as node degree and centrality, rather than emphasizing

semantically important relationships. That is, classes (or concepts) that are tightly seman-

tically coupled have no guarantee that this coupling is emphasized, or even clear, in the

final visualization. Moreover, as the ontology engineering process is frequently iterative,

there is no guarantee that semantically similar iterations of the ontology have similar vi-

sualizations. This can make visualizing the contents and semantics of an ontology under
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Figure 3.1: An example of rendering of an ontology using the Visual Notation for OWL
Ontologies.

development difficult during the iterative design process.

3.2 Protégé and Plugins

3.2.1 Protégé

Protégé is an open-source, free-ware ontology engineering platform. It is developed and

maintained by Stanford University. Protégé is powered by the OWLAPI, an incredibly

powerful API for programmatically creating, manipulating, and rendering ontologies. We

briefly cover its rendering framework in Section 3.3. Additionally, in order to address the

needs of a constantly growing audience, it supports a number of plugins, two of which are

19



Figure 3.2: The benchmark ontology for VOWL. This figure is exactly reproduced from
[12].
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detailed below in Sections 3.2.2 and 3.2.3.

3.2.2 ROWLTab: Rule-based OWL Modeling

The ROWLTab is a plugin for Protégé developed by the Data Semantics Laboratory at

Wright State University. It provides users with an alternate means to generate OWL axioms

by providing rules to the system. The plugin automatically attempts to convert these rules

into appropriate OWL-DL axioms, if possible.

Preliminary usage statistics show that creating ontologies in this manner leads to a

number of improvements in the ontology engineering process [13]. For example, in the

author’s experience, domain experts frequently have a difficult time examining the formal

axioms in an ontology. Having this tool early in the design phase is extremely helpful as

it can save and reload axioms during the iterative process. However, it is not possible, at

this point in time, to load in an existing ontology and generate the rules from the ontology.

In Chapter 6, we discuss the possible integration of contributions described in Chapter 4 as

future work.

3.2.3 OWLAx: A Protégé Plugin

OWLAx is another plugin for Protégé developed by the Data Semantics Lab at Wright

State University. It allows us to begin with a graphical representation. The plugin will then

attempt to translate the graphical representation into the appropriate OWL axioms.

In general, an ontology modeling session, such as a GeoVocamp 1, begins graphically.

That is, it is easy to describe the overall structure, relations, classes, and properties on

a whiteboard. The OWLax plugin facilitates this strategy by providing that whiteboard

virtually. The plugin will attempt to create axioms based on the graphical representation.

This approach also allows users to quickly specify disjointness of classes and domains and

1http://ontolog.cim3.net/wiki/GeoVoCamp.html
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Figure 3.3: An example of generating an ontology using the OWLax Protégé plugin.

ranges of properties. While this plugin is a great addition to the ontology development

ecosystem it does not contribute to the formal axiom development. [14]

3.3 The OWLAPI

The OWLAPI [5], which is a powerful tool for the programmatic construction, manipula-

tion, and rendering of ontologies, has for considerable time had limited support for the ren-

dering of OWL ontologies in description logic syntax via LATEX. Unfortunately, this LATEX

rendering framework, which outputs description logic in a LATEX source file, was never de-

veloped beyond an early experimental stage. As a consequence, translations suffered from

a number of syntax errors and poor readability of the output. In practice, translations were

further impacted by the presence of illegal characters in the LATEX source, thus preventing
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nearly all renderings from typesetting. In Chapter 4, we cover a number of changes made

to the OWLAPI as partial fulfillment of this thesis.
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4

Research Contributions

This chapter describes the entirety of concrete changes made to the OWLAPI for advanc-

ing human-readable renderings of OWL files, as well as two tools for making these render-

ings accessible. Tutorials for using these tools can be found online.1 The changes to the

OWLAPI herein described, at the time of this writing, have been submitted to the source

developers and maintainers. Some changes will be present in version 5.0.6.

The remainder of this chapter can be partitioned into two parts. Section 4.1 describes

characteristics of the LATEX rendering framework that span the development of both tools.

Sections 4.3 and 4.4 describe the rendering tools: OWL to Description Logic and OWL to

First Order Logic, respectively. Chapter 5 will cover the evaluation of both the described

changes as well as the general efficacy of rendering an ontology in a logic.

4.1 LATEX Rendering in the OWLAPI

4.1.1 Overview

For immediate context, we provide a very brief overview of how the OWLAPI renders

an ontology in LATEX. First, the renderer examines a ontology that has been loaded into
1http://dase.cs.wright.edu/content/owl2dl-rendering
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memory. Then, for each entity, (i.e Class, Object Property, Data Property, Individual, and

Datatype) in the ontology, it prints associated axioms and facts. An axiom is considered to

be associated to an entity if the entity appears somewhere in the axiom. For example, the

axiom

DisjointClasses(A, B, C)

is associated with classes A, B, and C. While this does result in redundantly rendered

axioms (i.e. the same axiom may occur in multiple entity subsections), we stress that

the renderer is meant to summarize the entities in an ontology, rather than exhaustively

enumerate all axioms in the ontology.

4.2 Reduction of Duplicate Axioms

Several OWL concepts provide a way for succinctly expressing pairwise relations (e.g.

equivalence and disjointness). However, the translations of these concepts into description

logic can potentially generate a huge number of axioms. For example, in order to express

that n classes are mutually disjoint requires 2 ·
(
n
2

)
axioms. Furthermore, under the current

framework all these axioms are related and will thus be printed in each class’s section, for

a total of 2n ·
(
n
2

)
axioms. This can quickly obscure the actual relationship between all the

Classes. As such, we adopt the functional syntax as defined in the specification as follows

(using an example from the Semantic Trajectory ODP)

disjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

The equivalent axioms for expressing this single line is represented in Table 4.1.
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Attribute 6v Fix

Attribute 6vMovingObject

Attribute 6v Place

Attribute 6v Segment

Attribute 6v TimeEntity

Attribute 6v Trajectory

F ix 6v Attribute

F ix 6vMovingObject

F ix 6v Place

F ix 6v Segment

F ix 6v TimeEntity

F ix 6v Trajectory
MovingObject 6v Attribute

MovingObject 6v Fix

MovingObject 6v Place

MovingObject 6v Segment

MovingObject 6v TimeEntity

MovingObject 6v Trajectory

Segment 6v Attribute

Segment 6v Fix

Segment 6vMovingObject

Segment 6v Place

Segment 6v TimeEntity

Segment 6v Trajectory
T imeEntity 6v Attribute

T imeEntity 6v Fix

T imeEntity 6vMovingObject

T imeEntity 6v Place

T imeEntity 6v Segment

T imeEntity 6v Trajectory

P lace 6v Attribute

P lace 6v Fix

P lace 6vMovingObject

P lace 6v Segment

P lace 6v TimeEntity

P lace 6v Trajectory
Trajectory 6v Attribute

Trajectory 6v Fix

Trajectory 6vMovingObject

Trajectory 6v Place

Trajectory 6v Segment

Trajectory 6v TimeEntity

Table 4.1: In order to rigorously define that seven classes are mutually disjoint, it is neces-
sary to express it in 42 axioms. This very quickly obscures the fact that they are expressing
pairwise disjoint relationships.
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4.2.1 Limitations

In Section 4.4, we see that the OWL2FOL tool provides only a direct translation to first

order logic and not to rules, in most cases. This is due to limitations inherent to adapting the

OWLAPI’s rendering framework. The OWLAPI disconnects the underlying data structure

representing an axiom from its traversal via implementation of the visitor design pattern.

For the OWL2DL tool (Section 4.3), this provides no problem.

The rendering framework considers an ontology to be a forest, where each axiom is a

tree. The axiom is traversed in a stateless manner. That is, actions performed at each node

of the tree are independent of actions occurring in parent nodes. A node in this “axiom tree”

is either an operator, concept constructor or role constructor. At each of these nodes, the DL

rendering is written to a LATEX source file. However, rendering FOL rules from the OWL

source cannot be done in such a traversal, as is done with the DL rendering. As is elaborated

in Section 4.4, most OWL axioms have mappings into first order logic. Inconveniently, the

one-to-one mapping from OWL to FOL is, in general, not immediately in rule format. Non-

trivial manipulation of the FOL formula would be necessary to translate it to the rule format.

As such, it would be necessary to develop an intermediate data structure that captures the

behavior and structure of FOL. This is problematic for two reasons. First, developing

and maintaining such a data structure is definitively outside the scope of the OWLAPI.

Secondly, the structure of the OWLAPI interferes. That is, arbitrarily nested complex OWL

classes prevent an intuitive way forward in utilizing the visitor design pattern to properly

bind variables in the FOL formula.

4.2.2 Spacing & Alignment

At the top level, we have also made several quality of life improvements irrespective of

the rendered language. Previously, axioms were rendered such that mathematical operators

were embedded in ensuremath LATEX commands. While this is convenient for having
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plain text renderings of concept and property names, the subsections devoted to each OWL

entity were disorganized and could be difficult to read.

To rectify this, an entity’s associated axioms are now embedded in the align envi-

ronment included as part of the amsmath LATEX package. This allows us to align related

axioms over their principal relation (i.e. ≡, 6≡,v,→) or after a function name or argument.

4.2.3 Line-Breaking Heuristic

In some cases, axioms would result in an excessively long rendering (i.e. result in hbox

overflow, placing text in or even beyond the page margin). For the most part, LATEX handles

itself in knowing when to break a line. However, this behavior does not occur in the math

environments. As such, it was necessary to look into methods for preventing unacceptable

overflow.

The first examined option was the LATEX package breqn. This package is an exper-

imental package that employs its own heuristics for breaking excessively long equations.

Unfortunately, breqn’s heuristics take into account only a select number of operators as

potential breaking points. Due to the uncommon operators that description logic employs,

breqn was unable to find appropriate breaking points.

The next option was the split environment from the LATEX package amsmath. How-

ever, split does not dynamically split an equation; it is an entirely manual process. At this

point, we developed our own heuristic to determine when the split environment would be

necessary.

In the rendering tools, we examine the raw LATEX source. First, we control for the LATEX

commands that are employed by the rendering framework and then count an empirically

determined number of characters; we found 125 characters to be a reasonable equation
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length before a newline would be required.

DataGranule(x1)→≥ 1x2 hasDataSet(x1, x2) ∧ DataSet(x2)

∧ ≤ 1x3 hasDataSet(x1, x3) ∧ DataSet(x3)

There are some limitations to this approach, as each entity’s subsection is a single

align environment. The split environment is thus, in turn, embedded in it. As such, if

the antecedent of the principal operator of any axiom per subsection is sufficiently long,

the line breaks may occur significantly into the margin. However, in an evaluation of 117

ontologies2 rendered to Description Logic, the line-breaking heuristic did not display this

anomalous behavior.

4.2.4 Namespaces & URIs

In natural language, especially in situations where context is unclear, it can be difficult to

parse the exact semantics of a word. In OWL, every entity has its own “Uniform Resource

Identifier.” As such, this allows a reader to know exactly which semantics are used for the

entity. It is generally customary to use a URI for this purpose. The URI is considered to

be a namespace for the ontology. It is for this reason an OWL ontology may contain an

external class with the same name as a class already existing in the ontology; that class

would have a different URI.

When considering the entities in an axiom, it is important to use the entire URI. How-

ever, when rendering an entity (with the intent to be human readable), the entire URI can

obfuscate the meaning. Consider the following DL rendering with full namespaces. It

clearly would not even render completely on the page. In addition, it has characters that do

not render properly and the # in particular would normally prevent the LATEX source from

2pulled from ontologydesignpatterns.org
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typesetting in the first place.

¡http://www.example.com/family.owl#Woman¿ v

¡http://www.example.com/family.owl#Female¿u

¡http://www.example.com/family.owl#Person¿

Now, consider a “shortform” rendering. For entities that are defined in the current names-

pace, the namespace is omitted.

Woman v Female u Person

We contend that this is significantly more convenient, and thus readable. We examine

this claim formally in the next chapter. Now, externally defined entity namespaces are

included using the shortform notation. For example, datatypes specified as XML Schema

Datatypes or in RDFS are prepended with the popular, shortened namespaces of xsd and

rdfs, respectively.

xsd:string or xsd:int

4.3 OWL to Description Logic

This section describes changes made to the OWLAPI and its original LATEX rendering

framework. Sections 4.3.1-4.3.5 cover these changes. Section 4.3.6 introduces the GUI

tool that implements these changes.
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4.3.1 Datatypes

With respect to the syntax of datatypes, there were a number of small changes necessary

to align the LATEX renderer with the OWL standard [15] (e.g. using the bracket and double

carat notation).

{“five”ˆˆxsd:string} or {5ˆˆxsd:int}

4.3.2 Nominals

Literals, when used as nominals, are now properly rendered using set notation. In accor-

dance with the above, the example below includes a shortform namespace for its datatype.

∃hasSigrid3IceFormCode.{“05”ˆˆxsd:string}

4.3.3 DatatypeRestriction Axiom

Previously, DatatypeRestriction axioms were not rendered in an intuitive manner. We have

made changes in order to make it more similar to the functional syntax specified in [15].

However, we diverge slightly from the specification in the interest of readability. The

constrained datatype is followed by a colon to differentiate it from its facets. Further,

the constraining facets are rendered using their respective relational operators instead of

keywords. In general, DatatypeRestriction axioms are now rendered using the following

form, where the ‘+’ indicates one or more of the preceding tokens.

DatatypeRestriction(datatype: (constrainingFacet restrictionValue)+)
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4.3.4 HasKey Axiom

In OWL2 Functional Syntax, a key axiom has the form

HasKey(CE (OPE1 . . .OPEm) (DPE1 . . .DPEn))

where CE is a Class Expression, OPE is an Object Property Expression, and DPE is a Data

Property Expression. It must be the case that n + m > 0, i.e. the lists OPE and DPE must

both not be empty. From [15], the following is a valid key axiom.

HasKey(owl:Thing () (hasSSN))

This axiom states that all owl:Things are uniquely identified by their SSN. This ax-

iom has no analog in description logic [10]. We contend that this functional syntax form

is unwieldy and that distinguishing between Object Properties and Data Properties is un-

necessary for rendering in DL. As such, we have adopted the following infix notation for a

HasKey axiom, where the ‘+’ means one or more of the preceding token. The parentheses

are omitted for n + m = 1.

ClassExpression hasKey (Property+)

owl:Thing hasKey hasSSN

This infix notation is much more concise and clearly mirrors the same format of other

(non-functional syntactic) DL axioms.

4.3.5 Miscellaneous Corrections to the Existing LATEX Renderer

Below is a quick summary of syntactical errors previously present in the OWLAPI LATEX

rendering framework. These fixes are unique to the DL rendering.
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• The Subproperty axiom now completely renders subproperties.

• Extraneous spacing after logical symbols (e.g. ¬) has been fixed.

• Number Restriction Axioms now have correctly rendered cardinality.

• Role Restriction axioms now have correct “.” syntax.

4.3.6 GUI Converter Tool

As mentioned at the beginning of this chapter, some of the changes described here will

be present in version 5.0.6 of the OWLAPI. However, some changes require some careful

consideration as to their overall impact in the design of the rendering framework. In the

interest of making all of these changes accessible to the ontology developer or consumer,

we have developed an open-source tool.

The tool can be used to launch a GUI, as shown in Figure 4.3.6, or can be used in

the command line. This tool requires Java on the host machine. Additionally, we provide

an online portal containing supplemental information regarding this tool: usage tutorial,

benchmark patterns and output, and the source code repository.

4.4 OWL to First Order Logic

4.4.1 Direct Translations

As description logics are (decidable) fragments of first order logic, the syntax for DL maps

into the syntax for FOL. These translations are very well known [9, 1, 8]. For convenience,

we provide these translations and comment on the potential for conversion to FOL rules

in the next section. Section 4.4.2 covers the treatment of Datatypes, Section 4.4.3 covers
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Figure 4.1: A snapshot of the GUI tool used for converting OWL to Description Logic
Syntax.

nominals, Section 4.4.4 covers those axioms that have no FOL analog, and finally, Section

4.4.5 covers the developed translation tool.

Concept Inclusions TBox axioms that have the form C v D, called concept inclusions

or a subconcept relationship, correspond to FOL rules of the form C(x) → D(x). For

example, the DL axiom Mother v Parent is equivalent to the FOL formula Mother(x) →

Parent(x).

Existential Quantification The concept constructor for existential quantification in SROIQ

has the form ∃R.C for atomic R and arbitrary concept C. Consider the axiom

Parent v ∃hasChild.Person

In natural language, this corresponds to “A Parent is one such that there exists a Person to

whom the Parent is related via hasParent.” The translation to a FOL formula results in

Parent(x)→ ∃y (hasChild(x, y) ∧ Person(y))
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Note that this particular formula can not be converted to a FOL rule due to the presence of

an existential quantifier in the consequent.

Value Restriction The concept constructor for value restriction in SROIQ has the form

∀R.C for atomic R and arbitrary C. This constructor corresponds to the FOL formula

∀yR(x, y)→ C(y). Consider the axiom

Parent v ∀hasChild.Child

This axiom is used to express that: for all things related to a Parent through hasChild, those

things are Children. In FOL, this results in the formula

Parent(x)→ ∀y (hasChild(x, y)→ Child(y))

Note that as the LHS, Person, is atomic and that the filler for hasChild is also atomic, the

value restriction axiom can be successfully converted into a rule and has the following form

∀y Parent(x) ∧ hasChild(x, y)→ Child(y)

Local Reflexivity The DL concept ∃R.Self are those things that are related to themselves

through R. To borrow from [9] an example and its translation to FOL:

∃loves.Self v Narcissist

loves(x, x)→ Narcissist(x)

Top & Bottom Concept The top and bottom concepts are represented using > and ⊥,

respectively. In FOL, we choose to use these symbols as predicate names for clarity. That
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is, for all things in the domain of interest >(x) is true. In contrast, ⊥ may be used to

denote the empty set or succinctly express disjointness. For example, if two concepts C,D

are disjoint, we may use the functional syntax (which scales well when expressing mutual

disjointness of n > 2 concepts) or we may say

C(x) ∧D(x)→ ⊥(x) (4.1)

4.4.2 Datatypes

For the purposes of FOPL rendering, datatypes are considered to be a predicate. That is, an

individual or nominal that has a datatype is expressed as

xsd:string(“Cogan”)

4.4.3 Nominals

Literals are assertions of a datatype predicate. For example, the following axiom contains

a nominal with a datatype.

BigFloe v ∃hasSigrid3IceFormCode.{“05”ˆˆxsd:string}

In order to align with the treatment of datatypes in this system, we construct the following

formula.

BigFloe(x)→ hasSigrid3IceFormCode(x, “05”) ∧ xsd:string(“05”)
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4.4.4 Axioms with No FOPL Analog

For those axioms that do not have analogs in FOPL, we borrow the notation from the OWL

Functional Syntax. For example, the HasKey and DataTypeRestriction axiom renderings

from Section 4.3 are utilized.

4.4.5 FOL Translator Tool

The FOL Translator Tool has the same GUI and CLI functionality as in Section 4.3.6.
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5

Evaluation

For convenience we restate the research hypothesis.

Hypotheses:

• When presented in a Description Logic Syntax, users will more quickly

and more correctly understand an ontology compared to renderings in

Manchester syntax.

• When presented in a FOPL-Rule-like (FOL1) Syntax, users will more

quickly and more correctly understand an ontology compared to render-

ings in Description Logic syntax.

In this chapter, we cover our method for measuring the impact of the different logical

renderings of OWL files have on understanding the content of an ontology. In Section 5.1,

we cover the overall design of the evaluation, our evaluation method and criteria, and our

test populations. In Section 5.2, we cover the results of our evaluation.

1For brevity, we will use FOL in place of FOPL-Rule-like (FOPLRL)
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5.1 Evaluation Design

5.1.1 Design Overview

In order to evaluate this claim, we have taken the following steps.

• Choose an Ontology

• Render the Ontology

• Choose Test Subjects

• Ask Questions for Understanding

• Evaluate Results

These points are explained in more detail in the following sections.

5.1.2 Choose an Ontology

In this case, we opted to utilize the Semantic Trajectory [6] Ontology Design Pattern. We

chose this ODP as it is sufficiently abstract that the semantic relations between its concepts

can not be immediately assumed via common sense. That is, in order to truly understand

the content of the ontology, the source material must be consulted, thus ensuring that each

of the syntaxes must be parsed in order to answer the questions. The entire contents of this

ontology are provided in OWL format in Appendix A.

5.1.3 Render the Ontology

As stated in the hypothesis, we aim to show that renderings in FOL result in better and

quicker understanding of the ontology. To that end, we will provide the test subjects with

renderings in each of the syntaxes. We generate the Manchester Syntax rendering using
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an online tool2 powered by the OWLAPI’s Manchester Syntax Renderer. The resultant

rendering was only modified to remove annotations and import data. Otherwise, the ren-

dering is provided to the subject exactly as the tool outputs. For reference, we include this

rendering in Appendix B. The FOPLR-like and the DL Syntax renderings were generated

using the tools developed during the course of this thesis and described in Chapter 4. No

changes were made to these renderings. These renderings are included in Appendices C

and D, respectively.

5.1.4 Choose Test Subjects

The test subjects are unpaid volunteers from among the computer science and engineering

graduate students at Wright State University. These students are not expected to be experts

in any logic, but should have passing familiarity with modeling data in an abstract manner.

In general, we believe that the volunteers are representative of domain experts interested in

ontology modeling. For this evaluation we did not assess prior knowledge. We note this

lack of assessment in an opportunity for improvement in future work.

5.1.5 Ask Questions of Understanding

This step of the evaluation process includes the actual assessment of the test subject’s un-

derstanding. This section is split into two parts: development of the evaluation and the

assessment.

First, for development, we created four questions designed to assess understanding of

the ontology. These questions come in two flavors: those questions that concern exactly

one axiom and questions that require the understanding of multiple axioms to answer. We

call these four questions, collectively, a test set. In the same manner, we generate two more

test sets. Each test set is similar to the others in intent and content. For example, the first

2http://www.ldf.fi/service/owl-converter/
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1. T F All Fixes are StartingFixes.

2. T F A Segment can never start from an EndingFix.

3. Which of the following statements is TRUE?

(a) A Segment may start at multiple Fixes.

(b) A Segment must have a StartingFix.

(c) A Segment consists of subsegments.

4. Which of the following statements is TRUE?

(a) A Segment must be traversed by a MovingObject.

(b) A Segment must start at an EndingFix of another Segment.

(c) Only MovingObjects may traverse a Segment.

Table 5.1: Questions Provided with Manchester Syntax. The correct answers are outlined
in rectangles.

question in each test set relates to the disjointness (or not) of StartingFixes, EndingFixes,

and Fixes. Now, we assign each of the test sets to a syntax. The test-set syntax pair,

asection, is constant (i.e. each test subject answers the same questions for each syntax).

The test sets are tests, and their answers, are provided in Tables 5.1 - 5.3.

For assessment, each subject is instructed that they are timed and that they cannot

return to a section after they have completed it. We time the test subject as they complete

each section. The test subjects are presented with the sections in different orders in order to

combat an effect of “increasing familiarity.” We do this in case there is a significant “sub-

sidizing effect” of learning the ontology during the first test section. That way our results

are agnostic to section ordering. Finally, after completing all the sections, the subjects are

asked to rank the sections by readability. We examine the results of this assessment in

Section 5.2.
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1. T F Only some EndingFixes are Fixes.

2. T F A Trajectory has an EndingFix.

3. Which of the following statements is TRUE?

(a) A Segment is not a Trajectory.

(b) A Segment is always connected to another Segment.

(c) A Segment is a Fix.

4. Which of the following statements is TRUE?

(a) A Trajectory must have a Segment.

(b) Segments may not be part of a Trajectory.

(c) The domain of ‘atPlace’ consists only of Fixes.

Table 5.2: Questions Provided with Description Logic Syntax. The correct answers are
outlined in rectangles.

1. T F StartingFixes can be EndingFixes.

2. T F An EndingFix is always at a Place.

3. Which of the following statements is TRUE?

(a) A Trajectory may act as a StartingFix.

(b) A Trajectory does not have subtrajectories.

(c) A Trajectory consists of Segments.

4. Which of the following statements is TRUE?

(a) A Place cannot have Attributes.

(b) A Fix that does not begin a Segment is an EndingFix.

(c) Any Place is also a TimeEntity.

Table 5.3: Questions Provided with FOLR-like Syntax. The correct answers are outlined
in rectangles.
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MS DL FOL

Readability 24 14 16

Correctness 2.89 3.22 2.2

Table 5.4: The Readability metric is the summed user ranking. A lower score indicates
greater readability. The Correctness metric is the average number of questions answered
correctly per test section (4 questions in each section).

5.2 Results

The evaluation was taken by 10 participants. As each test section was taken by every

participant, we use the two-tailed Student’s t-test to measure the significance of our results

(we believe assuming an underlying normal distribution is reasonable for this evaluation).

We conduct the t-test pairwise comparing the aggregate results of each test section.

5.2.1 Readability

In this section, we discuss the results of the Readability evaluation; these results are shown

in Table 5.4. As stated above, each test subject was asked to rank the different renderings 1,

2, and 3, where each rank may only be used once and a rank of 1 is considered to be ‘most

readable.’ These rankings were then summed; a low score is desirable for this metric.

The Description Logic Rendering was ranked most readable, followed by the FOL

Rule-like (FOLRL) Syntax and Manchester Syntax. The significance of these results are

shown in Table 5.6. We see that when comparing the Manchester Syntax (MS) results

to DL results, we reject the null hypothesis with p ≈ 0.030 < 0.05, validating the first

hypothesis. For MS to FOL, the results are not significant with p ≈ 0.052 6< 0.05. When

comparing DL to FOL, we fail to reject the null hypothesis.

First, the Manchester Syntax rendering is exactly the output from Protégé or online

converter tools. As such, there is little to no organization of the contents of the rendering

and full URIs are used; no class is in the shortform notation. The lower ranking for the
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DL is likely a result of the number of test subjects already familiar with Description Logic,

although we cannot be sure as we did not assess prior knowledge.

5.2.2 Correctness

The results for the Correctness evaluation are shown in Table 5.4. As is shown, correctness

was highest on the DL test section, followed by the Manchester Syntax and FOL sections.

While many people found the FOL syntax more readable, the performance on the test

sections does not substantiate the hypothesis that their understanding of the ontology would

increase. However, when using comparing the correctness results between MS and DL and

FOLRL via Student’s t-test, we see that the correctness scores are not significant p ≈ 0.40

and p ≈ 0.71, respectively. As such, we fail to substantiate our first hypothesis. With

respect to FOL to DL, we see that we reject the null hypothesis with p ≈ 0.0400 < 0.05,

substantiating our second hypothesis.

With respect to these results, we offer some comments on the failure to achieve sig-

nificant results. The higher mean correctness on the MS test section may indicate that it is

indeed easier to understand; it is the lack of viable human readable tooling. Alternatively,

the high mean correctness may be conflated with increased attention due to the difficulty

presented in parsing the dense URI markup. Finally, we again note that some of the test

subjects were already intimately familiar with DL, thus increasing their performance on

those sections. Finally, we note that performance on the DL section by those familiar with

DL was perfect, thus dramatically increasing the performance score.

5.2.3 Timing Statistics

We tracked the amount of time it took for each participant to complete each test section.

In the hypothesis, we contend that an ontology rendered in a FOL syntax allows a user

to more quickly understand the hypothesis. We have provided these timing statistics in
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MS DL FOL

Mean 9:10 6:42 9:51

Median 9:31 5:27 9:22

Table 5.5: Time Taken was measured per test-section.

MS-DL MS-FOL DL-FOL

Readability 0.0304 0.0516 0.5943

significant not significant not significant

Correctness 0.3972 0.3734 0.0400

not significant not significant significant

Timing 0.0476 0.7074 0.1978

significant not significant not significant

Table 5.6: We use Student’s t-Distribution to measure the pair-wise significance of our
results.

Table 5.5. From these data, we conclude via Student’s t-distribution that only the relative

improvement between MS and DL renderings is significant with p ≈ 0.048 < 0.05 which

substantiates our first hypothesis.

These results fail to substantiate the second hypothesis. To this point, we note that

timing understanding is a nebulous in concept in general, and thus difficult pinpoint a

single point of failure. For example, our test set had varied levels of understanding of each

of the syntaxes- does this variety have a disproportionate affect over different syntaxes? In

future studies, it will be necessary to have a more controlled population of participants.
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6

Conclusion

The Semantic Web is a field of research dedicated to modeling complex concepts in a

machine readable way, as well as an eponymous extension of the World Wide Web. One of

the most prominent tools available to a Semantic Web research is the ontology, a codified

way of expressing complex concepts in terms of simpler concepts.

As one of the goals of the field is to be able to model any arbitrary concept in a ma-

chine readable way, ontology engineering is an inherently multidisciplinary process. Thus,

ontologies are usually developed in tandem with Semantic Web researchers and domain

experts. This collaborative approach necessitates that there be multiple vehicles for vi-

sualizing an ontology under development allowing the team to more fully understand the

nascent structure.

Furthermore, we wish to lower the barrier for entry to domain experts in order to

increase adoption, thus growing the Semantic Web as an artifact. To do this, there are

already many tools that are attempts to improve the ontology engineering process (OEP).

For example, a visual notation for OWL and new ways to input axioms into Protégé.

In this thesis, we have described the development of two tools to add to the OEP

tool set. These tools are powered by a number of changes made to the OWLAPI in order

to provide human readable renderings of ontologies in Description Logic and a First Or-
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der Predicate Logic Rule-like syntaxes. While the Description Logic syntax was already

present as the OWLAPI’s LATEX rendering framework, it suffered from a number of signif-

icant problems in correctness and readability.

Hypotheses:

• When presented in a Description Logic Syntax, users will more quickly and more

correctly understand an ontology compared to renderings in Manchester syntax.

• When presented in a FOPL-Rule-like (FOL1) Syntax, users will more quickly and

more correctly understand an ontology compared to renderings in Description

Logic syntax.

The results from the evaluation, with respect to above hypotheses, were, at best, in-

conclusive. However, we contend that the key take away is that there is need for a tool

set optimized for rendering an ontology in a human readable manner, whether the target

is Manchester Syntax, Description Logic, or a FOL-rule-like syntax. This take away is

substantiated by the fact that, in general, DL or FOL renderings resulted in statistically

significant improvements over MS. As noted, though, this may be due to the usage of ex-

actly the output of the converter tool, which did not utilize shortform notation for any class

names.

Future Work

There are three major points discussed in this thesis that can be targeted for improvement

in future work.

First and foremost, we would like to create a tool for creating First Order Logic rules.

As previously mentioned, simply extending the OWLAPI is infeasible as it is out of scope.

Thus, it will be necessary to create a standalone tool with the OWLAPI as a dependency.
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We imagine such a tool translating the ontology’s underlying data structure into an analo-

gous first order logic data structure. At this point, the FOL can be manipulated in such a

way that we can generate rules for those axioms that are translatable. In addition, we may

borrow the hybridized syntax from [9] in order to maintain the intuitiveness of rules. It

would then be our position that FOL-rules are the most readable of the available syntaxes.

Secondly, any subsequent evaluation would require a more carefully chosen and pre-

pared set of test subjects. While each participant was a graduate student and familiar with

knowledge representation in general, we noted that varying levels of familiarity may have

had a significant impact on the results.

Finally, we will investigate making further changes to the OWLAPI to support a “hu-

man readable” rendering of Manchester Syntax

48



Bibliography

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,

and Applications. Cambridge University Press, 2003.

[2] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,

Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: a web-scale

approach to probabilistic knowledge fusion. In Sofus A. Macskassy, Claudia Perlich,

Jure Leskovec, Wei Wang, and Rayid Ghani, editors, The 20th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD ’14, New York,

NY, USA - August 24 - 27, 2014, pages 601–610. ACM, 2014.

[3] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy,

Shaohua Sun, and Wei Zhang. From data fusion to knowledge fusion. CoRR,

abs/1503.00302, 2015.
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Appendix A: Semantic Trajectory

(OWL)

<?xml v e r s i o n =”1.0”?>

< r d f :RDF xmlns =” h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #”

xml : ba se =” h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y ”

xmlns : r d f =” h t t p : / / www. w3 . org /1999/02 /22− r d f−syn t ax−ns #”

xmlns : owl =” h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl #”

xmlns : xml=” h t t p : / / www. w3 . org /XML/ 1 9 9 8 / namespace ”

xmlns : c p a n n o t a t i o n s c h e m a =” h t t p : / / www.

o n t o l o g y d e s i g n p a t t e r n s . o rg / schemas /

c p a n n o t a t i o n s c h e m a . owl #”

xmlns : xsd =” h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#”

xmlns : r d f s =” h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema #”

xmlns : t r j =” h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #”

xmlns : dc =” h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / ” >

<owl : Onto logy r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y ”>

<owl : i m p o r t s r d f : r e s o u r c e =” h t t p : / / www.

o n t o l o g y d e s i g n p a t t e r n s . o rg / schemas /
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c p a n n o t a t i o n s c h e m a . owl ”/>

<dc : c r e a t o r >A d i l a K r i s n a d h i , P a s c a l H i t z l e r </ dc :

c r e a t o r >

<c p a n n o t a t i o n s c h e m a : c o v e r s R e q u i r e m e n t s>Show t h e

b i r d s which s t o p a t x and y ,

Show t h e b i r d s which move a t a ground speed of 0 . 4 m/ s ,

Show t h e t r a j e c t o r i e s o f r i v e r s which c r o s s n a t i o n a l pa rks ,

Where a r e t h e p o r t s a t which t h e o c e a n o g r a p h i c c r u i s e A3221

s t o p p e d a f t e r l e a v i n g Woods Hole ? ,

L i s t t h e p l a c e s and t i m e s t h a t r e p r e s e n t t h e s p a t i o t e m p o r a l

e x t e n t o f t h e 1990 World Chess Championship even t , < /

c p a n n o t a t i o n s c h e m a : c o v e r s R e q u i r e m e n t s>

<c p a n n o t a t i o n s c h e m a : r e e n g i n e e r e d F r o m>Y i n g j i e Hu ;

K r z y s z t o f Janowicz ; David C a r r a l ; Simon S c h e i d e r ;

Werner Kuhn ; Gary Berg−Cross ; P a s c a l H i t z l e r ;

Mike Dean ; Dave Kolas : A Geo−o n t o l o g y Design

P a t t e r n f o r Seman t i c T r a j e c t o r i e s . In

I n t e r n a t i o n a l C o n f e r e n c e on S p a t i a l I n f o r m a t i o n

Theory ( COSIT ) 2013) 438−456</ c p a n n o t a t i o n s c h e m a :

r e e n g i n e e r e d F r o m>

<c p a n n o t a t i o n s c h e m a : s c e n a r i o s >Mike&apos ; s t r i p t o

t h e GeoVoCamp 2012 from h i s home i n t e g r a t i n g d a t a

from GPS dev ice , v e h i c l e i n f o r m a t i o n , and

p e r s o n a l i n f o r m a t i o n .

A t o u c a n f l i e s t h r o u g h t h e a i r a s r e c o r d e d by r e s e a r c h e r s i n

t h e MoveBank .
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The 1990 World Chess Championship e v e n t t h a t was h e l d i n two

l o c a t i o n s a t two d i f f e r e n t t i m e s . < / c p a n n o t a t i o n s c h e m a :

s c e n a r i o s >

< r d f s : l a b e l >Seman t i c T r a j e c t o r y P a t t e r n </ r d f s : l a b e l >

<c p a n n o t a t i o n s c h e m a : h a s I n t e n t >The p a t t e r n p r o v i d e s a

model o f t r a j e c t o r y , which i s u n d e r s t o o d as a

s e q u e n c e o f s p a t i o t e m p o r a l p o i n t s . The model

g e n e r a l i z i n g t h e Seman t i c T r a j e c t o r y p a t t e r n from

[ Hu , e t a l . , COSIT 2013] by employing t h e n o t i o n

o f p l a c e , i n s t e a d o f l o c a t i o n / geo−c o o r d i n a t e , t o

r e p r e s e n t t h e s p a t i a l e x t e n t o f t h e t r a j e c t o r y .

Th i s p a t t e r n i s s u i t a b l e f o r a v a r i e t y o f

t r a j e c t o r y d a t a s e t s and e a s i l y e x t e n d i b l e by by

a l i g n i n g t o o r match ing wi th e x i s t i n g t r a j e c t o r y

o n t o l o g i e s , f o u n d a t i o n a l o n t o l o g i e s , o r o t h e r

domain s p e c i f i c v o c a b u l a r i e s . < / c p a n n o t a t i o n s c h e m a

: h a s I n t e n t >

<c p a n n o t a t i o n s c h e m a : hasConsequences>Un l i ke t h e

o r i g i n a l v e r s i o n o f Seman t i c T r a j e c t o r y , t h i s

p a t t e r n o m i t s t h e hook t o t h e d a t a s o u r c e f o r

f i x e s ( which was a s u b c l a s s o f s s n : Device )

b e c a u s e i n s t e a d o f l o c a t i o n / geo−c o o r d i n a t e , t h e

n o t i o n o f p l a c e i s employed t o c a p t u r e t h e

s p a t i a l e x t e n t . N e v e r t h e l e s s , i t s h o u l d be

r e l a t i v e l y s t r a i g h t f o r w a r d t o e x t e n d t h i s v e r s i o n

i f t h e u s e r w i s e s t o a t t a c h d a t a s o u r c e
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i n f o r m a t i o n t o t h e f i x e s . < / c p a n n o t a t i o n s c h e m a :

hasConsequences>

<c p a n n o t a t i o n s c h e m a : r e l a t e d C P s >Place , Time ,

MovingObject </ c p a n n o t a t i o n s c h e m a : r e l a t e d C P s >

</owl : Ontology>

<!−−

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /

/ / A n n o t a t i o n p r o p e r t i e s

/ /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>

<!−− h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / c r e a t o r −−>

<owl : A n n o t a t i o n P r o p e r t y r d f : a b o u t =” h t t p : / / p u r l . o rg / dc /

e l e m e n t s / 1 . 1 / c r e a t o r ”/>
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<!−−

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /

/ / O b j e c t P r o p e r t i e s

/ /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # a t P l a c e −−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # a t P l a c e ”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # P l a c e ”/>

< r d f s : comment>Connec t s a n y t h i n g ( i n c l u d i n g f i x e s i n

t h i s p a t t e r n ) t o P l a c e . < / r d f s : comment>

< r d f s : l a b e l >a t P l a c e </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >
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<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # atTime −−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # atTime”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # T i m e E n t i t y ”/>

< r d f s : comment>Connec t s a n y t h i n g ( i n c l u d i n g f i x e s i n

t h i s p a t t e r n ) t o T imeEnt i ty </ r d f s : comment>

< r d f s : l a b e l >atTime </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # endsAt −−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # endsAt”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 /

owl# F u n c t i o n a l P r o p e r t y ”/>

< r d f s : comment>Connec t s a segment t o t h e f i x i t ends

a t . < / r d f s : comment>

< r d f s : l a b e l >endsAt </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #
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h a s A t t r i b u t e −−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # h a s A t t r i b u t e ”>

< r d f s : comment>Connec t s a f i x o r a segment t o an

a d d i t i o n a l i n f o r m a t i o n as r e p r e s e n t e d by an

i n s t a n c e o f A t t r i b u t e . < / r d f s : comment>

< r d f s : l a b e l >h a s A t t r i b u t e </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # h a s F i x −−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # h a s F i x ”>

<owl : p roper tyCha inAxiom r d f : pa r seType =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # hasSegment ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # endsAt ”/>

</owl : proper tyChainAxiom>

<owl : p roper tyCha inAxiom r d f : pa r seType =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # hasSegment ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # s t a r t s F r o m ”/>
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</owl : proper tyChainAxiom>

< r d f s : comment>R e l a t i n g t h e t r a j e c t o r y t o each of i t s

f i x e s . < / r d f s : comment>

< r d f s : l a b e l >hasF ix </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # hasSegment

−−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # hasSegment”>

< r d f s : comment>R e l a t i n g t h e t r a j e c t o r y t o each of i t s

segmen t s . < / r d f s : comment>

< r d f s : l a b e l >hasSegment </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

h a s T r a j e c t o r y −−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # h a s T r a j e c t o r y ”>

< r d f s : r a n g e r d f : r e s o u r c e =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # T r a j e c t o r y ”/>
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< r d f s : comment>Anyth ing t h a t has a t r a j e c t o r y can use

t h i s p r o p e r t y t o c o n n e c t i t t o t h e t r a j e c t o r y

i n s t a n c e . < / r d f s : comment>

< r d f s : l a b e l >h a s T r a j e c t o r y </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # n e x t F i x −−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # n e x t F i x ”>

< r d f s : comment>R e l a t e s one f i x t o t h e i m m e d i a t e l y

f o l l o w i n g f i x i n t h e s e q u e n c e . < / r d f s : comment>

< r d f s : l a b e l >n e x t F i x </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # s t a r t s F r o m

−−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # s t a r t s F r o m ”>

< r d f : t y p e r d f : r e s o u r c e =” h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 /

owl# F u n c t i o n a l P r o p e r t y ”/>

< r d f s : comment>Connec t s a segment t o t h e f i x i t
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s t a r t s from . < / r d f s : comment>

< r d f s : l a b e l >s t a r t s F r o m </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # t r a v e r s e d B y

−−>

<owl : O b j e c t P r o p e r t y r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y # t r a v e r s e d B y ”>

< r d f s : comment>Connect a segment t o t h e moving o b j e c t

t h a t t r a v e r s e s i t . < / r d f s : comment>

< r d f s : l a b e l >t r a v e r s e d B y </ r d f s : l a b e l >

</owl : O b j e c t P r o p e r t y >

<!−−

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /

/ / C l a s s e s

/ /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>
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<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # A t t r i b u t e

−−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # A t t r i b u t e ”>

< r d f s : comment>C a p t u r e s a d d i t i o n a l i n f o r m a t i o n t h a t

e n r i c h e s some f i x o r segment . < / r d f s : comment>

< r d f s : l a b e l >A t t r i b u t e </ r d f s : l a b e l >

</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # EndingFix

−−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # EndingFix”>

<owl : e q u i v a l e n t C l a s s >

<owl : C lass>

<owl : i n t e r s e c t i o n O f r d f : pa r seType =”

C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>
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<owl : C lass>

<owl : complementOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y>

< r d f : D e s c r i p t i o n >

<owl : i n v e r s e O f r d f :

r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y #

s t a r t s F r o m ”/>

</ r d f : D e s c r i p t i o n >

</owl : o n P r o p e r t y>

<owl : someValuesFrom r d f :

r e s o u r c e =” h t t p : / / w3id . o rg

/ d a s e l a b / on to / t r a j e c t o r y #

Segment ”/>

</owl : R e s t r i c t i o n >

</owl : complementOf>

</owl : C las s>

</owl : i n t e r s e c t i o n O f >

</owl : C las s>

</owl : e q u i v a l e n t C l a s s >

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f s : comment>The l a s t f i x i n a p a r t i c u l a r s e q u e n c e

o f f i x e s . < / r d f s : comment>

< r d f s : l a b e l >EndingFix </ r d f s : l a b e l >
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</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix −−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # Fix”>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # a t P l a c e ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # P l a c e ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # atTime ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

T i m e E n t i t y ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

65



<owl : o n P r o p e r t y>

< r d f : D e s c r i p t i o n >

<owl : i n v e r s e O f r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

h a s F i x ”/>

</ r d f : D e s c r i p t i o n >

</owl : o n P r o p e r t y>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

T r a j e c t o r y ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # h a s A t t r i b u t e

”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # A t t r i b u t e ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # n e x t F i x ”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>
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</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : comment>D e s c r i b e s a f i x , which i s an adorned

s p a t i o t e m p o r a l p o i n t . A s e q u e n c e o f f i x e s form

t h e t r a j e c t o r y . < / r d f s : comment>

< r d f s : l a b e l >Fix </ r d f s : l a b e l >

</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

MovingObject −−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # MovingObject”>

< r d f s : comment>Thi s i s t h e hook t o an o n t o l o g y /

p a t t e r n t h a t d e s c r i b e s t h e moving o b j e c t , i f any ,

which moves a l o n g t h e t r a j e c t o r y . < / r d f s : comment>

< r d f s : l a b e l >MovingObject </ r d f s : l a b e l >

</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # P l a c e −−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # P l a c e ”>
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< r d f s : comment>Thi s i s t h e hook t o o t h e r p a t t e r n /

o n t o l o g y t h a t d e s c r i b e s t h e n o t i o n o f p l a c e ,

which i s more g e n e r a l t h a n j u s t a l o c a t i o n / geo−

c o o r d i n a t e . < / r d f s : comment>

< r d f s : l a b e l >Place </ r d f s : l a b e l >

</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Segment −−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # Segment”>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # endsAt ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # s t a r t s F r o m ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

68



</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y>

< r d f : D e s c r i p t i o n >

<owl : i n v e r s e O f r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

hasSegment ”/>

</ r d f : D e s c r i p t i o n >

</owl : o n P r o p e r t y>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

T r a j e c t o r y ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # endsAt ”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .
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org / d a s e l a b / on to / t r a j e c t o r y # h a s A t t r i b u t e

”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # A t t r i b u t e ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # s t a r t s F r o m ”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # t r a v e r s e d B y

”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # MovingObject

”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : comment>The Segment c l a s s c a p t u r e s t h e &quo t ;

c o n n e c t i o n&quo t ; be tween two c o n s e c u t i v e f i x e s .

Tha t i s , a segment s t a r t s from a f i x and ends a t
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a n o t h e r f i x . I f t h e p a t t e r n i s used t o model t h e

t r a j e c t o r y o f some moving o b j e c t , each segment i s

t r a v e r s e d by t h a t moving o b j e c t . A d d i t i o n a l

i n f o r m a t i o n a b o u t a segment can be a t t a c h e d as

a t t r i b u t e s . < / r d f s : comment>

< r d f s : l a b e l >Segment </ r d f s : l a b e l >

</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # S t a r t i n g F i x

−−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # S t a r t i n g F i x ”>

<owl : e q u i v a l e n t C l a s s >

<owl : C lass>

<owl : i n t e r s e c t i o n O f r d f : pa r seType =”

C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

<owl : C lass>

<owl : complementOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y>

< r d f : D e s c r i p t i o n >

<owl : i n v e r s e O f r d f :
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r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b /

on to / t r a j e c t o r y #

endsAt ”/>

</ r d f : D e s c r i p t i o n >

</owl : o n P r o p e r t y>

<owl : someValuesFrom r d f :

r e s o u r c e =” h t t p : / / w3id . o rg

/ d a s e l a b / on to / t r a j e c t o r y #

Segment ”/>

</owl : R e s t r i c t i o n >

</owl : complementOf>

</owl : C las s>

</owl : i n t e r s e c t i o n O f >

</owl : C las s>

</owl : e q u i v a l e n t C l a s s >

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f s : comment>The f i r s t f i x i n a p a r t i c u l a r s e q u e n c e

o f f i x e s . < / r d f s : comment>

< r d f s : l a b e l >S t a r t i n g F i x </ r d f s : l a b e l >

</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # T i m e E n t i t y

−−>
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<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # T i m e E n t i t y ”>

< r d f s : comment>The hook t o c l a s s / p a t t e r n / o n t o l o g y

t h a t models t ime , t h i s c l a s s p r o v i d e s t h e

t e m p o r a l e x t e n t o f t h e t r a j e c t o r y . One example o f

t ime model i s t h e W3C Time Onto logy . < / r d f s :

comment>

< r d f s : l a b e l >TimeEnt i ty </ r d f s : l a b e l >

< r d f s : s e e A l s o r d f : r e s o u r c e =” h t t p : / / www. w3 . org / 2 0 0 6 /

t ime ”/>

</owl : C las s>

<!−− h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # T r a j e c t o r y

−−>

<owl : C l a s s r d f : a b o u t =” h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # T r a j e c t o r y ”>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # hasSegment ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Segment

”/>
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</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # h a s F i x ”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : subClassOf>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # hasSegment ”/>

<owl : a l l V a l u e s F r o m r d f : r e s o u r c e =” h t t p : / / w3id

. o rg / d a s e l a b / on to / t r a j e c t o r y # Segment ”/>

</owl : R e s t r i c t i o n >

</ r d f s : subClassOf>

< r d f s : comment>R e p r e s e n t s t h e n o t i o n o f t r a j e c t o r y ,

t h i s i s t h e main c l a s s t h a t can be hooked wi th

o t h e r p a t t e r n s t h a t use t h e T r a j e c t o r y p a t t e r n .

T r a j e c t o r y i n t h i s model i s u n d e r s t o o d as a

s e q u e n c e o f f i x e s c o n n e c t e d by segmen t s . There i s

e x a c t l y one s t a r t i n g f i x and e x a c t l y one end in g

f i x . Each f i x has a t e m p o r a l e x t e n t and a p l a c e (

which i s more g e n e r a l t h a n j u s t a l o c a t i o n ) . < /

r d f s : comment>
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< r d f s : l a b e l >T r a j e c t o r y </ r d f s : l a b e l >

</owl : C las s>

<!−−

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

/ /

/ / G e n e r a l axioms

/ /

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

−−>

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # endsAt ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Segment ”/>

</owl : R e s t r i c t i o n >

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # h a s A t t r i b u t e ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / / w3id . o rg /
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d a s e l a b / on to / t r a j e c t o r y # A t t r i b u t e ”/>

< r d f s : subClassOf>

<owl : C lass>

<owl : unionOf r d f : pa r seType =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id .

o rg / d a s e l a b / on to / t r a j e c t o r y # Segment

”/>

</owl : unionOf>

</owl : C las s>

</ r d f s : subClassOf>

</owl : R e s t r i c t i o n >

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # h a s F i x ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # T r a j e c t o r y ”/>

</owl : R e s t r i c t i o n >

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # hasSegment ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Segment ”/>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /
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d a s e l a b / on to / t r a j e c t o r y # T r a j e c t o r y ”/>

</owl : R e s t r i c t i o n >

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # n e x t F i x ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

</owl : R e s t r i c t i o n >

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # s t a r t s F r o m ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Segment ”/>

</owl : R e s t r i c t i o n >

<owl : R e s t r i c t i o n >

<owl : o n P r o p e r t y r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # t r a v e r s e d B y ”/>

<owl : someValuesFrom r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # MovingObject ”/>

< r d f s : s u b C l a s s O f r d f : r e s o u r c e =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Segment ”/>

</owl : R e s t r i c t i o n >

< r d f : D e s c r i p t i o n >
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< r d f : t y p e r d f : r e s o u r c e =” h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 /

owl# A l l D i s j o i n t C l a s s e s ”/>

<owl : members r d f : pa r seType =” C o l l e c t i o n ”>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # A t t r i b u t e ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Fix ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # MovingObject ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # P l a c e ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Segment ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # T i m e E n t i t y ”/>

< r d f : D e s c r i p t i o n r d f : a b o u t =” h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # T r a j e c t o r y ”/>

</owl : members>

</ r d f : D e s c r i p t i o n >

</ r d f : RDF>

<!−− G e n e r a t e d by t h e OWL API ( v e r s i o n 4 .2 .5 .20160517 −0735)

h t t p s : / / g i t h u b . com / owlcs / ow lap i −−>
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Appendix B: Semantic Trajectory

(Manchester Syntax)

Onto logy : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y >

Im po r t : <h t t p : / / www. o n t o l o g y d e s i g n p a t t e r n s . o rg / schemas /

c p a n n o t a t i o n s c h e m a . owl>

D a t a t y p e : r d f : P l a i n L i t e r a l

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

a t P l a c e >

Range :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # P lace>

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

atTime>
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Range :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # TimeEnt i ty>

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

endsAt>

C h a r a c t e r i s t i c s :

F u n c t i o n a l

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

h a s A t t r i b u t e >

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

hasF ix>

S u b P r o p e r t y C h a i n :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # hasSegment>

o <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

endsAt>

S u b P r o p e r t y C h a i n :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # hasSegment>
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o <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

s t a r t s F r o m >

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

hasSegment>

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

h a s T r a j e c t o r y >

Range :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # T r a j e c t o r y >

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

n e x t F i x>

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

s t a r t s F r o m >

C h a r a c t e r i s t i c s :

81



F u n c t i o n a l

O b j e c t P r o p e r t y : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

t r a v e r s e d B y >

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # A t t r i b u t e >

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # EndingFix>

E q u i v a l e n t T o :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix>

and ( n o t ( i n v e r s e (< h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # s t a r t s F r o m >) some <h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Segment >) )

SubClassOf :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix>

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix>
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SubClassOf :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # a t P l a c e >

some <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

P lace > ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # atTime>

some <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

TimeEnt i ty > ,

i n v e r s e (< h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

hasF ix >) some <h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # T r a j e c t o r y > ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

h a s A t t r i b u t e > on ly <h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # A t t r i b u t e > ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # n e x t F i x>

on ly <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix

>

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # MovingObject

>

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # P lace>

e l ” P l a c e ”
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C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Segment>

a l i n f o r m a t i o n a b o u t a segment can be a t t a c h e d as

a t t r i b u t e s . ” ,

r d f s : l a b e l ” Segment ”

SubClassOf :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # endsAt>

some <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix

> ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # s t a r t s F r o m >

some <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

Fix > ,

i n v e r s e (< h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

hasSegment >) some <h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # T r a j e c t o r y > ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # endsAt>

on ly <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix

> ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

h a s A t t r i b u t e > on ly <h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # A t t r i b u t e > ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # s t a r t s F r o m >

on ly <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

Fix > ,
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<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # t r a v e r s e d B y

> on ly <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

MovingObject>

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # S t a r t i n g F i x >

E q u i v a l e n t T o :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix>

and ( n o t ( i n v e r s e (< h t t p : / / w3id . o rg / d a s e l a b / on to /

t r a j e c t o r y # endsAt >) some <h t t p : / / w3id . o rg /

d a s e l a b / on to / t r a j e c t o r y # Segment >) )

SubClassOf :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix>

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # TimeEnt i ty>

C l a s s : <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # T r a j e c t o r y >

SubClassOf :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # hasSegment>

some <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

Segment > ,
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<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # hasF ix>

on ly <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix

> ,

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # hasSegment>

on ly <h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y #

Segment>

D i s j o i n t C l a s s e s :

<h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # A t t r i b u t e >,<

h t t p : / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Fix >,< h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # MovingObject >,< h t t p

: / / w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # P lace >,< h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # Segment>,< h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # TimeEnt i ty >,< h t t p : / /

w3id . o rg / d a s e l a b / on to / t r a j e c t o r y # T r a j e c t o r y >
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Appendix C: Semantic Trajectory (First

Order Logic)

Classes

Attribute

AllDifferent(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

EndingFix

EndingFix(x1)→ Fix(x1) ∧ ∀x2(startsFrom(x2, x1)→ ¬Segment(x2))

Fix(x1) ∧ ∀x2(startsFrom(x2, x1)→ ¬Segment(x2))→ EndingFix(x1)

EndingFix(x1)→ Fix(x1)
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Fix

Fix(x1)→ ∃x2(atPlace(x1, x2) ∧ Place(x2))

Fix(x1)→ ∀x2(nextFix(x1, x2)→ Fix(x2))

Fix(x1)→ ∃x2(atTime(x1, x2) ∧ TimeEntity(x2))

Fix(x1)→ ∀x2(hasAttribute(x1, x2)→ Attribute(x2))

Fix(x1)→ ∃x2(hasFix(x2, x1) ∧ Trajectory(x2))

AllDifferent(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

MovingObject

AllDifferent(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

Place

AllDifferent(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)
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Segment

Segment(x1)→ ∃x2(startsFrom(x1, x2) ∧ Fix(x2))

Segment(x1)→ ∃x2(endsAt(x1, x2) ∧ Fix(x2))

Segment(x1)→ ∀x2(hasAttribute(x1, x2)→ Attribute(x2))

Segment(x1)→ ∀x2(startsFrom(x1, x2)→ Fix(x2))

Segment(x1)→ ∃x2(hasSegment(x2, x1) ∧ Trajectory(x2))

Segment(x1)→ ∀x2(traversedBy(x1, x2)→ MovingObject(x2))

Segment(x1)→ ∀x2(endsAt(x1, x2)→ Fix(x2))

AllDifferent(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

StartingFix

StartingFix(x1)→ Fix(x1) ∧ ∀x2(endsAt(x2, x1)→ ¬Segment(x2))

Fix(x1) ∧ ∀x2(endsAt(x2, x1)→ ¬Segment(x2))→ StartingFix(x1)

StartingFix(x1)→ Fix(x1)

TimeEntity

AllDifferent(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)
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Trajectory

Trajectory(x1)→ ∃x2(hasSegment(x1, x2) ∧ Segment(x2))

Trajectory(x1)→ ∀x2(hasFix(x1, x2)→ Fix(x2))

Trajectory(x1)→ ∀x2(hasSegment(x1, x2)→ Segment(x2))

AllDifferent(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

Object properties

atPlace

∃x1 Thing(x1)→ ∀x2(atPlace(x1, x2)→ Place(x2))

atTime

∃x1 Thing(x1)→ ∀x2(atTime(x1, x2)→ TimeEntity(x2))

endsAt

→ ≤ 1x2 endsAt(x1, x2) ∧ Thing(x2)
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hasAttribute

hasFix

hasSegment

hasTrajectory

∃x1 Thing(x1)→ ∀x2(hasTrajectory(x1, x2)→ Trajectory(x2))

nextFix

startsFrom

→ ≤ 1x2 startsFrom(x1, x2) ∧ Thing(x2)

traversedBy

Data properties

Individuals

Datatypes

string
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Appendix D: Semantic Trajectory

(Description Logic)

Classes
Attribute

AllDisjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

EndingFix

EquivalentClasses(EndingFix,Fix u ¬(∃startsFrom−.Segment))
EndingFix v Fix

Fix

Fix v ∃atPlace.Place
Fix v ∀nextFix.Fix
Fix v ∃atTime.TimeEntity
Fix v ∀hasAttribute.Attribute
Fix v ∃hasFix−.Trajectory

AllDisjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)
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MovingObject

AllDisjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

Place

AllDisjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

Segment

Segment v ∃startsFrom.Fix
Segment v ∃endsAt.Fix
Segment v ∀hasAttribute.Attribute
Segment v ∀startsFrom.Fix
Segment v ∃hasSegment−.Trajectory
Segment v ∀traversedBy.MovingObject
Segment v ∀endsAt.Fix

AllDisjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

StartingFix

EquivalentClasses(StartingFix,Fix u ¬(∃endsAt−.Segment))
StartingFix v Fix

TimeEntity

AllDisjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)
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Trajectory

Trajectory v ∃hasSegment.Segment
Trajectory v ∀hasFix.Fix
Trajectory v ∀hasSegment.Segment

AllDisjoint(Attribute,Fix,MovingObject,Place,Segment,TimeEntity,Trajectory)

Object properties
atPlace

> v ∀atPlace.Place

atTime

> v ∀atTime.TimeEntity

endsAt

> v≤ 1endsAt.>

hasAttribute

hasFix

hasSegment

hasTrajectory

> v ∀hasTrajectory.Trajectory

nextFix

startsFrom

> v≤ 1startsFrom.>
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traversedBy

Data properties

Individuals

Datatypes
string
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Appendix E: Question Pool
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For each answer, write the axiom that justifies your answer. 

 

1. T F  Only some EndingFixes are Fixes 
2. T F  All Fixes are StartingFixes 
3. T F  Fixes and Segments are equivalent concepts  
4. T F  Trajectories, Segments, and Fixes are mutually disjoint concepts 
5. T F  Trajectories may have more than one possible StartingFix 

 
6. A Segment 

A. Is not a trajectory 
B. Is always connected to another segment 
C. Is a Fix 
D. Is equivalent to a Place 
E. All of the above 

 
7. A Trajectory 

A. Can act as a StartingFix 
B. Does not have subtrajectories 
C. Is a segment 
D. Consists of segments 
E. None of the above 

 
8. Which of the following statements is TRUE 

A. A Trajectory does not have Fixes 
B. All Segments belong to a Trajectory. 
C. The domain of ‘atPlace’ is Place 
D. Both A & B 
E. Both A & C 

 
9. Which of the following statements is TRUE 

A. Only MovingObjects traverse a Segment 
B. A Segment has a MovingObject 
C. A Segment must start at a Fix. 
D. A Segment must start at a Place. 
E. Both A & C 

 
10. Which of the following statements is TRUE 

A. A Place may have Attributes 
B. If any Fix is the start of a Segment, then it is a StartingFix 
C. A Fix that does not begin a Segment is an EndingFix 
D. Any Place is also a TimeEntity 
E. Both B & C 

 
11. Which of the following statements is TRUE 

A. A Fix may have Attributes 
B. A Segment may have Attributes 
C. A Trajectory may have Attributes 
D. Both A & B 
E. A, B, & C 
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