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ABSTRACT
We propose the combining of region connection calculi with nested
hierarchical grids for representing spatial region data in the context
of knowledge graphs, thereby avoiding reliance on vector repre-
sentations. We present a resulting region calculus, and provide
qualitative and formal evidence that this representation can be
favorable with large data volumes in the context of knowledge
graphs; in particular we study means of efficiently choosing which
triples to store to minimize space requirements when data is rep-
resented this way, and we provide an algorithm for finding the
smallest possible set of triples for this purpose including an asymp-
totic measure of the size of this set for a special case. We prove that
a known constraint calculus is adequate for the reconstruction of
all triples describing a region from such a pruned representation,
but problematic for reasoning with hierarchical grids in general.

CCS CONCEPTS
• Information systems → Geographic information systems;
• Theory of computation→ Logic; •Mathematics of comput-
ing → Trees.
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1 INTRODUCTION
In traditional geographic information systems (GIS), geographic
data, such as the locations of region boundaries, are stored using one
of a variety of techniques based on coordinate geometry. Vertices
of polygons, etc. are points in a continuous space, represented
by their real-number coordinates in some coordinate system. An
alternative to this is the use of so-called hierarchical grids, where
"space" is subdivided into hierarchically-nested "cells", whose exact
geometries can be easily computed due to their regular nature.
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Hierarchical grids are already long in use in GIS, being used as
index structures to speed up lookup of points and objects, stored
as coordinates [12]. Recently hierarchical grid systems have been
employed very successfully by companies such as Google [2] and
Uber [3] to structure large quantities of their internal data. While
in these applications there is a strong emphasis on indexing and
efficient look-up using the index, we see another advantage to
hierarchical grids that has not yet been systematically explored,
namely that they lend themselves naturally to a context in which
knowledge graphs are used for data integration and management.

Knowledge graphs are an approach to structuring data (or meta-
data1) in form of a labeled and typed graph, together with a type
logic that is often referred to as a knowledge graph schema or an
ontology [5]. Knowledge graphs have recently seen significant up-
take by industry, with visible success [9]. The World Wide Web
Consortium (W3C) has developed standards for knowledge graphs
and their schemas – the Web Ontology Language OWL and the
Resource Description Framework RDF – as well as the SPARQL
querying language and other relevant standards, that are widely
used [6]. The schema, if expressed in OWL, consists of a set of
logical formulas that can be used for deductive inference if desired.

We argue that hierarchical grids are a natural choice for rep-
resenting information about spatial regions, for many contexts:
Each grid cell thus becomes a node in the knowledge graph, with
relations between the cells (or relations between cells and features
or information of interest) represented naturally by labelled graph
edges. Collections of cells can be used to approximate regions of
interest (e.g., by representing them with a suitable cover), thus
trading some representational precision for increased querying and
data processing speed. In a data integration context – in which
knowledge graphs are prominently used – a chosen hierarchical
grid can serve as the central integration anchor for spatial data
originating from different formats, thus providing a uniform rep-
resentation that can be tapped into, e.g. by visualization tools and
geographical information systems.

Furthermore, type logics that provide schema information for
knowledge graphs can naturally be used to capture logic-based
calculi about spatial relations between regions, such as variants
of the Region Connection Calculus RCC [10]. The formal logic of
the region calculus and the formal logic of the knowledge graph
schema then naturally combine and can be utilized for joint logical
inferencing, i.e., for deducing knowledge that arises as necessary

1In a knowledge graph context, the boundary between metadata and data is – deliber-
ately – not crisp. But what is referred to as "data" in a knowledge graph context would
often be called "metadata" in different contexts.
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logical consequences from the data and type logic of the knowl-
edge graph, and can for example be used for querying for logically
implied, but not explicitly encoded, information.

Another interesting aspect of the combined region and type logic
is that it can be utilized for what has been called semantic com-
pression in the context of (RDF) knowledge graphs [7]. It refers to
the idea of using logical deduction rules to compress a knowledge
graph without loss of information. In some situations, for example,
addition of a single suitable logical formula to the type logic can
make a very large number of node-edge-node graph triples redun-
dant in the sense that they can now be removed, while at the same
time the new logical formula makes it possible to re-generate the
removed triples as needed.

This paper is a short paper that serves as an extended abstract to
the contributions in the extended technical report [15] that contains
all formal definitions, results and proofs referred to herein.

2 REGION CONNECTION CALCULUS ON THE
GRID

We assume that the reader is familiar with basic set-theoretic topol-
ogy, see e.g. [8] and also with the basics of formal logic, see e.g.
[14].

We provide a topological definition of a hierarchical grid, which
in particular applies to the square, quadtree, etc. grids often used
in practice, e.g. the Google S2 grid [2]. Note that it does not apply
to grid systems like Uber’s H3 [3] in which child cells may not be
fully contained in their parent.

Definition 2.1. Let a nested hierarchical grid be a pair (𝐴, cells𝐴)
where 𝐴 is a topological space, and cells𝐴 is a tree with root 𝐴 and
in which every node 𝑁 is a nonempty topological space, and if it
has children, it has finitely many, but at least two, and the children
𝑁𝑖 of 𝑁 are regular closed subspaces of 𝑁 such that

⋃
𝑖 𝑁𝑖 = 𝑁

and no two 𝑁𝑖 share an open subset. Additionally, for this paper
we will require 𝐴 to be a Baire space, i.e., such that countable
unions of degenerate subspaces are degenerate, which is a very
mild condition given usual application scenarios for grids. In fact
we really only need the condition that a finite union of degenerate
sets is degenerate, but so many common spaces are Baire spaces
that the distinction is not too important. For a tree 𝑇 , we will use
|𝑇 | to denote the set of all nodes of 𝑇 .

For the region calculus, we will focus on RCC5 (background
in e.g. [13]) which is a logic of relations between regions with
five predicates, EQ, PP, PP−1,DR, PO, which can be read, “equal,
proper part of, properly containing, not significantly overlapping,
partially overlapping". We use a topological semantics for RCC5,
but there are several different semantics possible which give the
same consequences. RCC5 is a popular “constraint calculus" used in
GIS database systems [13]. We provide a slightly stronger variant of
RCC5, which takes into account a priori all information about the
structure of a hierarchical grid, not just the part of that information
which is expressible in RCC5, by explicitly including a hierarchical
grid in the logic’s signature. We call this variant “RCC5-G."

It is usual in many geodatabase systems to use not RCC5 but
the more powerful calculus RCC8. Both arise from the system RCC
introduced in the paper [10]. RCC8 also has both a topological se-
mantics and an a priori one (the original, from [10]); a discussion

of topological semantics for RCC8 can be found in [11]. We use
RCC5 here not just to simplify presentation, but because we believe
that for our present purposes, RCC8 is actually unnecessary. Recall
the approach to geometries which motivates this paper: geometries
are to be considered only insofar as they can be captured by rela-
tionships to a fixed grid. The principal difference between the two
RCC constraint formalisms is RCC8’s concern with boundaries – it
differentiates, for example, between the true disconnectedness rela-
tion and the “external connection" relation, in which two regions
overlap, but in a degenerate set (with empty interior). RCC5 consid-
ers these situations to be indistinguishable (they can both provide
the semantics for the predicate DR). While in traditional geometry
representation schemes, the additional information about boundary
relationships can be useful, our position is that for grid representa-
tion it is not. For, real-world data (locations of boundaries) should
be thought of as sampled from a continuous distribution, and so it
is vanishingly unlikely that a real-world boundary will ever exactly
coincide with the finitely many artificial boundaries of our grid
cells. Even real-world boundaries defined as straight lines, such
as latitudes, will not usually line up with hierarchical grid cells,
unless the grid is specifically planned out to make this happen,
which they often are not. Whenever it seems to happen in real data,
exact coincidence of boundaries should by default be attributed to
insufficient decimal precision, rather than assumed to have real
meaning. This assumption is convenient for us, as RCC8 is not
nearly as compatible with a hierarchical organization of space as
RCC5 is, and obtaining results for it like those in the following
sections is much harder.

2.1 Inheritance
While in this paper we will concentrate on the use of RCC5-G to
reduce sets of relations between the grid and a single region, we
will briefly mention a more standard use of such calculi – to store
information about properties of regions that are “upward-inherited"
or “downward-inherited." By downward-inherited we mean a prop-
erty which, if possessed by a region 𝑅, also characterizes all regions
containing 𝑅. Such a property can be represented by the collection
of all maximal regions having it, and checked by checking whether
a region 𝑅 is EQ or PP to one of these – that is, whether a satisfiable
constraint network exists in which an edge from 𝑅 to one such
region is labeled {EQ, PP}. Often there will only be one maximal
region needed, as for the property “completely covered by water."
Common types of upward-inherited properties involve “containing
a feature", such as a particular city, or containing some part of a
distributed entity, such as “water". These can be represented by a
{PP−1, EQ} (in the first case) or {PO, PP−1, EQ} (in the second) re-
lation to a region, i.e. the region occupied by the city, or the region
covered by water.

3 SEMANTIC COMPRESSION
We have already argued in the introduction that the use of hierar-
chical grids together with knowledge graphs, as described herein,
provides some advantages in some circumstances. It is important to
note, however, that that there are always trade-offs, and that a par-
ticular representational form (such as using a hierarchical grid) is
advantageous in some use cases, and not so in others. Our approach
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provides additional flexibility in making a choice for representing
spatial information in the context of knowledge graphs.

Using a hierarchical grid as described is an approximation for
spatial representation that is constrained by the pre-defined grid
cells. As such, it comes at the loss of some precision. However,
it also comes with some advantages. One of them is representa-
tional simplicity. Rather than representing each region with, say,
a polygon in the graph, the spatial representation of the regions
becomes normalized as a selection of cells that have some specified
region-connection relationship to the region. By taking the hier-
archical structure (and corresponding logical axiomatization) into
account, it is in fact not necessary to flag all such cells, as covering
a region inherits upwards and containment within a region inher-
its downwards. We can thus arrive at a semantically compressed
representation.

In a similar vein, not only region representation can be under-
stood as semantically compressed, but relevant features of such a
region can likewise be represented in compressed form by making
use of the logic from Section 2, in particular upward and downward
inheritance as discussed. E.g., if a cell is known to fully fall within
a region with arid climate, then we know that arid climate also ap-
plies for all its sub-cells. In particular in the context of knowledge
graphs, where information pertaining to many different regions
may be abundant, this type of reasoning over the grid may result
in a cleaner representation of content.

Another possible advantage of using hierarchical grids for knowl-
edge graphs with spatial content is for the information integration
process itself; indeed knowledge graphs excel as a tool for informa-
tion integration from heterogeneous sources. Using a hierarchical
grid, spatial information from a data source can be normalized by
expressing it approximately using cells, thus providing a convenient
format for the integrated representation, while at the same time
providing a simplified logic for reasoning about spatial relations
and inheritance of features as just discussed. Once cast into this
form, it is no longer necessary to compute region intersections etc.
from, say, vector representations, or to deal with the complexities
of a region calculus on arbitrarily shaped regions: Instead we have
arrived at a compressed representation with a much simpler logic.

We consider how to arrive at a compressed representation, in
terms of cells, of a single region, about which we know as much as
our grid-based representation of geometry can tell us, in a vacuum,
so to speak – our only option to record information about it is
by RCC5 relations directly with cells, not with other regions. See
the Further Work section for other similar problems we may want
to solve. The full-knowledge single region compression problem is
to find a small set of formulas 𝐵 (in RCC5-G) which is logically
equivalent to the set of all RCC5-G formulas describing a given
region (without reference to any other non-cell regions). Now in
general the effectiveness of compression is hard to neatly quantify
in a provable way, but in this case we can get a very nice fact
– that there is an optimal solution, up to a constant discrepancy.
This optimal solution is intuitively, not to say trivially, obvious to
anyone who can visualize a square grid: cells which are fully inside
or fully outside the region 𝑅 ought to be conglomerated together as
much as possible in 𝐵, since decomposing them into smaller cells
adds no further information about where 𝑅 is. Hierarchical grid

libraries often contain functions to perform this kind of compression
(see e.g. “compact" in H3). Note that without loss of generality
we can consider only formulas of the type 𝑃 (𝑑, 𝑅), since every
formula 𝑃 (𝑅,𝑑) is equivalent to one of this form. Indeed, thinking
and writing about the correctness of the optimal solution is very
cumbersome if we keep using this predicate notation, with all its
superscripts and arbitrary ordering of arguments. In the technical
report we introduce a different formalism, that of tree label logics,
which sheds more light on the idea behind the correctness proof,
and will be seen to easily generalize to certain other logics with
more expressive power than RCC5-G. Using this, we are able to
provide a naive algorithm to solve the full-knowledge single-region
compression problem, and prove that the set of formulas returned
is minimal in size up to a constant discrepancy, so long as the
hierarchical grid has a constant-bounded branching factor.

3.1 Size of Compressed Sets
It is of interest to us to know, even though this compression is near-
optimal, how much the size of the region description is actually
reduced by using it. There is a clean answer to this question for
rectangular regions that are exactly unions of cells in a square grid
of finite depth: measuring the region’s perimeter 𝑝 as the number
ofminimal cells in contact with its boundary, the minimum number
of cells needed to exactly cover the region is Θ(𝑝) (much better
than the naive bound 𝑂 (𝑝2) achieved by covering with minimal
cells.)

It should be noted that this theorem does not imply that there is,
for every regular rectangle 𝑅 of perimeter 𝑝 , a set of Θ(𝑝) RCC5-G
formulas describing 𝑅, because depending on its position, many
formulas (with predicate DR) may be needed to describe the place
where 𝑅 is not. However, as long as 𝑅 is contained in a cell not too
much larger than itself, such a set will exist.

4 SEMANTIC DECOMPRESSION
The RCC5 composition table can be found in, e.g., [13] (and we
reproduce it in the technical report.) It gives, for each two RCC5
relations 𝑃,𝑄 , the largest set 𝑃 ◦𝑄 of RCC5 relations 𝑅 such that
𝑅𝐼 intersects 𝑃 𝐼 ◦𝑄𝐼 in some interpretation 𝐼 .

Composition tables like this are commonly used with RCC5,
RCC8 and similar systems, typically in the context of constraint
networks (see [4]). An RCC5 constraint network 𝐶 is a directed
graph in which each edge is labeled by a set of RCC5 relations. A
network is atomic if all edges are labeled by a singleton. A network
is path-consistent if, whenever 𝑅 ∈ 𝐶 (𝑥, 𝑧), there are 𝑃 ∈ 𝐶 (𝑥,𝑦)
and 𝑄 ∈ 𝐶 (𝑦, 𝑧) such that 𝑅 is in the composition set for 𝑃 and 𝑄 ;
and furthermore no edge is labeled by an empty set. (This is a formal
notion of path consistency; there are also semantic notions.) In most
applications of binary constraint calculi and composition tables,
reasoning tasks are focused on finding path-consistent, often atomic,
networks𝐶 ′ that are consistent with a given network𝐶 , in the sense
that 𝐶 ′(𝑥,𝑦) ⊆ 𝐶 (𝑥,𝑦) everywhere. A path-consistent network is
usually used as a proxy for a network that is satisfiable with respect
to some semantics. In our case, there are natural semantics for
constraint networks derived from RCC5 and RCC5-G formulas.
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The use of the RCC5 composition table for reasoning with grids
is not in general very powerful. It is in a precise way not complete
with respect to the RCC5-G semantics.

The essential problem is that binary relations alone cannot read-
ily capture the idea that the children of 𝑐 cover 𝑐 , together but
not individually. This “problem" cannot be easily avoided. How-
ever, the RCC5 composition table is in a certain way complete
for the specific purpose we would put it to in this paper, that is,
to decompress a representation of a region which has been com-
pressed. Deriving a constraint network 𝑁 from our near-optimal
compression formulas in a natural way, we can prove that there is
exactly one path-consistent atomic network 𝑁 ′ such that for all 𝑥,𝑦,
𝑁 ′(𝑥,𝑦) ⊆ 𝑁 (𝑥,𝑦). Computing this network can be accomplished
using well-developed standard tools.

5 AN APPLICATION
In the process of building a knowledge graph with a hierarchical
grid, it is typically necessary to “triplify" a large amount of data
from existing sources, such as database tables containing vector
geometries.2 If additionally the knowledge graph is to use a hierar-
chical grid to orient its objects in space, as we have claimed may
be desirable, then a large number of geometric operations must be
done “comparing" grid cells against vector geometries. This process
can be made more efficient by strategically choosing which cells
to try, rather than computing every spatial relation between ev-
ery cell and every region. Indeed our compression algorithm does
this naturally; it computes enough spatial relations to describe a
region as much as spatial relations with the grid can, but since
it accesses spatial relations mainly in a top-down-decomposing
manner, it does not need access to nearly all of them in general. If
it is still considered desirable to include all cell-region relations in
the knowledge graph, all others can be computed quickly by logical
inference without any more expensive geometric operations.

6 CONCLUSIONS AND FUTUREWORK
In addition to compressing the full cell descriptions of single re-
gions in a vacuum, we may consider some more general types of
compression problems:
1. Partial Knowledge. Instead of all information that can be captured
by RCC5-G about a region, we may sometimes have incomplete
information. How well can this be compressed?
2. Multiple Regions. We may have several regions and know RCC5
relations between them, not just between the regions and grid cells.
It may be possible to compress this set of relations more thoroughly
than can be done when we must disregard the relations between
regions.
3. More Expressive Logic. While we advocate against using RCC8,
there are other more expressive logics that could be worthwhile to
reason about spatial data stored by cell representation. For exam-
ple, replace the qualitative RCC5 relations with quantitative ones,
like “cell 𝑑 is 60% covered by region 𝑅". (This kind of relation was
popularized in [1].)

In addition, there is of course also more empirical work to be
done to substantiate the added value of our approach in application
settings.
2A "triple" is a node-edge-node piece of the knowledge graph.
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