
A Method for Automatically Generating Schema
Diagrams for OWL Ontologies

Cogan Shimizu1, Aaron Eberhart1, Nazifa Karima1, Adila Krisnadhi2, and
Pascal Hitzler1

1 Data Semantics Laboratory, Wright State University, Dayton, OH, USA
2 Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

Abstract. Interest in Semantic Web technologies, including knowledge
graphs and their underlying schemas expressed as ontologies, is increas-
ing rapidly in industry and academic application areas. In order to sup-
port ontology engineers and domain experts, it is necessary to provide
to them robust tools for facilitating the ontology engineering process.
In many cases, the schema diagram of an ontology is the single most
important tool for quickly conveying the overall purpose of (part of) an
ontology. In this paper, we present a method for programmatically gen-
erating a schema diagram from an OWL file. We evaluate its ability to
generate schema diagrams similar to manually drawn schema diagrams
and show that it outperforms VOWL and OWLGrEd, for this purpose.
In addition, we provide a prototype implementation of this tool.

1 Introduction

Engineering an ontology is a complex and time-consuming process [21]. As such,
it is necessary to provide a broad and sophisticated set of tools to support on-
tology engineers. To this end, this paper describes a method for generating a
schema diagram from an OWL file, and evaluates a corresponding prototype im-
plementation. The evaluation shows that our approach is superior to the related
visualization tools VOWL and OWLGrEd, for the types of schema diagrams
which we have found to be most useful. Our prototype tool, SDOnt, is publicly
available.3

A schema diagram is a widespread and invaluable tool for both understand-
ing and developing ontologies. A survey conducted by us has shown that it
ranks among the most important components in a documentation of an ontol-
ogy [15]. Schema Diagrams provide a view, albeit limited, of the structure of the
relationships between concepts of an ontology. Frequently, a schema diagram is
generated manually during the design phase of the engineering process. At that
time, the diagram is a mutable, living document. After the schema diagram has
been created, the OWL file is created in the likeness of the diagram by means
of OWL axioms which precisely capture the underlying intention of the possibly
ambiguous diagram. We may call this a diagram-informed OWL file. As we see

3 http://dase.cs.wright.edu/content/sd4odp



in Section 5, this can lead to unforeseen problems, e.g. whether the OWL file
truly represents the diagram. Thus, one possible, beneficial side effect of having
a tool that can generate a schema diagram programmatically is that it allows
ontology engineers to create an OWL-informed diagram. Additionally, it would
provide a mechanism by which schema diagrams may be easily updated in the
case of a newer versioned OWL file.

In this paper, we describe our method for generating schema diagrams from
OWL files, such that the programmatically generated schema diagrams visualize
the same information as those that are manually generated following a specific
visualization paradigm which we found to be most effective in practice. We
evaluate its effectiveness by comparing it to two existing OWL visualization
tools, VOWL4 [20] and OWLGrEd5 [2]. We would like to note up front, though,
that for now we are ignoring layout questions, i.e. we consider only the question
what content should be in a graph. We intend to explore layout issues in follow-
up work.

The rest of the paper is organized as follows. Section 2 describes existing
visualization tools and how they differ from our method and tool. Section 3 de-
scribes, in detail, the process by which we generate a schema diagram. Section 4
gives a very brief description of our implementation of our method. Section 5
evaluates the efficacy of our method, details possible points of improvement, and
discusses the results. Finally, in Section 6 we conclude and outline our next steps
and future work.

2 Related Work

Visualization is a critical aspect to understanding the purpose (and content) of
an ontology [7, 8, 15]. There are many tools that offer visualization capabilities.
Specifically, we are interested in the method by which they construct a visual-
ization rather than its implementation. For example, many of these tools offer
some sort of interactivity, such as drag and drop construction and manipula-
tion or folding for dynamic exploration. This differs from our intent to provide a
method for constructing a diagram that portrays the relations between concepts.
Also, our approach does not provide specific support for visualizing an ABox, as
our emphasis is on supporting the creation and use of schemas.

Below, we have selected for comparison a few tools that are representative
in their functionality. For a more complete survey, see [9]. As we have chosen
VOWL and OWLGrEd for direct evaluation against our method, we describe
them in Section 5.

NavigOWL6 is a plugin for the popular tool Protégé7. NavigOWL provides a
graph representation of the loaded ontology, such that the representation follows
a power-law distribution, which is a type of force-directed graph representation.

4 http://vowl.visualdataweb.org/
5 http://owlgred.lumii.lv/
6 http://home.deib.polimi.it/hussain/navigowl/
7 https://protege.stanford.edu/



It also provides a mechanism for filtering out different relational edges while
exploring an ontology [1]. This tool is not supported in the current version of
Protégé.8 It is particularly well suited to visualizing the ABox, which is outside
the scope of our intent and method.

OWLviz is also a Protégé plugin. It generates an IS-A hierarchy for the loaded
ontology rooted with the concept owl:Thing. That is, OWLviz displays only sub-
class relations between concepts and does not extract properties from those
axioms. Hovering over the nodes in the graph representation provides axioms re-
lated to the class represented by that node. This plugin is not supported by the
current version of Protégé. The lack of relational specificity per edge is non-ideal
for our purposes. Furthermore, information accessible only through interactivity
is non-ideal for a reference diagram.

TopBraid Composer is a standalone tool similar in functionality to Protégé
augmented with OWLviz; it is developed, maintained, and sold by TopQuadrant,
Inc.9 There is no free version for academic purposes.

OntoTrack is a standalone tool for visualizing the subsumption hierarchy of
an ontology rooted at owl:Thing. Properties are not extracted from axioms and
used to label edges. Further, the tool only supports ontologies in the deprecated
OWL-Lite− and automatically augments the visualization with subsumptions
found with the reasoner RACER10 [19]. Between the limitations on OWL and
the interactivity, this tool is not strictly suitable for creating schema diagrams.

MEMO GRAPH was developed to be a memory prosthesis for users suffering
from dementia [9]. As such, it is particularly focused on representing the relations
between family members. It is not currently available for public use.

RDF Gravity is a standalone tool that provides a visualization for an ontology
via graph metrics. The tool generates a force-directed graph representation of
the underlying ontology. We could not find any data on how it handles blank
nodes, represents class disjointness, and other non-graph metrics, as, at time of
this writing, the tool is unavailable, no publication on its method can be found,
and it seems to be survived only by screenshots. We include this entry for the
sake of completeness.

3 Method

A schema diagram does not necessarily aim to represent all information encoded
in an ontology. As mentioned in Section 2, there are several tools that attempt to
do so, in particular, VOWL and OWLGrEd. However our experiences with on-
tology modeling in collaboration with domain experts from many different fields
led us to understand that it is necessary to strike a good balance between com-
plexity and understandability. In fact, due to interactions with domain experts
we have gravitated rather quickly towards diagrams which capture hardly more

8 https://protegewiki.stanford.edu/wiki/NavigOWL
9 https://www.topquadrant.com/products/

10 https://www.ifis.uni-luebeck.de/index.php?id=385



than classes and possible relationships between them, thus omitting most seman-
tic aspects, like, whether a relationship between classes does or does not indicate
domain or range restrictions or even more complex logical axioms. We found that
the exact semantics is then better conveyed using either natural language sen-
tences or logical axioms (preferably in the form of rules [?]) in conjunction with
a very simplified diagram.

After several years of creating ontologies by first drawing schema diagrams
with domain experts and subsequent capturing of the exact logial axioms which
constitute the ontology, we now, in this paper, reverse the process: We want to
start with the logical axioms and derive from them, automatically, the schema
diagrams which follow the paradigm which we found most helpful. We do this
to help us to deal with ontologies constructed by others for which no suitable
schema diagrams are provided. As we will see later in Section 5, our visualization
approach can also be helpful in finding errors in OWL files or in manually drawn
schema diagrams.

In a sense, we attempt to maximize information while minimizing clutter. To
do so, we follow a number of principles:

– All classes inherit from owl:Thing, so it is not necessary to clutter a diagram
with a corresponding subclass edge for every concept.

– We do not represent any logical connectives, or complex axioms, other than
direct subClass relationships between named classes, since in our experience
this type of information is better conveyed by non-visual means.

– Disjointness of classes does not need explicit graphical representation. In
most cases, disjointness (or not) is immediately clear for a human with some
knowledge about the domain.

– Inverse relations are not represented, as they are technically syntactic sugar
for any relation.

– The ABox is disregarded; instances of classes are not represented.

With these assumptions in mind, we detail our method, with references to rules
below:

1. Create a node for each class in the ontology’s signature.
2. Create a node for each datatype in the ontology’s signature.
3. Generate a directed edge for each Object Property based on its domain

and range restrictions, if such are given. The source of the edge is the
Property’s domain and the target of the edge is the Property’s range.

4. Generate a directed edge for each Datatype Property, in the same man-
ner as for an Object Property, if domain and range restrictions are
present.

5. For each other axiom in the TBox:
Case 1: if the subclass and superclass are atomic, generate a subclass
edge between them.



Case 2: if the axiom is of the forms presented in (1) and (2) below,
generate the associated directed edge.
Case 3: apply rules (3) to (6), as listed below, recursively until the
resulting axiom sets can be handled by Cases 1 and 2.

6. Display.

We note that Steps 3 and 4 may be omitted if there are no direct domain
or range restrictions given. However, due to multiple ways of expressing the
same information in OWL, domain and range may or may not appear in the
declarations of the Object or Datatype Properties.

Steps 1-4 are straightforward. However, for Step 5, it is important to note
the differences between logical and schematic equivalence. We define schematic
equivalence: two statements are schematically equivalent if we can represent
each statement with the same graphical representation following our approach.
Consider, for example, the definitions for scoped domain and range restrictions.

∃R.B v A (1)

A v ∀R.B (2)

Logically, (1) and (2) convey two different meanings. Schematically, we see that
both may be represented by the same artifact in the graph, namly an edge from
A to B, labelled R. Thus, we consider them schematically equivalent. We may
also break down more complex axioms using the rules defined in (3) through (6).
These rules hold for both intersection (u) and union (t), we list only the union
versions. Note that not all of these are logical equivalence transformations.

A v ∀R.(B t C t · · · )⇒


A v ∀R.B

A v ∀R.C
...

(3)

and

∃R.(B t C t · · · ) v A⇒


∃R.B v A

∃R.C v A
...

(4)



The following two are used only in the union case as displayed – the first is again
not a logical equivalence transformation.

B t C t · · · v A⇒


B v A

C v A
...

(5)

A v B t C t · · · ⇒


A v B

A v C
...

(6)

We may recursively apply (3) through (6) for non-atomic concepts A,B, · · · until
we have reached axioms of the form (1) and (2) or atomic subclass relationships.

Let us briefly look at the time complexity for our method. Consider c to
be the maximum number of concepts and datatypes in any one axiom in the
ontology. Then, at most, there are

(
c
2

)
so-called “simple” axioms that together

are schematically equivalent to the “complex axiom.” Thus, there are at most(
c
2

)
·n edges to parse per ontology, where n is the number of axioms in the TBox,

giving our method a time complexity of O(n). This of course ignores algorithms
for the graph layout, from which we abstract in this paper.

As the goal of our approach is to generate static schema diagrams, it of
course has practical limitations as to the size of the ontology which can be
dealt with: Any schema diagram becomes essentially unreadable if it gets too
large. Indeed, our approach is primarily meant for smaller OWL files, such as
those constituting ontology design patterns [10] or ontology modules [16]. Larger
projects would first have to be broken down into modules before creating separate
schema diagrams for each.

4 Implementation

Our prototype implementation, SDOnt, is a pipeline consisting of three parts:
a GUI, the parser module, and the rendering module. SDOnt is developed in
Java and provided as an executable JAR file; all manipulations of the ontology
are done using the OWLAPI. We provide the source code, test set, evaluation
results, and a tutorial for the tool’s use online.11

The GUI is implemented using Java Swing and simply serves as a useful
interface for navigating and loading ontologies into the program. The Ontology
Parser is the implementation of our algorithm as described in Section 3. The
parser provides to the rendering module a set of nodes representing the classes
and datatypes in the ontology’s signature and the node-edge-node artifacts rep-
resenting the properties and their domains and ranges for the visualization.

The rendering module utilizes the library yFiles12 for generating, laying out,
and displaying the schema diagram. yFiles is a closed source library maintained

11 http://dase.cs.wright.edu/content/sd4odp
12 http://www.yworks.com/products/yfiles-for-java



and sold by yWorks.13 We chose to use yFiles as our base visualization library
as it also powers the popular diagramming tool yED.14 However, our code-
base provides a largely modular and extensible framework. In principle, any
visualization library can be used to render the schema diagram.

5 Evaluation

We describe the closest alternatives to SDOnt and their methods in Section 5.1,
the method by which we conduct our evaluation in Section 5.2, our choice of
test set in Section 5.3, and discuss the individual results for selected patterns
in Section 5.4, and finally, we discuss the overall performance of these methods
with respect to the reference diagrams in Section 5.5.

5.1 Compared Tools

Here we briefly describe the two tools against which we evaluated SDOnt.
VOWL is a graphical notation for OWL. The specification can be viewed

in detail in [20]. For the purposes of this evaluation, we used WebVOWL15

in order to generate visualizations of ontologies. These visualizations are very
detailed and include an immense amount of information. The representation of
the ontology is laid out using a force-directed graph.

OWLGrEd is a Graphical Ontology Editor. It allows for interactive, drag-
and-drop creation of ontologies [2]. It utilizes UML-like visualizations for dis-
playing axioms associated to a class. In addition, it provides Manchester Syntax
translations of the axioms. All axioms are displayed, sometimes as individual
nodes. Additionally, the visualization is intended to be hierarchical, thus there
is a subClass edge between an owl:Thing node and every concept in the ontology’s
signature.

For our evaluation of OWLGrEd, we needed to utilize both the web and desk-
top applications. During our evaluation, we encountered several OWL files that
did not work with the web application. While we did not receive any meaningful
error data, we surmise that the web application would visualize the loaded ontol-
ogy as well as its imports. However, it would only display the imported ontologies
and not the loaded ontology. In order to evaluate these ontologies, we used the
desktop application to render the visualizations. To the best of our knowledge
and judgement, the generated graphs are structurally identical although they
differ significantly in layout. We ignore layout issues in our evaluation, i.e., the
use of the two different versions of OWLGrEd for different ontologies does not
impact the evaluation.

Even utilizing both applications, two ontologies could not be visualized us-
ing OWLGrEd. The ComputationalEnvironment ontology failed, likely due to
embedded controlled vocabularies. The Event pattern failed but did not give

13 https://www.yworks.com/
14 https://www.yworks.com/products/yed
15 http://www.visualdataweb.de/webvowl/



any descriptive error messages for debugging. The Event ontology hung during
processing with no discernible error message.

5.2 Comparison Scheme

We seek to show that the method for constructing schema diagrams for ontol-
ogy patterns and modules, as introduced in the previous section, results in a
diagram most similar to published reference diagrams which follow the visual-
ization paradigm which we found most useful in interactive modeling sessions
with domain experts. In order to provide a meaningful evaluation, we use as
gold-standard reference the manually drawn diagrams which have been pub-
lished in the papers or on the websites where the corresponding ontologies have
been discussed by their authors. I.e., these diagrams have been designed with
human understandability in mind, and their creation pre-dates our automated
diagram generation method.

We will compare the diagrams generated by SDOnt, VOWL and OWLGrEd
with the gold-standard diagrams taken from the respective publications.

In order to have some useful terminology, we say a node represents a class or
concept. An edge represents a relationship or role, where the source of the edge is
the relationship’s domain and the head of the edge represents the relationship’s
codomain – domain and codomain are here not meant to be formal technical
terms in the sense of OWL restrictions or RDFS domain/range declarations,
but rather intuitive notions which are as ambiguous as a schema diagram: An
edge from class A to class B in the diagram indicates that A is (informally) in the
domain of the relation, and B is in the codomain of the relation. However, there
may also be an edge with the same role label between two different classes C and
D elsewhere in the diagram, without making the classes A and C (or B and D)
identical, as would happen if these were formal domain or range declarations.

All three visualization tools generate directed edges. To conduct this com-
parison, we evaluate the following criterion for node-edge-node artifacts:

For every node-edge-node artifact in the generated diagram, does it appear
in the reference diagram, and vice-versa?

We state the results of each comparison as an F1-score in Table 1 using the
criteria below.

– True Positive: the artifact appears in both generated and reference diagrams

– False Positive: the artifact appears in the generated diagram, but not the
reference diagram.

– False Negative: the artifact does not appear in the generated diagram, but
does appear in the reference diagram.



5.3 Test Set

For our evaluation, we are concerned with a very specific visualization paradigm.
We have worked closely with domain experts in different fields. In our expe-
riences, we have fine-tuned a visualization paradigm that maximally conveys
information to domain experts using a minimalist style of representation.

For this reason, for our evaluation we have chosen ontologies with published
and manually drawn schema diagrams that are representative of this visual-
ization paradigm. As the generation of schema diagrams is targeted at small
ontologies or parts of ontologies, we have furthermore selected corresponding
ontologies and in particular ontology design patterns. Many of these ontologies
and patterns are available on ontologydesignpatterns.org. Our process for select-
ing the patterns was simply that we searched the main publishing outlets and
ontologydesignpatterns.org for diagrams drawn in the style which we find most
useful.

The complete set of ontologies we used for our evaluation is: Activity [26],
AgentRole [18], ComputationalEnvironment [6], DetectorFinalState [3], Event
[17], LifeCycleAssessment [14], MaterialTransformation [13], MicroblogEntry [24],
ModifiedHazardousSituation [5], Trajectory [12], and Tree [4]. We also provide
all test data on our tool’s website.16 We have made no changes to any of the
OWL files during this evaluation, and we are reporting results on all OWL files
which we tried and could successfully process with at least two of the compared
tools.

5.4 Results

The data from our evaluation is given in Table 1 – TP, FP and FN values are
hand-counted from the diagrams. To formally ecompare the performances, we
ran three Wilcoxon signed rank tests, with null hypothesis that there were no
difference in performance. The test shows that SDOnt is significantly better
than VOWL (p < 0.005), that SDOnt is significantly better than OWLGrEd
(p < 0.001) and that VOWL is significantly better than OWLGrEd (p < 0.05).

In this evaluation, we did not encounter any false positives that were a mis-
representation of an axiom. Instead, false positives were strictly caused by the
OWL file containing more information than expected. The exact reasons for this
seem to vary from case to case. We speculate that in some cases the reason
may be that the diagram may look more elegant or the name of a concept may
imply its natural superclass. For example, in the Hazardous Event pattern [5],
HazardousEvent is a subclass to Event, but this is not indicated in the reference
diagram, leading to a false positive. In other cases, the OWL file could be mal-
formed, which we assume to to be the case with the LifeCycleAnalysis [14] and
Event [17] patterns.

In general, the reasons for the lower performances by VOWL and OWLGrEd
remained mostly the same across the different test ontologies. Both frequently

16 http://www.dase.cs.wright.edu/content/sd4ont



Table 1: Results for the Trajectory Design Pattern.

SDOnt VOWL OWLGrEd
TP FP FN F1 TP FP FN F1 TP FP FN F1

Activity 9 7 0 0.720 5 11 4 0.400 5 11 3 0.417
AgentRole 1 3 3 0.250 2 8 2 0.286 2 14 2 0.200

ComputationalEnvironment 31 3 0 0.954 30 14 1 0.800 x x x x
DetectorFinalState 22 4 0 0.917 11 11 10 0.512 11 37 11 0.314

Event 2 5 2 0.364 2 3 2 0.444 x x x x
LifeCycleAssessment 4 0 9 0.471 4 5 9 0.364 4 22 9 0.205

MaterialTransformation 8 1 0 0.941 8 12 0 0.571 6 12 2 0.462
MicroblogEntry 10 0 0 1.000 8 3 2 0.762 8 4 2 0.727

ModifiedHazardousSituation 14 1 1 0.933 12 7 3 0.706 14 8 1 0.757
Trajectory 12 0 0 1.000 12 18 0 0.571 12 26 0 0.480

Tree 8 4 0 0.800 8 8 0 0.667 7 11 1 0.538

Total 121 28 15 0.849 102 100 33 0.605 69 145 31 0.439

rendered more information than was strictly necessary for conveying informa-
tion about the structure or purpose of an ontology. They attempt to provide a
visualization for every axiom and relation, but as mentioned, this is undesirable
for a schema diagram in our opinion. In Figure 1, we have presented example
output for all the tools.

We see this when VOWL displays multiple edges with the same label and
different subscripts based on different functional properties, such as invertibility
and maximum or minimum cardinality. Therefore, if an Object Property had
multiple functional properties, there was an additional edge for each. This prob-
lematically lead to increased clutter of the visualization and decreased perfor-
mance in the evaluation. Additionally, blank nodes representing the intersection
or union of classes are generating, such as in Figure 1c.

As for OWLGrEd, it casts every visualization into a hierarchical view. Thus,
it would draw a subclass edge from a class to owl:Thing, which we can see in
Figure 1d. In order to provide a more realistic evaluation given this unwanted
behavior, these subclass edges were counted only once per visualization. Fur-
thermore, OWLGrEd rendered an edge between two distinct owl:Thing nodes
for every distinct property in the ontology’s signature for no discernible reason
and this behavior could not be turned off.

We now discuss the results for some selected ontologies in more detail.

Activity The OWL file [26] contains more information than the diagram de-
picts, which is the source of the false positives for all three methods. The false
negatives in VOWL and OWLGrEd stem from non-representation of datatypes.
The evaluation for OWLGrEd on this pattern utilized the visualization from the
desktop application, as the web application failed to display the correct pattern,
possibly due to an import error.



(a) The Reference Diagram.
(b) Schema Diagram generated by
SDOnt.

(c) Schema Diagram generated by
VOWL.

(d) Schema Diagram generated by
OWLGrEd.

Fig. 1: The manually curated reference diagram (a) followed by the generated
schema diagrams by SDOnt, VOWL, and OWLGrEd, for the MicroblogEngry
ontology design pattern.

AgentRole Based on each of the renderings, we may guess that the diagram
is out of date. The reference diagram was obtained from [18]. The original ref-
erence diagram has two properties: startsAtTime and endsAtTime with domain
TimeInstant. However, the generated diagrams utilize TemporalExtent instead,
suggesting a design change. We can use this case in order to help motivate our
point that published ontologies can only benefit from having an easy way to
update the schema diagram.

The evaluation for OWLGrEd on this pattern utilized the visualization from
the desktop application, as the web application failed to display the correct
pattern, possibly due to an import error. OWLGrEd also rendered artifacts
pertaining to disjointness that were counted as false positives.

DetectorFinalState SDOnt performed suitably well on this ontology [3] and
only displayed extra information pertaining to the SelectionCriteria class. The
poor performance by VOWL is due to a large amount of doubly rendered edges.
Both VOWL and OWLGrEd were unable to identify properties embedded in
some axioms and therefore failed to render many of the artifacts and exacerbated



the issue by rendering blank nodes representing entire axioms. Additionally,
OWLGrEd rendered artifacts pertaining to disjointness that were counted as
false positives.

Event This pattern has a large error for each tool, in that it provides a number
of axioms related to owl:Thing, rather than to the core concept Event. This is
likely an error with the tool that generated the OWL file. We note that this case
may serve as motivation that a proper tool for generating schema diagrams may
help match an OWL file under development to the reference diagram.

LifeCycleAssessment This OWL file is malformed [14]. It contains only decla-
rations and a few axioms; it does not seem like the OWL file was saved properly
before being uploaded. As such the performance for each rendering is very low.
We note that this case is another example where having a schema diagram gen-
erated periodically for the OWL file would help with preventing these issues.
Finally, we note that OWLGrEd also rendered artifacts pertaining to disjoint-
ness that were counted as false positives further impacting its performance.

ModifiedHazardousSituation SDOnt missed only one artifact for this pat-
tern [5]. In fact, all threetools missed the same axiom – and it turns out that
the property is completely missing from the OWL file. Aside from this, VOWL
and OWLGrEd were subject to the same errors: inability to extract properties
from complex axioms and duplication of inverse edges.

Tree The reference diagram [4] did not contain nodes for the non-leaf and non-
root classes, likely for clarity and simplicity, but were included in the OWL file.
All three tools depicted these classes and their relations leading to an overall
lower score for each.

5.5 Discussion

In summary, we see that SDOnt produces schema diagrams that are much closer
to the reference diagrams than VOWL or OWLGrEd. In fact, SDOnt is out-
performed in only two cases: AgentRole and Event, both of which we assume to
be the result of malformed OWL files.

There are also motivating cases for using schema diagrams as error checkers
during ontology development. AgentRole’s schema diagram, for example, con-
tains classes that are not present in the reference diagram. This is a very obvious
sign of a problem with the reference diagram or the OWL file. In other cases,
such as in LifeCycleAssessment, there are only three edges in the entire generated
diagram, leaving most classes isolated.

VOWL and OWLGrEd consistently performed worse than SDOnt for two
reasons. First, VOWL had many duplicated edges for different functional prop-
erties. Secondly, both OWLGrEd and VOWL had trouble extracting properties



from complex axioms. In fact, for OWLGrEd, these axioms were represented as
anonymous nodes, leading to false positive artifacts.

6 Conclusions

Our results were promising. Even with malformed or unexpected information
contained in a few of the OWL files, SDOnt had an F1 = 0.849, performing
roughly 25% and 50% better than VOWL and OWLGrEd, respectively. The
differences were statistically significant with p < 0.005 or better. To be fair, we
have evaluated against a very specific visualization paradigm, to which neither
VOWL nor OWLGrEd are well-suited. VOWL and OWLGrEd were used for
comparison simply because they are the current state-of-the-art for generalized
ontology visualization, and they are the tools which produced the most similar
diagrams to the desired ones. Our results do not invalidate VOWL or OWLGrEd:
They simply serve other purposes.

There are still many ways to improve our method and its implementation.
First, we see in many diagrams that namespaces are frequently color coded, as
well as providing different node styles for external patterns. As ontology en-
gineering practices mature, we expect to see these distinctions to be formally
encoded in the ontology, e.g., according to the Ontology Design Pattern Rep-
resentation Language (OPLa) as described in [11]. As such, once the necessary
tooling support for OPLa has been realized, SDOnt will be able to leverage the
annotations and inform style and placement of nodes for increased clarity in the
schema diagram. We will also explore different styles of incorporating UML-like
visualizations for datatypes. In addition, we note that the manually created ref-
erence diagrams are fallible or that it is simply unclear from the perspective
of the OWL file, which information is strictly necessary to convey. We believe
incorporating OPLa and augmenting SDOnt to account for these annotations
will also help in this regard.

Secondly, we intend to further increase the modularity of the implementation
so that it is 100% independent of any visualization library. This will, in fact,
allow us to provide SDOnt as a library, so that any developer may utilize it to
generate visualizations. At this point in time, we expect to use GraphML as a
middle layer. In addition, we will investigate the most effective ways of creating
a good layout, and will explore the option of providing our work as an additional
rendering capability for the OWLAPI.

Finally, we will integrate SDOnt with other existing Protégé plugins devel-
oped in our lab, including ROWL,17 OWLax,18 and OWL2DL19 [22, 23, 25], in
order to work towards a well-rounded ontology engineering suite which supports
the Modular Ontology Modeling paradigm.

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
Graduate Studies Institute (DAGSI).

17 http://dase.cs.wright.edu/content/modeling-owl-rules
18 http://dase.cs.wright.edu/content/ontology-axiomatization-support
19 http://dase.cs.wright.edu/content/owl2dl-rendering



References

1. Scalable visualization of semantic nets using power-law graphs. In Applied Math,
volume 8, pages 355–367, 01 2014.

2. J. Barzdins, G. Barzdins, K. Cerans, R. Liepins, and A. Sprogis. OWLGrEd: a
UML style graphical notation and editor for OWL 2. In Proceedings of the 7th
International Workshop on OWL: Experiences and Directions (OWLED 2010),
San Francisco, California, USA, June 21-22, 2010, volume 614 of CEUR-WS.org,
2010.

3. D. Carral, M. Cheatham, S. Dallmeir-Tiessen, P. Herterich, M. D. Hildreth,
P. Hitzler, A. Krisnadhi, K. Lassila-Perini, E. Sexton-Kennedy, C. Vardeman, and
G. Watts. An ontology design pattern for particle physics analysis. In E. Blomqvist,
P. Hitzler, A. Krisnadhi, T. Narock, and M. Solanki, editors, Proceedings of the
6th Workshop on Ontology and Semantic Web Patterns (WOP 2015) co-located
with the 14th International Semantic Web Conference (ISWC 2015), Bethlehem,
Pensylvania, USA, October 11, 2015, volume 1461. CEUR-WS.org, October 2015.

4. D. Carral, P. Hitzler, H. Lapp, and S. Rudolph. On the ontological modeling of
trees. In 8th Workshop on Ontology Design and Patterns – WOP2017, October
2017. To appear.

5. M. Cheatham, H. Ferguson, I. Charles Vardeman, and C. Shimizu. A modification
to the hazardous situtation ODP to support risk assessment and mitigation. In
Proceedings of WOP, volume 16, 2016.

6. M. Cheatham, C. Vardeman, N. Karima, and P. Hitzler. Computational envi-
ronment: An ODP to support finding and recreating computational analyses. In
8th Workshop on Ontology Design and Patterns – WOP2017, October 2017. To
appear.

7. A.-S. Dadzie and M. Rowe. Approaches to visualising linked data: A survey. Se-
mantic Web, 2(2):89–124, Apr. 2011.

8. V. Geroimenko and C. Chen. Visualizing the Semantic Web: XML-based Internet
and Information Visualization. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

9. F. Ghorbel, N. Ellouze, E. Métais, F. Hamdi, F. Gargouri, and N. Herradi. MEMO
GRAPH: An ontology visualization tool for everyone. Procedia Computer Science,
96(Supplement C):265–274, 2016.

10. P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors. On-
tology Engineering with Ontology Design Patterns – Foundations and Applications,
volume 25 of Studies on the Semantic Web. IOS Press, 2016.

11. P. Hitzler, A. Gangemi, K. Janowicz, A. A. Krisnadhi, and V. Presutti. Towards
a simple but useful ontology design pattern representation language. Proceedings
WOP 2017, October 2017. To appear.

12. Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-Cross, P. Hitzler,
M. Dean, and D. Kolas. A geo-ontology design pattern for semantic trajectories.
In T. Tenbrink, J. Stell, A. Galton, and Z. Wood, editors, International Conference
on Spatial Information Theory, pages 438–456. Springer, 2013.

13. C. F. V. II, A. A. Krisnadhi, M. Cheatham, K. Janowicz, H. Ferguson, P. Hitzler,
and A. P. C. Buccellato. An ontology design pattern and its use case for modeling
material transformation. Semantic Web, 8(5):719–731, 2017.

14. K. Janowicz, A. Krisnadhi, Y. Hu, S. Suh, B. P. Weidema, B. Rivela, J. Tivander,
D. E. Meyer, G. Berg-Cross, P. Hitzler, W. Ingwersen, B. Kuczenski, C. Vardeman,
Y. Ju, and M. Cheatham. A minimal ontology pattern for life cycle assessment



data. In E. Blomqvist, P. Hitzler, A. Krisnadhi, T. Narock, and M. Solanki, editors,
Proceedings of the 6th Workshop on Ontology and Semantic Web Patterns (WOP
2015) co-located with the 14th International Semantic Web Conference (ISWC
2015), Bethlehem, Pensylvania, USA, October 11, 2015., volume 1461 of CEUR
Workshop Proceedings. CEUR-WS.org, 2015.

15. N. Karima, K. Hammar, and P. Hitzler. How to document ontology design pat-
terns. In K. Hammar, P. Hitzler, A. Lawrynowicz, A. Krisnadhi, A. Nuzzolese,
and M. Solanki, editors, Advances in Ontology Design and Patterns, volume 32 of
Studies on the Semantic Web, pages 15–28. IOS Press, Amsterdam, 2017.

16. A. Krisnadhi and P. Hitzler. Modeling with ontology design patterns: Chess games
as a worked example. In P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi,
and V. Presutti, editors, Ontology Engineering with Ontology Design Patterns –
Foundations and Applications, volume 25 of Studies on the Semantic Web, pages
3–21. IOS Press, 2016.

17. A. Krisnadhi and P. Hitzler. A core pattern for events. In Proceedings of the
Workshop on Ontology and Semantic Web Patterns (7th edition), Kobe, Japan,
2017. To appear.

18. A. A. Krisnadhi. Ontology pattern-based data integration. PhD thesis, Wright State
University, 2015.

19. T. Liebig and O. Noppens. Ontotrack: Combining browsing and editing with
reasoning and explaining for OWL lite ontologies. In S. A. McIlraith, D. Plex-
ousakis, and F. van Harmelen, editors, The Semantic Web - ISWC 2004: Third
International Semantic Web Conference,Hiroshima, Japan, November 7-11, 2004.
Proceedings, volume 3298 of Lecture Notes in Computer Science, pages 244–258.
Springer, 2004.

20. S. Lohmann, S. Negru, F. Haag, and T. Ertl. Visualizing ontologies with VOWL.
Semantic Web, 7(4):399–419, 2016.

21. A. D. Nicola, M. Missikoff, and R. Navigli. A software engineering approach to
ontology building. Information Systems, 34(2):258–275, 2009.

22. M. K. Sarker, A. Krisnadhi, D. Carral, and P. Hitzler. Rule-based OWL model-
ing with ROWLTab Protégé plugin. In E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler, and O. Hartig, editors, The Semantic Web – 14th Inter-
national Conference, ESWC 2017, Portorož, Slovenia, May 28 – June 1, 2017,
Proceedings, Part I, volume 10249 of Lecture Notes in Computer Science, pages
419–433, 2017.

23. M. K. Sarker, A. Krisnadhi, and P. Hitzler. OWLAx: A Protégé plugin to support
ontology axiomatization through diagramming. In T. Kawamura and H. Paulheim,
editors, Proceedings of the ISWC 2016 Posters & Demonstrations Track co-located
with 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan,
October 19, 2016., volume 1690 of CEUR Workshop Proceedings. CEUR-WS.org,
2016.

24. C. Shimizu and M. Cheatham. An ontology design pattern for microblog entries.
In 8th Workshop on Ontology Design and Patterns – WOP2017, October 2017. To
appear.

25. C. Shimizu, P. Hitzler, and M. Horridge. Rendering OWL in description logic syn-
tax. In E. Blomqvist, K. Hose, H. Paulheim, A. Lawrynowicz, F. Ciravegna, and
O. Hartig, editors, The Semantic Web: ESWC 2017 Satellite Events - ESWC 2017
Satellite Events, Portorož, Slovenia, May 28 - June 1, 2017, Revised Selected Pa-
pers, volume 10577 of Lecture Notes in Computer Science, pages 109–113. Springer,
2017.



26. B. Yan, Y. Hu, B. Kuczenski, K. Janowicz, A. Ballatore, A. A. Krisnadhi, Y. Ju,
P. Hitzler, S. Suh, and W. Ingwersen. An ontology for specifying spatiotemporal
scopes in life cycle assessment. In C. d’Amato, F. Lécué, R. Mutharaju, T. Narock,
and F. Wirth, editors, Proceedings of the 1st International Diversity++ Workshop
co-located with the 14th International Semantic Web Conference (ISWC 2015),
Bethlehem, Pennsylvania, USA, October 12, 2015., volume 1501 of CEUR Work-
shop Proceedings, pages 25–30. CEUR-WS.org, 2015.


