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ABSTRACT
The Linked Open Data (LOD) Cloud has gained significant
traction over the past few years. With over 275 interlinked
datasets across diverse domains such as life science, geogra-
phy, politics, and more, the LOD Cloud has the potential to
support a variety of applications ranging from open domain
question answering to drug discovery.

Despite its significant size (approx. 30 billion triples), the
data is relatively sparely interlinked (approx. 400 million
links). A semantically richer LOD Cloud is needed to fully
realize its potential. Data in the LOD Cloud are currently
interlinked mainly via the owl:sameAs property, which is in-
adequate for many applications. Additional properties cap-
turing relations based on causality or partonomy are needed
to enable the answering of complex questions and to support
applications.

In this paper, we present a solution to enrich the LOD
Cloud by automatically detecting partonomic relationships,
which are well-established, fundamental properties grounded
in linguistics and philosophy. We empirically evaluate our
solution across several domains, and show that our approach
performs well on detecting partonomic properties between
LOD Cloud data.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Learning; H.3.3 [Information
Storage and Retrieval]: Online Information Services—
web-based services
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Part of Relation, Mereology, Linked Open Data Cloud
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1. INTRODUCTION
The LOD Cloud consists of datasets linked primarily by

the owl:sameAs property created by different organizations.
This has proven to be useful for a number of use cases [4,
15], which combine data from multiple ontologies. The cur-
rent mechanism for linking entities across datasets is using
the sameAs relationship to assert that two entities are the
same. We believe that using the sameAs relationship is not
sufficient to capture the rich set of relationships between
entities. There are a number of other relationships such
as partonomy (part-of), and causality [28], whose presence
could allow creating even more intelligent applications such
as more sophisticated question answering systems like Wat-
son [12]. One of the main reasons why these relationships
are not captured is the issue of scale. As there are millions
of entities involved, it is a non-trivial task to manually assert
these relationships. While there is some level of automation
available for creating the sameAs links, there is no automa-
tion for creating other kinds of relationships [19].

In this paper, we present PLATO (Part-Of relation finder
on Linked Open DAta TOol)1 for automatically creating
part-of relationship between entities in the LOD cloud.

We chose part-of relationship for two reasons: 1) it is a
well studied field. In particular we use the partonomy clas-
sification created by Winston [33] to guide our work and
2) part-of relationships are freely available on the Web in
sources such as Wikipedia. The fundamental premise be-
hind our approach is that the web can be mined to auto-
matically detect part-of relationships between entities. Our
approach consists of a combination of heuristics for detect-
ing candidate relationships between any two entities. These
heuristics range from detecting bi-directionality of links be-
tween articles about these entities to ensuring that the in-
volved entities satisfy domain and range constraints of the
relevant partonomic relation. The Web is then mined for ev-
idence to support the candidate relationships with the help
of pattern based querying. Using this approach, PLATO is
able to discover partonomic relationships between entities in
the LOD cloud. For example, PLATO was correctly able to
discover that Kurt Cobain was a member of the band Nir-
vana and that Baked Alaska has ice cream as an ingredient.

1http://wiki.knoesis.org/index.php/PLATO



These relationships can prove to be extremely useful for the
LOD cloud. For example, consider the following query from
the National Geographic Bee, ”In which county can you find
the village of Crook that is full of lakes?”. The answer for
this query can be successfully retrieved using information
present in the LOD cloud dataset (e.g. Geonames), if part-
of relationships have been identified and asserted within and
between datasets [20].

The key contributions of our work are: 1) To the best of
our knowledge, PLATO is the first effort on the automatic
detection of part-of relationships in the context of the LOD
cloud. 2) We believe that PLATO’s approach of mining the
Web to detect and validate the relationships for LOD cloud
is rather unique and thus extends the existing arsenal of
ontology engineering methods. 3) We provide a formal rep-
resentation of the partonomy classification created by Win-
ston. We furthermore present a comprehensive evaluation
in which we automatically detect part-of relationships be-
tween hundreds of entities from prominent ontologies in the
LOD cloud such as DBpedia and Freebase. We also present
precision and recall for our partonomy extraction approach,
and the results make us believe ours is a practically useful
approach.

The rest of the paper is organized as follows: In Section
2 we present Winston’s approach to part-of relation and its
conversion into an OWL 2 ontology. In Section 3, we present
the PLATO approach, followed by a comprehensive evalu-
ation. We then present the related work, future work and
conclusion.

2. WINSTON’S APPROACH TO PART-OF
RELATIONSHIPS—ONTOLOGIZED

All entities are fundamentally part of some other entity.
Researchers in a number of areas, including philosophy [33,
2], linguistics [14] and geographical information systems (GIS)
[29, 20, 7] have investigated partonomy. Our work of iden-
tification of partonomic relationships between entities uses
well-accepted partonomic relationships, which identify the
relationships based on the ’type’ of entities involved. The
part-whole relation, or partonomy, is an important funda-
mental relationship which manifests itself across all physical
entities such as human made objects (Cup-Handle), social
groups (Jurors-Jury) and conceptual entities such as time in-
tervals (5th hour of the day). Its frequent occurrence results
in a manifestation of a part-for-whole mismatch and whole-
for-part mismatch within many domains, and especially in
spatial datasets.

Winston [33] created a categorization of part-whole rela-
tions which identifies and covers part-whole relations from a
number of domains such as artifacts, geographical entities,
food and liquids. It is recognized as one of the most com-
prehensive categorizations of partonomic relationships, and
other work in similar spirit such as [13] analyze his catego-
rization.

Winston’s categorization has been created using three re-
lational elements:

1. Functional/Non-Functional (F/NF): Parts are in a spe-
cific spatial/temporal relationship with respect to each
other and to the whole to which they belong. Exam-
ple: Belgium is a part of NATO partly because of its
specific spatial position.

2. Homeomerous/Non-Homeomerous (H/NH): Parts are

the same as each other and as the whole. Example: A
slice of a pie is the same as other slices and as the pie
itself.

3. Separable/Inseparable (S/IN): Parts are separable/ in-
separable from the whole. Example: A card can be
separated from the deck to which it belongs.

Table 1 illustrates six different types of partonomic rela-
tionships based on this categorization, taken from [33], their
description using the relational elements and examples of
partonomic relationships covered by them.

Using this classification and relational elements, relations
between two entities can be marked as partonomic or non-
partonomic in nature. If they are partonomic, the category
to which they belong can be identified.

In order to use Winston’s approach in a Semantic Web
context, which is essentially linguistic in nature, we must
formalize it by carrying it over to a Semantic Web ontology
language. We will thus cast his categorization into an OWL
2 ontology [17] which can then be used in conjunction with a
knowledge base of partonomic (and other) information. Let
us remark that in [27] a set of best practices have been laid
down to deal with straightforward cases for defining classes
involving part-whole relations. However their modeling ap-
proach is considerably less fine-grained than the one in [33]
which we follow here.

For this purpose, we introduce the following OWL prop-
erty names, which correspond to those listed in Table 1.

• component-integral object: po-component

• member-collection: po-member

• portion-mass: po-portion

• stuff-object: po-stuff

• feature-activity: po-feature

• place-area: po-place

We also use spatially-located-in as the spatial (topological)
located-in relationship mentioned in [33], and part-of as the
generic part-of (part-whole) relation.

The following axioms can then be drawn from [33]. Let
PO = {po-component, po-member, po-portion, po-stuff,
po-feature, po-place}.

(P1) [33, Section 5] For all R ∈ PO, R is transitive, asym-
metric, and irreflexive (i.e., a strict partial order).

(P2) For all R ∈ PO, R v part-of. Note that this does not
imply that part-of is transitive, as prescribed in [33].

(P3) spatially-located-in is transitive and reflexive. Note that
spatially-located-in should not be understood to be a
subproperty of part-of according to [33].

(P4) [33, Section 6] For all R ∈ PO, we have

R ◦ spatially-located-in v spatially-located-in and

spatially-located-in ◦R v spatially-located-in.

(P5) [33, page 435] For all R ∈ PO ∪ {spatially-located-in},
and all classes C, we have the first-order predicate logic
axiom

(∀x)(∀y)(R(x, y) ∧ C(y)→ (∃z)(R(x, z) ∧ C(z)).

Note that this is a tautology.



Category Description Example Text Patterns

Component-Integral Object Parts are functional, non-
homeomerous and separable
from the whole.

Handle-Cup part of, component of

Member-Collection Parts are non functional,
non homeomerous and sepa-
rable from the whole.

Tree-Forest member of, part-of

Portion-Mass Parts are non-functional,
homeomerous and separable
from the whole.

Slice-Pie of, part-of

Stuff-Object Parts are non-functional,
non-homeomerous and
inseparable from the whole.

Gin-Martini is partly, made of

Feature-Activity Parts are functional, non-
homeomerous and insepara-
ble from the whole.

Paying-Shopping has, have

Place-Area Parts are non-functional,
homeomerous and insepara-
ble from the whole.

Everglades-Florida located in, part-of

Table 1: Six type of partonomic relation with relational elements

(P6) [33, page 435] For all R ∈ PO ∪ {spatially-located-in},
and all classes C, we have the first-order predicate logic
axiom

(∀x)(∀y)(C(y) ∧ (C(y)→ R(x, y))→ R(x, y)).

Please note that this is a tautology.

Summarizing, we can axiomatize (P1) to (P4) as the fol-
lowing axioms—we will discuss (P5) and (P6) further below.

• For all R ∈ PO, R is transitive, antisymmetric, and
irreflexive.

• For all R ∈ PO, R v part-of.

• spatially-located-in is transitive and reflexive.

• For all R ∈ PO, we have

R ◦ spatially-located-in v spatially-located-in and

spatially-located-in ◦R v spatially-located-in.

This results in a total of 3 ·6+2 ·6+2+6 ·2 = 44 axioms,
all expressible in OWL 2.

However, there is a catch. While all these axioms are ex-
pressible in OWL 2 (more precisely, in OWL 2 Full), the col-
lection of these ontologies does not constitute a valid OWL
2 DL ontology. The reason for this is that (P1) violates
a global constraint on OWL 2 DL ontologies given in [24,
Section 11]: A property cannot be transitive and irreflex-
ive at the same time.2 In other words, we cannot specify
strict partial orders in OWL 2 DL.3 The most straightfor-
ward way to fix this, is to drop one of the requirements on

2A transitive property is complex, and thus not simple.
However only simple properties are allowed to be irreflex-
ive.
3Note that transitivity and irreflexivity of a property R im-
ply that R is also antisymmetric (i.e., a strict partial order):
Assume R were transitive and irreflexive, but not antisym-
metric. Then, because R is not antisymmetric we must have
a, b with R(a, b) and R(b, a) and a 6= b. But by transitivity
of R, we obtain R(a, a) from R(a, b) and R(b, a) which is
impossible by irreflexivity.

R in (P1), and the most obvious candidate would be to drop
the irreflexivity axioms. The resulting set of 38 axioms then
constitutes a valid OWL 2 DL ontology.

Let us now return to the axioms from (P5) and (P6). They
are tautologies in first-order predicate logic, which means
that they do not contribute any additional knowledge. As
such, they do not need to be added to our ontology.4 Note
that this does not mean that the observations leading to (P5)
and (P6) in [33] are void: We obtain tautologies because the
use of OWL suggests a particular type of modeling class
membership (called class inclusion in [33]) which is proba-
bly not obvious or necessary from a more general, linguistic
perspective.

It is possible to partially recover irreflexivity of the R ∈
PO. One way to do this is to use the DL-safe SWRL rule
[18, 21, 25] R(x, y) ∧ R(y, x) → x 6= y, which expresses the
same as irreflexivity, however its application is restricted to
known individuals and is thus weaker than (first-order logic)
irreflexivity. Another alternative is to use nominal schemas
[21, 22], e.g. by means of the axiom5

{x} u ∃R.∃R.{x} v ⊥

which can actually be understood as a macro that results
in n OWL 2 DL axioms, where n is the number of known
individuals in the knowledge base.6. This means that we
can incorporate a weak form of irreflexivity in OWL 2 DL
without having to use DL-safe SWRL (and software which
supports the latter).

There is yet another catch: All properties occurring in the
above constructed part-of ontology are complex (i.e., non-
simple), and OWL 2 DL has global restrictions on the use

4In other words, adding them would accomplish nothing.
5Nominal schemas could also be used to directly express the
just mentioned DL-safe rule [22]. However, this would result
in a more complicated axiom with two nominal schemas,
which is less favorable in terms of scalability.
6The OWL 2 DL axioms are obtained by grounding : Re-
place {x} by all available nominals {a}, a being a known
individual, each such replacement resulting in one OWL 2
DL axiom.



of such properties. If this ontology is used in conjunction
with a domain ontology, then these global restrictions may
be violated. Likewise, usage of properties in OWL 2 DL
is globally restricted by the so-called regularity condition,7

which may also be violated if the part-of ontology is used
together with a domain ontology. In a way similar to the
irreflexivity issue discussed above, it is possible to recover
from this by expressing some (or all) of the axioms in the
part-of ontology in weaker form, using DL-safe rules or nom-
inal schemas. How this is best done depends on the domain
ontology, but it is always possible in principle, and indeed
relatively straightforward.

3. APPROACH
Given a LOD Cloud dataset, our solution – PLATO –

automatically enriches it with partonomy properties through
four key steps.8

First, PLATO generates candidate pairs of entities from
the dataset. Second, PLATO generates ”hypothesis” of pos-
sible partonomy properties – represented as linguistic pat-
terns – for each entity pair. Next, PLATO tests the resulting
patterns (and hence hypotheses) in a corpus driven man-
ner. Finally, PLATO asserts only those partonomy proper-
ties with strong supporting evidence. Figure 1 depicts the
workflow, which we describe in more detail in the subsequent
sections.

3.1 Candidate Generation
Given a LOD Cloud dataset, PLATO generates all possi-

ble pairs between the entities in the dataset. However, the
number of entity pairs can be extremely large, which can
make the subsequent steps intractable. To address this prob-
lem, PLATO filters unpromising entity pairs using a sim-
ple heuristic—i.e. entities that are strongly associated are
more likely to be related via some property than those that
are not. PLATO implements this heuristic by exploiting
Wikipedia. The references between Wikipedia pages provide
a good proxy for association. Moreover, Wikipedia provides
comprehensive coverage across diverse domains. For each
entity pair, PLATO retrieves the corresponding Wikipedia
page of each entity—using the Mediawiki API9—and if these
pages refer to each other, then the pair is said to be strongly
associated and kept for subsequent processing. Otherwise,
the pair is discarded.

For datasets besides DBpedia, such as Freebase, we use
the sameAs links present between DBpedia entity (e.g. db-
pedia: Cellulose) and entity of other datasets (e.g. fbase:
Cellulose). Then we check if the any of the entity refers
to the other one. For example, if fbase: Chicken links to
dbpedia: Salt. This is just a way to reduce the number of
candidate pairs and it is possible to use other techniques to
generate these pairs. The use of dataset specific heuristics
has been used in other tools such as SILK [31], in order to
maximize finding relationships between any two datasets. It
is possible to replace this module with another heuristics
to generate candidate pairs and use the rest of the system
without any modifications.

7See ”Restriction on the Property Hierarchy” in [24, Section
11].
8PLATO follows these same four steps for enriching multiple
LOD Cloud datasets. For ease of exposition, we will describe
PLATO in the context of enriching a single dataset.
9http://en.wikipedia.org/w/api.php

Figure 1: PLATO system flow chart

Please note, in principal it is possible to replace the usage
of Mediawiki API with entities directly from DBpedia. How-
ever, it may result in the loss of some useful candidate pairs
as DBpedia captures limited information from Wikipedia.
For example, as of 6th February 2012, the DBpedia page for
Cellulose does not refer to Carbon. However, the Wikipedia
pages for Carbon and Cellulose do refer to each other, thus
making them possible candidate pairs for consideration.

For example, given the DBpedia dataset from the LOD
Cloud, some of the entity pairs generated by PLATO will
include:

• Cellulose, Cell Wall

• Cellulose, Kraft’s Food

PLATO retrieves the Wikipedia pages for Cellulose, Cell
Wall, and Kraft’s Foods. The Wikipedia pages for Cellulose
and Cell Wall refer to each other, so this pair is kept. The
Wikipedia page for Cellulose refers to the page for Kraft’s
Foods, due to usage of Cellulose in cheese manufacturing
at Kraft’s Foods. However, the page for The Kraft’s Foods
does not refer back to the page for Cellulose. Hence, this
pair is considered to be only weakly associated by PLATO,
and thus discarded.

3.2 Hypothesis Generation
PLATO generates hypotheses of possible OWL parton-

omy properties (described in Section 2) for each entity pair



from the previous step. PLATO now determines the type of
each entity in the pair using WordNet [11]—a lexical taxon-
omy that is well suited for this task. Specifically, PLATO
retrieves the lexicographer file of the WordNet synset corre-
sponding to each entity to serve as its type.10 The name of
this file has the form POS.SUFFIX where POS is the part-
of-speech (i.e. noun, verb, adv, or adj) and SUFFIX is the
broader group that the synset (and hence entity) belongs
to (e.g. animal, plant, etc.). For example, given the entity
pair (Cell Wall, Cellulose), lexicographer files of the synsets
corresponding to these entities are both noun.body.

PLATO uses this information to determine the applicable
OWL partonomy properties. We captured these properties
from Winston’s taxonomy of part-whole relations [33] (see
Section 2), which was chosen for the following reasons:

• Winston’s taxonomy is well-established and widely ac-
cepted.

• Winston provides guidelines on what types are ap-
plicable to each part-whole relationship—e.g. Win-
ston’s Place-Area relationship applies to only areas,
places, and locations. These guidelines can be cap-
tured as domain-range axioms for each corresponding
OWL partonomy property.

• Winston suggests linguistic cues for each part-whole
relationship, which PLATO can use to generate lin-
guistic patterns.

If POS is not a noun or verb, then PLATO discards the en-
tity pair because Winton’s relationships apply to only nouns
and verbs. If so, then PLATO uses the SUFFIX to deter-
mine the OWL partonomy properties that are applicable
based on their domain and range. Returning to our ex-
ample, the OWL properties of po-component and po-stuff—
corresponding to Winston’s Component-Integral-Object and
Stuff-Object relationships respectively—are applicable be-
cause the SUFFIXES of Cell Wall and Cellulose satisfy the
domain and range of these properties.

Finally, PLATO generates linguistic patterns for each ap-
plicable property based on linguistic cues suggested by Win-
ston. For example, the linguistic cues for po-stuff include “is
made of” and “is partly.” From these cues, the following
linguistic patterns are generated for (Cell Wall, Cellulose):

• Cell Wall is made of Cellulose

• Cellulose is made of Cell Wall

• Cell Wall is partly Cellulose

• Cellulose is partly Cell Wall

These patterns serve as hypotheses to be validated in the
next step.

3.3 Hypothesis Testing
PLATO tests the lexical patterns for each entity pair in a

corpus-driven manner. PLATO uses the Web as the corpus
because of its coverage, and uses publicly available search

10If a WordNet synset cannot be found for an entity,
then PLATO will generalize the entity by looking up
its superclass in DBpedia using the JENA ARQ API
(http://openjena.org/).

APIs to access its contents. Specifically, PLATO uses the
Bing Search API 2.011 because it allows unlimited searches.

For each pattern generated for an entity pair, PLATO
executes a search of the pattern using the BING API, and
takes the top N search results (i.e. URLs for the top N web-
pages) returned by BING. N can be adjusted by the user;
and PLATO sets the default value of N to 50, which we found
to produce good results empirically. For each resulting URL,
PLATO fetches the page it points to—using off-the-shelf
crawling and html parsing technologies, e.g., JSOUP12—and
determines whether the pattern appears in the page based
on exact string match with stemming. This step is necessary
because the search results can contain spurious pages—i.e.
pages that do not contain the actual pattern. For example,
a page containing the string ”Is the cell wall of a plant made
of cellulose fibers?” may appear in the search result for the
pattern “cell wall is made of cellulose”; but this string does
not match the pattern (and hence does not support it). The
crawling of the page is necessary as the snippet of the page
in the result is typically retrieved from the cache, and the
actual content may or may not reflect the same content.

Finally, PLATO counts the total number of pages that
contain the pattern, and uses this count as the level of sup-
port for the OWL partonomy property—associated with the
pattern—that could exist between the entity pair. For each
entity pair, PLATO asserts the partonomy property whose
associated pattern has the strongest supporting evidence,
computed from the previous step. Returning to our exam-
ple for the entity pair (Cell Wall, Cellulose), the supporting
evidence for each pattern associated with the pair (assuming
a search limit of 50) is below:

• Cell Wall is made of Cellulose, 48

• Cellulose is made of Cell Wall, 10

• Cell Wall is partly Cellulose, 50

• Cellulose is partly Cell Wall, 7

Since the pattern ’Cell Wall is partly Cellulose’ has the
strongest support, the associated property po-stuff—corresponding
to Winston’s Stuff-Object relationships—is asserted, with
Cellulose as the part and Cell Wall as the whole.

In addition to adding properties at the instance-level (i.e.
between entities), PLATO also enriches the schema by gen-
eralizing from the instance level assertions. To explain this
step, let C and D be two classes about which we want to find
out whether they should be related on the schema level by
one of the partonomic relationships R. From the process just
described, we obtain a set MR,C,D of instance level assertions
of the form R(a, b), where a ∈ C and b ∈ D.13 We now add
schema level axioms according to the following rules: (1)
If, for all a ∈ C, there is a b ∈ D with R(a, b) ∈ MR,C,D,
then add the axiom C v ∃R.D, which can be expressed
in OWL/RDF serialization using the owl:someValuesFrom
property restriction. (2) If, for all b ∈ D, there is a a ∈ C
with R(a, b) ∈ MR,C,D, then add the axiom D v ∃R−.C,
were R− indicates the inverse (using owl:inverseOf ) prop-
erty of R. While this approach seems to be rather crude

11http://msdn.microsoft.com/en-us/library/dd251056.aspx
12http://jsoup.org/apidocs/
13If we did not obtain any such assertion, then we do not add
any schema axiom.



compared to schema learning methods based on inductive
paradigms,14 it already achieves good results, as can be seen
from our evaluation in Section 4.3.

4. EVALUATION
We present three experiments to evaluate the performance

of PLATO on enriching LOD Cloud dataset with partonomy
properties. The first experiment evaluates PLATO’s perfor-
mance on discovering partonomy properties between enti-
ties within the same LOD Cloud dataset (i.e. intra-dataset
instance-level partonomy discovery). The second experi-
ment evaluates PLATO’s performance across different LOD
Cloud datasets (i.e. inter-dataset instance-level partonomy
discovery). The final experiment evaluates PLATO’s per-
formance on discovery partonomy properties at the schema
level. All the evaluation components of this work are avail-
able for download at the PLATO Project Page15

4.1 Intra-Dataset Instance-Level Partonomy Dis-
covery

We evaluated the performance of PLATO on discovering
partonomy properties between entities within the same LOD
Cloud dataset using the following methodology. First, we
chose the DBpedia dataset because: 1) it is one of the largest
datasets available on the Linked Open Data Cloud; and 2) it
covers diverse domains such as Geography, Science, Politics,
History and Arts [5]. The scale and coverage of DBpedia
allows us to thoroughly evaluate the performance of PLATO
across different partonomy types [33] and domains.

Next, we randomly generated 83,639 entity pairs from DB-
pedia for evaluation because it was not practical to gen-
erate all possible entity pairs given DBpedia’s size. We
used the Mediawiki API16 to randomly generate a pair of
Wikipedia articles, whose URLs were then translated to the
corresponding DBpedia entities. Given that it is not practi-
cal to generate all entity pairs within DBpedia, this method
provides an unbiased dataset for evaluation.

We then applied PLATO to the resulting dataset to auto-
matically discover partonomy properties between each entity
pair. For each partonomy property discovered, the property
was randomly assigned to one of three human graders, who
validated its correctness. A human grader determined that
the partonomy property discovered by PLATO between a
pair of entities is correct if the following conditions are all
satisfied:

• A part-whole relationship does exist between the enti-
ties

• The correct partonomy property is given

• The part-whole roles are correctly assigned to the en-
tities – e.g., given the pair cell and cell wall, cell is the
whole and cell wall is the part.

Finally, we report the precision (i.e. the number of correct
partonomy properties discovered by PLATO over the total
number of partonomy properties discovered) based on the
human grader’s responses. We did not report the recall for

14such as [23]
15http://wiki.knoesis.org/index.php/PLATO
16http://en.wikipedia.org/w/api.php
?action=query&list=random&rnnamespace=0

PLATO because: 1) an existing DBpedia benchmark for this
purpose does not exist, and 2) the large number of entity
pairs made it difficult to compute the recall manually due
to time and resource limitations.

Table 2 shows the results for this experiment. Of the
83,639 entity pairs generated, PLATO discovered partonomy
properties for 13,853 pairs. We should note that partonomy
relationships do not exist for many of the entity pairs be-
cause these pairs were randomly generated – e.g. a random
sample of 100 pairs found only 11 to have a valid partonomy
relationship. PLATO was able to filter many of these extra-
neous pairs based on the heuristic that two entities must
be strongly associated (see Section 3.1). Overall, PLATO
achieved high precision in discovering partonomy properties
between entities in DBpedia. Moreover, PLATO discovered
partonomy properties across a wide range of entities rang-
ing from places to chemical compounds. However, PLATO
did have low precision for a couple of partonomy properties
– i.e. ’Portion-Mass’ and ’Place-Area’. For ’Portion-Mass’,
PLATO did not find any entities related to each other. This
is understandable as this property deals with very abstract
entities such as ’Slice of Lemon’, ’Hunk of Clay’, etc. and
hence it’s hard to find entities of this type in DBpedia.

PLATO achieved low precision for the Place-Area prop-
erty because many places are ambiguous. For example,
Athens can refer to either a city in Greece, Georgia, or
Ohio. Similarly, Delaware can refer to either the U.S. state
of Delaware or Delaware county in the U.S. state of Ok-
lahoma. In the case of the later, given the entity pair of
Delaware (State) and Oklahoma, PLATO may find false ev-
idence supporting the hypothesis that the state of Delaware
is part of Oklahoma, which can lead to poor precision. This
problem can be addressed with richer partonomy semantics
such as a state cannot be part of another state. These richer
semantics are not captured by Winston’s partonomy rela-
tionships (and hence the corresponding OWL properties),
and offers a possible direction for future research.

Although we could not report recall, we provide prelim-
inary insights into PLATO’s performance on this measure.
Our random sample of 100 entity pairs (see above) suggests
PLATO achieved good performance on this metric. Of the
11 pairs with valid partonomy properties, PLATO discov-
ered 7 of them. Moreover, qualitative observations of sam-
ple results further suggest that PLATO performs well on
recall. For example, PLATO discovered the correct parton-
omy property between NATO and 23 of its member states –
the total number of NATO member states is 28. Similarly,
PLATO discovered the correct partonomy property between
the Rock Band ’Nirvana’ and all of its members – i.e. Kurt
Cobain, Krist Novoselic and Dave Grohl.

The dataset and results used in this experiment are avail-
able at the project page17, and we will continue to provide
additional information related to partonomy as it becomes
available.

4.2 Inter-Dataset Instance-Level Partonomy Dis-
covery

We evaluated the performance of PLATO on discovering
partonomy properties between entities from different LOD
Cloud datasets using the following methodology. First, we
created two inter-dataset partonomy discovery tasks: 1) dis-
covering partonomy properties between Freebase dishes and

17http://wiki.knoesis.org/index.php/PLATO



Relation Type Distinct Entity Pairs Correctly Found Precision
Stuff-Object-Part-Of 4178 3427 0.82
Component-Integral-Part-Of 3126 27931 0.89
Feature-Activity-Part-Of 1287 464 0.85
Member-Collection-Part-Of 1912 803 0.85
Portion-Mass-Part-Of 0 0 NA
Place Area-Part-Of 3350 1248 0.48
Total 13853 10557 0.76

Table 2: Precision of the six different relation types between DBpedia entities

DBpedia ingredients, and 2) discovering partonomy proper-
ties between Freebase human anatomy parts and DBpedia
organs. We chose these two tasks because:

• Freebase provides a pre-defined list of 2,615 food dishes18

and 2,916 human anatomy parts,19 which have well-
defined parts (i.e. ingredient) and wholes (i.e. organ)
respectively.

• DBpedia provides the corresponding parts and wholes.

• Freebase provides the ingredients for each food dish,
which can be used as an independent gold standard
for the first task; and experts in the medical domain
were readily available to assess PLATO’s performance
for the second task.

We then applied PLATO to both tasks. For the Dish-
Ingredient task, we validated the partonomy properties dis-
covered by PLATO against the ingredients for each dish pro-
vided by Freebase to compute both precision (i.e. number of
correct partonomy properties discovered by PLATO over all
partonomy properties discovered) and recall (i.e. number of
actual partonomy properties discovered by PLATO over all
partonomy properties). For the Anatomy-Organ task, an in-
dependent gold standard does not exist – i.e. Freebase does
not provide the organs for each anatomy part. Hence, we
employed an expert in human anatomy to grade each parton-
omy property discovered by PLATO, and reported PLATO’s
precision based on the expert’s response. These experts had
no knowledge about PLATO and were presented the results
as an exercise to judge if the presented ingredients are used
for the given dish. The expert used the same grading crite-
ria described in the previous experiment (see Section 4.1).
We did not report the recall for PLATO because of resource
and time limitations.

Task Recall Precision
Dish-Ingredient Task 0.72 0.53
Anatomy-Organ Task N/A 0.86

Table 3: This table shows PLATO’s performance
on precision and recall for the Dish-Ingredient task,
and PLATO’s performance on precision for the
Anatomy-Organ task. Recall was not reported for
the second task because of time and resource limi-
tations.

Table 3 shows the results for both tasks. For the Dish-
Ingredient task, PLATO achieved high recall and modest

18http://www.freebase.com/view/food/views/dish
19http://www.freebase.com/view/medicine/views/
anatomical structure

precision. The Freebase dish gold standard consists of 2,615
dishes and a total of 1317 ingredients across these dishes.
Many of the dishes do not have ingredients mentioned for
them. PLATO discovered a total of 1766 partonomy re-
lationships between Freebase dishes and DBpedia ingredi-
ents, of which 936 are valid according to the gold standard
– giving a recall of 0.72 and precision of 0.53. This result
demonstrates that PLATO can effectively discover parton-
omy properties across different LOD Cloud datasets. Inter-
estingly, the modest precision was due to PLATO discover-
ing additional, valid partonomy properties not present in the
Freebase gold standard. For example, a stuff-object prop-
erty exists between the ingredient ice cream and the dish
’Baked Alaska’, which PLATO correctly discovered. How-
ever, the Freebase gold standard overlooked this relation-
ship, resulting in lower precision.

Given this oversight, we employed 2 human graders to
independently review each extra result generated (830 in to-
tal) to determine whether it’s due to a real erroneous result
given by PLATO or a gap in the gold standard (i.e. an
overlooked ingredient in a food dish). The graders used the
same grading criteria described in Section 4.1 We also re-
quired that both graders agree that a response is valid in
order for it to be counted as correct. The graders responses
were then used to adjust the precision. They found 512
correct answers out of 830, which resulted in total correct
ingredients of 936+512=1448, an adjusted precision of 0.82
– a significant increase over the original precision.

For the Anatomy-Organ task, PLATO achieved high pre-
cision. Of the 8,397 distinct partonomy properties discov-
ered by PLATO, the human expert verified 7,221 as cor-
rect, thus leading to a precision of 0.86. The expert in this
case, is a researcher in medical science and not related to
research and development of PLATO. The expert was pre-
sented the results of PLATO as a grading exercise to judge if
the assertions are right or wrong. This result further demon-
strates – in a different domain – that PLATO can effectively
discover partonomy properties across different LOD Cloud
datasets. For example, PLATO correctly identified that the
entity ’Axon’ is a component-integral object part of enti-
ties such as ’dorsal root ganglion’, ’synapse’, ’neuron’ and
’nerve’. We plan to enrich Freebase’s list of anatomy struc-
tures with the partonomy properties discovered by PLATO
for this task.

4.3 Assertion of schema level links
Using the instance level assertions which are generated

between entities, it becomes possible to identify the schema
level relationships, which exist between the classes of these
entities, as, described at the end of Section 3.2. For example,
using the fact that ’Nirvana has a member Kurt Cobain’ and



’Queen has a member Freddie Mercury’, and in fact that for
all bands some member has been found which is classified
as an artist, we are able to identify schema level assertions
between DBpedia classes such as

dbpedia-owl:Band rdfs:subClassOf [

rdf:type owl:Restriction ;

owl:onProperty :hasMember ;

owl:someValuesFrom dbpedia-owl:Artist

] .

The schema level statement essentially says that ’Bands
have members Artists’. Table 4 shows the evaluation of pre-
cision for schema level links, which were asserted by PLATO.

Total # of Class Pairs Correctly Identified Precision
93 81 0.87

Table 4: Precision as measured on Schema Level
Links Between DBpedia entities

The entity in column 1 in Table 4 is the total number of
distinct class pairs that were asserted to have a relationship
in the file expressing schema level constraints. For exam-
ple [dbpedia-owl:Artist,dbpediaowl:Organization],[dbpedia-
owl:Artist,dbpedia-owl:Artifact]. Thus, a single entity may
occur in multiple such combinations, but in each of these
pairs, the entity with which it is being related to is unique.
Of these 93 different pairs, a total of 81 were found to be
correct, leading to a precision of 0.87. The number of class
pairs found is low because many entities in the DBpedia
dataset do not have any classes associated with them. Iden-
tification of schema level relationships can potentially help
with improving the precision and recall of instance level re-
lationship identification. This dataset has also been made
available on the project page for download.

5. RELATED WORK
To the best of our knowledge, this is the first work which,

automatically identifies ’part-of’ relationships in the con-
text of the LOD cloud or RDF datasets. The field of On-
tology Matching and Instance Matching has been focusing
on identifying relationships such as ’sameAs’,’subClass’ and
’equivalentClass.’ In [10, 8] the authors present a survey in
the area of ontology matching. This helps in cleaning up
the data and improving the quality of links at the instance
level, but the issue of identifying appropriate relationships at
the schema level has not been addressed. voiD [1] provides a
vocabulary to represent the relationships between the differ-
ent datasets. SILK Framework [32] automates the process of
link discovery between LOD datasets at the instance level.
At the schema level, a notable effort for creating a unified
reference point for LOD schemas is UMBEL [3], which is a
coherent framework for ontology development and can serve
as a reference framework.

There has been a number of efforts in the area of Nat-
ural Language Processing for identification of part-of rela-
tionships within a text corpora [14, 30]. This includes effort
that utilizes the presence of certain lexico-syntactic patterns
(Hearst patterns [16]) to indicate a particular semantic re-
lationship between two nouns. However, much of this work

has been confined to ontology learning [9] in the sense of
hyponym extraction [16]. A closely related work that also
mines the Web for the relations is NELL [6]. There are a
few notable differences between our approach and NELL, (1)
NELL uses a crawler to crawl the Web and identify relations
it can find between entities on the web. We are focused on
LOD cloud and for a given pair of entities, PLATO tries
to identify the relationship between them. (2) Predicates
or properties extracted from NELL are at the surface level
and do not convey the semantics of the properties. For ex-
ample, while NELL does extracts fact such as Athens and
Greece are related by the predicate citycapitalofcountry, it
does not explicitly provides any semantics to those relation-
ships. We have definitely gained a lot of insight from the
work of NELL and it also validates our belief that web can
be mined to gain information about relationships. However,
it will be extremely difficult to compare PLATO with NELL
since, NELL is not available for download and systems have
different set up and objectives.

The closest work in this respect is Espresso [26] that again
works on a specific text corpus. A key difference of this work
from ours is its use of a supervised approach. Further, it
disregards any information about the type of entities, which
we capture using Winston’s patterns.

6. POTENTIAL IMPACT & FUTURE WORK
To the best of our knowledge, this is the only work that

can identify partonomic relations between entities in the
LOD Cloud. The potential impact of this work is many
fold in the context of the LOD Cloud and beyond. Our
work suggests that introducing the part-of relationship as a
standard ingredient in and between LOD Cloud datasets is
viable. This will allow LOD to move beyond the sameAs
relationship and allow it to be used for more meaningful
purposes. The discovery of individual components of vari-
ous entities such as body parts or organizations may enable
the identification of new scientific facts and the answering of
analytical queries. The extension of Freebase to incorporate
this information for dishes and human anatomy is something
we would like to address in the short term. We would also
like to add partonomical relations between entities of other
LOD datasets. The additional schema information gener-
ated by PLATO will also be made available as a part of the
LOD cloud for use by the reasoning community. The low
precision on the Place-Area relationship is a matter of con-
cern and we plan to address it in near future. We would also
like to evaluate the results for Anatomy-Organ Task using
a domain specific ontology such as Foundational Model of
Anatomy 20.

We plan on contributing the entire corpus of entities that
have been identified to be in part-of relationship as a dataset
to the LOD cloud. This will prove useful for researchers
who wish to utilize the dataset and also for any compara-
tive evaluation in the future. We have done an initial testing
of our approach on identification of other relationships such
as ’causality’ and it appears promising. We would like to ex-
tend it further and develop techniques for the identification
of these relations, eventually leading to a rich Relationship
Web. There is also plenty of scope for the improvement
of our own technique as well. We would like to be able to
extend PLATO to identify fundamental relationships. We

20http://fma.biostr.washington.edu/



would like to further strengthen the schema learning part by
adding established inductive methods. We would also like
to add additional capabilities for entity disambiguation to
improve precision and recall figures. We would also like to
explore the use of schema knowledge generated by PLATO
to improve instance matching, leading to a system with a
feedback loop.

7. CONCLUSION
In this paper we have presented an automatic approach

(PLATO) for identification of part-of relation between enti-
ties in the LOD cloud. These entities can be part of the same
dataset or can belong to different datasets. In addition, the
entities can be either instances or classes. Our approach is
based on the foundational work by Winston in the area of
partonomy and the corresponding taxonomy for the same.
Since Winston’s work is more tailored towards linguistics,
we have expressed the work using OWL constraints in order
to operationalize it for the purpose of our work. We de-
scribed the technical solution used to provide PLATO and
also presented a comprehensive evaluation spanning thou-
sands of entities in the LOD cloud. Our results demonstrate
that PLATO identifies part-of relationships between entities
in the LOD cloud with a fairly high precision.

We believe our solution works well because of the following
reasons (1) We utilize a rich datasource ’the Web’ to iden-
tify the relationship between entities (2) Our approach has a
foundational underpinning on a classical work in partonom-
ical relation.
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