
Mach Learn (2010) 78: 203–250
DOI 10.1007/s10994-009-5146-2

Concept learning in description logics using refinement
operators

Jens Lehmann · Pascal Hitzler

Received: 15 September 2007 / Revised: 19 August 2009 / Accepted: 19 August 2009 /
Published online: 16 September 2009
Springer Science+Business Media, LLC 2009

Abstract With the advent of the Semantic Web, description logics have become one of
the most prominent paradigms for knowledge representation and reasoning. Progress in re-
search and applications, however, is constrained by the lack of well-structured knowledge
bases consisting of a sophisticated schema and instance data adhering to this schema. It is
paramount that suitable automated methods for their acquisition, maintenance, and evolu-
tion will be developed. In this paper, we provide a learning algorithm based on refinement
operators for the description logic ALCQ including support for concrete roles. We develop
the algorithm from thorough theoretical foundations by identifying possible abstract prop-
erty combinations which refinement operators for description logics can have. Using these
investigations as a basis, we derive a practically useful complete and proper refinement
operator. The operator is then cast into a learning algorithm and evaluated using our im-
plementation DL-Learner. The results of the evaluation show that our approach is superior
to other learning approaches on description logics, and is competitive with established ILP
systems.

Keywords Description logics · Refinement operators · Inductive logic programming ·
Semantic web · OWL · Structured machine learning

1 Introduction and motivation

With the advent of the Semantic Web and Semantic Technologies, ontologies are becoming
one of the most prominent paradigms for knowledge representation and reasoning. However,

Editor: Hendrik Blockeel.

J. Lehmann (�)
Department of Computer Science, Universität Leipzig, Johannisgasse 26, 04103 Leipzig, Germany
e-mail: lehmann@informatik.uni-leipzig.de

P. Hitzler
Kno.e.sis Center, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
e-mail: pascal@pascal-hitzler.de

mailto:lehmann@informatik.uni-leipzig.de
mailto:pascal@pascal-hitzler.de

204 Mach Learn (2010) 78: 203–250

recent progress in the field faces a lack of well-structured ontologies with large amounts of
instance data due to the fact that engineering such ontologies constitutes a considerable in-
vestment of resources. Nowadays, knowledge bases often provide large amounts of instance
data without sophisticated schemata. Methods for automated schema acquisition and main-
tenance are therefore being sought (see e.g. Buitelaar et al. 2007).

In 2004, the World Wide Web Consortium (W3C) recommended the Web Ontology Lan-
guage OWL1 as a standard for modelling ontologies on the Web. In the meantime, many
studies and applications using OWL have been reported in research, many of which go
beyond Internet usage and employ the power of ontological modelling in other fields like
biology, medicine, software engineering, knowledge management, and cognitive systems
(Staab and Studer 2004; Davies et al. 2006; Hitzler et al. 2009).

In essence, OWL coincides with the description logic S H O I N (D) and is likely to be
extended to S RO I Q(D) (Horrocks et al. 2006) in OWL 2. Description logics (DLs) in gen-
eral are fragments of first order logic. In order to leverage machine-learning approaches for
the acquisition of OWL ontologies, it is required to develop methods and tools for learning
in description logics. To date, only few investigations have been carried out on this topic,
which can be attributed to the fact that description logics (DLs) have only recently become
a major paradigm in knowledge representation and reasoning applications.

In this paper, we show that methods from Inductive Logic Programming (ILP) are ap-
plicable to learning in description logic knowledge bases. (Throughout the paper, we use
the terms knowledge base and ontology synonymously.) We are motivated by the success of
ILP and believe that similar success can be achieved for DLs. We believe that our results
provide foundations for the acquisition of ontologies, in particular in cases when extensional
information (facts, instance data) is easily available, while corresponding intensional infor-
mation (schema) is missing or not expressive enough to allow powerful reasoning over the
ontology in a useful way. Such situations often occur when extracting knowledge from dif-
ferent sources, e.g. databases2 and wikis (Auer et al. 2008), or in collaborative knowledge
engineering scenarios.

The developed system is, of course, not restricted to ontology engineering and can handle
other learning problems. Indeed, it lends itself to generic use in machine learning in the
same way as ILP systems do. The main difference, however, is the employed knowledge
representation paradigm: ILP traditionally uses logic programs for knowledge representation
while our work rests on description logics. This distinction is crucial when considering
Semantic Web applications as target use cases for our approach, as such applications hinge
centrally on the chosen knowledge representation format for knowledge interchange and
integration.3 As such, our work can be understood as a broadening of the scope of research
and applications based on ILP methods. This is particularly important since the number of
description logic based systems can be expected to be increasing rapidly in the near future.4

A central part in many ILP approaches are so-called refinement operators which are
used to traverse the search space, and such an ILP-based approach often hinges on the de-
finition of a suitable operator. Theoretical investigations on ILP refinement operators have

1http://www.w3.org/2004/OWL/. See also http://www.w3.org/2007/OWL/ for the currently ongoing revision
of the standard.
2E.g. http://triplify.org.
3We will say more about this in Sect. 8.
4As a case in point, see the W3C LinkingOpenData Project, http://esw.w3.org/topic/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData.

http://www.w3.org/2004/OWL/
http://www.w3.org/2007/OWL/
http://triplify.org
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Mach Learn (2010) 78: 203–250 205

identified desirable properties for them to have, which impact on their performance. These
properties thus provide general guidelines for the definition of suitable operators, which are
not restricted to a logic programming setting, but can be carried over to DLs. It turns out,
however, that for expressive DLs there are strong theoretical limitations on the properties a
refinement operator can have. A corresponding general analysis therefore provides a clear
understanding of the difficulties inherent in a learning setting, and also allows to derive
directions for researching suitable operators.

We provide both this theoretical analysis and the derivation—including experimental
validation—of a refinement operator suitable for concept learning in description logics. The
theoretical analysis is provided in Sect. 4, with Theorem 2 being the central result of this
part. A concrete refinement operator is given in Definition 13 based on a definition from the
beginning of Sect. 5. Experimental evaluations are provided in Sect. 7.

In more detail, the structure of the paper is as follows. In Sect. 2, we give a brief intro-
duction to description logics. Section 3 formally describes the learning problem. Refinement
operators and their properties are introduced. Section 4 contains the theoretical analysis of
possible property combinations, culminating in Theorem 2, which summarises the theo-
retical part. Indeed, we fully analyse all combinations of a set of interesting properties of
refinement operators known from the literature. This means that we show which combina-
tions of properties are possible, i.e. for which combinations a refinement operator with these
properties exists. To the best of our knowledge, such a complete analysis has not been done
before. The results provide a foundation for further investigations into practical refinement
operators, independent from the rest of this paper. In Sect. 5, we then propose a concrete
refinement operator. Based on the theoretical investigations in Sect. 4, we argue that such an
operator should be complete and proper, and thus we first define a complete operator, which
is later extended into a complete and proper operator. This operator supports the description
logic A L C and is then extended to an operator for A L C Q with support for concrete roles.
In Sect. 6, we present a learning algorithm based on this operator, and in Sect. 7 we evaluate
this algorithm by means of our implementation, DL-Learner. The evaluation shows that our
approach is competitive on several benchmark problems. In Sect. 8, we discuss in detail the
advantages and disadvantages of our approach using description logics compared to tradi-
tional logic programming based methods. In Sect. 9, we discuss related work, in particular
the relation to refinement operators in the area of traditional Inductive Logic Programming.
Finally, in Sect. 10 we summarise our work and draw conclusions.

Note This paper is a substantially extended and revised merge of the two papers (Lehmann
and Hitzler 2007a, 2007b), which have been awarded the Best Student Paper Award at the
17th International Conference on Inductive Logic Programming, ILP 2007, Corvallis, OR,
USA. Changes going beyond the merge of these papers are as follows:

– extension of the used refinement operator with usage of domain and range restrictions,
disjoint concepts, support for cardinality restrictions, role hierarchies, boolean and double
concrete roles

– support and description of a new heuristic
– extension of the evaluation part
– inclusion of all proofs (adapted to the algorithm extension where necessary)
– inclusion of more discussion and related work

Additionally, we published our implementation DL-Learner5 and all learning exam-
ples/benchmarks as open source software.

5Homepage: http://dl-learner.org, download: http://sf.net/projects/dl-learner.

http://dl-learner.org
http://sf.net/projects/dl-learner

206 Mach Learn (2010) 78: 203–250

2 Description logics

Description logics is the name of a family of knowledge representation (KR) formalisms.
They emerged from earlier KR formalisms like semantic networks and frames. Their ori-
gin lies in the work of Brachman on structured inheritance networks (Brachman 1978).
Since then, description logics have enjoyed increasing popularity. They can essentially be
understood as fragments of first-order predicate logic. They have less expressive power, but
usually decidable inference problems and a user-friendly variable free syntax.

Description logics represent knowledge in terms of objects, concepts, and roles. Concepts
formally describe notions in an application domain, e.g. we could define the concept of being
a father as “a man having a child” (Father ≡ Man � ∃hasChild.� in DL notation).
Objects are members of concepts in the application domain and roles are binary relations
between objects. Objects correspond to constants, concepts to unary predicates, and roles to
binary predicates in first-order logic.

In description logic systems information is stored in a knowledge base. It is divided in
two parts: TBox and ABox. The ABox contains assertions about objects. It relates objects
to concepts and other objects via roles. The TBox describes the terminology by relating
concepts and roles. (For some expressive description logics this clear separation does not
exist.)

As mentioned before, DLs are a family of KR formalisms. We will introduce the A L C
description logic as a prototypical example. It should be noted that A L C is a proper fragment
of OWL (Horrocks et al. 2003) and is generally considered to be a prototypical description
logic for research investigations.

A L C stands for attributive language with complement. It allows to construct complex
concepts from simpler ones using various language constructs. The next definition shows
how such concepts can be built.

Definition 1 (Syntax of A L C concepts) Let NR be a set of role names and NC be a set of
concept names (NR ∩NC = ∅). The elements of NC are also called atomic concepts. The set
of A L C concepts is inductively defined as follows:

1. Each atomic concept is an A L C concept.
2. If C and D are A L C concepts and r ∈ NR a role, then the following are also A L C

concepts:

– � (top), ⊥ (bottom)
– C
 D (disjunction), C � D (conjunction), ¬C (negation)
– ∀r.C (value/universal restriction), ∃r.C (existential restriction)

For some of the results in this paper we will refer to sublanguages of A L C . Such sublan-
guages are defined by disallowing the use of a selection of the language constructs disjunc-
tion, conjunction, negation, and universal or existential restriction. When doing this, we will
always assume that � and ⊥ are in the language. We will explicitly refer in some places to
the language AL, the concepts of which are inductively defined as follows: �, ⊥, ∃r.�, A,
¬A with A ∈ NC , r ∈ NR are AL concepts. If C and D are AL concepts, then C � D is an
AL concept. If C is an AL concept and r a role, then ∀r.C is an AL concept.

Only for one result (Lemma 2 and the results based on it), we will have to refer explicitly
to description logics which are more expressive than A L C. More precisely, we will refer to
S H O I N and S RO I Q as the two languages underlying OWL and OWL 2, respectively.

Mach Learn (2010) 78: 203–250 207

Table 1 A L C syntax and semantics

Construct Syntax Semantics

atomic concept A AI ⊆ ΔI

abstract role r rI ⊆ ΔI × ΔI

top concept � ΔI

bottom concept ⊥ ∅
conjunction C � D (C � D)I = CI ∩ DI

disjunction C
 D (C
 D)I = CI ∪ DI

negation ¬C (¬C)I = ΔI \ CI

exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI }
universal restriction ∀r.C (∀r.C)I = {a | ∀b.(a, b) ∈ rI

implies b ∈ CI }

Since we need them formally only for this single proof, we refrain from giving the for-
mal definitions, and instead refer the reader to Horrocks et al. (2006), Baader et al. (2007),
Hitzler et al. (2009) for details.

The semantics of A L C concepts is defined by means of interpretations. See the following
definition and Table 1 listing all A L C concept constructors.

Definition 2 (Interpretation) An interpretation I consists of a non-empty interpretation
domain ΔI and an interpretation function ·I , which assigns to each A ∈ NC a set AI ⊆ ΔI

and to each r ∈ NR a binary relation rI ⊆ ΔI × ΔI .

In the most general case, terminological axioms are of the form C � D or C ≡ D, where
C and D are concepts. The former axioms are called inclusions and the latter equivalences.
An equivalence whose left hand side is an atomic concept is a concept definition. In some
languages with low expressivity, like AL, terminological axioms are restricted to definitions.
We can define the semantics of terminological axioms in a straightforward way. An inter-
pretation I satisfies an inclusion C � D if CI ⊆ DI and it satisfies the equivalence C ≡ D

if CI = DI . I satisfies a set of terminological axioms iff it satisfies all axioms in the set.
An interpretation, which satisfies a (set of) terminological axiom(s) is called a model of this
(set of) axiom(s). Two (sets of) axioms are equivalent if they have the same models. A finite
set T of terminological axioms is called a (general) TBox. Let NI be the set of object names
(disjoint with NR and NC). An assertion has the form C(a) (concept assertion) or r(a, b)

(role assertion), where a, b are object names, C is a concept, and r is a role. An ABox A is
a finite set of assertions.

Objects are also called individuals. To allow interpreting ABoxes we extend the definition
of an interpretation. In addition to mapping concepts to subsets of our domain and roles to
binary relations, an interpretation has to assign to each individual name a ∈ NI an element
aI ∈ ΔI . An interpretation I is a model of an ABox A (written I |= A) iff aI ∈ CI for
all C(a) ∈ A and (aI , bI) ∈ rI for all r(a, b) ∈ A. An interpretation I is a model of a
knowledge base K = (T , A) (written I |= K) iff it is a model of T and A .

A concept is in negation normal form iff negation only occurs in front of concept names.
The length of a concept is defined in a straightforward way, namely as the sum of the num-
bers of concept names, role names, quantifiers, and connective symbols occurring in the
concept. The depth of a concept is the maximal number of nested concept constructors. The

208 Mach Learn (2010) 78: 203–250

role depth of a concept is the maximal number of nested roles. A subconcept of a concept
C is a concept syntactically contained in C. For brevity we sometimes omit brackets. In this
case, constructors involving quantifiers have higher priority, e.g. ∃r.��A means (∃r.�)�A.
In several proofs in the paper we use a convenient abbreviated notation to denote ∀r chains
and ∃r chains:

∀rn = ∀r.∀r
︸ ︷︷ ︸

n-times

∃rn = ∃r.∃r
︸ ︷︷ ︸

n-times

As we have described, a knowledge base can be used to represent the information we have
about an application domain. Besides this explicit knowledge, we can also deduce implicit
knowledge from a knowledge base. It is the aim of inference algorithms to extract such
implicit knowledge. There are some standard reasoning tasks in description logics, which
we will briefly describe.

In terminological reasoning we reason about concepts. The standard problems are satis-
fiability and subsumption. Intuitively, satisfiability determines if a concept can be satisfied,
i.e. it is free of contradictions. Subsumption of two concepts detects whether one of the
concepts is more general than the other.

Definition 3 (Satisfiability) Let C be a concept and T a TBox. C is satisfiable iff there is
an interpretation I such that CI �= ∅. C is satisfiable with respect to T iff there is a model
I of T such that CI �= ∅.

Definition 4 (Subsumption, equivalence) Let C, D be concepts and T a TBox. C is sub-
sumed by D, denoted by C � D, iff for all models I we have CI ⊆ DI . C is subsumed by
D with respect to T , denoted by C �T D, iff for all models I of T we have CI ⊆ DI .

C is equivalent to D (with respect to T), denoted by C ≡ D (C ≡T D), iff C � D

(C �T D) and D � C (D �T C).
C is strictly subsumed by D (with respect to T), denoted by C � D (C �T D), iff C � D

(C �T D) and not C ≡ D (C ≡T D).

Subsumption allows to build a hierarchy of atomic concepts, commonly called the sub-
sumption hierarchy. Analogously, for more expressive description logics role hierarchies
can be inferred.

In assertional reasoning we reason about objects. As one relevant task for learning in
DLs, the instance check problem is to find out whether an object is an instance of a concept,
i.e. belongs to it.

Definition 5 (Instance) Let A be an ABox, T a TBox, K = (T , A) a knowledge base, C

a concept, and a ∈ NI an object. a is an instance of C with respect to A , denoted by
A |= C(a), iff in all models I of A we have aI ∈ CI . a is an instance of C with respect to
K, denoted by K |= C(a), iff in all models I of K we have aI ∈ CI .

To denote that a is not an instance of C with respect to A (K) we write A �|= C(a)

(K �|= C(a)).

We use the same notation for sets S of assertions of the form C(a), e.g. K |= S means
that every element in S follows from K. K �|= S means that no element in S follows from K.

Mach Learn (2010) 78: 203–250 209

3 Learning in description logics using refinement operators

In this section, we briefly describe the learning problem in description logics. The process
of learning concepts in logics, i.e. of finding a logical description for given instances, is also
called inductive reasoning. In a general setting this means that we have a logical formulation
of background knowledge and some observations. We are then looking for ways to extend
the background knowledge such that we can explain the observations, i.e. they can be de-
duced from the modified knowledge. More formally, we are given background knowledge
B , positive examples E+, negative examples E− and want to find a hypothesis H such that
from H together with B the positive examples follow and the negative examples do not fol-
low. It is not required that the same logical formalism is used for background knowledge,
examples, and hypothesis, but often this is the case.

Definition 6 (Learning problem in description logics) Let a concept name Target, a
knowledge base K (not containing Target), and sets E+ and E− with elements of the
form Target(a) (a ∈ NI) be given. The learning problem is to find a concept C such that
Target does not occur in C and for K′ = K ∪ {Target ≡ C} we have K′ |= E+ and
K′ �|= E−. Such a concept C is called correct.

If an example a is instance of a concept C, we say that C covers a.

In the learning problem definition we made an acyclicity restriction, e.g. we do not learn
recursive equivalences. The main reason for this is performance. If we know that the equiv-
alence we learn is not cyclic, we can perform instance checks to test example coverage
without adding the definition to the knowledge base first. Moreover, cyclic equivalences are
less common in ontologies compared to logic programs. Clearly, if the need for them arises,
the approaches can be extended to include this case.

By Occam’s razor (Blumer et al. 1990; Domingos 1998) simple and more comprehen-
sible solutions of the learning problem are to be preferred over more complex ones. We
measure simplicity as the syntactic length of a concept as defined in Sect. 2 and will later
bias our algorithm towards shorter concepts.

The goal of learning is to find a correct concept with respect to the examples. This can
be seen as a search process in the space of concepts. A natural idea is to impose an ordering
on this search space and use operators to traverse it. This idea is well-known in Inductive
Logic Programming (Nienhuys-Cheng and de Wolf 1997), where refinement operators are
widely used to find hypotheses. Intuitively, downward (upward) refinement operators con-
struct specialisations (generalisations) of hypotheses.

Definition 7 (Refinement operator) A quasi-ordering is a reflexive and transitive relation.
In a quasi-ordered space (S,�) a downward (upward) refinement operator ρ is a mapping
from S to 2S , such that for all C ∈ S we have that C ′ ∈ ρ(C) implies C ′ � C (C � C ′). C ′
is called a specialisation (generalisation) of C.

This idea can be used for searching in the space of concepts. As ordering we can use
subsumption. (Note that the subsumption relation � is a quasi-ordering.) If a concept C

subsumes a concept D (D � C), then C will cover all examples which are covered by D.
This makes subsumption a suitable order for searching in concepts. We analyse refinement
operators for concepts with respect to subsumption and a description language L, and in the
sequel we will call such operators L refinement operators. We also introduce the commonly
used notions of refinement chains as well as downward and upward covers.

210 Mach Learn (2010) 78: 203–250

Definition 8 (L refinement operator) Let L be a description language. A refinement operator
in the quasi-ordered space (L,�) is called an L refinement operator.

Definition 9 (Refinement chain) A refinement chain of an L refinement operator ρ of length
n from a concept C to a concept D is a finite sequence C0,C1, . . . ,Cn of concepts, such that
C = C0,C1 ∈ ρ(C0),C2 ∈ ρ(C1), . . . ,Cn ∈ ρ(Cn−1),D = Cn. This refinement chain goes
through E iff there is an i (1 ≤ i ≤ n) such that E = Ci . We say that D can be reached from
C by ρ if there exists a refinement chain from C to D. ρ∗(C) denotes the set of all concepts,
which can be reached from C by ρ. ρm(C) denotes the set of all concepts, which can be
reached from C by a refinement chain of ρ of length m.

Definition 10 (Downward and upward cover) A concept C is a downward cover of a con-
cept D iff C � D and there does not exist a concept E with C � E � D. A concept C

is an upward cover of a concept D iff D � C and there does not exist a concept E with
D � E � C.

Instead of D ∈ ρ(C), we will often write C �ρ D. If the used operator is clear from the
context, it is usually omitted, i.e. we write C � D.

We introduce the notion of weak equality of concepts, which is similar to syntactic equal-
ity of concepts, but takes into account that the order of elements in conjunctions and dis-
junctions is not important. We say that the concepts C and D are weakly (syntactically)
equal, denoted by C � D iff they are equal up to permutation of arguments of conjunction
and disjunction. Two sets S1 and S2 of concepts are weakly equal iff for all C1 ∈ S1 there
is a C ′

1 ∈ S2 such that C1 � C ′
1 and vice versa. Weak equality of concepts is coarser than

syntactic equality and finer than equivalence (viewing the equivalence, equality, and weak
equality of concepts as equivalence classes).

Refinement operators can have certain properties, which can be used to evaluate their
usefulness for learning hypotheses.

Definition 11 (Properties of DL refinement operators) An L refinement operator ρ is called

– (locally) finite iff ρ(C) is finite for all concepts C.
– redundant iff there exists a refinement chain from a concept C to a concept D, which

does not go through some concept E and a refinement chain from C to a concept weakly
equal6 to D, which does go through E.

– proper iff for all concepts C and D, D ∈ ρ(C) implies C �≡ D.
– ideal iff it is finite, complete (see below), and proper.

An L downward refinement operator ρ is called

– complete iff for all concepts C,D with C � D we can reach a concept E with E ≡ C

from D by ρ.
– weakly complete iff for all concepts C � � we can reach a concept E with E ≡ C from

� by ρ.
– minimal iff for all C, ρ(C) contains only downward covers and all its elements are in-

comparable with respect to �.

The corresponding notions for upward refinement operators are defined dually.

6We use weak equality instead of syntactic equality, because only avoiding syntactic equality while still being
able to reach many weakly equal concepts from a given concept can still waste significant computational
resources. All results also hold if we consider syntactic equality, see Remark 3.

Mach Learn (2010) 78: 203–250 211

4 Analysing the properties of refinement operators

In this section, we analyse the properties of refinement operators in description logics. The
need for such an analysis was already expressed in Fanizzi et al. (2004), Esposito et al.
(2004). In particular, we are interested in finding out which desired properties can be com-
bined in a refinement operator and which properties are impossible to combine. This is inter-
esting for two reasons: The first one is that this gives us a good impression of how hard (or
easy) it is to learn concepts. The second reason is that this can also serve as a practical guide
for designing refinement operators. Knowing the theoretical limits allows the designer of a
refinement operator to focus on achieving the best possible properties. We will indeed fol-
low this approach in Sect. 5, where we will define—and later evaluate—a concrete operator
based on our theoretical investigations.

Refinement operators for Description Logics have been constructed for A L E R in Badea
and Nienhuys-Cheng (2000), and in Esposito et al. (2004), Iannone and Palmisano (2005),
Iannone et al. (2007) for A L C. In particular, Badea and Nienhuys-Cheng (2000) also showed
some properties of A L E R refinement operators. However, a full theoretical treatment of
their properties has not been done to the best of our knowledge (not even for a specific
language). Therefore, all propositions in this section are new unless explicitly mentioned
otherwise.

As a first property we will briefly analyse minimality of L refinement operators, in par-
ticular the existence of upward and downward covers in A L C . It is not immediately obvious
that e.g. downward covers exist in A L C, because it could be the case that for all concepts C

and D with C � D one can always construct a concept E with C � E � D. However, the
next proposition shows that downward covers do exist.

Proposition 1 (Existence of covers in A L C) Downward (upward) covers of � (⊥) exist in
A L C .

Proof Let NR = {r} and NC = {A}.
Assume, we have an interpretation I and an object a such that aI /∈ AI and there is no b

with (aI , bI) ∈ rI (*). We define a set S as follows:

– � ∈ S

– ¬A ∈ S

– for all concepts C, ∀r.C ∈ S

– if C1 ∈ S and C2 ∈ S, then C1 � C2 ∈ S

– if C1 ∈ S or C2 ∈ S, then C1
 C2 ∈ S

By structural induction on A L C concept constructors (see Table 1), it can be shown that
C ∈ S iff aI ∈ CI for all C in negation normal form.

Using this observation as prerequisite, we show that C = ∃r.�
 A is a downward cover
of �. By contradiction, we assume that there is a concept D with C � D � � in negation
normal form.

Since C � D, there are I1 and a1 such that a
I1
1 /∈ CI1 and a

I1
1 ∈ DI1 . Analogously, due

to D � �, there are I2 and a2 such that a
I2
2 /∈ DI2 . By C � D, this implies a

I2
2 /∈ CI2 . In

summary (**):

I1: a
I1
1 /∈ CI1 , a

I1
1 ∈ DI1

I2: a
I2
2 /∈ CI2 , a

I2
2 /∈ DI2

212 Mach Learn (2010) 78: 203–250

We can deduce:

a
I1
1 /∈ CI1

⇐⇒ a
I1
1 /∈ (A
 ∃r.�)I1

⇐⇒ a
I1
1 /∈ AI1 and a

I1
1 /∈ (∃r.�)I1

⇐⇒ a
I1
1 /∈ AI1 and there is no b with (aI1 , bI1) ∈ rI1

The same can be done for a2 and I2. In both cases assumption (*) is satisfied.
If D ∈ S, then a

I1
1 ∈ DI1 and a

I2
2 ∈ DI2 . Otherwise if D /∈ S, then a

I1
1 /∈ DI1 and

a
I2
2 /∈ DI2 . Both cases contradict (**).

Upward covers can be handled analogously, i.e. ∀r.⊥ � A is an upwardcover of ⊥. �

The idea in the proof of Proposition 1 can be extended to situations with more than one
role and concept name. In this case we obtain the following concept as a downward cover
of � (we do not prove this explicitly, because we do not use this result later on):

⊔

r∈NR

∃r.�

⊔

A∈NC

A

The result shows that non-trivial minimal operators, i.e. operators which do not map
every concept to the empty set, can be constructed. However, minimality of refinement steps
is not a directly desired goal in general. Minimal operators are in some languages more likely
to lead to overfitting, because they may not produce sufficient generalisation/specialisation
leaps, e.g. the cover above provides almost no specialisation compared to �. This problem
is particularly significant in languages which are closed under boolean operations, i.e. in
A L C and more expressive languages.

Indeed, the following result suggests that—unlike for logic programs—minimality may
not play a central role for DL refinement operators, as it is incompatible with weak com-
pleteness. In Badea and Nienhuys-Cheng (2000), a weaker result was already claimed to
hold, but not proven. We formulate our result for the description logic AL. A corresponding
result for other description logics than AL has not been shown yet, but the non-existence
of such operators even for weak description logics suggests that similar problems arise for
more expressive ones.

Proposition 2 (Minimality and weak completeness) There exists no minimal and weakly
complete AL downward refinement operator.

Proof Let NR = {r}, and NC = ∅. In the following, let rd(C) denote the role depth of a
concept C.

For a proof by contradiction, we assume we have a minimal and weakly complete AL
downward refinement operator ρ. This implies that there is a refinement step C �ρ D, such
that C does not have a subconcept equivalent to ⊥ and D does have a subconcept equivalent
to ⊥. Otherwise no concept equivalent to ⊥ would be reachable from �. We prove the
proposition by first simplifying C and D and then defining a concept E with D � E � C.

We next cast C and D into a normal form. For this, we replace the subconcepts in D

equivalent to ⊥ by ⊥. Furthermore, we apply the following equivalence preserving rewrite
rules exhaustively to C and D:

C � ⊥ → ⊥ and ⊥ � C → ⊥
C � � → C and � � C → C

Mach Learn (2010) 78: 203–250 213

∀r.� → �
∀r.(C1 � C2) → ∀r.C1 � ∀r.C2

We pick a normal form obtained this way (note that applying the rules to an arbitrary concept
can lead to different results depending on the order of application) and call the resulting
concepts C ′(≡ C) and D′(≡ D).

Due to the syntax of AL, NC = ∅, and the rewriting rules, we have that C ′ is either � or
of the following form, where the si , for i ∈ {1, . . . , b}, are non-negative integers:

C ′ =
b

∏

i=1

∀rsi .∃r.� (1)

We define a new concept E:

E = C ′ � ∀rn.∃r.� with n = max(rd(C), rd(D)) + 1

We complete the proof by showing that D′ � E � C ′, which contradicts the minimality
of ρ. The central idea behind the contradiction is that the ∀r-chain in E is strictly longer
than all of those occurring in C ′ or D′. This guarantees both the containment of E in C ′ and
the containment of D′ in E. The details are as follows.

1. To show E � C ′, first note that E = C ′ �∀rn.∃r.� � C ′ is obvious, so it remains to show
that E and C ′ are not equivalent. To do this, we define I and a such that aI ∈ C ′ and
aI /∈ E.

Let I be defined by rI = {(ai, ai+1) | a0 = a,0 ≤ i < n}, which we can depict as

a = a0
r−→ a1

r−→ · · · r−→ an

– Indeed aI ∈ C ′ holds: For C ′ = � this holds trivially. If C ′ �= �, then C ′ is a con-
junction of concepts which are of the form ∀rm.∃r.� with m < n, i.e. we have
aI ∈ (∀rm.∃r.�)I for all m < n. Note that the statement ∀rm.∃r.� informally means
that objects reachable via a path of length m along r need to have a successor. Hence
aI ∈ C ′ holds due to the form we have established in (1) for C ′.

– aI /∈ E holds because an does not have an r-filler.

2. To show D′ � E, first note that D′ contains a ⊥ symbol. This means that D′ is of the form
D′ = D′

1 � · · · � D′
p (p ≥ 1) where there exists some j ∈ {1, . . . , p} s.t. D′

j is of the form
∀rt .⊥, for some t ≥ 0. Now define F = C ′ �D′

j . Note that7 D′ ≡ C ′ �D′ � C ′ �D′
j = F .

We first verify D′ � E. Note that for all k, l ≥ 0 we have

∀rk.⊥ � ∀rk.∀rl .∃r.�

and since t < n we obtain

D′ � F = C ′ � ∀rt .⊥ � C ′ � ∀rn.∃r.� = E

7We have D′ ≡ C′ � D′, because D ≡ D′ is a downward refinement of C ≡ C′, i.e. D′ � C′. C′ � D′ �
C′ � D′

j
holds because of D′ � D′

j
.

214 Mach Learn (2010) 78: 203–250

It remains to show that D′ �≡ E. We do this by proving F �≡ E using the interpretation
I with rI = {(a, a)}.

We have aI ∈ (∀rz.∃r.�)I for all z ≥ 0. Hence, we have aI ∈ C ′I and also aI ∈ EI .
We have aI /∈ F I , because aI /∈ (∀rt .⊥)I —note that ∀rt .⊥ states that objects reach-

able via a path of length t − 1 must not have a successor.
Hence, aI ∈ EI and aI /∈ F I , which proves F �≡ E. �

Please note that although we looked at the special case of NR = {r} and NC = ∅ in the
proof, similar arguments could be used for arbitrary NR and NC .

In the sequel, we analyse desired properties of L refinement operators: completeness,
properness, finiteness, and non-redundancy. As we have just shown that minimality does not
play a central role when investigating expressive DLs, we omit it from further investigations.
We show several positive and negative results, which together yield a full analysis of these
properties.

Proposition 3 (Complete and finite refinement operators) Let L be a description language
which allows conjunction. Then there exists a complete and finite L refinement operator.

Proof Consider the downward refinement operator ρ defined by

ρ(C) = {C � �} ∪ {D | |D| ≤ (number of � occurrences in C) and D � C}
where |D| stands for the number of symbols in D. The operator can do one of two things:

– add a � symbol
– generate the set of all concepts up to a certain length, which are subsumed by C

The operator is finite, because the set of all concepts up to a given length is finite (and
the singleton set {C � �} is finite).

The operator is complete, because given a concept C we can reach an arbitrary concept
D with D � C. This is obvious, because we only need to add �-symbols until there are |D|
occurrences of �. Within the next step we can then be sure to reach D. �

For upward refinement operators we can use an analogous operator φ, which is also
complete and finite:

φ(C) = {C � �} ∪ {D | |D| ≤ (number of � occurrences in C) and C � D}

Remark 1 It has been claimed in Badea and Nienhuys-Cheng (2000) that complete and finite
A L E R refinement operators do not exist. However, this is refuted by Proposition 3.

Of course, it is obvious that the operator used to prove Proposition 3 is not useful in
practice, since it merely generates concepts without paying attention to efficiency. However,
here we are interested in theoretical limits of refinement operators, so it is a valid method
to consider impractical operators. It is indeed difficult to design a good complete and finite
refinement operator. The reason is that finiteness can only be achieved by using non-proper
refinement steps (for our operator this was done by adding � symbols). We will now prove
this, i.e. show that it is impossible to define a complete, finite, and proper refinement op-
erator. Such operators are known as ideal and their non-existence indicates that learning
concepts in sufficiently expressive description logics is hard.

Mach Learn (2010) 78: 203–250 215

Lemma 1 Let C = ¬∃rn.�
 ∃rn+1.�. There is no concept D with C � D � � and role
depth smaller n in A L C or A L C Q.

Proof Note that C is not equivalent to �. For the interpretation I with rI = {(ai, ai+1) | 0 ≤
i < n}, illustrated by a0

rI−→ a1
rI−→ · · · rI−→ an, we have aI

0 /∈ CI .
By contradiction, we assume that such a concept D exists.
We can view an interpretation I as a directed graph with respect to r in a straightforward

way: The set of nodes is {bI | b ∈ NI } and the edges are {(b, c) | (b, c) ∈ rI }. We define
lpI,a as the length of the longest paths in the graph of I starting from aI (a ∈ NI). If such a
path is infinite, we set lpI,a = ∞.

Let I be an arbitrary interpretation and a an arbitrary object. If lpI,a > n, we have
aI ∈ CI because of aI ∈ (∃rn+1.�)I and ∃rn+1.� � C. If lpI,a < n, we have aI ∈ CI ,
because of aI ∈ (¬∃rn.�)I and ¬∃rn.� � C. If lpI,a = n, we have aI /∈ CI because of
aI /∈ (∃rn+1.�)I and aI /∈ (¬∃rn.�)I . So we have aI ∈ CI iff lpI,a �= n.

Due to D �≡ �, we know that ¬D is satisfiable. A L C , A L C Q, and other description logics
have the tree model property, i.e. any satisfiable concept has a model, where the graph we
defined is tree shaped (Baader et al. 2007). In particular, this means that if there is a path in
the model graph between two arbitrary objects, then this path is unique. So without loss of
generality, we can assume that the graphs of the considered models are tree shaped. Let I
be a tree shaped model of ¬D and a be an object such that aI ∈ (¬D)I . Note that because
of C � D, we know aI /∈ CI .

We know that lpI,a = n in I , otherwise aI ∈ CI as we have shown above. Let aI =
a0

rI−→ a1
rI−→ · · · rI−→ an be one of the longest paths in the graph of I starting in a. We

create a new interpretation I ′ from I by adding a new object am+1 and changing rI to
rI′ = rI ∪ {(am, am+1)}.

The following concept constructors involving roles are included in the mentioned lan-
guages: ∀r , ∃r , ≤ m r , ≥ m r . Semantically, all of those refer to role fillers (see Table 1),
i.e. to neighbours in the interpretation graph defined above. Since the role depth of D is
smaller than n and there is exactly one path in the graph of I ′ from aI to am+1, we can
deduce aI′ ∈ (¬D)I′

from aI ∈ (¬D)I (the addition of am+1 does not influence whether
aI′ ∈ (¬D)I′

or not). However, I ′ has lpI,a = n+1, because we added am+1. Thus, aI ∈ CI

as shown above and hence aI ∈ DI , which contradicts aI ∈ (¬D)I . �

Lemma 2 Let

C = ¬∃rn.�
 ∃rn+1.�

 ≥ 2r.�
 ∃r. ≥ 2r.�
 · · ·
 ∃rn−1. ≥ 2r.�

 ∃r−1.�
 ∃r. ≥ 2r−1.�
 ∃r2. ≥ 2r−1.�
 · · ·
 ∃rn. ≥ 2r−1.�

There is no concept D with C � D � � and role depth smaller n in S H O I N or S RO I Q.

Proof We use the same notions as in Lemma 1. C is not equivalent to � by the same example
as in the previous lemma. Again, we assume by contradiction that such a concept D exists.
As before, there are a and I with aI ∈ (¬D)I (and thus aI /∈ CI). The difference is that
S RO I Q and S H O I N do not have the tree model property.

Since ¬∃rn.�
 ∃rn+1.� � C, we know that lpI,a = n by the observations made in

Lemma 1. Let aI = a0
rI−→ a1

rI−→ · · · rI−→ an be the longest path in the graph of I starting in
a. Using aI /∈ CI , we can make some observations concerning the graph of I :

216 Mach Learn (2010) 78: 203–250

– a0 has no incoming edge (due to ∃r−1.�)
– a1 to an have exactly one incoming edge (due to ∃ri . ≥ 2 r−1.� for 1 ≤ i ≤ n)
– an does not have an outgoing edge (due to lpI,a = n)
– a0 to an−1 have exactly one outgoing edge (due to ∃ri . ≥ 2 r.� for 0 ≤ i ≤ n − 1)

This means that there is a unique longest path, which forms a connected component of
the interpretation graph. The concept constructors involving roles in S H O I N and S RO I Q
are ∀r , ∀r−1, ∃r , ∃r−1, ≤ m r , ≤ m r−1, ≥ m r , ≥ m r−1, ∃r.Self, all of which refer to direct
neighbours (via incoming and outgoing edges) of an object in the graph.

Again, we can construct an interpretation I ′ by adding a new object am+1 to the longest
path. Since the role depth of D is smaller than n, we can deduce aI′ ∈ (¬D)I′

from aI ∈
(¬D)I . However, I ′ has lpI,a = n + 1, because we added am+1. Thus, aI ∈ CI and aI ∈
DI , which contradicts aI ∈ (¬D)I . �

Proposition 4 (Ideal refinement operators) There does not exist any ideal A L C , A L C Q,
S H O I N , or S RO I Q downward refinement operator.

Proof By contradiction, we assume that there exists an ideal downward refinement operator
ρ. We further assume that there is a role r ∈ NR . Let ρ(�) = T = {C1, . . . ,Cn} be the set of
refinements of the � concept. Due to finiteness of ρ, T has to be finite. Let n be a natural
number larger than the maximum of the role depths of concepts in T . Due to Lemmas 1 and
2, we know that there does not exist a more general concept than C (where C is as defined
in the corresponding lemma depending on the language we consider), which is not equal to
�, with a role depth smaller than n. We have also shown that C �≡ �.

Hence C1, . . . ,Cn do not subsume C (the properness of ρ implies that C1, . . . ,Cn are not
equivalent to �), so C cannot be reached from any of these concepts by applying ρ. Thus,
C cannot be reached from � and ρ is incomplete. �

We limited the proof to a set of interesting languages. However, it generalizes to other
languages with only minor adaptations.

Proposition 5 (Complete and proper refinement operators) Let L be any description lan-
guage. Then there exists a complete and proper L refinement operator.

Proof To prove this, we can use ρ(C) = {D | D � C} as downward refinement operator,
which is obviously complete and proper. For upward refinement we can analogously con-
sider ρ(C) = {D | C � D}. �

We have shown that the combination of completeness and properness is possible. Propo-
sitions 3, 4, and 5 state that for complete refinement operators, which are usually desirable,
one has to sacrifice properness or finiteness. We will now look at non-redundancy.

Proposition 6 (Complete, non-redundant refinement operators) Let L be a description lan-
guage which contains AL. Then there exists a complete and non-redundant L refinement
operator.

Proof We prove the result by showing that complete operators can be transformed to com-
plete and non-redundant operators. Note that in the following, we will use the role r to create
concepts with a certain depth. If NR does not contain any role, the desired effect can also be

Mach Learn (2010) 78: 203–250 217

achieved by using conjunctions or disjunctions of � and ⊥, but this would render the proof
less readable.

We will use the fact that the set of concepts in L is countably infinite. The countability
already follows from the fact that there is just a finite number of concepts with a given
length. Hence, we can divide the set of all concepts in finite subsets, where each subset
contains all concepts of the same length. We can then start enumerating concepts starting
with the subset of concepts of length 1, then length 2 etc. Thus, there is a bijective function
f : L �→ N, which assigns a different number to each concept in L. We denote the inverse
function mapping numbers to concepts by f inv.

We modify a given complete operator ρ defined as ρ(C) = SC , where SC is defined
as a maximal subset of {D | D � C} with D1,D2 ∈ SC ⇒ D1 �� D2. ρ is complete, since
given a concept C all more special concepts up to weak equivalence can be reached in one
refinement step.

We change ρ in the following way: For all concepts C, ρ(C) is modified by changing
any element D ∈ ρ(C) to

D � ∀r.(� � · · · � �
︸ ︷︷ ︸

f (C) times

)

We claim that the resulting operator, which we denote by ρ ′ is complete and non-
redundant.

The completeness of ρ ′ follows from the completeness of ρ, since the construct we have
added does not change the semantics (it is equivalent to �).

To prove non-redundancy, we will first define a refinement operator ρ inv, which maps
conjunctions, where the last element is of the form ∀r.(� � · · · � �), to a single concept:

ρ inv =

⎧

⎪
⎨

⎪
⎩

{f inv(n)} if C is of the form C � ∀r. (� � · · · � �)
︸ ︷︷ ︸

n times

∅ otherwise

We can see that D ∈ ρ ′(C) implies ρ inv(D) = {C}, so ρ inv allows to invert a refinement
step of ρ ′.

By contradiction, we assume ρ ′ is redundant. Then, there needs to be a concept C and
concepts D1, D2 with D1 � D2, such that there is a refinement chain from C to D1 and a
different refinement chain from C to D2. Since we know that D1 and D2 are refinements
of ρ ′, they have to be conjunctions, where the last element is of the form ∀r.(� � · · · � �)

and equal in D1 and D2. This means the previous element in both refinement chains is
ρ inv(D1) = ρ inv(D2) and therefore all elements except the last ones (D1, D2) in both chains
are uniquely determined. Since for all C, ρ(C) does not contain weakly equal concepts, we
get that D1 and D2 have to be equal. Therefore, both refinement chains are equal, which is
a contradiction.

We can establish the same result for upward refinement by using ρ with ρ(C) = SC ,
where SC is defined as a maximal subset of {D | C � D} with D1,D2 ∈ SC ⇒ D1 �� D2 as
starting point. The construction of ρ ′ can be done analogously. �

Proposition 7 (Complete, non-redundant refinement operators II) Let L be a description
language which contains AL. Let ρ be an arbitrary L downward refinement operator, where
for all concepts C, ρ∗(C) contains only finitely many different concepts equivalent to ⊥.
Then ρ is not complete and non-redundant.

218 Mach Learn (2010) 78: 203–250

The restriction mentioned in Proposition 7 is made in order to disallow purely theoretical
constructions, as in the proof of Proposition 6, which use syntactic concept extensions that
do not alter the semantics of a concept, to ensure non-redundancy. We prove the proposition
using a milder, but more technical, restriction.

Proof Let ρ be a complete downward refinement operator, Cup, Cdown be concepts with
Cdown � Cup, {C | C ∈ ρ∗(Cup),C ≡ Cdown} be finite, and S be an infinite set of concepts,
which are pairwise incomparable, strictly subsumed by Cup and strictly subsuming Cdown.
For instance, we could have Cup = �, Cdown = ⊥ and S = {∀r.A,∀r.∀r.A, . . . }.

Due to the completeness of ρ, there must be a refinement chain from each concept in S

to a concept, which is equivalent to Cdown. Since there are infinitely many concepts in S, but
only finitely many different syntactic representations of Cdown are reached, there have to be
concepts C ′

down, C1, and C2 with C ′
down ≡ Cdown and C1,C2 ∈ S, such that C ′

down ∈ ρ∗(C1)

and C ′
down ∈ ρ∗(C2).

Because of C1 �� C2 and C2 �� C1, we know C1 /∈ ρ∗(C2) and C2 /∈ ρ∗(C1). Hence, there
exists a refinement chain from Cup to Cdown through C1 and a refinement chain from Cup to
Cdown, which goes through C2 and not through C1. Thus, ρ is redundant. �

Again, a dual result and proof for upward refinement operators can be obtained.
As a consequence of the result, completeness and non-redundancy cannot be combined

under reasonable assumptions. Usually, it is desirable to have (weakly) complete operators,
but in order to have a full analysis of L refinement operators we will now also investigate
incomplete operators.

Proposition 8 (Incomplete refinement operators) Let L be any description language. Then
there exists a finite, proper, and non-redundant L refinement operator.

Proof The following operator has the desired properties:

ρ(C) =
{

{⊥} if C �≡ ⊥
∅ otherwise

It is obviously finite, because it maps concepts to sets of cardinality at most 1. It is non-
redundant, because it only reaches the bottom concept and there exists no refinement chain
of length greater than 2. It is proper, because all concepts, which are not equivalent to the
bottom concept strictly subsume the bottom concept.

The corresponding upward operator is:

φ(C) =
{

{�} if C �≡ �
∅ otherwise

The arguments for its finiteness, properness, and non-redundancy are analogous to the down-
ward case. �

We can now summarise the results we have obtained so far.

Theorem 1 (Properties of L refinement operators (I)) Considering the properties complete-
ness, properness, finiteness, and non-redundancy, the following are maximal sets of proper-
ties (in the sense that no other of the mentioned properties can be added) of L refinement
operators (L ∈ {A L C, A L C Q, S H O I N , S RO I Q}):

Mach Learn (2010) 78: 203–250 219

1. {complete,finite}
2. {complete,proper}
3. {non-redundant,finite,proper}
All results hold under the mild hypothesis stated in Proposition 7.

Proof The theorem is a consequence of the previous results. We have seen that downward
and upward operators allow the same combinations of properties, so it is not necessary to
distinguish between them. We make a case distinction:

1. The operator is complete. In this case we cannot add non-redundancy (Proposition 7).
Finiteness (Proposition 3) and properness (Proposition 5) can be added, but not both
(Proposition 4).

2. The operator is not complete. In this case we can add all other properties (Proposi-
tion 8). �

A property which we have not yet considered in detail, is weak completeness. Often weak
completeness is sufficient, because it allows to search for a good concept starting from �
downwards (top-down approach) or from ⊥ upwards (bottom-up approach).

We will see that we get different results when considering weak completeness instead of
completeness. As a first observation, we see that the arguments in the proof of Proposition 7,
which have shown that an L refinement operator cannot be complete and non-redundant, do
no longer apply if we consider weak completeness and non-redundancy.

Proposition 9 (Weakly complete, non-redundant, and proper operators) Let L be any de-
scription language. Then there exists a weakly complete, non-redundant, and proper L re-
finement operator.

Proof The following operator is weakly complete, non-redundant, and proper:
Let S be a maximal subset of {C | C �≡ �} with C1,C2 ∈ S ⇒ C1 �� C2.

ρ(C) =
{

S if C = �
∅ otherwise

Such a set S as used in the definition of the operator indeed exists. It contains one rep-
resentative of each equivalence class with respect to weak equality of the set {C | C �≡ �}.
The operator is proper, since it contains only mappings of the top concept to concepts, which
are not equivalent to top. It is non-redundant, because there is no refinement chain of length
greater than 1 and all concepts we reach are pairwise not weakly equal. It is weakly com-
plete, because for every concept, which is not equivalent to �, we can reach an equivalent
concept from � by ρ.

The corresponding upward refinement operator is as follows: Let S be a maximal subset
of {C | C �≡ ⊥} with C1,C2 ∈ S ⇒ C1 �� C2.

ρ(C) =
{

S if C = ⊥
∅ otherwise �

The operator just given is obviously not useful in practice, but it suffices for the proof of
the proposition.

220 Mach Learn (2010) 78: 203–250

Proposition 10 (Weakly complete, non-redundant, and finite operators) Let L be a descrip-
tion language which allows to express conjunction. Then there exists a weakly complete,
non-redundant, and finite L refinement operator.

Proof The following operator is weakly complete, non-redundant, and finite:
For an arbitrary concept C, let SC be a maximal subset of {D | D � � and |D| =

number of � occurrences in C} with C1,C2 ∈ SC =⇒ C1 �� C2.

ρ(C) =

⎧

⎪
⎨

⎪
⎩

{� � · · · � �
︸ ︷︷ ︸

n+1 times �
} ∪ SC if C = � � · · · � �

︸ ︷︷ ︸

n times �
∅ otherwise

The operator is finite, because SC is finite for all concepts C (the number of concepts with
a fixed length is finite). It is weakly complete, because every concept C with C � � can be
reached from �. This is done by accumulating � symbols until we have |C| such symbols
and then generating C. The operator is furthermore non-redundant, because obviously for
all concepts there is exactly one path for reaching the concept via iterated applications of ρ

to �. �

The corresponding upward operator is analogous. It works by accumulating ⊥ symbols
instead of � symbols, and generates concepts which are strictly more general than ⊥.

Corollary 1 (Weakly complete, proper, and finite operators) Let L be any of the description
languages A L C , A L C Q, S H O I N , or S RO I Q. Then there exists no weakly complete,
finite, and proper L refinement operator.

Proof To show this we can use the proof of Proposition 4. There we have shown that in a
finite and proper L refinement operator there exists a concept, which cannot be reached from
the � concept. This means that such an operator cannot be weakly complete. �

The result of the previous observations is that, when requiring only weak completeness
instead of completeness, non-redundant operators are possible. The following theorem is the
result of the full analysis of the desired properties of L refinement operators.

Theorem 2 (Properties of refinement operators (II)) Considering the properties complete-
ness, weak completeness, properness, finiteness, and non-redundancy the following are max-
imal sets of properties (in the sense that no other of the mentioned properties can be added)
of L refinement operators (L ∈ {A L C, A L C Q, S H O I N , S RO I Q}):
1. {weakly complete, complete,finite}
2. {weakly complete, complete,proper}
3. {weakly complete,non-redundant,finite}
4. {weakly complete,non-redundant,proper}
5. {non-redundant,finite,proper}
All results hold under the mild hypothesis stated in Proposition 7.

Proof We can do a similar case distinction as in Theorem 1. The first case (complete opera-
tor) is analogous except that obviously a complete operator is also weakly complete. For the
second case (operator is not complete) we can make a simple case distinction again:

Mach Learn (2010) 78: 203–250 221

1. The operator is weakly complete. Propositions 9 and 10 have shown that weakly com-
plete operators can be non-redundant and proper as well as non-redundant and finite.
Proposition 1 shows that finiteness and properness cannot be combined, so these sets of
properties are maximal.

2. The operator is not weakly complete. In this case we can add all remaining properties
(Proposition 8), i.e. non-redundancy, finiteness, and properness. �

Note that the restriction of Theorems 1 and 2 to the languages A L C , A L C Q, S H O I N ,
and S RO I Q is caused by Proposition 4. The result carries over to other DLs, but might
require adapting the proofs. We have provided the formal proofs for these four languages,
because they are considered to be fundamental or are the DLs underlying OWL (S H O I N
and S RO I Q).

Remark 2 (Subsumption with respect to a TBox) Instead of using subsumption (�) as an
ordering over concepts, we can also use subsumption with respect to a TBox T (�T). The-
orem 2 will also hold in this case. In all negative results, i.e Propositions 4, 7, Corollary 1,
we can consider subsumption with respect to an empty TBox as example. In all positive
results, i.e. Propositions 3, 5, 8, 9, 10, we can rewrite the example operators by replacing �
with �T .

Remark 3 (Weak equality) In the definition of redundancy, we used weak equality. Theo-
rem 2 also holds if we consider syntactic equality. Proposition 6 can be simplified. Proposi-
tion 7 does not need to be changed. In Propositions 9 and 10 it is straightforward to modify
the refinement operators used as positive examples.

5 Designing a refinement operator

We now set out to define a concrete refinement operator using Theorem 2 as starting point,
which provides five possible maximal property combinations a refinement operator for de-
scription logics can have. We now need to decide which of these five combinations appears
to be the one which is most promising in practice. We have to bear in mind that the strongest
theoretically possible property combination is not necessarily the most suitable for imple-
mentation, as the absence of some theoretical properties is more severe than the absence of
others. Indeed, it appears reasonable that it is better not to enforce some properties which
would be computationally expensive, if at the same time we can algorithmically limit the
negative impact this absence may have. We have a look at each of the properties in turn.

Concerning (weak) completeness, we consider this a very important property to have,
since an incomplete operator may fail to converge at all and thus may not return a solu-
tion even if one exists. The fifth property combination from Theorem 2 thus appears to be
unfavorable.

Concerning finiteness, we will see later in Sect. 6, that having an infinite operator is
less critical from a practical perspective, in the sense that this issue can be handled well
algorithmically. So it is preferable not to impose finiteness, which allows us to develop
a proper operator. This leaves us with the second and fourth property combinations from
Theorem 2 to choose from.

As for non-redundancy, this appears to be very difficult to achieve for more complex
operators than the one in Proposition 9, which is not useful in practice as it does not structure
the search space at all. Consider, for example, the concept A1 � A2 which can be reached

222 Mach Learn (2010) 78: 203–250

from � via the chain � � A1 � A1 � A2, For non-redundancy, the operator would need
to make sure that this concept cannot be reached via the chain � � A2 � A2 � A1. While
there are methods to handle this in such simple cases via normal forms, it becomes more
complex for arbitrarily deeply nested structures, where even applying the same replacement
leads to redundancy. In our example A1 is replaced by A1 � A2 twice in different order in
each chain:

� � ∀r1.A1
 ∀r2.A1 � ∀r1.A1
 ∀r2.(A1 � A2) � ∀r1.(A1 � A2)
 ∀r2.(A1 � A2)

� � ∀r1.A1
 ∀r2.A1 � ∀r1.(A1 � A2)
 ∀r2.A1 � ∀r1.(A1 � A2)
 ∀r2.(A1 � A2)

To avoid this, an operator would need to regulate when A1 can be replaced by A1 � A2,
which appears not to be achievable by syntactic replacement rules. At the same time, we
will see in Sect. 6.1 that we can use a computationally inexpensive redundancy check which
our experiments have shown to be sufficiently useful in practice.

The arguments just given leave us with the second property combination from Theorem 2.
And indeed, reasonable weakly complete operators are often also automatically complete.
Consider, for example, the situation where a weakly complete operator ρ allows to refine
a concept C to C � D with some D ∈ ρ(�). Then it turns out that this operator is already
complete (see proof of Proposition 13). This observation points us again to the second prop-
erty combination from Theorem 2, which we have already found out to be the most feasible
one for developing a refinement operator in our setting.

Summarising, we choose to develop a weakly complete, complete, and proper refinement
operator, and will show that we can handle issues arising from infinity and redundancy well
algorithmically.

We proceed as follows: First, we define a refinement operator and prove its completeness.
We then extend it to a complete and proper operator. Section 6 will show how we handle the
problems of redundancy and infinity in the learning algorithm.

5.1 Definition of the operator

We now define the operator and prove that it is indeed a downward refinement operator. For
each A ∈ NC , we define:

sh↓(A) = {A′ ∈ NC | A′ � A, there is no A′′ ∈ NC with A′ �T A′′ �T A}
sh↓(�) is defined analogously for � instead of A. sh↑(A) is defined analogously for going
upward in the subsumption hierarchy. (sh stands for subsumption hierarchy.)

We do the same for roles, i.e.:

sh↓(r) = {r ′ | r ′ ∈ NR, r ′ � r, there is no r ′′ ∈ NR with r ′ �T r ′′ �T r}
domain(r) denotes the domain of a role r and range(r) the range of a role r . A range

axiom links a role to a concept. It asserts that the role fillers must be instances of a given
concept. Analogously, domain axioms restrict the first argument of role assertions to a con-
cept.

We define:

ad(r) = an A with A ∈ {�} ∪ NC and domain(r) � A

and there does not exist an A′ with domain(r) � A′ � A

Mach Learn (2010) 78: 203–250 223

ar(r) is defined analogously using range instead of domain. ad stands for atomic domain
and ar stands for atomic range. We assign exactly one atomic concept as domain/range of a
role. Since using atomic concepts as domain and range is very common, domain and ad as
well as range and ar will usually coincide.

The set appB of applicable properties with respect to an atomic concept B is defined as:

appB = {r|r ∈ NR,ad(r) = A,A � B �≡ ⊥}
To give an example, for the concept Person, we have that the role hasChild
with ad(hasChild) = Person is applicable, whereas the role hasAtom with
ad(hasAtom) = ChemicalCompound is not applicable (assuming Person and
ChemicalCompound are disjoint). We will use this to restrict the search space by rul-
ing out unsatisfiable concepts.

The set of most general applicable roles mgrB with respect to a concept B is defined as:

mgrB = {r | r ∈ appB, there is no r ′ with r � r ′, r ′ ∈ appB}
MB with B ∈ {�} ∪ NC is defined as the union of the following sets:

– {A | A ∈ NC,A � B �≡ ⊥,A � B �≡ B, there is no A′ ∈ NC with A � A′}
– {¬A | A ∈ NC,¬A � B �≡ ⊥,¬A � B �≡ B, there is no A′ ∈ NC with A′ � A}
– {∃r.� | r ∈ mgrB}
– {∀r.� | r ∈ mgrB}
MB is the set of refinements of the � concept excluding the use of disjunction (
) and
restricted to those which are not disjoint with B .

The operator ρ is defined in Fig. 1. Note that ρ delegates to an operator ρB with B = �
initially, where B is set to the atomic range of roles contained in the input concept when the
operator recursively traverses the structure of the concept. The index B in the operator (and
the set M above) is used to rule out concepts which are disjoint with B .

We use the following notions for different kinds of refinement steps in ρ:

1.
��: add an element conjunctively (cases 3, 4, 5, 6, 8 in the definition of ρB in Fig. 1)

2.
��: refine the top concept (case 2 in the definition of ρB in Fig. 1)

3.
A�: refine an atomic concept (case 3 in the definition of ρB in Fig. 1)

4.
¬A�: refine a negated atomic concept (case 4 in the definition of ρB in Fig. 1)

5.
r�: refine a role (cases 5, 6 in the definition of ρB in Fig. 1)

If a concept is refined to some other concept using ρ, exactly one of these five steps is
performed. We assume that conjunctions are never nested in conjunctions and disjunctions
are never nested in disjunctions, e.g. A1 � (A2 � ∃r.�) is written as A1 � A2 � ∃r.� instead.

Proposition 11 ρ is an A L C downward refinement operator.

Proof We have to show that D ∈ ρ(C) implies D �T C. We show D � C, i.e. consider an
empty TBox. Since D � C implies D �T C by the definition of subsumption, the desired
result follows.

We prove by structural induction of A L C concepts in negation normal form. Obviously,
in all cases where D = C � C ′, i.e. C is extended conjunctively by a concept C ′ we have
D � C, so these cases are ignored.

– C = ⊥: D ∈ ρ(C) is impossible, because ρ(⊥) = ∅.

224 Mach Learn (2010) 78: 203–250

ρ(C) =
{

{⊥} ∪ ρ�(C) if C = �
ρ�(C) otherwise

ρB(C) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

∅ if C = ⊥
{C1
 · · ·
 Cn | Ci ∈ MB (1 ≤ i ≤ n)} if C = �
{A′ | A′ ∈ sh↓(A)} if C = A (A ∈ NC)

∪{A � D | D ∈ ρB(�)}
{¬A′ | A′ ∈ sh↑(A)} if C = ¬A (A ∈ NC)

∪{¬A � D | D ∈ ρB(�)}
{∃r.E | A = ar(r),E ∈ ρA(D)} if C = ∃r.D

∪{∃r.D � E | E ∈ ρB(�)}
∪ {∃s.D | s ∈ sh↓(r)}

{∀r.E | A = ar(r),E ∈ ρA(D)} if C = ∀r.D

∪{∀r.D � E | E ∈ ρB(�)}
∪ {∀r.⊥ |

D = A ∈ NC and sh↓(A) = ∅}
∪{∀s.D | s ∈ sh↓(r)}

{C1 � · · · � Ci−1 � D � Ci+1 � · · · � Cn | if C = C1 � · · · � Cn

D ∈ ρB(Ci),1 ≤ i ≤ n} (n ≥ 2)

{C1
 · · ·
 Ci−1
 D
 Ci+1
 · · ·
 Cn | if C = C1
 · · ·
 Cn

D ∈ ρB(Ci),1 ≤ i ≤ n} (n ≥ 2)

∪{(C1
 · · ·
 Cn) � D |
D ∈ ρB(�)}

Fig. 1 Definition of the refinement operator ρ

– C = �: D � C is trivially true.
– C = A (A ∈ NC): D ∈ ρ(C) implies that D is also an atomic concept and D �T C. Thus

D � C.
– C = ¬A: D ∈ ρ(C) implies that D is of the form ¬A′ with A �T A′. A �T A′ implies

¬A′ �T ¬A by the semantics of negation. Thus, D � C.
– C = ∃r.C ′: D ∈ ρ(C) implies that D is of the form ∃r.D′ or ∃s.C ′. For the former case,

we have D′ � C ′ by induction. (For existential restrictions ∃r.E � ∃r.E′ if E � E′ holds
in general.) For the latter case, we obviously have ∃s.C ′ � ∃r.C ′, because s � r .

– C = ∀r.C ′: This case is analogous to the previous one. Here we use the results ∀r.E �
∀r.E′ (E �T E′) and ∀s.C ′ � ∀r.C ′ (s � r).

– C = C1 �· · ·�Cn: In this case one element of the conjunction is refined, so D � C follows
by induction.

– C = C1
· · ·
Cn: In this case one element of the disjunction is refined, so D � C follows
by induction. �

A distinguishing feature of ρ compared to other refinement operators (Badea and
Nienhuys-Cheng 2000; Esposito et al. 2004) for learning concepts in DLs is that it makes
use of the subsumption and role hierarchy, e.g. for concepts A2 � A1, we reach A2 via
� � A1 � A2. This way, we can stop the search if A1 is already too weak and, thus, make

Mach Learn (2010) 78: 203–250 225

better use of TBox knowledge. The operator also uses domain and range of roles to re-
duce the search space. This is similar to mode declarations in Aleph, Progol, and other ILP
programs. However, in DL knowledge bases and OWL ontologies, domain and range are
usually explicitly given, so there is no need to define them manually. Overall, the operator
supports more structures than those in Badea and Nienhuys-Cheng (2000), Esposito et al.
(2004) and tries to intelligently incorporate background knowledge. Section 5.4 describes
further extensions of the operator, which increase its expressivity such that it can handle
most OWL constructs.

Note that ρ is infinite. The reason is that the set MB is infinite and, furthermore, we put
no bound on the number of elements in the disjunctions, which are refinements of the top
concept. Another point is that the operator requires reasoner requests for calculating MB .
However, the number of requests is fixed, so—assuming the results of those requests are
cached—the reasoner is only needed in an initial phase, i.e. during the first calls to the
refinement operator. This means that, apart from this initial phase, the refinement operator
performs only syntactic rewriting rules.

5.2 Completeness of the operator

To investigate the completeness of the operator, we define a set S↓ of A L C concepts in
negation normal form as follows:

Definition 12 (S↓) We define S↓ = S ′
↓ ∪ {⊥}, where S ′

↓ is defined as follows:

1. If A ∈ NC then A ∈ S ′
↓ and ¬A ∈ S ′

↓.
2. If r ∈ NR then ∀r.⊥ ∈ S ′

↓, ∀r.� ∈ S ′
↓, ∃r.� ∈ S ′

↓.
3. If C,C1, . . . ,Cm are in S ′

↓ then the following concepts are also in S ′
↓:

– ∃r.C if C � ar(r) �≡ ⊥
– ∀r.C if C � ar(r) �≡ ⊥
– C1 � · · · � Cm

– C1
 · · ·
 Cm if for all i (1 ≤ i ≤ m) Ci is not of the form D1 � · · · � Dn where all Dj

(1 ≤ j ≤ n) are of the form E1
 · · ·
 Ep .

In S↓, we do not use the � and ⊥ symbols directly and we make a restriction on disjunc-
tions, i.e. we do not allow that elements of a disjunction are conjunctions, which in turn only
consist of disjunctions. It can be shown that for all A L C concepts there exists an equivalent
concept in S↓.

Lemma 3 (S↓) For all A L C concepts C there exists a concept D ∈ S↓ such that D ≡ C.

Proof We assume C is in negation normal form. The restriction C � ar(r) �≡ ⊥ for concepts
of the form ∃r.C and ∀r.C does not exclude any relevant concepts, because we have ∃r.C ≡
∃r.(C � ar(r)) and ∀r.C ≡ ∀r.(C � ar(r)) in general. Replacing C � ar(r) by ⊥ yields
∃r.⊥ ≡ ⊥ and ∀r.⊥. Both, ⊥ and ∀r.⊥, are already in S↓.

The proof consists of three steps: First, we will eliminate � symbols unless they occur in
existential restrictions (because in Definition 12 ∃r.� is used in the induction base opposed
to using � directly). After that, we do something similar with the bottom symbol. In a third
step we will eliminate disjunctions violating the criterion in Definition 12. After these three
steps, we obtain a concept, which is in S↓.

226 Mach Learn (2010) 78: 203–250

We eliminate �-symbols by applying the following rewrite rules:

C1 � · · · � Ci−1 � � � Ci+1 � · · · � Cn → C1 � · · · � Ci−1 � Ci+1 � · · · � Cn

C1
 · · ·
 Ci−1
 �
 Ci+1
 · · ·
 Cn → �
∀r.� → �

Obviously, these �-elimination steps preserve equivalence. We exhaustively apply these
steps (since every step reduces the length of the concept there can be only finitely many
such steps) to get a concept C ′. Note that C ′ �= � (otherwise C ′ ≡ C ≡ �) and in C ′ the top
concept only appears in existential restrictions, i.e. in the form ∃r.�.

⊥ symbols are eliminated by the following rewrite rules:

C1 � · · · � Ci−1 � ⊥ � Ci+1 � · · · � Cn → ⊥
C1
 · · ·
 Ci−1
 ⊥
 Ci+1
 · · ·
 Cn → C1
 · · ·
 Ci−1
 Ci+1
 · · ·
 Cn

∃r.⊥ → ⊥
These steps also preserve equivalence. After exhaustively applying these steps we either get
the ⊥ symbol itself (which is in S↓) or the ⊥ symbol only appears in universal restrictions,
i.e. in the form ∀r.⊥.

Next we have to eliminate disjunctions, which do not satisfy Definition 12. Say we have
such a disjunction C1
 · · ·
 Cm. Then there is a Ci (1 ≤ i ≤ m), which is a conjunction
consisting only of disjunctions. Without loss of generality we assume i = 1 (the order of
elements in a disjunction is not important), i.e. we can write C1 = D1 � · · · � Dn and D1 =
E1
 · · ·
Ep . This means we can apply the following equivalence preserving rewriting rule:

((E1
 · · ·
 Ep) � D2 � · · · � Dn)
 C2
 · · ·
 Cm

→ (E1 � D2 � · · · � Dn)
 · · ·
 (Ep � D2 � · · · � Dn)
 C2 · · ·
 Cm

Note that Ei (1 ≤ i ≤ p) cannot be a disjunction. Let C ′
1 be the replacement of C1 after

applying the rewriting rule. Obviously, C ′
1 is no more a disjunction where an element is a

conjunction of disjunctions (because all Ei are not disjunctions). If we apply this rule to all
applicable Ci (1 ≤ i ≤ m), then we obtain a concept C ′′ equivalent to C1
 · · ·
 Cm, which
is in S↓.

Hence, we have shown that we can construct a concept C ′′ ≡ C ′ ≡ C with C ′′ ∈ S↓,
which completes the proof. �

Lemma 4 For all concepts B with B ∈ {�} ∪ NC , all A L C concepts C ∈ S ′
↓ with C � B ,

which satisfy the following restriction, can be reached from � by ρB :

– C is of the form C1
 · · ·
 Cm and for all i (1 ≤ i ≤ m) Ci � B �≡ ⊥
– C is not of the form C1
 · · ·
 Cm and C � B �≡ ⊥

Proof We prove by induction over the structure of concepts in S ′
↓. Parts of the rather in-

volved proof are only sketched.

– Induction Base: An atomic concept A can be reached from � by a refinement chain of
the following form:

� �� A1
A� · · · A� An

A� A′

Mach Learn (2010) 78: 203–250 227

The operator descends the subsumption hierarchy. Since A′ is more special than A,
we can always reach it (unless A and A′ are disjoint, which is excluded by the induction
hypothesis). If B is an atomic concept, then the definition of MB ensures that A1 is a
concept, which is subsumed by B . Since there are only finitely many atomic concepts,
A will be reached in a finite number of steps. Negated atomic concepts can be handled
analogously.

∀r.⊥ can be reached by descending the subsumption and role hierarchy:

� �� ∀s.� r� · · · r� ∀r.� � ∀r.A1 � · · · � ∀r.An � ∀r.⊥
To reach ∃r.�, the following chain can be used:

� �� ∃s.� r� · · · r� ∃r.�
∀r.� can be handled analogously.

– Induction Step:

– ∃r.C: We have � �� ∃s.� r� · · · r� ∃r.� and by induction we can reach C with C�B �≡
⊥ from � by ρA where A = ar(r).

– ∀r.C: Analogously to ∃r.C.
– C1 � · · · � Cm: We know C1 � · · · � Cm � A �≡ ⊥, which implies Ci � A �≡ ⊥ for all i

(1 ≤ i ≤ m). This means we know that C1 can be reached from � using ρB by induc-
tion. Thus, we can first refine to C1 and then add all other concepts to the conjunction
stepwise:

� �∗ C1 �∗ C1 � C2 �∗ C1 � · · · � Cm

Note that ρ does not allow to extend a conjunction directly, but instead in all other
concept structures the operator allows to append an element conjunctively, e.g. C1 �C2

can be refined to C1 � (C2 � D) ≡ C1 � C2 � D with D ∈ ρB(�).
– C1
 · · ·
 Cm: We have to show Ci ∈ ρ∗(m) for an m ∈ MB . We do this by a case

distinction on the structure of Ci for an arbitrary i (1 ≤ i ≤ m).
If Ci is an atomic concept A: In this case, we pick an atomic concept A1 (see point 1

in the definition of MB on page 223) and refine it:

A1
A� · · · A� An

A� A

This works exactly as in the case C = A above.
Similarly, if Ci is of the form ¬A, we pick a concept ¬A2 according to point 2 in

the definition of MB and refine to ¬A. The cases ∃r.�, ∀r.�, ∀r.⊥, ∃r.C, ∀r.C can be
handled analogously.

If Ci is of the form D1 �· · ·�Dn, then we know that according to the definition of S ′
↓

there is a Dj which is not a disjunction (and obviously not a conjunction because Ci is a
conjunction). This means that Dj can be handled by any of the previous cases. Having
refined to Dj , we can then add all other Dk (1 ≤ k ≤ n, k �= j) to the conjunction.

Summed up, we can refine to C by picking the right concept in MB for each element
of the disjunction and then refining further:

� � E1
 · · ·
 Em (El ∈ MB,1 ≤ l ≤ m)

�∗ C1
 E2
 · · ·
 Em � C1
 C2
 E3
 · · ·
 Em � · · · � C1
 · · ·
 Cm �

228 Mach Learn (2010) 78: 203–250

This allows us to show weak completeness by proving that every element in S↓ can be
reached from � by ρ.

Proposition 12 (Weak completeness of ρ) ρ is weakly complete.

Proof We have to show that for all concepts C with C �T � a concept E with E ≡ C can
be reached from � by ρ. Due to Lemma 3, it is sufficient to show that all concepts in S↓ can
be reached from � by ρ.

Lemma 4 proves that we can reach all concepts in S ′
↓ from � using ρ�, because using

B = � the restriction made in this lemma, is always satisfied:

– If C is not a disjunction: C � � �≡ ⊥ is always true unless C ≡ ⊥, but ⊥ can be reached
from � using ρ (see below).

– If C is a disjunction: Ci � � �≡ ⊥ is always true unless Ci ≡ ⊥, but in this case C is not
in S↓ (⊥ cannot be an element of a disjunction in S↓).

The only element in S↓, which is not in S ′
↓ is ⊥, which can be reached in one refinement

step from � using ρ. Therefore, all concepts in S↓ can be reached from � using ρ. �

Using this, we can prove completeness.

Proposition 13 (Completeness of ρ) ρ is complete.

Proof Let C and D be arbitrary A L C concepts in S↓ with C �T D. To prove completeness
of ρ, we have to show that there exists a concept E with E ≡ C and E ∈ ρ∗(D). E = D �C

satisfies this property. We obviously have E = D � C ≡ C, because of C �T D. We know
that ρ allows to extend concepts conjunctively by refinements of the top concept. Hence, we
know that D �C can be reached from D for all concepts C by the weak completeness result
for ρ. Thus, ρ is complete. �

5.3 Achieving properness

The operator ρ is not proper, for instance it allows the following refinements:

� � ∃r.�
 ∀r.� � ∃r.�
 ∀r.A1 � ∃r.A2
 ∀r.A1

In this chain, the first three concepts are equivalent. One could try to modify ρ, such that
it becomes proper. However, the last refinement can be reached only via improper refine-
ment steps. This means that modifying the operator is likely to lead to incompleteness as
e.g. ∃r.A2
∀r.A1 would need to be reached from � (Proposition 5 shows that operators can
be complete and proper, but such operators do not structure the search space well). Indeed,
there is no tractable structural subsumption algorithm for A L C (Baader et al. 2007), which
indicates that it is hard to define a proper operator just by syntactic rewriting rules.

So, instead of modifying ρ directly, we allow it to be improper, but consider the closure
ρcl

↓ of ρ (Badea and Nienhuys-Cheng 2000).

Definition 13 (ρcl
↓) ρcl

↓ is defined as follows: D ∈ ρcl
↓ (C) iff there exists a refinement chain

C �ρ C1 �ρ · · · �ρ Cn = D

such that C �≡ D and Ci ≡ C for i ∈ {1, . . . , n − 1}.

Mach Learn (2010) 78: 203–250 229

ρcl
↓ is proper by definition. It also inherits the completeness of ρ, since we do not disallow

any refinement steps, but only check whether they are improper. We already know that ρ

is infinite, so it is clear that we cannot consider all refinements of a concept at a time.
Therefore, in practice we will always compute all refinements of a concept up to a given
length. A flexible algorithm will allow this length limit to be increased if necessary. Using
this technique, an infinite operator can be handled. However, we have to make sure that all
refinements of ρcl

↓ up to a given length are computable in finite time. To show this, we need
the following lemma.

Lemma 5 (ρ does not reduce length) D ∈ ρ(C) implies |D| ≥ |C|. Furthermore, there are
no infinite refinement chains of the form C1 �ρ C2 �ρ · · · with |C1| = |C2| = · · · , i.e. after
a finite number of steps we reach a strictly longer concept.

Proof To show the first statement we need to observe the steps, which are performed by ρ.
As mentioned before, ρ can do one of five things in each refinement step:

1. add an element conjunctively (
��)

2. refine the top concept (
��) not including refinements of the form � � A

3. refine an atomic concept (
A�) including refinements of the form � � A

4. refine a negated atomic concept (
¬A�)

5. refine a role (
r�)

Steps 1 and 2 result in a concept with greater length (for this reason we excluded � � A

from step 2). Step 3 to 5 result in a concept with the same length. This proves the claim
made in the first sentence.

The second claim follows from the fact that there is just a finite number of atomic con-
cepts and roles (NC , NR are finite) and there are only finitely many occurrences of an atomic
concept within any concept. Hence, there are no infinite refinement chains using only steps 3
to 5. Thus, after a finite number of refinements, step 1 or 2 is used, which produces a longer
concept. �

Proposition 14 For all concepts C in negation normal form and all natural numbers n, the
set {D | D ∈ ρcl

↓ (C), |D| ≤ n} can be computed in finite time.

Proof Due to Lemma 5, we know that for all concepts D in the set, there exists an m such
that |D| > |C| with D ∈ ρm(C). Obviously, a concept has only finitely many refinements up
to a fixed length. If we consider all refinement chains of a concept C by ρ up to length n as a
tree, then this tree is finite (there are only finitely many concepts of length ≤ n and any such
concept can be reached by a finite refinement chain). The set {D | D ∈ ρcl

↓ (C), |D| ≤ n} is a
subset of the nodes of this tree. Hence, it can be computed in finite time. �

Due to Proposition 14 we can use ρcl
↓ in a learning algorithm. For computing ρcl

↓ up
to n, it is sufficient to apply the operator until a non-equivalent concept is reached. By a
straightforward analysis of the refinement steps, one can show that in the worst case after
O(|NC | · |NR| · |C|) steps a refinement of greater length will be reached, which bounds the
complexity of computing the closure.

230 Mach Learn (2010) 78: 203–250

5.4 Cardinality restrictions and concrete role support

This section describes an extension of the presented refinement operator with cardinality re-
strictions and support for boolean and double concrete roles (called data properties in OWL).
Syntax and semantics of those constructs can be found in Table 2. They can be used to con-
struct concepts such as Person � height≥1.85 (persons taller than 1.85), Student �
≥3 hasCar.� (students with more than 3 cars), Patient � pregnancyTest = true
(patients with positive pregnancy test). They are described as extensions here, because we
wanted to keep the presentation of the refinement operator brief. Furthermore, the operator
becomes incomplete if those extensions are included. For instance, when enabling double
concrete role support, Person can be refined to Person � height≥x, where x is one
of finitely many values determined by analysing the knowledge base (described below).
Since the set of real numbers is infinite, this means we cannot—and of course do not want
to—reach all concepts of the form Person � height≥x and, thus, the operator is not
complete.

To support the constructs listed in Table 2, the refinement operator was extended as fol-
lows.

Analogously to the already introduced sets NC , NR , and NI in Sect. 2, we introduce the
following notions: The set NCR stands for the set of all concrete roles, the set NBCR stands
for the set of all boolean concrete roles, and the set NDCR stands for the set of all double
concrete roles.

The sets mgb for boolean concrete roles and mgd for double concrete roles are defined
analogously to mgr (see Sect. 5.1).

Table 2 Overview of the syntax
and semantics of concrete role
constructs supported by the
refinement operator. See Table 1
for A L C syntax and semantics.
card{. . . } denotes set cardinality

Syntax Construct

r abstract role

b boolean concrete role

d double concrete role

≤ n r.C max. cardinality restriction

≥ n r.C min. cardinality restriction

b = true exists boolean true value restriction

b = false exists boolean false value restriction

d ≤ v exists double max. restriction (v ∈ R)

d ≥ v exists double min. restriction (v ∈ R)

Syntax Semantics

r rI ⊆ ΔI × ΔI

b bI ⊆ ΔI × {false, true}
d dI ⊆ ΔI × R

≤ n r.C (≤ n r.C)I = {a | card{b | (a, b) ∈ rI and b ∈ CI } ≤ n}
≥ n r.C (≥ n r.C)I = {a | card{b | (a, b) ∈ rI and b ∈ CI } ≥ n}
b = true (b = true)I = {a | (a, true) ∈ bI }
b = false (b = false)I = {a | (a, true) ∈ bI }
d ≤ v (d ≤ v)I = {a | ∃v′.(a, v′) ∈ dI and v′ ≤ v}
d ≥ v (d ≥ v)I = {a | ∃v′.(a, v′) ∈ dI and v′ ≥ v}

Mach Learn (2010) 78: 203–250 231

Let valuesd (d ∈ NDCR) be a list containing the following double numbers in ascending
order: {t | K |= d(a, t)}. valuesd [i] denotes the i-th element in this list. #splitsd ∈ N is a
user defined parameter of the operator for specifying how many refinement steps should be
used to traverse the values of double concrete roles. The list splitsd contains the following
double numbers in ascending order:
{

tj | i = #valuesd

#splitsd + 1
, t = 1

2
(valuesd [�i · j�] + valuesd [�i · j� + 1]) for 1 ≤ j ≤ #splitsd

}

Again, we use splitsd [i] to refer to the i-th element in this list. Clearly, one can employ
different strategies for finding sensible splitting values.

mfr = maxa∈NI
|{b | K |= r(a, b)}| is the maximum number of role fillers of a role r . We

use this as upper limit for cardinality restrictions.
The set MB is extended by the following sets:

– {≤ mfr r.� | r ∈ mgrB}
– {b = true | b ∈ mgbB}
– {b = false | b ∈ mgbB}
– {d ≥ v | d ∈ mgdB, v = splitsd [#splitsd]}
– {d ≤ v | d ∈ mgdB, v = splitsd [1]}

Finally, the refinement operator is extended as follows for handling the novel constructs:

ρB(C) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

≥ 2 r.D if C = ∃r.D

{≥ n + 1 r.D | n < mfr} if C = ≥ n r.D

∪{≥ n r.E | E ∈ ρB(D)}
{≤ n − 1 r.D | n > 1} if C = ≤ n r.D

∪{≤ n r.E | E ∈ ρB(D)}
∅ if C = (b = true)

∅ if C = (b = false)

{d ≥ w | v = splitsd [i], i > 1, if C = (d ≥ v)

w = splitsd [i − 1]}
{d ≤ w | v = splitsd [i], i < #splitsd , if C = (d ≤ v)

w = splitsd [i + 1]}
We used the presented extensions in the carcinogenesis benchmark (Sect. 7.2). They

extend the expressiveness of the target language close to OWL.

6 The learning algorithm

So far, we have designed a complete and proper operator. Unfortunately, such an operator
has to be redundant and infinite by Theorem 1. We will now describe how to deal with these
problems and define the overall learning algorithm.

6.1 Redundancy elimination

A learning algorithm can be constructed as a combination of a refinement operator, which
defines how the search tree can be built, and a search algorithm, which controls how the tree

232 Mach Learn (2010) 78: 203–250

is traversed. The search algorithm specifies which nodes have to be expanded. Whenever
the search algorithm encounters a node in the search tree, it could check whether a weakly
equal concept already exists in the search tree. If yes, then this node is ignored, i.e. it will
not be expanded further and it will not be evaluated. This removes all redundancies, since
every concept exists at most once in the search tree.8 We can still reach all concepts, because
we have ρcl

↓ (C) � ρcl
↓ (D) if C � D, i.e. ρcl

↓ handles weakly equal concepts in the same way.
However, this redundancy elimination approach is computationally expensive if performed
naively. Hence, we considered it worthwhile to investigate how it can be handled efficiently.

Note, that we consider weak equality instead of equality here, e.g. we have A1 � A2 �=
A2 � A1, but A1 � A2 � A2 � A1. We do this, because having A1 � A2 and A2 � A1—while
not being syntactically equal—can still be considered redundant and should be avoided. In
conjunctions and disjunctions, this raises the problem that we have to guess which pairs of
elements are equal to determine whether two concepts are weakly equal. One way to solve
this problem is to define an ordering over concepts and require the elements of disjunctions
and conjunctions to be ordered accordingly. This eliminates the guessing step and allows
to check weak equality in linear time. There are different ways to define a linear order �
over concepts, and we have shown that it is also possible to do it in such a way that decid-
ing � for two concepts is polynomial and transforming a concept in negation normal form
to � ordered negation normal form, i.e. elements in conjunctions and disjunctions are or-
dered with respect to �, can be done in polynomial time—for brevity we omit the details.
It is thus reasonable to assume that every concept occurring in our search tree can be trans-
formed to ordered negation normal form with respect to some linear order over concepts.
We can then maintain an ordered set of concepts occurring in the search tree. Checking
weak equality of a concept C with respect to a search tree containing n concepts will then
only require logn comparisons (binary search), where each comparison needs only linear
time. Taking into account the complexity of instance checks (EXPTIME for A L C, NEX-
PTIME for S H O I N (D) and OWL-DL), which we can avoid (compared to an algorithm
without redundancy check), redundancy elimination can be considered reasonable. Indeed,
in our experimental evaluation, redundancy checks typically require one percent of overall
algorithm runtime.

6.2 Creating a full learning algorithm

Learning concepts in DLs is a search process. In our proposed learning algorithm, the re-
finement operator ρcl

↓ is used for building the search tree, while a heuristic decides which
nodes to expand. As mentioned before, we want to tackle the infinity of the operator by
considering only refinements up to some length n at a given time. We call n the horizontal
expansion of a node in the search tree. It is a node specific upper bound on the length of
child concepts, which can be increased dynamically by the algorithm during the learning
process.

To deal with this, we formally define a node in a search tree to be a triple (C,n, b), where
C is a concept, n ∈ N is the horizontal expansion, and b ∈ {true, false} is a boolean marker
for the redundancy of a node.

To define a search heuristic for our learning algorithm, we need some notions to be able
to express what we consider a good node for expansion. Similarly to existing ILP systems,
we use the learning algorithm parameter noise, bounding the minimum acceptable training

8More precisely: For each concept there is at most one representative of the equivalence class of weakly equal
concepts in the search tree which is evaluated.

Mach Learn (2010) 78: 203–250 233

set accuracy of the learned definition. (1 − noise) is the lowest accuracy a concept needs to
have to be considered a solution of a learning problem.

The search heuristics selects the node with the highest score in the search tree at a given
time, where the score of a node is defined as follows:

Definition 14 (Score) Let N = (C,n, b) be a node and Target the target concept. We
introduce the following notions:

accuracy(C) = 1 − up + cn

|E|
acc_gain(N) = accuracy(C) − accuracy(C ′)

where C ′ is the concept in the parent of N

up = |{e | e ∈ E+, K ∪ {Target≡ C} �|= e}| (uncovered positives)

cn = |{e | e ∈ E−, K ∪ {Target≡ C} |= e}| (covered negatives)

E = E+ ∪ E−

If up > �noise · |E|�, then the node is too weak, i.e. it is not a solution candidate and will
never be expanded.

If the node is not too weak, then its score is defined as follows:

score(N) = accuracy(C) + α · acc_gain(N) − β · n (α ≥ 0, β > 0)

By default, we choose α = 0.5 and β = 0.02. The heuristic uses accuracy as main cri-
terion. Accuracy gain, controlled by α, is incorporated, because those concepts having led
to an improvement in accuracy are more likely to be significant refinements towards a so-
lution. As a third criterion, controlled by β , we bias the search towards shorter concepts
and less explored areas of the search space. Using horizontal expansion instead of concept
length makes the algorithm more flexible in searching less explored areas of the search space
and avoids that it gets stuck on concepts with high accuracy and accuracy gain. The score
function can be defined independently of the core learning algorithm.

We have now introduced all necessary notions to specify the complete learning algorithm,
given in Algorithm 1. checkRed is the redundancy check function and transform the function
to transform a concept to ordered negation normal form as described in Sect. 6.1.

As we can see, the learning algorithm performs a top down refinement operator driven
heuristic search. The main difference to other learning algorithms of this kind is the replace-
ment of a full node expansion by a one step horizontal expansion and the use of a redundancy
check procedure.

Apart from knowledge representation, another difference to many ILP programs is the
search strategy: Often, ILP tools perform a clause by clause set covering approach to con-
struct a solution stepwise. In DL-Learner, each concept represents a full solution, which is
related to single predicate theory learning (Bratko 1999) in ILP. A benefit is that there is no
risk in performing possibly suboptimal choices and it is often possible to learn shorter so-
lutions. However, it also leads to a higher runtime and memory consumption. To counteract
this, a divide and conquer strategy as extension of Algorithm 1 can be activated in DL-
Learner. It restricts the set of nodes which are candidates for expansion to a set of fixed size
in regular time intervals. By default, the candidate set is restricted to the 20 most promis-
ing nodes each 300 seconds. Those concepts are selected according to their accuracy with a

234 Mach Learn (2010) 78: 203–250

Algorithm 1: learning algorithm

Input: background knowledge, examples E, noise in [0,1]
ST (search tree) is set to the tree consisting only of the root node (�,0, false)1

while ST does not contain a node with q < �noise · |E|� do2

choose a node N = (C,n, b) with highest score in ST3

expand N up to length n + 1, i.e.:4

begin5

add all nodes (D,n, checkRed(ST ,D)) with D ∈ transform(ρcl
↓ (C)) and6

|D| = n + 1 as children of N

evaluate created non-redundant nodes7

change N to (C,n + 1, b)8

end9

Return found concepts in ST10

bias towards short concepts with high accuracy on positive examples, since those concepts
are more likely to improve in a downward refinement algorithm. We omit the details of this
process for brevity. It can be used as a tradeoff between performance and the risk to make
suboptimal decisions.

Correctness of the algorithm can be shown:

Proposition 15 (Correctness) If a learning problem has a solution in A L C , then Algo-
rithm 1 terminates and computes a correct solution of the learning problem.

Proof Assume, there is a solution C (which is an A L C concept) of a learning problem.
By the weak completeness of ρcl

↓ , we know that there is a concept D with D ≡ C and
D ∈ ρ∗(�), i.e. ρcl

↓ allows a refinement chain � � D1 � D2 � · · · � Dn = D. We have
already shown in Lemma 5 that ρcl

↓ does not reduce length, i.e. all concepts in this chain
have at most the length of D. This means that the score of each node is higher than −|D|
where |D| is the length of D. Because β in the score function is higher than 0, any node
with sufficiently high horizontal expansion has a score lower than −|D|. As a consequence,
all nodes in our chain will eventually be expanded sufficiently often to refine to its successor
in the chain above, i.e. eventually D will be reached unless the algorithm terminates with a
different solution beforehand. In both cases the proposition is satisfied. �

6.3 Optimisations

In this section improvements of ρ and ρcl
↓ will be presented.

Using ∃r.(C
D) ≡ ∃r.C
∃r.D and ∀r.(C �D) ≡ ∀r.C �∀r.D The equivalences ∃r.(C

D) ≡ ∃r.C
 ∃r.D and ∀r.(C � D) ≡ ∀r.C � ∀r.D can be used to modify ρ without losing
weak completeness.

Disjunctions in ρ are only introduced in refinements of the top concept. The only existen-
tial value restrictions in these disjunctions are of the form ∃r.� for r ∈ NR . The equivalence
∃r.(C
 D) ≡ ∃r.C
 ∃r.D says that it is not necessary to allow several disjuncts of the form
∃r.� for a fixed role r , because we can always reach an equivalent concept by only intro-
ducing it once. Therefore, we can restrict ρ to produce ∃r.� only at most once per role as
element of the disjunction in the refinement of the top concept, without losing completeness.

Mach Learn (2010) 78: 203–250 235

ρ allows to refine a concept C by extending it conjunctively. If C is of the form ∀r.D

or of the form C1 � · · · � ∀r.D � · · · � Cn, then we can restrict ρ to disallow adding an
element of the form ∀r.E (E is an arbitrary A L C concept). Again, the resulting operator is
still complete.

Similar checks can be done in the refinement steps which refine roles. By using the
equalities ∃r.(C
 D) ≡ ∃r.C
 ∃r.D and ∀r.(C � D) ≡ ∀r.C � ∀r.D as described, we have
reduced the number of possible refinements, but preserved completeness.

Configurable target language One of the factors determining whether a learning algorithm
will be successful for a given task is whether its target language is suitable. Our algorithm
can be configured to some extent in this respect by adapting the used refinement operator. In
particular, DL-Learner allows to ignore a specified set of concepts and roles (or conversely
use only a specified set of concepts and roles) when trying to solve a problem. It can also be
configured to use or ignore the ∃ and ∀ concept constructors, negation, cardinality restric-
tions, double concrete roles, boolean concrete roles. These options can be used to incorpo-
rate additional knowledge about a problem in the learning algorithm to narrow the search
space. Note, that all experiments reported in Sect. 7 were run without such restrictions.

7 Evaluation

7.1 Comparison with other algorithms based on description logics

We illustrate our algorithm using Michalski’s trains (Michalski 1980) as a simple exam-
ple. The data describes different features of trains, e.g. which cars are appended to a train,
whether they are short or long, closed or open, jagged or not, which shapes they contain and
how many of them. The positive examples are the trains on the left in Fig. 2 and the negative
examples are the trains on the right. Thus, the task of the learner is to find characteristics of
all the left trains, which none of the right trains has. The learning algorithm first explores the
concepts � and then Train, which cover all examples. Other atomic concepts are too weak
to be considered for further exploration. The exploration of the top concept up to a horizon-
tal expansion of 3 leads to ∃hasCar.�, which is then expanded to ∃hasCar.Closed.
This covers all positives and two negatives. The heuristic later picks this node and extends
it up to a horizontal expansion of 5 to ∃hasCar.(Closed � Short), which is a possible
(and shortest) solution for the problem.

Doubtless, there is a lack of evaluation standards in ontology learning from examples. In
order to overcome this problem, we converted the background knowledge of several existing
learning problems to OWL ontologies. Besides the described train problem, we also inves-
tigated the problems of learning family relationships from FORTE (Richards and Mooney
1995), learning poker hands, and understanding the moral reasoning of humans. The two

Fig. 2 The Michalski trains
problem: positive examples are
on the left, negative examples are
on the right

236 Mach Learn (2010) 78: 203–250

latter examples were taken from the UCI Machine Learning repository.9 For the poker ex-
ample, we defined two goals: learning the definition of a pair and of a straight. Similarly, the
moral reasoner examples were divided into two learning tasks: the original one, where the
intended solution is quite short, and a problem where we removed an important intermedi-
ate concept, such that the smallest possible solution became more complex. For the FORTE
family data set, we defined the problem of learning the definition of an uncle (originally
defined in Lehmann 2007), where one possible solution is:

Male � (∃sibling.∃parent.�
 ∃married.∃sibling.∃parent.�)

The poker example has medium size, but is not very complex with respect to its termi-
nology. The moral reasoner, however, is an expressive ontology, which we derived from a
theory given as a logic program. We designed the FORTE problem to be slightly more diffi-
cult for our algorithm, because no simple and short solutions exist. Overall, the solutions of
the examples cover a range of different concept constructors and are of varying length and
complexity. Section 7.2 will describe a current ILP benchmark, the carcinogenesis problem,
in order to compare the described algorithm with inductive learning algorithms which are
not based on description logics.

As a reasoner we used Pellet,10 which was connected to the learning problem via the DIG
reasoner interface11 for YinYang (Iannone et al. 2007) and the OWL API12 interface for DL-
Learner (because DIG does not support asking for domains and ranges), on a 2.2 GHz Dual
CPU machine with 2 GB RAM. We compared our results with those from YinYang and
other algorithms we have implemented within the DL-Learner framework. In particular, we
compared with a hybrid algorithm using so called genetic refinement operators (Lehmann
2007), i.e. adapted refinement operators within a Genetic Programming (GP) framework.
For reference we also compared with a standard GP learning algorithm, which has been
applied to the learning problem in description logics and is also included in DL-Learner.
For all algorithms, we used five fold cross validation. We are not aware of other systems
available for comparison. The system in Cohen and Hirsh (1994) is no longer available and
the approach in Badea and Nienhuys-Cheng (2000) was not fully implemented.

For YinYang we used the same settings as in all examples included in its release and for
the refinement approach we used the standard settings. For the GP algorithms, we chose a
fixed number of 50 generations with a population of 500 individuals. A generational algo-
rithm with rank selection and activated elitism was used. The algorithms were initialised
using the ramped-half-and-half method with maximum depth 6. For the standard GP algo-
rithm, a crossover probability of 80 percent and 2 percent mutation probability was set. The
hybrid approach was configured to 65 percent genetic refinement, 20 percent crossover, and
2 percent mutation. In both cases, the fitness measure parameter α was adjusted to a low
value (0.002), such that the correct solutions have a sufficiently high value in the GP fitness
function. The settings are similar to those found to be suitable in Lehmann (2007), where
population size is varied between 100 and 700. Naturally, a GP algorithm always allows to
increase the number of invested resources and varying the population size is one of the ways
to do this. We finally picked a population size of 500 for our evaluation, since in example

9http://www.ics.uci.edu/~mlearn/MLRepository.html.
10http://pellet.owldl.com.
11http://dl.kr.org/dig/.
12http://owlapi.sf.net/.

http://www.ics.uci.edu/~mlearn/MLRepository.html.
http://pellet.owldl.com
http://dl.kr.org/dig/
http://owlapi.sf.net/

Mach Learn (2010) 78: 203–250 237

Table 3 Evaluation results for various DL-Learner algorithms and YinYang

Problem YinYang

Time (s) Length Correct (%)

trains 0.2 ± 0.1 8.1 ± 1.5 100.0 ± 0.0

moral I 28.8 ± 12.1 69.0 ± 16.1 50.0 ± 21.7

moral II 32.6 ± 9.5 70.7 ± 21.8 62.5 ± 28.0

poker I 7.2 ± 0.8 43.2 ± 12.1 100.0 ± 0.0

poker II – – –

forte 26.4 ± 9.4 22.1 ± 12.0 90.0 ± 5.6

Problem DL-Learner Refinement

Time (s) Time 2 (s) Length Correct (%)

trains 0.8 ± 0.3 0.1 ± 0.0 5.0 ± 0.0 100.0 ± 0.0

moral I 2.8 ± 0.3 0.1 ± 0.0 8.0 ± 0.0 97.8 ± 5.0

moral II 2.7 ± 0.4 0.1 ± 0.0 8.0 ± 0.0 97.8 ± 5.0

poker I 3.4 ± 0.1 0.0 ± 0.0 5.0 ± 0.0 100.0 ± 0.0

poker II 19.7 ± 10.6 1.5 ± 0.1 11.0 ± 0.0 100.0 ± 0.0

forte 13.4 ± 1.8 0.3 ± 0.1 13.4 ± 0.9 98.9 ± 2.5

Problem DL-Learner GP

Time (s) Length Correct (%)

trains 33.4 ± 3.1 3.4 ± 0.9 60.0 ± 41.8

moral I 28.9 ± 1.4 1.0 ± 0.0 86.1 ± 10.0

moral II 31.0 ± 5.9 1.6 ± 0.9 62.8 ± 9.1

poker I 465.9 ± 261.3 3.4 ± 2.2 84.0 ± 21.9

poker II 283.3 ± 12.7 1.0 ± 0.0 92.7 ± 0.3

forte 235.9 ± 74.6 3.0 ± 0.0 88.1 ± 8.0

Problem DL-Learner hybrid GP

Time (s) Length Correct (%)

trains 10.5 ± 1.1 4.6 ± 0.9 80.0 ± 44.7

moral I 139.9 ± 10.0 3.0 ± 0.0 100 ± 0.0

moral II 118.7 ± 26.8 2.8 ± 1.1 71.9 ± 13.1

poker I 709.1 ± 60.7 5.0 ± 0.0 100.0 ± 0.0

poker II 1054.1 ± 36.5 1.0 ± 0.0 92.7 ± 0.3

forte 285.0 ± 25.6 3.0 ± 0.0 88.1 ± 8.0

runs it seemed to deliver a good tradeoff between runtime and cross validation accuracy.
Overall, the runtime of the GP algorithms is often much higher than those of DL-Learner
and YinYang in this setting.

Table 3 summarises the results we obtained. As a statistical significance test, we used
a t-test with 95% confidence interval. In all cases, our implementation was able to learn a
correct definition on the training set, which in most cases also was correct on the testing
set. YinYang could not handle the second poker problem (it produces an error after trying to

238 Mach Learn (2010) 78: 203–250

Fig. 3 Accuracy comparison: The refinement approach has a statistically significantly higher accuracy than
all others on the complex moral reasoner, poker II, and forte problems, while none of the other algorithms
performs statistically significantly better on any of the other learning problems

Fig. 4 Comparison of the length of the learned concepts: YinYang produces longer concepts, which were
in general more difficult to read for humans, than the refinement approach with high statistic significance.
The genetic programming approaches, in particular the standard variant, are often unable to solve the more
complex problems in reasonable time

compute most specific concepts). Similarly, the FORTE problem could only be handled after
removing certain examples (4 out of 86). Figure 3 visualises the obtained cross validation
accuracies. The refinement approach has a statistically significantly higher accuracy than all
others on the complex moral reasoner, poker II, and forte problems, while none of the other
algorithms performs statistically significantly better on any of the other learning problems.
The hybrid GP approach generally performed at least as good as the standard GP approach
and often it was (statistically significantly) better.

As another interesting criterion, we recorded the length of learned concepts (see Fig. 4).
A notable observation is that YinYang produces longer concepts than the refinement ap-
proach with high statistic significance. In most cases, this rendered those concepts hard to
read for humans, which is a disadvantage for symbolic classifiers. In contrast, the genetic
programming approaches often produce short concepts. The standard GP algorithm usu-

Mach Learn (2010) 78: 203–250 239

Fig. 5 Runtime comparison: The GP algorithms generally have the highest runtimes unless we trade accu-
racy for runtime. The refinement operator is statistically significantly faster than all other approaches for all
problems except trains

ally learned such short solutions, because it is often unable to find more accurate longer
definitions. The hybrid approach is more likely to find complex definitions, e.g. it some-
times found one of the possible solutions (Severity_harm � ¬Benefit_victim �
(Responsible
 Vicarious)) of the second moral reasoner problem.

Figure 5 compares the runtime of the different algorithms (note the logarithmic scale).
Overall, the GP algorithms have a higher runtime. As mentioned before, they can be para-
metrised to have a shorter runtime if we are willing to accept a decline in accuracy. In
general, the refinement operator is statistically significantly faster than all other approaches
for all problems except trains.

For the refinement approach, we included another column “time 2” in Table 3. These are
the learning times when employing a built-in approximate OWL reasoner instead of Pellet.
It works by performing a number of initial queries to a standard OWL reasoner and then
keeps the results in memory to efficiently answer all other requests (without correctness and
completeness guarantee w.r.t standard semantics). It uses a form of closed world reasoning,
which solves open world issues first raised in Badea and Nienhuys-Cheng (2000). Using
the open world assumption, an object a is not instance of ∀r.C even if all known r-fillers
of a are instances of C, which makes it hard to learn concepts like ∀hasChild.Male
(only male children). So the advantage of using this reasoner is two-fold: it has much better
performance and it uses closed world reasoning, which is often desired during the learning
process.

Although using closed world reasoning can change the node score and therefore influ-
ences the learning process, it did not impact on the cross validation accuracy in the presented
examples except for a single fold in the poker II learning problem, where it stopped after
finding a shorter concept covering all training set examples, and therefore had an overall
cross validation accuracy of 96.2% instead of the 100% shown in the table.

All learning problems are available at the DL-Learner subversion repository13 and a
script is provided to reproduce the results presented here.

13Browsable e.g. via http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/.

http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/

240 Mach Learn (2010) 78: 203–250

7.2 Comparison with other ILP approaches

To compare DL-Learner with other ILP approaches and to apply it in a realistic scenario, we
choose the problem of predicting carcinogenesis. The aim of this task is to predict whether a
chemical compound causes cancer given its structure and the results of bio-assays. This has
been recognised as an important research area: “Obtaining accurate structural alerts for the
causes of chemical cancers is a problem of great scientific and humanitarian value” (Srini-
vasan et al. 1997). Although this is one of the most well-researched problems in Machine
Learning, it is still important and challenging.

One of the problems we have to face when benchmarking DL-Learner is of course that
many of the problems are available in a Prolog-like syntax. The first step to apply DL-
Learner to the carcinogenesis problem was to convert the original data14 into an OWL on-
tology. To do this, we extended DL-Learner with a Prolog parser and wrote a mapping script
to convert the carcinogenesis files into OWL. As mentioned previously, OWL (description
logics) and logic programs have incomparable expressivity. It is sometimes impossible and
often not trivial to convert between both representations. For carcinogenesis such a mapping
is possible, but required at least a superficial understanding of the domain. The mapping
script we used and the resulting ontology are both freely available at the DL-Learner down-
load page.15 During the transformation process almost no knowledge was lost or added. The
resulting ontology contains 142 atomic concepts, 19 roles and datatypes, 22373 objects, and
more than 74000 facts.

We used the approximate reasoner introduced in the previous subsection. Standard OWL
reasoners turned out to be much too slow in answering reasoning requests for this ontology.16

Furthermore, we also enabled all extensions presented in Sect. 5.4. Again, all tests were run
on a 2.2 GHz Dual core machine with 4 GB RAM.

The most sensible parameter of DL-Learner in the case of carcinogenesis prediction is
noise (bounding the minimum acceptable training set accuracy of the learned definition). To
find an appropriate setting for the noise parameter, we divided the available examples into
two sets. In a first phase, 30% of the 337 examples were used to find the noise parameter
value. This was done by starting from a noise value of 50% and descending in one percent
steps. We measured the ten fold cross validation accuracy for each of those values. It turned
out that a noise value of 30% has the highest accuracy (71.8%). In a second phase, we used
this parameter to measure the ten fold cross validation accuracy on the second set containing
70% of all examples. This lead to an accuracy of 67.7% as shown in Table 4 together with
results of other approaches using the same background knowledge (many of those use Aleph,
a state-of-the-art Inductive Logic Programming system, as their basis).

For all approaches, where the standard deviation was given in the articles, we calculated
whether the difference in accuracy is statistically significant using a t-test. We obtained P
values of 0.0508 vs. Aleph DTD 0.7, 0.0231 vs. Aleph RRR 0.9, 0.0206 vs. Aleph DTD
0.9, and 0.0107 vs. Aleph RRR 0.7. Values ≤ 0.05 (3 out of 4 in this case) are statistically
significant with a standard confidence interval of 95%.

The average runtime for a noise value of 30% was 950 seconds with a concept length of
20 when measured on all examples. We will briefly compare this with the other approaches
in Table 4.

14http://web2.comlab.ox.ac.uk/oucl/research/areas/machlearn/cancer.html.
15http://sourceforge.net/projects/dl-learner.
16While scalability of OWL reasoning systems has improved substantially in the recent past, OWL and related
DLs are inherently difficult to reason with, as their worst-case complexity classes are ExpTime or worse.

http://web2.comlab.ox.ac.uk/oucl/research/areas/machlearn/cancer.html
http://sourceforge.net/projects/dl-learner

Mach Learn (2010) 78: 203–250 241

Table 4 Overview of the accuracy of different ILP approaches applied to the carcinogenesis prediction
problem. Many of those are improvements or different settings of Aleph. Accuracy and standard deviation
refer to values obtained through 10 fold cross validation. Legend: DTD = Deterministic Top Down, RRR =
Randomized Rapid Restarts, +,◦,− stand for good, moderate, and bad readability of learning results (see
text)

Approach/tool Accuracy Readability Reference

DL-Learner 67.7% ± 11.3% +
Aleph Ensembles 59.0% to 64.5% − (Dutra et al. 2003)

Boosted Weak ILP 61.1% − (Jiang and Colton 2006)

Weak ILP 58.7% − (Jiang and Colton 2006)

Aleph DTD 0.7 57.9% ± 9.8% ◦ (Železný et al. 2003)

Aleph RRR 0.9 57.6% ± 6.4% ◦ (Železný et al. 2003)

Aleph DTD 0.9 56.2% ± 9.0% ◦ (Železný et al. 2003)

Aleph RRR 0.7 54.8% ± 9.0% ◦ (Železný et al. 2003)

Dutra et al. (2003) is a bagging approach combining 1 to 100 hypotheses generated by
Aleph. The results vary from 59.0% to 64.5% accuracy depending on the choosen ensem-
ble size. We believe that a combination of a high number of hypotheses scores lower on
human interpretability, in particular since the concepts provided by DL-Learner are quite
compact. The results themselves were computed on Condor,17 a high throughput computing
system and consumed 53580 CPU hours including 3 other experiments apart from carcino-
genesis. Even taking the different ensemble sizes and parameter optimisation phases in this
experiment into account, our approach seems to be competitive.

Jiang and Colton (2006) did not record the runtime of experiments. The system uses
a boosting approach with 50 to 100 base classifiers based on WeakILP. Using a similar
length measure than the one we defined for DL concepts, i.e. counting all logical symbols,
the summed length is approximately 1000 compared to 13.4 in our case. Hence, we also
consider this approach to produce less readable results.

Železný et al. (2003) reports runtimes of 6 to 7 hours for the two DTD approaches on a
1.5 GHz machine with 512 MB RAM. The RRR approaches are much faster and need only
26 minutes. Regarding readability, the length of learned programs is about 100. Hence, they
are much shorter than those of the two other approaches, but can still be considered harder
to interpret than the results of DL-Learner.

To illustrate the influence of the noise parameter, we additionally measured ten fold cross
validation accuracy, runtime, and concept length on all examples with different noise values.
The results are shown in Table 5. Since the noise parameter acts as a termination criterion,
we observe, as expected, that lower noise values lead to significant increases in runtime. It
becomes increasingly computationally expensive for the learning algorithm to find concepts
satisfying the termination criterion and those concepts are usually also more complex as
evident from the last column of the table. Therefore, setting the noise values too low can
also lead to learning unnecessary complex concepts as shown in Fig. 6.

17http://www.cs.wisc.edu/condor/.

http://www.cs.wisc.edu/condor/

242 Mach Learn (2010) 78: 203–250

Table 5 The influence of the noise parameter on ten fold cross validation accuracy, runtime, and length of
learned concepts. We see that for lower noise values it becomes increasingly hard to satisfy the termination
criterion (hence the increase in runtime) and the learned concepts are longer and more complex. The max-
imum accuracy is reached for 32% noise and stays on a similar level afterwards, which indicates that the
additional structures in those longer concepts do not greatly affect classification results. Note that the runtime
does not include the time to load the knowledge base into the reasoner and prepare it, which takes additional
36 seconds on our test machine

Noise(%) Accuracy(%) Runtime(s) Length

40 62.9 ± 8.6 0.6 ± 0.6 4.9 ± 1.4

39 62.9 ± 8.6 0.6 ± 0.7 4.9 ± 1.4

38 65.9 ± 8.3 1.5 ± 0.2 7.0 ± 0.0

37 65.9 ± 8.3 5.2 ± 7.8 7.6 ± 1.3

36 65.9 ± 8.3 6.9 ± 8.5 7.9 ± 1.4

35 65.9 ± 8.3 12.7 ± 9.6 8.8 ± 1.6

34 64.4 ± 6.6 31.6 ± 25.7 9.7 ± 0.7

33 64.7 ± 6.5 73.6 ± 88.4 9.8 ± 0.9

32 67.4 ± 7.9 160.0 ± 197.2 10.7 ± 3.1

31 66.4 ± 7.5 426.9 ± 324.2 14.1 ± 3.7

30 65.9 ± 8.7 843.5 ± 538.1 17.9 ± 4.5

29 66.8 ± 8.1 1613.9 ± 922.3 23.2 ± 5.0

28 66.5 ± 9.0 3158.3 ± 1680.8 29.6 ± 5.8

Fig. 6 Illustration of ten fold cross validation accuracies of DL-Learner on the carcinogenesis benchmark for
different noise values. For lower noise values the difference between training and testing accuracy (averaged
over all ten folds) becomes larger, which can be interpreted as a sign of overfitting, i.e. the learned concepts are
unnecessarily complex. As a reference, we included the accuracies of other tools from Table 4 as horizontal
lines

Mach Learn (2010) 78: 203–250 243

As an example of a learned concept, the following definition was one of the more com-
plex concepts learned with noise = 28%:

(Compound � ¬∃hasAtom.(Nitrogen-35
 Phosphorus-60

 Phosphorus-61
 Titanium-134)

� (≥3hasStructure.(Halide � ¬Halide10)

 (amesTestPositive = true � ≥5hasBond.(¬Bond-7))))

This can be phrased in natural language as:

A chemical compound is carcinogenic iff . . .
. . . it does not contain a Nitrogen-35, Phosphorus-60, Phosphorus-61,

or Titanium-134 atom
. . . and it has at least three Halide—excluding Halide10—structures

or the ames test of the compound is positive and there are
at least five atom bonds which are not of bond type 7.

Overall, the presented approach is able to learn accurate and short concepts with a rea-
sonably low number of expensive reasoner requests. Note that all the approaches are able
to learn in a very expressive language with arbitrarily nested structures, as can be seen in
the concept above. Learning many levels of structure has recently been identified as a key
issue for structured Machine Learning (Dietterich et al. 2008), and our work provides a clear
advance on this front.

The evaluations show that our approach is competitive with state-of-the-art ILP systems
when the approximate reasoning technique is used.

8 Strengths and limitations of the described approach

This section summarizes the advantages and disadvantages of the presented algorithm. It is
organised along the criteria of applicability, accuracy, readability, scalability, and usability.
Apart from analysing strengths and limitations of the concrete approach, we also want to
draw a more general picture on why learning in DLs is a promising line of research.

Applicability The Semantic Web is rapidly growing18 and contains knowledge from di-
verse areas such as science, music, people, books, reviews, places, politics, products, soft-
ware, social networks, as well as upper and general ontologies. The underlying technologies,
sometimes called Semantic Technologies, are currently starting to create substantial indus-
trial impact in application scenarios on and off the web, including knowledge management,
expert systems, web services, e-commerce, e-collaboration, etc. Data exchange and inte-
gration is central to these technologies, which thus hinge centrally on the use of suitable
knowledge representation formalisms. Consequently, it is important to adhere to established
standards, foremost those established by the World Wide Web Consortium (W3C). Since
2004, the Web Ontology Language OWL, which is based on description logics (DLs), has
been the W3C-recommended standard for Semantic Web knowledge representation and has

18For instance, the semantic index Sindice (http://sindice.com/) grows steadily and now lists more than 10
billion entities from more than 100 million web pages.

http://sindice.com/

244 Mach Learn (2010) 78: 203–250

been a key to the growth of the Semantic Web. Being able to apply inductive learning on this
data and to use OWL/DLs themselves as results of a learning algorithm widens the possibil-
ities for ILP research and practice since it opens up Semantic Web as field of application.

It could be argued that ILP systems based on logic programs can be used to achieve this
task. However, as discussed previously, OWL ontologies and logic programs are incompa-
rable with respect to their expressiveness, i.e. there are OWL ontologies not expressible in
Horn logic and vice versa. This means that the algorithm cannot be applied to all scenarios
where Horn logic ILP programs can be used, which is both a strength and a limitation of the
described approach. One restriction are predicates with arity greater two. Since concepts in
description logics correspond to predicates of arity one and roles correspond to predicates of
arity two, it is not straightforward to express predicates with higher arity. However, in many
cases, e.g. the benchmarks in Sect. 7, this can still be done but usually requires a human
expert. Even in such cases, it often turned out that knowledge can be represented in a human
friendlier and more readable way in OWL/description logics.

It should be noted that in principle each learning problem in DLs can be solved by ILP
systems based on first order logic, since DLs are a fragment of first order logic. However, it
can of course be inefficient to do this due to the larger search space and higher complexity
of reasoning. Badea and Nienhuys-Cheng (2000) has discussed why ILP systems may not
be appropriate to learn DL concepts even in those cases where they can be used in principle.
The paper analyses this for the case of using prenex conjunctive normal form (PCNF) and
states that the main problems are that 1.) a conversion to PCNF can lead to an exponential
blowup in knowledge base size and 2.) many formulae in PCNF do not have a counterpart in
Description Logics, i.e. they are too fine grained. Similar arguments apply when using Horn
logic or first order logic. On the other hand, using systems for less expressive formalisms
cannot make use of all the carefully selected features of OWL.

OWL and Description Logics also enable new application tasks. One such task is ontol-
ogy engineering, in particular suggesting definitions and equivalence axioms in knowledge
bases based on instance data. We pursue this line of research by developing plugins for the
popular Protege19 and OntoWiki20 ontology editors. There have been heated discussions in
the recent past on the use of logic programming versus description logics in ontology engi-
neering, see e.g. de Bruijn et al. (2005), Patel-Schneider and Horrocks (2007) and Krötzsch
et al. (2008a, 2008b) for recent developments. However the recently rapidly growing popu-
larity of the Web Ontology Language OWL seems to indicate that some of their distinctive
features make it a viable and perhaps even superior alternative to logic programs in many
application domains. This can in part be attributed to the fact that DLs restrict the modeller
more severely in his use of the modelling language: Horn logic is Turing complete (Šebelík
and Štěpánek 1982) (and can, e.g. in the form of Prolog, even be used as a programming
language), while DLs are usually decidable.

Accuracy We have shown to be more accurate than other DL learning systems and we
claim to be more accurate than other general ILP tools for some learning problems. We have
shown this for carcinogenesis, where DL-Learner was able to achieve statistically signif-
icantly higher accuracy than some state-of-the-art ILP systems. It is well-known that the
choice of the target language is a critical one with respect to the accuracy and efficiency
of learning algorithms. Hence, it is natural that DL concepts are more appropriate than

19http://protege.stanford.edu/.
20http://ontowiki.net.

http://protege.stanford.edu/
http://ontowiki.net

Mach Learn (2010) 78: 203–250 245

other formalisms for a subset of learning problems. This particularly applies to domains,
where ontologies are already widely used, e.g. the life sciences (Rector and Brandt 2008;
Belleau et al. 2008).

Readability As shown in Sect. 7, DL-Learner has a bias towards learning compact, read-
able concepts. We have shown that there are often orders of magnitude difference with re-
spect to the size of the offered solutions in the carcinogenesis problem. Hence, we do con-
sider readability to be a strength of our approach. Furthermore, DLs lend themselves easily
to conversion between (controlled) natural language and formal language, see Schwitter
et al. (2008), Völker et al. (2007) for references. This helps to close the gap between ontol-
ogy engineers and domain experts.

Scalability Our experiments indicate that the presented approach can work efficiently with
knowledge bases containing around 100.000 axioms—of course depending on the com-
plexity of those axioms. This is sufficient for many realistic application scenarios. Further-
more, we also extended DL-Learner by a component, which allows to apply it to very large
knowledge bases (Hellmann et al. 2009) by selecting relevant knowledge fragments in a pre-
processing step. We applied the procedure to DBpedia (Auer et al. 2008), containing more
than 200 million axioms, and other large knowledge bases.

Usability DL-Learner requires only a minimal set of parameters to work well. Those pa-
rameters are the used background knowledge bases (which can be more than one), the pos-
itive and negative examples, and a termination criterion (e.g. minimum accuracy through
the noise parameter). As the approach is an anytime-algorithm, bounding its maximum run-
time can be convenient in systems which need to process several learning problems reliably
without the risk of using too many resources. Also note that other tools like Aleph often
require so called mode declarations in order to work efficiently by restricting the search
space. These restrictions are already present in DL/OWL knowledge bases through domain
and ranges of roles. They are used by the refinement operator automatically, which makes it
easier to apply DL-Learner without the need to specify further restrictions (which requires
knowledge about the domain at hand).

Summary In summary, we argue that learning in DLs is limited in that not all typical ILP
problems can be solved. However, it is also apparent that it can widen the scope of ILP to
new application areas and tasks, in particular in the context of Semantic Web applications
and application development which hinges critically on the employed knowledge represen-
tation formalisms. We have shown that DL-Learner is competitive with respect to accuracy
and scalability with state-of-the-art ILP systems. We also claim that the provided solutions
are more readable and that DL-Learner is easy to use.

9 Related work

Related work can essentially be divided in two categories. The first is research which is
directly connected to learning in description logics. The second is research about refinement
operators in general, often connected with the learning of logic programs. We will describe
both in turn.

In Badea and Nienhuys-Cheng (2000) a refinement operator for A L E R has been de-
signed to obtain a top-down learning algorithm for this language. Properties of refinement

246 Mach Learn (2010) 78: 203–250

operators in this language were discussed and some claims were made, but a full formal
analysis was not performed. They also investigate some theoretical properties of refinement
operators. As we have done with the design of ρ, they favour the use of a downward re-
finement operator to enable a top-down search. The authors use A L E R normal form, which
is easier to handle than negation normal form, because A L E R is not closed under boolean
operations. As a consequence, they obtain a simpler refinement operator for which it is not
clear how it could be extended to more expressive DLs. Our operator, in contrast, lends itself
much more easily to such extensions. We also deal quite differently with infinity, we show
how the subsumption hierarchy of atomic concepts and roles can be used, use domain and
range of roles to structure the search, and we describe how redundancy can be avoided ef-
ficiently. Moreover, our theoretical results are more general, i.e. covering more description
languages and property combinations. In contrast to Badea and Nienhuys-Cheng (2000), we
provided proofs, which were not available on request by the authors, and refuted one of their
results. As mentioned before, the algorithm in Badea and Nienhuys-Cheng (2000) was not
implemented, which is why we could not assess its performance on our learning examples.

In the papers (Esposito et al. 2004; Iannone and Palmisano 2005) and (Iannone et al.
2007), learning algorithms for description logics, in particular for the language A L C were
created, which also make use of refinement operators—however, not as centrally as in our
approach. The core idea of those algorithms is blame assignment, i.e. to find and remove
those parts of a concept responsible for classification errors. In particular, Iannone et al.
(2007) described how to apply the learning problem for classifying scientific papers. Instead
of using the classical approach of combining refinement operators with a search heuristic, a
different approach is taken therein for solving the learning problem by using approximated
MSCs (most specific concepts). A problem of these algorithms is that they tend to produce
unnecessarily long concepts. One reason is that MSCs for A L C and more expressive lan-
guages do not exist and hence can only be approximated. Previous work (Cohen et al. 1993;
Cohen and Hirsh 1994) in learning in DLs has mostly focused on approaches using least
common subsumers, which face this problem to an even larger extent according to their
evaluation. In our approach, we also cannot guarantee that we obtain the shortest possible
solution of a learning problem. However, the learning algorithm was carefully designed to
produce short and readable solutions. The produced solutions will be close to the shortest
solution in negation normal form.

Esposito et al. (2004) and Fanizzi et al. (2004) stated that an investigation of the proper-
ties of refinement operators in description logics, as we have done in this article, is required
for building a theoretical foundation of the research area. In Fanizzi et al. (2004) downward
refinement for A L N was analysed using a clausal representation of description logic con-
cepts. Refinement operators have also been dealt with within hybrid systems. In Lisi and
Malerba (2003) ideal refinement for learning AL-log, a language that merges DATALOG
and A L C , was investigated. Based on the notion of B-subsumption, an ideal refinement op-
erator was created. In Kietz and Morik (1994), Cohen and Hirsh (1994) learning algorithms
for description logics without refinement operators were analysed.

In the area of Inductive Logic Programming considerable efforts have been made
to analyse the properties of refinement operators (for a comprehensive treatment, see
e.g. Nienhuys-Cheng and de Wolf 1997). In general, applying refinement operators for
clauses to solve the learning problem in DLs is usually not a good choice (Badea and
Nienhuys-Cheng 2000). However, the theoretical foundations of refinement operators in
Horn logics also apply to description logics, which is why we want to mention work in this
area here.

A milestone in Machine Learning (Mitchell 1997) in general was the Model Inference
System in Shapiro (1991). Shapiro describes how refinement operators can be used to adapt

Mach Learn (2010) 78: 203–250 247

a hypothesis to a sequence of examples. Afterwards, refinement operators became widely
used as a learning method. van der Laag and Nienhuys-Cheng (1994) have found some gen-
eral properties of refinement operators in quasi-ordered spaces. Nonexistence conditions for
ideal refinement operators relating to infinite ascending and descending refinement chains
and covers have been developed. This has been used to show that ideal refinement operators
for clauses ordered by θ -subsumption do not exist. Unfortunately, we could not make use
of these results directly, because proving properties of covers in description logics without
using a specific language is likely to be harder than directly proving the results.

Nienhuys-Cheng et al. (1993) discussed refinement for different versions of subsump-
tion, in particular weakenings of logical implication. It was shown in Nienhuys-Cheng et al.
(1999) how to extend refinement operators to learn general prenex conjunctive normal form.
Perfect operators, i.e. operators which are weakly complete, locally finite, non-redundant,
and minimal, were discussed in Badea and Stanciu (1999). Since such operators do not exist
for clauses ordered by θ -subsumption (van der Laag and Nienhuys-Cheng 1994), weaker
versions of subsumption were considered. This was later extended to theories, i.e. sets of
clauses (Fanizzi et al. 2003). A less widely used property of refinement operators, called
flexibility, was discussed in Badea (2000). Flexibility essentially means that previous refine-
ments of an operator can influence the choice of the next refinement. The article discusses
how flexibility interacts with other properties and how it influences the search process in a
learning algorithm.

10 Conclusions and further work

The contribution of this paper is two-fold. On the one hand, we have provided a complete
theoretical analysis of possible desirable property combinations for refinement operators
for description logics. Indeed we believe to have presented the first thorough treatment of
these matters. The results are summarised in Theorems 1 and 2, and in particular, we have
shown that ideal refinement operators for expressive description logics cannot exist. On
the other hand, we have presented the first centrally refinement operator based learning
algorithm for expressive DLs which are closed under boolean operations. The underlying
refinement operator is based on our theoretical investigations summarised in Theorem 2,
and we have shown formally that our operator satisfies the desirable properties which are
achievable. We also showed how the problems of redundancy and infinity can be solved in
a satisfactory manner, allowing us to specify a learning algorithm which we proved to be
correct. We implemented the algorithm and an evaluation showed that the resulting system
is competetive with state-of-the-art systems.

Further work will focus on several aspects, which we believe will broaden ILP applica-
tion areas:

One part will involve the integration of the learning algorithm in ontology editors,
e.g. OntoWiki (Auer et al. 2006), Protégé,21 or the NeOn toolkit,22 and the application in
ontology acquisition scenarios. Ways need to be investigated how to integrate DL-Learner
into the ontology engineering lifecycle, and how to leverage its power for learning from
unstructured raw data like text corpora, e.g. by combining it with text mining techniques
(Buitelaar et al. 2007; Völker et al. 2007).

21http://protege.stanford.edu.
22http://www.neon-toolkit.org.

http://protege.stanford.edu
http://www.neon-toolkit.org

248 Mach Learn (2010) 78: 203–250

Another direction involves broadening the applicability of the algorithm to very large
Semantic Web knowledge bases. Within the Linking Open Data initiative23 a fast growing
network of interconnected openly available OWL knowledge bases, containing billions of
facts covering many domains, has been established. Given positive and negative examples,
fragments of relevant knowledge can be extracted from those knowledge bases and, ulti-
mately, an algorithm can autonomously retrieve background knowledge for a given learning
task. Some preliminary tests along this direction have been performed using DBpedia (Auer
et al. 2008).

Acknowledgements This research was partially supported by the Federal Ministry of Education and Re-
search under the SoftWiki project and by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem
project.

References

Auer, S., Dietzold, S., & Riechert, T. (2006). OntoWiki—a tool for social, semantic collaboration. In Lecture
notes in computer science: Vol. 4273. The semantic web—ISWC 2006, 5th international semantic web
conference, ISWC 2006, Athens, GA, USA, November 5–9, 2006, Proceedings (pp. 736–749). Berlin:
Springer.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2008). DBpedia: A nucleus for a
web of open data. In Lecture notes in computer science: Vol. 4825. Proceedings of the 6th international
semantic web conference (ISWC) (pp. 722–735). Berlin: Springer.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.) (2007). The de-
scription logic handbook: theory, implementation, and applications. Cambridge: Cambridge University
Press.

Badea, L. (2000). Perfect refinement operators can be flexible. In W. Horn (Ed.), Proceedings of the 14th
European conference on artificial intelligence (pp. 266–270). Amsterdam: IOS Press.

Badea, L., & Nienhuys-Cheng, S.-H. (2000). A refinement operator for description logics. In J. Cussens &
A. Frisch (Eds.), Lecture notes in artificial intelligence: Vol. 1866. Proceedings of the 10th international
conference on inductive logic programming (pp. 40–59). Berlin: Springer.

Badea, L., & Stanciu, M. (1999). Refinement operators can be (weakly) perfect. In S. Džeroski & P. Flach
(Eds.), Lecture notes in artificial intelligence: Vol. 1634. Proceedings of the 9th international workshop
on inductive logic programming (pp. 21–32). Berlin: Springer.

Belleau, F., Tourigny, N., Good, B., & Morissette, J. (2008). Bio2RDF: A semantic web atlas of post genomic
knowledge about human and mouse. In A. Bairoch, S. C. Boulakia, & C. Froidevaux (Eds.), Lecture
notes in computer science: Vol. 5109. DILS (pp. 153–160). Berlin: Springer.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1990). Occam’s razor. In J. W. Shavlik &
T. G. Dietterich (Eds.), Readings in machine learning (pp. 201–204). San Mateo: Morgan Kaufmann.

Brachman, R. J. (1978). A structural paradigm for representing knowledge. Technical Report BBN Report
3605, Bolt, Beraneck and Newman, Inc., Cambridge, MA.

Bratko, I. (1999). Refining complete hypotheses in ILP. In S. Džeroski & P. Flach (Eds.), Lecture notes
in artificial intelligence: Vol. 1634. Proceedings of the 9th international workshop on inductive logic
programming (pp. 44–55). Berlin: Springer.

Buitelaar, P., Cimiano, P., & Magnini, B. (Eds.) (2007). Ontology learning from text: Methods, evaluation
and applications. Frontiers in artificial intelligence (Vol. 123). Amsterdam: IOS Press.

Cohen, W. W., & Hirsh, H. (1994). Learning the CLASSIC description logic: Theoretical and experimental re-
sults. In J. Doyle, E. Sandewall, & P. Torasso (Eds.), Proceedings of the 4th international conference on
principles of knowledge representation and reasoning (pp. 121–133). San Mateo: Morgan Kaufmann.

Cohen, W. W., Borgida, A., & Hirsh, H. (1993). Computing least common subsumers in description logics.
In Proceedings of the tenth national conference on artificial intelligence (pp. 754–760). Menlo Park:
AAAI Press.

Davies, J., Studer, R., & Warren, P. (Eds.) (2006). Semantic web technologies—trends and research in
ontology-based systems. New York: Wiley.

23See e.g. http://linkeddata.org for further pointers.

http://linkeddata.org

Mach Learn (2010) 78: 203–250 249

de Bruijn, J., Lara, R., Polleres, A., & Fensel, D. (2005). OWL DL vs OWL flight: conceptual modeling and
reasoning for the semantic web. In A. Ellis & T. Hagino (Eds.), Proceedings of the 14th international
conference on World Wide Web, WWW 2005, Chiba, Japan, May 10–14, 2005 (pp. 623–632). New York:
ACM.

Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured machine learning:
the next ten years. Machine Learning, 73(1), 3–23.

Domingos, P. (1998). Occam’s two razors: The sharp and the blunt. In Proceedings of the fourth international
conference on knowledge discovery and data mining (pp. 37–43).

Dutra, I., Page, D., Costa, V. S., & Shavlik, J. (2003). An empirical evaluation of bagging in inductive logic
programming. In S. Matwin & C. Sammut (Eds.), Lecture notes in artificial intelligence: Vol. 2583.
Proceedings of the 12th international conference on inductive logic programming (pp. 48–65). Berlin:
Springer.

Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., & Semeraro, G. (2004). Knowledge-intensive induction
of terminologies from metadata. In The semantic web—ISWC 2004: Third international semantic web
conference, Hiroshima, Japan, November 7–11, 2004. Proceedings (pp. 441–455). Berlin: Springer.

Fanizzi, N., Ferilli, S., Mauro, N. D., & Basile, T. M. A. (2003). Spaces of theories with ideal refinement
operators. In G. Gottlob & T. Walsh (Eds.), IJCAI-03, Proceedings of the eighteenth international joint
conference on artificial intelligence, Acapulco, Mexico, August 9–15, 2003 (pp. 527–532). San Mateo:
Morgan Kaufmann.

Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., & Semeraro, G. (2004). Downward refinement in the ALN
description logic. In HIS (pp. 68–73). New York: IEEE Computer Society.

Hellmann, S., Lehmann, J., & Auer, S. (2009). Learning of OWL class descriptions on very large knowledge
bases. International Journal on Semantic Web and Information Systems, Special Issue on Scalability
and Performance of Semantic Web Systems, 5(2), 25–48.

Hitzler, P., Krötzsch, M., & Rudolph, S. (2009). Foundations of semantic web technologies. Boca Raton:
CRC Press/Chapman & Hall.

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From S H I Q and RDF to OWL: The making
of a web ontology language. Journal of Web Semantics, 1(1), 7–26.

Horrocks, I., Kutz, O., & Sattler, U. (2006). The even more irresistible SROIQ. In P. Doherty, J. Mylopoulos,
& C. A. Welty (Eds.), Proceedings, tenth international conference on principles of knowledge represen-
tation and reasoning, Lake District of the United Kingdom, June 2–5, 2006 (pp. 57–67). Menlo Park:
AAAI Press.

Iannone, L., & Palmisano, I. (2005). An algorithm based on counterfactuals for concept learning in the seman-
tic web. In Proceedings of the 18th international conference on industrial and engineering applications
of artificial intelligence and expert systems (pp. 370–379), Bari, Italy.

Iannone, L., Palmisano, I., & Fanizzi, N. (2007). An algorithm based on counterfactuals for concept learning
in the semantic web. Applied Intelligence, 26(2), 139–159.

Jiang, N., & Colton, S. (2006). Boosting descriptive ILP for predictive learning in bioinformatics. In S.
Muggleton, R. P. Otero, & A. Tamaddoni-Nezhad (Eds.), Lecture notes in computer science: Vol. 4455.
Proceedings of the 15th international conference on inductive logic programming (pp. 275–289). Berlin:
Springer.

Kietz, J.-U., & Morik, K. (1994). A polynomial approach to the constructive induction of structural knowl-
edge. Machine Learning, 14, 193–217.

Krötzsch, M., Rudolph, S., & Hitzler, P. (2008a). Description logic rules. In M. Ghallab et al. (Eds.), Pro-
ceedings of the 18th European conf. on artificial intelligence (ECAI-08) (pp. 80–84). Amsterdam: IOS
Press.

Krötzsch, M., Rudolph, S., & Hitzler, P. (2008b). ELP: tractable rules for OWL 2. In A. Sheth et al. (Eds.),
Lecture notes in computer science: Vol. 5318. The semantic web—ISWC 2008, 7th international seman-
tic web conference (pp. 649–664). Berlin: Springer.

Lehmann, J. (2007). Hybrid learning of ontology classes. In P. Perner (Ed.), Lecture notes in computer sci-
ence: Vol. 4571. Machine learning and data mining in pattern recognition, 5th international conference,
MLDM 2007, Leipzig, Germany, July 18–20, 2007, Proceedings (pp. 883–898). Berlin: Springer.

Lehmann, J., & Hitzler, P. (2007a). Foundations of refinement operators for description logics. In H. Blockeel,
J. Ramon, J. W. Shavlik, & P. Tadepalli (Eds.), Lecture notes in computer science: Vol. 4894. Inductive
logic programming, 17th international conference, ILP 2007, Corvallis, OR, USA, June 19–21, 2007,
Revised selected papers (pp. 161–174). Berlin: Springer.

Lehmann, J., & Hitzler, P. (2007b). A refinement operator based learning algorithm for the alc description
logic. In H. Blockeel, J. Ramon, J. W. Shavlik, & P. Tadepalli (Eds.), Lecture notes in computer science:
Vol. 4894. Inductive logic programming, 17th international conference, ILP 2007, Corvallis, OR, USA,
June 19–21, 2007, Revised selected papers (pp. 147–160). Berlin: Springer.

250 Mach Learn (2010) 78: 203–250

Lisi, F. A., & Malerba, D. (2003). Ideal refinement of descriptions in AL-log. In T. Horváth (Ed.), Lecture
notes in computer science: Vol. 2835. Inductive logic programming: 13th international conference, ILP
2003, Szeged, Hungary, September 29–October 1, 2003, Proceedings (pp. 215–232). Berlin: Springer.

Michalski, R. S. (1980). Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2(4), 349–361.

Mitchell, T. (1997). Machine learning. New York: McGraw Hill.
Nienhuys-Cheng, S.-H., & de Wolf, R. (Eds.) (1997). Foundations of inductive logic programming. Lecture

notes in computer science, (Vol. 1228). Berlin: Springer.
Nienhuys-Cheng, S.-H., Laer, W. V., Ramon, J., & Raedt, L. D. (1999). Generalizing refinement operators

to learn prenex conjunctive normal forms. In S. Džeroski & P. Flach (Eds.), Lecture notes in artificial
intelligence: Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming
(pp. 245–256). Berlin: Springer.

Nienhuys-Cheng, S. H., van der Laag, P. R. J., & van der Torre, L. W. N. (1993). Constructing refinement
operators by decomposing logical implication. In P. Torasso (Ed.), LNAI: Vol. 728. Advances in arti-
ficial intelligence: Proceedings of the 3rd congress of the Italian association for artificial intelligence
(AI∗IA’93), Torino, Italy (pp. 178–189). Berlin: Springer.

Patel-Schneider, P. F., & Horrocks, I. (2007). A comparison of two modelling paradigms in the semantic web.
Journal on Web Semantics, 5(4), 240–250.

Rector, A. L., & Brandt, S. (2008). Why do it the hard way? The case for an expressive description logic for
SNOMED. Journal of the American Medical Informatics Association.

Richards, B. L., & Mooney, R. J. (1995). Refinement of first-order Horn-clause domain theories. Machine
Learning, 19(2), 95–131.

Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., & Hart, G. (2008). A comparison of three controlled
natural languages for OWL 1.1. In K. Clark & P. F. Patel-Schneider (Eds.), Proceedings of the fourth
international workshop OWL: Experiences and directions, OWLED2008DC, Washington, DC, April
2008. Available from http://www.webont.org/owled/2008dc.

Shapiro, E. Y. (1991). Inductive inference of theories from facts. In J. L. Lassez & G. D. Plotkin (Eds.),
Computational logic: Essays in honor of Alan Robinson (pp. 199–255). Cambridge: MIT Press.

Srinivasan, A., King, R. D., Muggleton, S., & Sternberg, M. J. E. (1997). Carcinogenesis predictions using
ILP. In S. Džeroski & N. Lavrač (Eds.), Lecture notes in artificial intelligence: Vol. 1297. Proceedings
of the 7th international workshop on inductive logic programming (pp. 273–287). Berlin: Springer.

Staab, S., & Studer, R. (Eds.) (2004). Handbook on ontologies. International handbooks on information
systems. Heidelberg: Springer.

van der Laag, P. R. J., & Nienhuys-Cheng, S.-H. (1994). Existence and nonexistence of complete refine-
ment operators. In F. Bergadano & L. D. Raedt (Eds.), Lecture notes in artificial intelligence: Vol. 784.
Proceedings of the 7th European conference on machine learning (pp. 307–322). Berlin: Springer.

Völker, J., Hitzler, P., & Cimiano, P. (2007). Acquisition of OWL DL axioms from lexical resources. In
E. Franconi, M. Kifer, & W. May (Eds.), Lecture notes in computer science: Vol. 4519. Proceedings of
the 4th European semantic web conference (ESWC’07) (pp. 670–685). Berlin: Springer.

Šebelík, J., & Štěpánek, P. (1982). Horn clause programs for recursive functions. In K. Clark & S.-Å. Tärnlund
(Eds.), Logic programming (pp. 324–340). New York: Academic Press.

Železný, F., Srinivasan, A., & Page, D. (2003). Lattice-search runtime distributions may be heavy-tailed. In
S. Matwin & C. Sammut (Eds.), Lecture notes in artificial intelligence: Vol. 2583. Proceedings of the
12th international conference on inductive logic programming (pp. 333–345). Berlin: Springer.

http://www.webont.org/owled/2008dc

	Concept learning in description logics using refinement operators
	Abstract
	Introduction and motivation
	Note

	Description logics
	Learning in description logics using refinement operators
	Analysing the properties of refinement operators
	Designing a refinement operator
	Definition of the operator
	Completeness of the operator
	Achieving properness
	Cardinality restrictions and concrete role support

	The learning algorithm
	Redundancy elimination
	Creating a full learning algorithm
	Optimisations
	Using r.(C D) r.Cr.D and r.(C D) r.Cr.D
	Configurable target language

	Evaluation
	Comparison with other algorithms based on description logics
	Comparison with other ILP approaches

	Strengths and limitations of the described approach
	Applicability
	Accuracy
	Readability
	Scalability
	Usability
	Summary

	Related work
	Conclusions and further work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

