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Abstract

Artificial neural networks can be trained to perform excellently in many
application areas. Whilst they can learn from raw data to solve sophisticated
recognition and analysis problems, the acquired knowledge remains hidden
within the network architecture and is not readily accessible for analysis or
further use: Trained networks are black boxes. Recent research efforts there-
fore investigate the possibility to extract symbolic knowledge from trained
networks, in order to analyze, validate, and reuse the structural insights
gained implicitly during the training process. In this paper, we will study
how knowledge in form of propositional logic programs can be obtained in
such a way that the programs are as simple as possible — where simple is
being understood in some clearly defined and meaningful way.



1 Introduction and Motivation

The success of the neural networks machine learning technology for academic and
industrial use is undeniable. There are countless real uses spanning over many ap-
plication areas such as image analysis, speech and pattern recognition, investment
analysis, engine monitoring, fault diagnosis, etc. During a training process from
raw data, artificial neural networks acquire expert knowledge about the problem
domain, and have the ability to generalize this knowledge to similar but previ-
ously unencountered situations in a way which often surpasses the abilities of
human experts.

The knowledge obtained during the training process, however, is hidden within
the acquired network architecture and connection weights, and not directly acces-
sible for analysis, reuse, or improvement, thus limiting the range of applicability
of the neural networks technology. For these purposes, the knowledge would be
required to be available in structured symbolic form, most preferably expressed
using some logical framework.

Suitable methods for the extraction of knowledge from neural networks are
therefore being sought within many ongoing research projects worldwide, see
[1, 2, 14, 27, 30, 33, 37] to mention a few recent publications. One of the promi-
nent approaches seeks to extract knowledge in the form of logic programs, i.e. by
describing the input-output behavior of a network in terms of material implication
or rules. More precisely, activation ranges of input and output nodes are identified
with truth values for propositional variables, leading directly to the description of
the input-output behavior of the network in terms of a set of logic program rules.

This naive approach is fundamental to the rule extraction task. However, the
set of rules thus obtained is usually highly redundant and typically turns out to
be as hard to understand as the trained network itself. One of the main issues in
propositional rule extraction is therefore to alter the naive approach in order to
obtain a simpler set of rules, i.e. one which appears to be more meaningful and
intelligible.

Within the context of our own broader research efforts described e.g. in [3,
5,6,7,8,9, 4, 22, 24], we seek to understand rule extraction within a learning
cycle of (1) initializing an untrained network with background knowledge, (2)
training of the network taking background knowledge into account, (3) extraction
of knowledge from the trained network, see Figure 1, as described for example in
[7, 8, 17]. While our research efforts mainly concern first-order neural-symbolic
integration, we consider the propositional case to be fundamental for our studies.

We were surprised, however, that the following basic question apparently had
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Figure 1: The Neural-Symbolic Learning Cycle

not been answered yet within the available literature: Using the data obtained
from the naive rule extraction approach described above — when is it possible
to obtain a unique irredundant representation of the extracted data? While we
believe that applicable extraction methods will have to deviate from the exact
approach implicitly assumed in the question, we consider an answer important for
providing a fundamental understanding of the issue. This paper is meant to settle
the question to a satisfactory extent.

More precisely, we prove formally that a unique irredundant representation
can be obtained if the use of negation within the knowledge base is forbidden, i.e.
when considering definite logic programs — and we also clarify formally what we
mean by redundancy in this case. We also show that in the presence of negation,
i.e. for normal logic programs, unique representations cannot be obtained in gen-
eral. However, we present heuristic algorithms which optimize naive approaches
by retrieving programs with less redundancies, and we report on experimental
evaluations which show the usefulness of these algorithms. To the best of our
knowledge, this paper constitutes the most comprehensive treatment of the sub-
ject matter which has been done so far. We would like to stress, however, that we
consider our results to be of fundamental nature, i.e. we do not claim that they can
be of direct practical use in the form presented herein.

The structure of the paper is as follows. After some preliminaries reviewed
in Sections 2 and 3, we will present our main theoretical result on the extrac-
tion of a unique irredundant definite logic program in Section 4, together with a
corresponding algorithm. How to remove redundancies in normal logic programs
is discussed in Section 5, while a more powerful extraction algorithms for these



programs is presented in Section 6. In Section 7 we show formally that the main
theoretical result from Section 4 cannot be carried over to normal programs. An
experimental evaluation of our algorithms is presented in Section 8. A discus-
sion of related work follows in Section 9 and some final conclusions are drawn in
Section 10.

Acknowledgments

Jens Lehmann is supported by the German Federal Ministry of Education and Re-
search (BMBF) under the SoftWiki project 01ISFO2B. Sebastian Bader was sup-
ported by the GK334 of the German Research Foundation (DFG). Pascal Hitzler
is supported by the Deutsche Forschungsgemeinschaft (DFG) under the ReaSem
project.

2 Logic Programs

We first introduce some standard notation for logic programs, roughly following
[31].

A predicate in propositional logic is also called an atom. A literal is an atom
or a negated atom. A (Horn) clause in propositional logic is of the form ¢ «+
ly,...,l, withn > 0, where ¢ is an atom and all [; with 1 < ¢ < n are literals, and
q is called the head and [, . . . , [, the body of the clause. Clause bodies are under-
stood to be conjunctions. If all /; are atoms a clause is called definite. The number
of literals in the body of a clause is called the length of the clause. A (normal
propositional) logic program is a finite set of clauses, a definite (propositional)
logic program is a finite set of definite clauses.

An interpretation maps predicates to true or false. We will usually identify
an interpretation with the set of predicates which it maps to true. An interpretation
is extended to literals, clauses and programs in the usual way. A model of a clause
C'is an interpretation / which maps C' to true (in symbols: I = C). A model of
a program P is an interpretation which maps every clause in P to true.

Given a logic program P, we denote the (finite) set of all atoms occurring in
it by Bp, and the set of all interpretations of P by Ip; note that /5 is the powerset
of the (finite) set By of all atoms occurring in P.

As a neural network can be understood as a function between its input and
output layer, we require a similar perspective on logic programs. This is provided



by the standard notion of a semantic operator, which is used to describe the mean-
ing of a program in terms of operator properties [31]. We will elaborate on the
relation to neural networks in Section 3. The immediate consequence operator T'p
associated with a given logic program P is defined as follows:

Definition 2.1. T’» is a mapping from interpretations to interpretations defined in
the following way for an interpretation I and a program P:

Tp(I) :={q|q« B isaclausein P and I |= B}.

If the underlying program is definite we will call T» definite. An important
property of definite Tr-operators is monotonicity, i.e. I C J implies Tp(I) C
Tp(J). The operators Tp for a program P and T for a program Q are equal if
they are pointwise equal, i.e. if we have T (/) = To([) for all interpretations /.
In this case, we call the programs P and Q equivalent.

As mentioned in the introduction, we are interested in extracting small pro-
grams from networks. We will use the obvious measure of size of a program P,
which is defined as the sum of the number of all (not necessarily distinct) literals
in all clauses in P. A program P is called (strictly) smaller than a program Q, if
its size is (strictly) less than the size of Q.

As already noted, the immediate consequence operator will serve as a link
between programs and networks, i.e. we will be interested in logic programs up to
equivalence. Consequently, a program will be called minimal, if there is no strictly
smaller equivalent program.

The notion of minimality just introduced is difficult to operationalize. We thus
introduce the notion of reduced program; the relationship between reduction and
minimality will become clear later on in Corollary 4.4. Reduction is described in
terms of subsumption, which conveys the idea of redundancy of a certain clause
Cs in presence of another clause (. If in a given program P, we have that C
subsumes C', we find that the T’p-operator of the program does not change after
removing Cj.

Definition 2.2. A clause is said to be consistent iff the body does not contain a
predicate and its negation.

Definition 2.3. A clause C : h < p1,...,Pa, 7q1, - - ., —qQp IS Said to subsume the
clause Cy : h «— 1y, ..., 1¢, 781, ..., 8q, iff we have {p1,...,pa} C{ry,..., 7}
and {q1,...,q} C {s1,...,54}.



Algorithm 1: Constructing a reduced logic program
Input: An arbitrary program P.
Output: A reduced logic program Q with Tp = Tp.

1 Initialize Q = P.

2 while one of the following reductions applies do

3 if there is an inconsistent clause C in O then

4 L Remove C.

5 if there is a clause in Q whose body contains the literal L twice then
6 L Remove one occurrence of L from the body.

7 if there are Cy # Cy in Q such that C subsumes Cy then

8 L Remove (5.

9 Return Q as result

Definition 2.4. A program P is called reduced if the following properties hold:

1. Every clause in P is consistent.
2. No literal appears more than once in some clause body.

3. There are no clauses Cy # Cy in P, such that C, subsumes Cs.

Humans usually write reduced logic programs. Using Definition 2.4, we can
define the naive Algorithm 1 for reducing logic programs: Simply check every
condition separately on every clause, and remove the subsumed, respectively ir-
relevant, symbols or clauses. Performing steps of this algorithm is called reducing
a program.

Proposition 2.5. If () is a reduced version of the propositional logic program P,
then Tp = TQ.

Proof sketch. Algorithm 1 will change the given program in three cases. (1) In-
consistent clauses are removed. This does not change the associated operator, be-
cause an inconsistent clause does not contribute to it. (2) Double occurrences of
literals are removed, which does not change the behavior of the clause. (3) Sub-
sumed clauses are removed. But whenever a clause C’ is subsumed by C', we find
that under all interpretations that satisfy the body of (' that the body of C} is also
mapped to true. Therefore, the Tr-operator does not change while removing C,
from P. ]



3 Neural-Symbolic Integration

For the purpose of this paper, an artificial neural network, also called connec-
tionist system, consists of (a finite set of) nodes or units and weighted directed
connections between them. The weights are understood to be real numbers. The
network updates itself in discrete time steps. At every point in time, each unit car-
ries a real-numbered activation. The activation is computed based on the current
input of the unit from the incoming weighted connections from the previous time
step, as follows. Let vq, . . ., v,, be the activation of the predecessor units for a unit
k at time step ¢, and let wy, ..., w, be the weights of the connections between
those units and unit k, then the input of unit k is computed as i, = > . w;-v;. The
activation of the unit at time step ¢ + 1 is obtained by applying a simple function
to its input, e.g. a threshold or a sigmoidal function.

We would like to remark, that the mathematical properties which we will show
in the following, are independent of any concrete neural network paradigm. They
may even prove useful for the understanding of biological neural networks, though
this remains to be investigated, and the authors’ interests lie primarily in under-
standing artificial connectionist systems. We refer to [11] for general background
on artificial neural networks.

More specifically, we consider so-called 3-layer feed forward networks with
threshold activation functions, as depicted in Figure 2. The nodes in the leftmost
layer are called the input nodes and the nodes in the rightmost layer are called
the output nodes of the network. A network can be understood as computing the
function determined by propagating some input activation to the output layer.

In order to connect the input-output behavior of a neural network with the
immediate consequence operator of a logic program, we interpret the input and
output nodes to be propositional variables. Activations above a certain threshold
are interpreted as true, others as false. In [22, 25], an algorithm was presented for
constructing a neural network for a given I’p-operator, thus providing the initial-
ization step depicted in Figure 1. Without going into the details, we will give the
basic principles here. For each atom in the program there is one unit in the input
and output layer of the network, and for each clause there is a unit in the hidden
layer. The connections between the layers are set up such that the input-output
behavior of the network matches the T’»-operator. The basic idea is depicted in
Figure 2, and an example-run of the network is shown in Figure 3. The algo-
rithm was generalized to sigmoidal activation functions in [17], thus enabling the
use of powerful learning algorithms based on backpropagation [11]. The resulting
Connectionist Inductive Learning and Logic Programming System (CILP), also
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Figure 2: The 3-layer network constructed to implement the 7’»-operator of the
given program P. Connections with weight 1 are depicted solid, those with weight
—1 are dashed. The numbers denote the thresholds of the units.

comprises extraction capabilities described in [14], and we will return to this in
Section 9.

The representation of the 7’»-operator as a feedforward network is the base
of the so-called core method [7] for neural-symbolic integration. In this paper,
however, we are concerned with the extraction of logic programs from neural net-
works. The naive, sometimes called global or pedagogical approach is to activate
the input layer of the given network with all possible interpretations, and to read
off the corresponding interpretations in the output layer. We thus obtain a map-
ping f : Ip — Ip as target function for the knowledge extraction by interpreting
it as an immediate consequence operator. The task which remains is to find a logic
program P such that T» = f, and furthermore, to do this such that P is as simple
as possible.

We start with a naive extraction by “Full Exploration”, detailed in Algo-
rithms 2 and 3, for definite and normal logic programs, respectively. We will find
that the extraction of definite programs is easier and theoretically more satisfac-
tory. However, negation is perceived as highly desirable because it allows to ex-
press knowledge more naturally. We give an example for full exploration in the
normal case. Algorithm 3 allows to state the following proposition.

Proposition 3.1. For every mapping f : Ip — Ip, we can construct a proposi-
tional logic program P with Tp = f.



Figure 3: A run of the network depicted in Figure 2 for the interpretation / =
{p,q}. A unit is depicted in black, if its activation is 1. At time ¢ = 0 the corre-
sponding units in the input layer are activated to 1. This activation is propagated to
the hidden layer and results in two active units there. Finally, it reaches the output

layer, i.e. Tp(I) = {p, q}.

Algorithm 2: Full Exploration — Definite
Input: A monotone mapping f : Ip — Ip.
Output: A definite logic program P with Tp = f.

Initialize P = (.
foreach interpretation I :== {ry,...,r,} € Ip do
foreach h € f(I) do
| Addthe clause b« r1,... 74 to P.

A W N -

Return P as result

wn

Example 3.2. Let Bp = {p, q} and the mapping f be obtained by querying the
network depicted in Figure 2. Using Algorithm 3, we re-obtain program P as
given in Figure 2, and find that Tp = [ holds.

f={ 0~ {p} P ={p——p, g
{p} — {a} P DG
{g}— 0 q P,

{p,qt — {p.q}} q—D,q}

Note that programs obtained using Algorithms 2 or 3 are in general neither
reduced nor minimal. In order to obtain simpler programs, there are basically two
possibilities. On the one hand we can extract a large program using e.g. Algo-
rithms 2 or 3 and refine it. This general idea was first described in [25], but not
spelled out using an algorithm. On the other hand, we can build a program from
scratch. Both possibilities will be pursued in the sequel.

9



Algorithm 3: Full Exploration — Normal
Input: An arbitrary mapping f : Ip — Ip.
Output: A normal logic program P with Tp = f.

1 Initialize P = 0.
2 foreach interpretation I := {ry,...,r,} € Ip do
Let Bp\ I = {s1,..., S}
foreach i € f(I) do
| Addthe clause h < ry,...,7q, 71, ..., 5, t0 P.

w

wn A

6 Return P as result

4 Extracting Reduced Definite Programs

First, we will discuss the simpler case of definite logic programs. We will derive
an algorithm which returns only minimal programs, and we will show that the no-
tion of minimal program coincides with that of a reduced program, thus serving
both intuitions at the same time. To obtain a minimal program, we will employ a
linear order < on the space of interpretations which has the property that [ < J
whenever [ C J. Since all considered interpretations are finite, such a linear order
trivially exists. We then proceed as in Algorithm 2. But by querying the interpre-
tations according to the order, we will add only necessary clauses and obtain a
minimal program. Algorithm 4 shows the extraction of a reduced definite pro-
gram from a monotone mapping f. The correctness and minimality of the result
is established in Propositions 4.1 and 4.2 respectively.

Proposition 4.1. Let T'» be a definite consequence operator and Q be the result
of Algorithm 4, obtained for f = Tp. Then Tp = To.

Proof. We will show that Tp(I) = Tg(I) for an arbitrary I = {py,...,p,} by
showing Tp(I) C To(I) and Tp (1) 2 To([).

To show Tp(1) C To(l) we assume ¢ € Tp(I) and show that ¢ € To(])
follows: We know that the algorithm will treat I and ¢ (because for every inter-
pretation [ every element in T (/) is investigated). Then we have to distinguish
two cases.

1. There already exists a clause ¢ < ¢1, ..., ¢, With {q1,...,¢n} C [ in Q.
Then by definition ¢ € To(1).

10



Algorithm 4: Extracting a Reduced Definite Program
Input: A monotone mapping f : Ip — Ip.
Output: A definite logic program P with Tp = f.

Fix an order < on Ip with I < Jif [I| < |J].

Initialize © = (.

foreach [ := {p1,...,p,} € Ip (ascending according to <) do
foreach ¢ € f(I) do
L if there isno (¢ «— q1,...,qm) € Qwith{q,...,qn} C I then

A U A W N -

L add the clause ¢ «— p1,...,p, to Q.

Return Q as the result.

|

2. If there is no such clause ¢ «— pq,...,p, yet, it is added to Q, hence we
have ¢ € To(1).

Conversely, we show Tp(I) 2 To(I) by assuming ¢ € To(/) and deriving
q € Tp(1):1f ¢ € To(I) we have by definition of T a clause ¢ < ¢i, . . ., ¢, With
{q1,...,qm} C 1. This means that the extraction algorithm must have treated the
case ¢ € Tp(J) with J = {q1,...,qn}- Since Tp is monotonic (it is the operator
of a definite program) and J C I we have Tp(J) C Tp(I), hence ¢ is also an
element of Tp([]). O

Proposition 4.2. The output of Algorithm 4 is a reduced definite propositional
logic program.

Proof. Obviously the output of the algorithm is a definite program Q, because it
generates only definite clauses. We have to show that the resulting program is re-
duced. For a proof by contradiction we assume that Q is not reduced. According
to Definition 2.4, there are three possible reasons for this: (1) The program con-
tains an inconsistent clause. (2) A predicate symbol appears more than once in the
body of a clause. (3) There are two different clauses C; and C' in Q, such that C
subsumes Cs.

Case (1) and (2) are impossible, because neither inconsistent clauses are con-
structed, nor literals are added twice. To show that no subsumed clause is con-
structed (3), we let Cy be h «— p1,...,p, and Cy be h «— ¢qq,...,q, and as-
sume {p1,...,pa} € {q1,...,q}. As abbreviations we use I = {p1,...,p,} and
J ={q,...,q} Because of (2) being impossible, we know || = a and |J| = b

11



and |I| < |J|. This means the algorithm has treated I (and h € f(I)) before J
(and h € f(J)). Cy was generated by treating [ and h, because (' exists and can
only be generated through I and h. While treating J and h, the algorithm checks
for clauses h < rq,...,ry, with {ry,... r,} C J. Because C] is such a clause,
C5 cannot be a clause in Q, which is a contradiction and completes the proof. [

Propositions 4.1 and 4.2 show that the output of the extraction algorithm is in
fact a reduced definite program, which has the desired operator. Please note that
we require the input of the algorithm to be an operator of a definite program, i.e.
to be a monotonic mapping f : Ip — Ip.

There are interesting points regarding the efficiency of the presented algo-
rithm. Instead of storing all interpretations it is easy to write a successor function,
which returns the “next” interpretation to be handled. Thus it is not necessary to
actually store interpretations and therefore the space complexity is very low, in-
deed only () and the current interpretation need to be stored. The bottleneck is the
time complexity, which is exponential with respect to the number of predicates.
However, it is also exponential with respect to the maximum length of a clause in
@, because for an input || = n the algorithm generates Horn clauses of length n
only. Thus if we know a limit n of the number of elements in a body of a Horn
clause in advance, we can reduce time complexity and maintain the properties
proved above, by stopping the algorithm if || > n.

We proceed to show that the reduced program obtained by the algorithm is
unique. The following theorem together with Corollary 4.4 are two of the main
theoretical results in this paper.

Theorem 4.3. For any operator Tp of a definite propositional logic program P
there is exactly one reduced definite propositional logic program Q with Tp = To.

Proof. Assume we have an operator 7’» of a definite program P. With Algorithm 4
applied to f = T and Propositions 4.1 and 4.2 it follows that there is a reduced
definite program Q with Tp = To. We have to show that there cannot be more
than one program with this property.

To prove this, we assume (by contradiction) that we have two different re-
duced definite programs P, and P, with Tp = Tp, = Tp,. Two programs being
different means that there is at least one clause existing in one of the programs
which does not exist in the other program, say a clause C'; in P, which is not
in P,. (] is some definite clause of the form h < py,...,p,. By definition of
Tp, we have h € Tp ({p1,...,pm}). Because Tp, and Tp, are equal we also
have h € Tp,({p1,...,pm}). This means that there is a clause C; of the form

12



h — qi,...,q, with {q1,...,¢,} C {p1,...,pn} in P,. Applying the definition
of T again, this means that h € Tp,({q1,...,¢,}) and h € Tp ({q1,-..,q})-
Thus, we know that there must be a clause C of the form h < rq,...,r, with
{ri,....ro} SH{q1,...,¢.}in Py.

C3 subsumes C, because {r1,...,7.} € {q1,---,q.} < {p1,...,pm} and
they have the same head. We know, that by our assumption (' is not equal to
(s, because (] is not equal to any clause in P,. Additionally, we know that
H{p1,--,qm}| =mand |{q,...,q,}| = n,because P, and P; are reduced, i.e. no
predicate appears more than once in any clause body. So we have {q1,...,¢,} C
{p1,...,pm}. Because C3 has at most as many elements in its body as C5, we
know that (' is not equal to C's. That means that P, contains two different clauses
C' and C'3, where C3 subsumes C';. This contradicts P being reduced. O

This shows that each algorithm extracting reduced definite programs from a
neural network must return the same result as Algorithm 4. We can now also
obtain that the notion of reduced program coincides with that of minimal program,
which shows that Algorithm 4 also extracts the least program in terms of size.

Corollary 4.4. If P is a reduced definite propositional logic program, then it is
least in terms of size.

Proof. Let Q be any program with Tp = Tp. If Q is reduced, then it must be
equal to P by Theorem 4.3. Assuming Q is not reduced, we find that the reduced
program Q,.., is definite, by Definition 2.4 smaller than O, and 7> = To. From
Theorem 4.3 we know that there is only one reduced definite program with oper-
ator Tp, so we have P = Q,..q. Because 9,4 is smaller than O, we find that P is
also smaller than Q. Hence, P is smaller than any non-reduced program. [

The results just given, show that there is a unique desired choice for the result
of the extraction in case on a monotonic input-output mapping of the network.
Note, that this certainly does not answer or even address how to obtain a mean-
ingful interpretation of the extracted program, a task which is important but out of
scope for the more fundamental issues addressed in this paper.

S Reducing Normal Logic Programs

As discussed in Section 3, it is possible to extract a normal logic program P from a
neural network, such that the behavior of the associated 7’»-operator and the input-
output-mapping of the network are identical. But the program obtained from the

13



naive Algorithm 3 in general yields an unwieldy program. In this section, we will
show how to refine this logic program.

The first question to be asked is: Will we be able to obtain a result as strong as
Theorem 4.3?7 The following example indicates a negative answer, and a formal
assessment of the situation will follow later on in Proposition 7.1.

Example S5.1. Let P, and P; be defined as follows:

Pr={p g Py ={p«}

Obviously, in program Py, p does not depend on q. Hence, the two programs are
equivalent but P is smaller than P,. We note, however, that Py cannot be obtained
from Py by reduction in the sense of Definition 2.4.

Example 5.1 shows that the notion of reduction in terms of Definition 2.4 is
insufficient for normal logic programs, whereas size obviously is a meaningful
notion. A naive algorithm for obtaining minimal normal programs is easily con-
structed: As Bp is finite, so is the set of all possible normal programs over Bp
(assuming we avoid multiple occurrences of atoms in the same clause body and
multiple occurrences of the same clause). We can now search this set and extract
from it all programs whose immediate consequence operator coincides with the
target function, and subsequently we can extract all minimal programs by doing a
complete search. This algorithm is obviously too naive to be practical.

For the moment, we will shortly discuss possibilities for refining the set ob-
tained by Algorithm 3 (Full Exploration). We start with two examples.

Example 5.2. Let P; (as in Example 3.2) and P be defined as follows:

Pr={p— —p g Py = {p < —p, ¢
P DG P Dig;
q <+ p,—q; q < p}
q <+ p,q}

A closer look at the clauses 3 and 4 of Py yields that q does not depend on q, hence
we could replace those two clauses by the single clause q < p, resulting in Ps.

By generalizing from Examples 5.1 and 5.2, we introduce a-reduced programs
in Definition 5.4. The following definition introduces ¢- and —g-subsumption,
serving as abbreviations to keep the notions simple.

14



Definition 5.3. A clause C| is said to q-subsume Cs, if we have:

Ci=(a— qri,...,Tq, 7S1,...7Sp)
—_—— ——
N N
—_—~
Cy=(a<——q,t1,...,Te,UL, ... T UG).

Le., if C'y (without q) subsumes Cy (without —q) and we have additionally q € C}
and —q € Cy. Analogously, C is said to —~q-subsume Cs, if:

Cy = (a«=q,r1,... T, D81, ..7Sp)
—_———— N ——
I N
——~
Cy=(a+— q,t1,...,T¢, UL, ... UG).

Definition 5.4. An a-reduced program P is a program satisfying:
1. P is reduced (Definition 2.4).

2. There are no two clauses Cy # Cs in P such that C q-subsumes Cs.

3. There are no two clauses Cy # Cs in P such that C —q-subsumes Cs.

Both examples above (Example 5.1 and 5.2) show logic programs and their
a-reduced versions. A method to construct an a-reduced logic program from an
arbitrary program is given as Algorithm 5. Please note, that the first 3 reduction
steps are the same as in Algorithm 1. The proof of the following proposition is
straightforward but tedious, and is left to the reader.

Proposition 5.5. Let P be a logic program. If Q is the result of Algorithm 5 on
input P, then Q is an a-reduced logic program and Tp = To.

Unfortunately, a-reduced programs are not necessarily minimal, as the next
example shows.

Example 5.6. The following two programs are equivalent. Even though both pro-
grams are a-reduced, Pj is larger than Ps.

Py = {p « —p,r; Py ={p — —p,r;
p—Dp,T; p—Dp,T;
p—q,r} p—q,r;

P —p,q}

Note also that Ps can be transformed to P, by removing a redundant clause. How-
ever, this cannot be done by a-reduction.

15



Algorithm 5: Constructing an a-reduced logic program
Input: An arbitrary program P.

Output: An a-reduced logic program Q with Tp = Tg.
Initialize Q = P.

while one of the following reductions applies do

if there is an inconsistent clause C in O then
L Remove C.

if there is a clause in Q whose body contains the literal L twice then
6 L Remove one occurrence of L from the body.

7 if there are Cy # Cy in Q such that C subsumes Cy then
8 L Remove (5.

9 if there are Cy # Cy in Q such that C q-subsumes C5 then
10 | Remove —q in the body of Cb.

W N =

(9]

11 if there are Cy # Cy in Q such that Cy —q-subsumes C5 then
12 L Remove ¢ in the body of (5.

13 Return Q as result

In a similar manner, we can refine a-reduction by introducing further refine-
ment conditions. Refinement conditions can for example be obtained by recurring
to insights from inverse resolution operators as used in Inductive Logic Program-
ming [32]. Resulting algorithms, which we investigated, yield further refined pro-
grams at the cost of lower efficiency. The more refined algorithms return minimal
programs with a higher probability. However, none of these algorithms can guar-
antee to obtain a minimal program, which is why we do not spell out this approach
in more detail here. We rather accept the fact that we need to take a heuristic ap-
proach in order to obtain reasonable run-time behavior. We will discuss this next.

6 A Greedy Extraction Algorithm

We present another extraction algorithm for normal programs, which is closer in
spirit to Algorithm 4 in that it incrementally builds a program. For this purpose,
we introduce the notions of valid and allowed clause bodies, where the 1dea is that
we do not want to allow clauses which clearly lead to an incorrect 7> operator,
and we do not want to allow clauses, for which a shorter allowed clause exists.
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Example 6.1 illustrates the intuition.

Example 6.1. Let T'p be given as follows:

Tp={ 0—{p} A{at—{p} {pa}—0 {g,7} — {p}
{p} — 0 {r}—10 p,ry—=Ar} Ap.¢,r}— {p}}

The 3 atoms p, q,r are being used, so there would be 27 different possible clause
bodies, as shown in Table 1. The clause p < p is not valid, since we have p &
Tr({p}), whereas p < p, q,r is valid but not allowed because p < p,r is valid
and smaller.

We will give a formal definition of valid and allowed clauses, before con-
tinuing with the example. Please note that in the following definitions B is not
necessarily a clause in P.

Definition 6.2. Let T be an immediate consequence operator, and h be a pred-
icate. We call B = pq,...,Pa, q1, - - ., 7qp valid with respect to h and T iff for
every interpretation I C Bp with [ |= B we have h € Tp(I).

Definition 6.3. Let T’» be an immediate consequence operator, and h be a predi-
cate. We call B = py, ..., pa, 0q1, - . ., 7qp allowed with respect to h and T if the
following two properties hold:

1. B is valid with respect to T'» and h.
2. There is no valid body B' C B for h and Tp.

Example 6.4 (6.1 ctd.). Table I shows all possible clause bodies for Bp =
{p, q,}. Furthermore it shows either “Allowed”, if the body is allowed, or gives
the reason why it is not allowed.

Next, we will present an algorithm to compute the set of allowed clause bod-
ies. The underlying ideas are illustrated with the help of a Hasse diagram (i.e.,
the partition of the Hasse diagram corresponding to consistent clause bodies) in
Figure 4. First, all consistent clause bodies that contain every atom from Bp are
constructed and those which are valid with respect to the Tr-operator are included
in a set B. In Figure 4 those are depicted white in the bottom-row, while invalid
clause bodies are marked gray. Then, for all those sets B € B all direct subsets
(subsets with one element less, i.e. one row up in the diagram) are constructed by
removing one (possibly negated) atom b. Let B’ := B\ {b}. If B’ U {—b} is also
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’ Body \ Evaluation H Body \ Evaluation
0 NV péTr({p}) || {r.-p} NV (p€Tp({r}))
{p} NV (pgTp({p})) || {r,—q} NV (p&Tp({r}))
{a} NV @ &Tp({p,a})) || {-p,~a} NV (p€Tp{r}))
{r} NV (p€Tp({r})) {=p, —r} Allowed
{-pt |NV@&Tp({r}) || {~q —r} NV (p€Tp({p}))
{—~¢} | NV@¢Tr({p}) || {p.a.7} NA ({p, 7} is smaller)
{-~r} |NV@&Tp({p}) || {p,a.—r} | NV@ETr({p,q}))
{p,a} | NV@ETr({p.a}) || {p,~a.v} | NA({p,r} is smaller)
{p,r} | Allowed {-p,q,7} NA ({g,r} is smaller)
{¢,7} | Allowed {p,~q,—r} | NV (@&Tp({p}))
{p,~q} | NV @&Tp({p}) || {=p,q.~r} | NA({-p,q} is smaller)
{p,—r} | NVeTp({p}) || {-p,~a,7} | NV(@gTr({r}))
{¢,—p} | Allowed {=p,~q,—r} | NA ({—p, —r} is smaller)
{g,~r} | NV @&Tr({p. ¢}))

Table 1: Evaluation of clause bodies for the T’»-operator from Example 6.1. Bod-
ies which are not valid are marked with "NV and those that are not allowed with
”NA”. For both cases the reason is given in parentheses.

contained in B (i.e. white in the figure), we can conclude, that the truth value of b
is not important. Therefore, we add the body B’ to B and mark B and B’ U {-b}
as subsumed. This process is repeated for all sets in 5. Finally, we return all valid
elements from B that are not marked subsumed. The details can be found as Al-
gorithm 6. In the sequel, we will show that the algorithm is sound and complete,
1.e., that it returns all allowed clause bodies with respect to a given operator.

Lemma 6.5. Let T’p and h be the input for Algorithm 6. Then every set B added
to B is a valid clause body wrt. T» and h.

Proof sketch. Every clause body B added to B in line 5 of the algorithm is valid,
because there is exactly one / C Bp such that / = B and we find h € Tp(])
and hence B to be valid. Let B’ be a body added to B in line 10. B’ will be
added iff B := B’ U {b} and B” = B’ U {—b} are both valid. Let Z be the set of
interpretations mapping B to true; and let Z’' and Z” be the sets of interpretations
mapping B’ and B” to true, respectively. Obviously, we find Z = 7" U Z”, which
completes the proof. O
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[{r.a.ry]  [{p.ar}] [{par}] [{F.ar}] e [{Bar}] [ a7 {p,q,rZ

subsumed subsumed subsumed subsumed subsumed

Figure 4: The Hasse diagram of consistent clause bodies over p, ¢, r. Valid clause
bodies wrt. T’» from Example 6.1 are depicted in white, invalid ones gray.

Lemma 6.6. Let Tp and h be the input for Algorithm 6. Then in line 12, B contains
all valid clause bodies.

Proof sketch. The following could be shown formally by induction on the size of
the body D going from |Bp| to 1. Assume there is a valid clause body D which
is not contained in . For | D| = |Bp| we derive a contradiction as D would have
been included in line 5. For | D| < |Bp| with ¢ € D we can conclude that DU {q}
and D U {—q} are also valid. Hence, they would be contained in 3 and we obtain
a contradiction because D would have been added to B in line 10. Therefore we
can conclude that B in line 12 contains all valid clause bodies. ]

Lemma 6.7. Let T’» and h be the input, and C be the output of Algorithm 6. Then
every set C € C is an allowed clause body.

Proof sketch. According to Definition 6.3, we find C' to be allowed, if it is valid,
and if (b) there is no valid B’ C B. From Lemma 6.5, we know that every C' €
C returned by Algorithm 6 is valid. Hence it remains to show that there is no
valid B’ C B. Assuming there would be a B’ and B € C with B’ C B leads
immediately to a contradiction, because B would have been marked subsumed in
line 11 and hence not be included in C. ]

Proposition 6.8. Algorithm 6 is correct and complete, i.e. it outputs the set of all
allowed clause bodies with respect to a given T'p-operator and an atom h.

Proof sketch. Using Lemma 6.7, we know that every returned clause body is al-
lowed, i.e., Algorithm 6 is correct. The completeness follows from Lemma 6.6
and the fact that every allowed clause body B is actually valid and not subsumed
by some B’ C B which is ensured in line 11. 0
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Algorithm 6: Computing allowed clause bodies

Input: An arbitrary mapping f : Ip — Ip over Bp = {q1, ..., qn}
Input: A target atom h
Output: The set of allowed clause bodies

1 Initialize B = 0.

2 foreach [ :={ay,...,a,} C Bp do

3 | ifh € Tp(I) then

4 Lﬂt{bb...,bl}::pr\[.

5 L Add {ay,...,a,, —by,...,2b} to B.

¢ foreach B added to B (sorted descending wrt. their cardinality) do
7 foreach b € B do
8 Let B := B\ {b}.
9 if B U {—-b} € B then
10 Add B’ to B.
L Mark B and B’ U {—b} to be subsumed.

12 Return B\ {B € B | B is marked subsumed} as result.

We use the notion of allowed clause bodies to present a greedy algorithm that
constructs a logic program for a given target function. The algorithm will incre-
mentally add clauses to an initially empty program. The clause to add is chosen
from the set of allowed clauses with respect to some score-function, which is a
heuristics for the importance of a clause. This function computes the number of
interpretations for which the program does not yet behave correctly, but for which
it would after adding the clause.

Definition 6.9. Let Bp be a set of predicates. The score of a clause C' : h — B
with respect to a program P is defined as

score(C,P) := [{I | I € Bp and h & Tp(I) and I |= B}|.

Please note, that the score-function can easily be implemented based on in-
sights from the Hasse-diagrams as depicted in Figure 4.

To keep things simple, we will consider one predicate at a time only, since after
treating every predicate symbol, we can put the resulting sub-programs together.
Let ¢ € Bp be an atom, then we call T} the restricted consequence operator for ¢
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Algorithm 7: Greedy Extraction Algorithm

Input: An arbitrary mapping f : Ip — Ip over Bp = {q1, ..., qn}
Output: A logic program Q with Ty = f.

1 Initialize Q = 0.
2 foreach predicate q; € Bp do

3 Construct the set .5; of allowed clause bodies for ¢;.

4 LetC :={q; < B | B € S;}.

5 Initialize: Q; = 0.

6 repeat

7 Let s := mazcec (score(C, Q;)).

8 LetC' := {C | C € C and score(C, Q;) = s}.

9 Add C to Q;, with C being one of the smallest clauses in C’.
10 until 7o, = T% (s = 0)

11 Add 9, to O.

12 Return Q as result

and set T5(I) = {q} if ¢ € Tp(I), and TA(I) = 0 otherwise. Algorithm 7 gives
the details of the resulting procedure and is illustrated in Example 6.10.

Example 6.10. Let T» be given as follows:

Tp={ 0—{p} {r}—0 {7} — 0 {p.q.s}—0
{p}—=0 {pagd—{p} Hest—{p} A{p7st—{p}
{at = A{p} {pry—={p} A{rs}—10 {g,r, s} — {p}
{r}—0  Ap,st—{p} {p.a.v}—{p} {p,a.r.s}—{p}}

Obviously, we can concentrate on the predicate p, since there are no other predi-
cates occurring as a consequence. The resulting set of allowed clause bodies is

S ={(p,r); (=p, —r,—s); (g, —p, —r); (q, -7, 7s);
(p,q,s); (p, s, —q); (¢,5,—p); (¢,7,5)}
Tables 2 and 3 show two example runs of Algorithm 7. In each step the score
for the allowed clauses which are not yet in the program, is indicated. (The score

of the clause which is added to the constructed program Q is given in bold-
face.) E.g., the score for p,q,—s in the first step of the first run is 2, because
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clause body \ 1.2.3.4.5.6. ‘

p.r 4] _ .

-p, r, S 2 2 Pl {p&p’r’

q,—p, T 2 p<—4q,7p,7,

q,r, s 22 1[1] D < 7P, 1, 7S]

D, q, S 211100 P < q, T, S;

P54 2 111 p <D, 8,7

q,5,—p 2211 1[] — g5, p}

q,7, s 211111 b7
Table 2:

Example run 1 and the resulting program.
2.

| clause body | 1.2.3.4.5. |
P 4]
—p, S, S 2 PzZ{p<—p,T;
q7_‘p7_\7" 2 2 1 0 0 p<——\p,—|7”,—|8;
q, T, s 2211

pb<—4q,s 7p;
p,q,s 21110
D, S, q 211 1[] p < q,r, 7S]
q,S8, 7P 2 2 p<—p,8’—|q}

Table 3: Example run 2 and the resulting program.

p € Tp({p,q}) and p € Tp({p, q,7}). It goes down to 1 in the second step, be-
cause we added p — p,r to Q and only p € To({p, q,r}) is left. This means
that we would only gain one additional interpretation by adding p < p,q, —s as
second clause.

For Example 6.10 there are two different possible runs of the algorithm, which
return programs of different size for the same operator. The first run produces a
program with six clauses and 17 literals. The second run produces a program with
five clauses and 14 literals. This shows that the algorithm does not always return a
minimal program, which was expected since the algorithm is greedy, i.e. it chooses
the clause with respect to some heuristics and without forecasting the effects of
this decision. We also see that the algorithm is not deterministic, because there
may be several clauses with the highest score and the lowest number of literals
(e.g.in step 3 of run 1).

While it is clear that the score function is a meaningful heuristics, it is difficult
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valid bodies allowed bodies
n 3" max avg/red | max avg / red
2 9 9 3.0/36% 2 1,3/15%
3 27 27 7.3/27% 6 25/ 9%
4 81 51 17.1/21% 13 52/ 6%
5 243 119 40.6 / 17% 20 11,1/ 5%
6 729 187 96.5/13% 41 24,0/ 3%
7 2,187 409 219.9/10% 73 52,8/ 2%
8 6,561 800 501.7/ 8% | 158 117,5/ 2%
9 19,683 | 1,548 1,136.9/ 6% | 329 261,8/ 1%
10 59,049 | 3,259 2,5704/ 4% | 688 583,8/ 1%

Table 4: Evaluation of clause pruning.

to judge the performance of the pruning method, i.e. the computation of allowed
clauses. To evaluate the pruning we ran several tests, the results of which are
shown in Table 4. The left-most column shows the number of predicates, which
were used for the test. For this number of predicates we randomly generated T
operators for a fixed predicate ¢ and computed the set of allowed clauses for this
operator. We are, of course, interested in the number of allowed clauses we get,
because this gives us an idea how good the pruning method works. To get a good
approximation we generated 1000 operators for each fixed number of predicates.
The second column in Table 4 shows the number of all clause bodies, which exist
using n predicates (this is 3"). The third column shows the maximum number of
valid clause bodies over all 1000 samples, followed by the average number and
the corresponding reduction ratio wrt. the total number of clause bodies. Finally,
the same numbers are given for allowed clause bodies.

A look at the table reveals that the number of existing clause bodies grows
by a factor of 3 if a predicate is added, whereas the maximum and average in the
samples grow approximately by a factor of 2. As a consequence the percentage of
allowed clauses will decrease with an increasing number of predicates, i.e. only a
smaller fraction of clauses survive the pruning process. In general a good reduc-
tion is achieved, which in the next section will allow us to define an Intelligent
Program Search Algorithm. It is important to notice that the algorithm will proba-
bly perform even better in real world tasks, because there the 7p operator usually
follows certain patterns, which tends to lead to shorter rules. A consequence is that
the number of allowed clauses is likely to be lower than the average in column 4.

23



Also note that the number of allowed clauses is an upper bound for the size of the
output program, which is returned by the greedy algorithm.

7 Extracting Minimal Normal Programs

The discussed approaches for extracting normal programs cannot guarantee min-
imality of the extracted program. This raises the following question: Is there al-
ways a unique minimal (i.e. least) program for any given target function? The
answer is negative, as the following proposition shows.

Proposition 7.1. There can be more than one minimal propositional logic pro-
gram with a given immediate consequence operator.

Proof. For the programs P, and P, below (corresponding to the operator in ex-
ample 6.1), there is no smaller program, i.e. a program with less literals, and the
same immediate consequence operator.

7)1 = {p(— —|p’ —\7"; 7)2 = {p(— —\p’ —\7";
p—=DpT p<—DT,
p < g} pqr}

To prove this we have to show that there is no smaller program having the oper-
ator Tp := Tp, = Tp,. In Example 6.1 we have computed the set S of allowed
clause bodies for the predicate p (Obviously, a minimal program with this operator
consists of clauses with head p only): S = {p,r; ¢, r;q, —p; —=p, —r}. In particular
there is no clause body with one or three literals. This means for a program to be
smaller than P; or P», which have the size of nine literals, it must have one or
two clauses where each clause has exactly three literals (exactly two literals in the
body). Furthermore, a program must contain the clause p < —p, —r, because it is
the only one for which we get Tp(()) = {p}. We also need the clause p < p,r,
because it is the only one which gives us T»({p,7}) = {p}. But for the program
Q ={p— —p,—r;p<—p,r} wehavep & Tr({q,r}). This means that there is no
program with two or less clauses with operator 7’p. This completes the proof. [

Proposition 7.1 shows that an analogy to Corollary 4.4 does not hold for nor-
mal programs. This means that at best we can hope to extract minimal normal
programs from neural networks, but in general not a least program. The complex-
ity of this task is yet unknown, as is an optimal extraction algorithm. However,
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Algorithm 8: Intelligent Program Search

Input: An arbitrary mapping f : Ip — Ip over Bp = {q1, ..., qn}
Output: A logic program Q with Ty = f.

Initialize Q = (.
foreach predicate q; € Bp do
Construct the set .5; of allowed clause bodies for ¢;.
Initialize: n;, = 0
repeat
if there is no allowed program Q; with T} = T, and size n; then
L Increment n;

N QA B AW -

until until an allowed program Q; was found

| AddQ;t0 Q.

10 Return Q as result

we can modify Algorithm 7 in order to obtain minimal programs. We do this by
performing a full program search instead of using a heuristics, i.e. the score func-
tion, to add clauses to subprograms. The resulting Algorithm 8 is more intelligent
than a naive full program search algorithm in that it constructs subprograms for
each predicate separately and makes use of the pruning method introduced for the
greedy algorithm.

8 Experimental Evaluation

Even though we focused on a theoretical investigation, we would like to present
some experimental results. All algorithms described above were implemented in
Java 1.5 and applied to some (benchmark) problems. First we will present a very
small example in detail. Afterwards, solutions for three problems from the UCI
Machine Learning Repository [12] are presented. These are the Monks Problem 1
and 2 and the Shuttle Landing Control problem.

We trained a neural network with data about Nessie from Loch Ness. The
learned input-output mapping is given in Table 5. We used the following abbrevi-
ations:
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input output input output
a d f i tja d f i t a d f i1 tja d f i t
+ + + 4+ +[- + - + + -+ + + + |-+ -+ o+
+ + + + - |- + - + + -+ 4+ o+ - -+ -+ o+
+ 4+ 4+ - 4+ -+ -+ o+ -+ o+ -+ - - -+ 4+
+ 4+ 4+ - - -+ -+ 4+ -+ o+ - - - - -+ 4+
+ 4+ - 4+ 4+ |+ + - -+ -+ -+ ]+ o+ - -4+
+ 4+ - 4+ -+ + - -+ -+ -+ -+ o+ - -4+
+ 4+ - - 4+ + - -+ e L
+ + - - -+ + - - + S I S T -
+ - + 4+ + |-+ -+ - - -+ o+ + |-+ -+ -
+ - 4+ 4+ - -+ -+ - - -+ o+ - -+ -+ -
+ - 4+ - 4+ -+ - S L
+ - 4+ - -+ -+ - - -+ - - - - -+ -
+ - - 4+ 4+ + - - - - - -+ A+ o+ - - -
+ - - 4+ + 4+ - - - - - -+ + + - - -
+ - - - o+ |+ o+ - - - R B
+ - - - -+ + - - - I .

Table 5: Input-output mapping for the fairy-tale example.

f nessie is a fairy tale creature,
I nessie is immortal,

a nessie is an animal,

d nessie is a dragon and

t nessie is a tourist attraction.

One, obvious implication in that data, which will hopefully be reflected in the
resulting program, is ¢ < d, because we find a “+” for the output-t, whenever
there is a “+” for the input-d.

Applying Algorithm 3, we obtain a program consisting of 72 clauses, namely
one for each “+” on the output side, where the body represents the corresponding
input. The partial result for the head d, is shown in Figure 5. After applying the a-
reduction (Algorithm 5), we obtain the program shown in Figure 6. This program
was actually the program we used to generate samples to train the neural network.
Algorithm 6 returned 5 allowed clause bodies. The Greedy algorithm as well as the
intelligent program search returned the same final program. In Table 7 the number
of clause bodies is given and Table 8 shows the running times of the different
algorithms.

Next, we studied the Monks problems [36]. These are classification problems,
where monks must be classified according to six attributes. Those attributes are
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d<— a,d,f,it.

d <« a,d, f,—,t.
d<—a,d,—f, —i,t.
d <« a,~d, f,1,t.
d <« a,~d,—f,i,t.

d — a,~d,~f, =i, —t.

d — —a,d,~f,it.

d«— a,d,f,i,—t.
d«—a,d,—f,i,t.

d < a,d,—~f,—i,t.

d<«— a,~d, f,—i,t.

d <« a,~d,—f, i, —t.

d — —a,d, f,i,t.

d — —a,d,~f,i,—t.

d«— a,d, f,—i,t.
d<«—a,d,—f,1,t.
d<—a,—d, f,i,t.
d«— a,—d, f,—i,—t.
d<«— a,~d,—~f,—,t.
d — —a,d, f,i,—t.
d «— —a,—d, f,1i,t.

d «— —a,—d, f,i,—t. d«— —a,~d,~f,1,t. d— —a,~d,~f, i, —t.

Figure 5: Partial result (definition of d) of Algorithm 3, if applied to the mapping
shown in Table 5.

1 — f. // if nessie is a fairy tale creature then she is immortal

a «— —f. // if nessie is not a fairy tale creature then she is an animal
d «— a. // if nessie is an animal then she is a dragon

d 1. // if nessie is immortal then she is a dragon

t«—d. // if nessie is a dragon then she is a tourist attraction

Figure 6: The a-reduced (Algorithm 5) version of the result of Algorithm 3, if
applied to the mapping shown in Table 5.

represented using one or two propositional variables each, as shown in Table 6.

For each of the Monks Problems, a set of attribute-class pairs is given, similar
to Table 5, but with only one output called class. In problem 1, we find class = 1
whenever the value of attribute a and b coincide, or if ¢ = 1. The set of 432 sam-
ples can easily be represented as a propositional logic program using the encoding
shown in Table 6 and adding a corresponding clause for each item with class = 1.
Applying Algorithm 5, we obtain the program shown in Figure 7. As before, the
outputs of the Greedy algorithm coincides with that result.

For the second Monks Problem, we find class = 1 whenever exactly two
attributes have the value 1. The resulting program for the Monks Problem 2 is
partly shown in Figure 8. Unfortunately, and mainly due to our encoding, the result
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Propositional encoding of the different values
Att.  Values 1 2 3 4

{1,2,3} [ {ay, a2} {a1,7as} {-ar} -
{1,2,3} | {01, b2} {b1,2bo}  {—bi} -
{1,2} {c1} {—ci} -
{1,2,3} {d1,dy} {dy,—ds} {—di} )
{1,2,3,4} | {e1,e2} {e1,nea} {—e1,ea} {—eq,—es}
{1,2} {1} {—=/f1} - -

Table 6: A propositional encoding of attribute-values for the Monks Problem.

~ 0O QL0 R

monky < aq, as, by, bs. //monkyifa=1andb=1
monky < aq, by, —as, —bs. //monky ifa=2andb =2
monk;, < —ay, —by. //monky ifa=3andb=3
monk; < eq, es. //monky ife =1

Figure 7: The resulting program for the Monks Problem 1.

consists of 104 clauses, because we can not use an explicit negation. Therefore,
the program search does not terminate, as 2'%* clauses would have to be tested.

As a last experiment, we used the Shuttle Landing Control data set from the
UCI repository. Using 6 attributes, it must be decided, whether to use manual or
automatic control for the landing procedure of some shuttle. As for the Monks
Problems, we encoded the attributes using propositional variables and the full
dataset as initial program. The alpha reduced version of this program contains 33
literals, which can be further reduced to 21 literals using the allowed clauses.

Table 7 shows the total number of clauses, the number of valid and the num-
ber of allowed clauses for each of the four experiments, together with the corre-
sponding ratios. Furthermore, we found that computing the allowed clause bodies
actually solved our problems. This is not necessarily the case as indicated by Ex-
ample 6.10, i.e., there might be redundant allowed clauses for a given operator.
Table 8 shows the different running times of the algorithms for all four experi-
ments. Most of the time was needed to compute the allowed clause bodies, which
is not surprising as this basically solved the problem.

This experiments are not meant to be exhaustive, but to show that the algo-
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monky < a1, az, by, by, mey, ~dy, meq, 1 fi.

monkg < ap, ag, bl, bg, —Cq, _|d1, €9, _|f1.

monkQ < aip, as, bl, bg, —Cq, _|d2, —eq, _|f1.

monks < a1, az, by, by, 21, ~dz, meq, 1 fi.
—— ~—~

a=1 b=1

Figure 8: Part of the resulting program for the Monks Problem 2. The four clauses
represent the fact that « = b = 1 and none of the other attributes has value 1.

Clause-type H Nessie (%) ‘ Monk1 (%) ‘ Monk?2 (%) ‘ Shuttle (%) ‘

Possible 1,215 (100) | 59,049 (100) 59,049 (100) | 6,561 (100)
Valid 243 (20) | 13,689 (23) 1,775 (3) 1,363 (20)
Allowed 5(0.4) 4 (0.007) 104 (0.2) 5(0.08)

Table 7: Number of clauses occurring in the experiments.

rithms presented here actually work. We showed, how to obtain a reduced logic
program from a given input-output mapping. This was done by first converting the
mapping into a “complete” logic program which was reduced afterwards. In one
aspect the experiments exceeded our expectations. Namely in the effectiveness
of the definition of allowed clauses. Even though the pruning results presented
in Table 4 indicated a good average performance, the effect on the “’real-world”
problems was even bigger. For the Nessie-problem, only 0.4% of all clauses are
actually allowed (Monk1: 0.007%, Monk2: 0.2%, Shuttle: 0.08%). In our exam-
ples, the problems were already solved by computing the allowed clauses. Using
Algorithm 6 we have an efficient way to compute these allowed clauses without
evaluating the complete T’» operator for each clause body to analyse.

Overall, all algorithms solve the problems in reasonable time and in most cases
were able to extract a minimal program (the exception is c-reduction on the Shut-
tle Landing Control example). Again, we want to stress that we consider our re-
sults to be of fundamental nature, which means that applying the ideas to very
large problems is likely to require approximations, e.g. by dropping the correct-
ness guarantee.
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’ ‘ Nessie ‘ Monk1 ‘ Monk2 ‘ Shuttle ‘

a-reduction (Alg. 5) 25| 2,040 900 360
Allowed Clauses (Alg. 6) 100 5,250 4,450 440
Greedy (Alg. 7) 4 56 700 10
Intelligent Program Search (Alg. 8) 1 7 ? 4

Table 8: Running times (average over 5 runs) in ms of the different algorithms.
We used a preliminary implementation in Java 1.5 on a 1.66 GHz PC with 512MB
RAM. The program search for Monk?2 did not terminate, as 2% different clauses
need to be tested. The times for Greedy and Intelligent Program Search are without
the time needed for generating the allowed clause bodies.

9 Related Work

This work should be understood as part of broader investigations concerning the
realization of the neural-symbolic learning cycle depicted in Figure 1. Work on
different aspects of this cycle is historically done from a logic programming per-
spective.

This line of investigation was spawned in [25] by showing that every logic pro-
gram can be implemented using a 3-layer network of binary threshold units, and
that 2-layer networks do not suffice. It was also shown that under some syntactic
restrictions on the programs, their semantics could be recovered by recurrently
connecting the output- and the input layer of the network and propagating acti-
vation exhaustively through the resulting recurrent network. The key idea to [25]
was to represent logic programs by means of their associated semantic operators
instead of encoding the program directly, i.e. the functional input-output behav-
ior of a semantic operator 7’p associated with a given program P is encoded by
means of a feedforward neural network Np which, when presented an encoding
of some [ to its input nodes, produces Tp(I) at its output nodes. This represen-
tation paradigm also underlies our work in this paper. Output nodes can also be
connected recurrently back to the input nodes, resulting in a connectionist com-
putation of iterates of / under T'p, as used e.g. in the computation of the semantics
or meaning of P [31]. The relevance of this rather close relation to [25] lies in the
idea of combining learning and reasoning within connectionist systems: While our
work here focusses on understanding the knowledge implicit in a trained network,
[25] is about reasoning within the same representation paradigm. As such, our
investigations serve the long-term vision of realising autonomous systems which
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can learn and reason while acting in changing environments.

This idea for the representation of logic programs spawned several investiga-
tions in different directions. As [25] employed binary threshold units as activation
functions of the network nodes, the results were lifted to sigmoidal and hence dif-
ferentiable activation functions in [21, 17]. This way, the connectionist represen-
tation of logic programs resulted in a network architecture which could be trained
using standard backpropagation algorithms. The resulting connectionist inductive
learning and reasoning system CILP was completed by providing corresponding
knowledge extraction algorithms [14]. Further extensions to this include modal
[20] and intuitionistic logics [16]. Metalevel priories between rules were intro-
duced in [18]. An in-depth treatment of the whole approach can be found in [15].
The knowledge based artificial neural networks (KBANN) [38] are closely related
to this approach, by using similar techniques to implement propositional logic
formulae within neural networks, but with a focus on learning.

Another work following up on [25] concerns the connectionist treatment of
first-order logic programming. [34] and [35] approach this by approximating given
first-order programs P by finite subprograms of the grounding of P. These sub-
programs can be viewed as propositional ones and encoded using the original
algorithm from [25]. [34] and [35] show that arbitrarily accurate encodings are
possible for certain programs including definite ones (i.e. programs not contain-
ing negation as failure). They also lift their results to logic programming under
certain multi-valued logics [28].

A more direct approach to the representation of first-order logic programs
based on [25] was pursued in [26, 22, 23, 5, 9, 4]. The basic idea again is to
represent semantic operators Tp : Ip — [Ip instead of the program P directly.
In [25] this was achieved by assigning propositional variables to nodes, whose
activations indicate whether the nodes are true or false within the currently repre-
sented interpretation. In the propositional setting this is possible because for any
given program only a finite number of truth values of propositional variables plays
a role — and hence the finite network can encode finitely many propositional vari-
ables in the way indicated. For first-order programs, infinite interpretations have
to be taken into account, thus an encoding of ground atoms by one neuron each is
impossible as it would result in an infinite network, which is not computationally
feasible to work with.

The solution put forward in [26] is to employ the capability of standard feed-
forward networks to propagate real numbers. The problem is thus reduced to en-
coding /p as a set of real numbers in a computationally feasible way, and to pro-
vide means to actually construct the networks starting from their input-output be-
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havior. Since sigmoidal units can be used, the resulting networks are trainable by
backpropagation. [26] spelled out these ideas in a limited setting for a small class
of programs, and was lifted in [22] to a more general setting, including the treat-
ment of multi-valued logics. [23] related the results to logic programming under
non-monotonic semantics. In these reports, it was shown that approximation of
logic programs by means of standard feedforward networks is possible up to any
desired degree of accuracy, and for fairly general classes of programs. However,
no algorithms for practical generation of approximating networks from given pro-
grams could be presented. This was finally done in [9, 4], where also experiments
are reported on which show the feasibility of the approach.

There exist two alternative approaches to the representation of first-order logic
programs via their semantic operators, which have not been studied in more detail
yet. The first approach, reported in [6], uses insights from fractal geometry as in
[10] to construct iterated function systems whose attractors correspond to graphs
of the semantic operators. The second approach builds on Fibring logics [13], and
the corresponding Fibring Neural Networks [19]. The resulting system, presented
in [5] and extended in [29], employs the fibring idea to control the firing of nodes
such that it corresponds to term matching within a logic programming system. It
is shown that certain limited kinds of first-order logic programs can be encoded
this way, such that their models can be computed using the network.

Apart from the more general perspective on our work by means of the neural-
symbolic learning cycle, this paper addresses the particular point of extracting
propositional logic programs from artificial neural networks, and as such is closely
related to the respective part of CILP, which was presented in [14]. The latter also
addresses heuristics, as we do in the part on normal logic programs, for extracting
propositional programs from networks. The perspective and approach taken, how-
ever, is entirely different. While CILP analyzes the structure of the network before
extracting, we take a globalist view and refine the program. Regretfully, the CILP
system is no longer available for an exhaustive experimental comparison.

There is also a considerable body of work on extracting knowledge from re-
current neural networks, usually in the form of finite state machines. This work is
not easily comparable to our own, and it shall suffice to point the interested reader
to the review article [27].
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10 Conclusions

We presented algorithms for extracting definite and normal propositional logic
programs from neural networks. For the case of definite programs, we have shown
that our algorithm is optimal in the sense that it yields the least program with the
desired operator; and it was formally shown that such a least program always ex-
ists. For normal logic programs we presented algorithms for obtaining minimal
programs, and more efficient algorithms which do produce small but not neces-
sarily minimal programs.
The main contribution of this paper is threefold.

e We investigated the existence of least respectively minimal extracted pro-
grams, including a formal proof that least definite programs always exist.

e We have given concrete extraction algorithms, and have shown by evalua-
tions that they are feasible.

e We have addressed and answered fundamental (and obvious) open questions
on the extraction of reduced logic programs from artificial neural networks.

We consider the results as a base for investigating the extraction of first-order logic
programs, and thus for the development of the neural-symbolic learning cycle as
laid out in Figure 1, which has high potential for impact in a variety of application
areas.
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