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ABSTRACT 
 
We examine the ontology mapping problem with three 
different groups of readers in mind: system designers, 
who need to know what is and isn’t possible given the 
current state of alignment algorithms and what pitfalls to 
watch out for when someone suggests the use of 
ontologies in a project; system developers, who require 
knowledge of specific algorithms and useful software 
libraries; and semantic interoperability researchers who 
may be interested in the potential efficacy of using a 
genetic algorithm to choose which similarity metrics 
should be employed to map two ontologies, based on a 
small, carefully-chosen subset of each ontology.  
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1. INTRODUCTION 
 
In this work we focus on the ontology mapping (or 
alignment) problem.  When two individuals are asked to 
develop an ontology to describe an area of interest (food, 
for example), it is very unlikely that they will produce 
identical results.  As a simple example, one may have a 
class called “fruits and vegetables” while the other has a 
class called “produce”, but both of these serve the same 
role in their respective ontologies.  In order for ontologies 
to be useful in applications requiring semantic integration, 
we need a method of determining that when agent A says 
“fruits and vegetables”, agent B should hear “produce.”  
Without this functionality it is not possible for the two 
agents (which could be humans or software) to 
collaborate effectively. 
 
The essence of the ontology mapping problem is to take 
two ontologies and determine which entities in the first 
correspond in meaning to which entities in the second.  
This can be formally defined as follows: let us assume we 

have two ontologies O1 = {C1, R1, I1, A1} and O2 = {C2, 
R2, I2, A2}; each ontology is a set of classes, relations, 
instances, and axioms.  We wish to define a mapping 
function m(e1, e2, c) where e1 is any element from O1, e2 
is an element from O2, and c is the confidence we have 
that this particular mapping is correct.  The general 
approach is to choose mappings between e1 and e2 such 
that one or more metrics indicate that the two entities are 
more similar to one another than they are to any other 
entities and the similarity value is above some validity 
threshold.  In this work entities will be mapped one-to-
one.  Figure 1 shows a depiction of two ontologies and 
some potential mappings between them. 
 

 
Figure 1. Ontology Mapping 

 
A variety of issues combine to make the ontology 
matching problem a tough nut to crack.  As mentioned 
previously, users may choose different labels to represent 
the same concept, a situation referred to as synonymy.  
Conversely, polysemy refers to instances in which the 
same word refers to two different concepts, as in the case 
of “date,” which can be a piece of fruit, a specific 
moment in time, or a rendezvous.  Different users may 
choose different units of measure for data values.  They 
may consider different details to be irrelevant or think at 
different levels of abstraction.  They may reify (consider 



as an entity) different concepts.  For instance, one person 
may consider red and yellow apples to be different types 
of the same entity, while another may consider them 
distinct entities that are descended from the same parent.  
Additionally, the ontologies may be large enough that 
some mapping approaches are not computationally 
feasible.  Pavel Shvaiko and Jerome Euzenat provide 
much more detail on this subject in [4], in which they 
describe what they consider to be the top ten challenges 
for ontology matching.  Our work described here focuses 
on the problem mentioned in Section 9 of that paper, 
matcher selection and self-configuration.  This challenge 
concerns choosing the best matching algorithms, in the 
best combination, with the best parameters for the 
particular task at hand. 
 
As we will see in a later section, many existing ontology 
mapping algorithms perform well in the face of some of 
the confounding issues mentioned above but none has 
been shown to satisfactorily generate mappings in a wide 
enough set of situations to be practically useful in many 
applications.  Their performance varies, often 
substantially, based on the particular pair of ontologies 
under consideration.  In this research effort we consider 
whether it is possible to reduce this variation by carefully 
selecting a small subset of both ontologies and using a 
genetic algorithm to determine the best set of mapping 
approaches to apply in this particular case.  If successful, 
this technique would be another step towards making 
ontologies useful for collaboration in practical 
applications. 
 
Ontology alignment has many applications within human-
machine and machine-machine collaborative systems.  It 
can be used to merge information from various data 
sources, facilitate communication between software 
agents, and aid in web service composition, among many 
other possibilities. 
 
2. CURRENT APPOACHES 
 
Mark Ehrig and Steffen Staab, in [5], define a useful 
overview of the ontology mapping process that we will 
use to review current approaches.  Their view of the 
generic iterative process consists of five steps, to which 
we have added alignment debugging, a relatively recent 
advancement in the field.  
 

1. Feature Engineering: input the ontologies and 
extract the features that will be used in the later 
steps. 
 

2. Selection of Next Search Steps: determine the 
subset of elements in O1 and O2 that will be 
processed in successive steps (in the boundary 
case, every element in O1 will be compared with 
every element of O2 to test if they match). 

 

3. Similarity Computation: execute one or more 
similarity metrics on the candidate mappings. 

 

4. Similarity Aggregation: combine the results of 
multiple similarity metrics to compute a single 
similarity value. 

 

5. Interpretation: decide on the mappings using the 
aggregation results (this may involve filtering 
out some mappings that have low similarity 
values and/or determining the best mapping 
when there are several potential choices with 
large similarity values). 

 

6. Alignment Debugging: sanity checks identify 
and filter out incongruous mappings. 

2.1. Feature Engineering 
 
The first phase of the feature engineering step – reading 
in the ontologies – is relatively straightforward.  There 
are several open source libraries available for this purpose, 
the most popular of these being a java library called 
JENA [12].  There are some problems that arise when 
dealing with extremely large ontologies that will not fit in 
memory or with ontologies that make frequent references 
to outside namespaces (so that a complete approach 
would be to fetch all of the referenced ontologies as well).  
These issues are a relatively open area of research.  In 
contrast many researchers have performed analyses of the 
second phase of this step, determining which features are 
most useful to extract from the ontologies.  These features 
can be classified into two groups: those intrinsic to an 
entity versus those that are extrinsic.  Intrinsic features 
include the name given to an entity, its URI, its type (or 
superclass), the domain and range of properties, data 
types and values, etc.  Examples of extrinsic features are 
subclasses, ancestors, descendents, and level/depth in the 
ontology, among others.  Because intrinsic features are 
local to the entity and can be easily retrieved rather than 
requiring computation or extensive searches of the 
ontology, they are preferable to extrinsic features when 
they perform well. 

 

2.2. Selection of Next Search Steps 
 
The selection of next steps is another aspect of the 
difficulty in dealing with large ontologies.  The default 



approach mentioned above – comparing every entity in 
the first ontology to every entity in the second ontology – 
is thorough but does not scale well, particularly when 
considering that some of the similarity metrics may be 
expensive in their own right.  Some algorithms attempt to 
reduce the number of candidate mappings considered 
based on some filtering criteria.  Arguably, some method 
of reducing the number of comparisons performed must 
be employed by an alignment scheme in order for it to be 
practical in real-world situations.  Some obvious choices 
for heuristic filters include considering only those entities 
whose labels have a reasonable level of lexical similarity, 
examining entities which are at similar depths in the 
ontological hierarchy, or having the current iteration 
examine entities that border mappings found during the 
previous iteration.  Ehrig and Staab mention other 
possibilities in [5].  Their approach, QOM, uses different 
heuristics during different iterations.  The first iteration 
uses lexical similarity of labels.  Subsequent iterations 
expand on mappings found during previous rounds.  
Finally, a random strategy is pursued.  Lily, an ontology 
alignment approach developed by Wang and Xu, also 
uses heuristics to reduce the search space [3]. 
 
2.3. Similarity Computation 

Researchers have considered a very wide array of 
similarity metrics.  These generally fall into three groups: 
lexical, semantic, and set-based.  Lexical metrics compare 
two strings.  The most common such metric is the 
Levenstein distance, which is given by the minimum 
number of single-character insertions, deletions, or 
substitutions necessary to transform one string into 
another.  The Levenstein distance between “hello” and 
“help” is two because p must be substituted for l and the 
o must be deleted.  A similar metric, developed by Jaro, 
considers transpositions in addition to insertions and 
deletions [29].  Winkler builds on this idea further by 
proposing a modification of the Jaro distance metric that 
considers strings more similar based on the length of their 
prefixes that are identical.  The JaroWinkler metric is 
discussed more in [7].  Stoilos, Stamou, and Kollias argue 
in [6] that because the vast majority of lexical metrics 
were not developed with ontology mapping in mind, they 
are not ideally suited for that application.  They propose 
an alternate metric that is designed to be fast, tolerant to 
non-optimal threshold values, and unlikely to produce the 
same similarity value when a string is compared to two 
different strings.  The metric is a combination of a 
commonality measure (based on repeated application of a 
substring metric), a difference measure (based on the 
Hamacher triangular norm), and the JaroWinkler metric.   

There are a slew of other lexical distance metrics, many 
of which are available in the open source SecondString 
library [13].   
 
Semantic similarity metrics attempt to use information 
about words beyond their spelling when computing 
similarity.  The majority of semantic metrics are currently 
based either on the frequency and co-occurrence of words 
in a large corpus of documents or on a human-generated 
taxonomy such as WordNet.  Resnik introduced a 
semantic similarity metric based on the information 
content of the most specific class that subsumes the two 
words of interest in the taxonomy [28].  The information 
content of a concept C is –logP(C) where P is the 
probability that a randomly selected concept is a 
descendent of C.  There are many variants of this basic 
idea.  In [8], Lin proposes a similarity metric equal to the 
twice the information content of the most specific class 
that subsumes the two words of interest in the taxonomy 
divided by the sum of the information content of those 
two words.  The rationale is that the similarity between 
two concepts is a function of their commonalities and 
differences.  Alternatively, because the differences are 
equal to their complete description less their 
commonalities, we can say that the similarity of two 
words is a function of their commonalities and 
descriptions.  The commonalities are captured by the most 
specific class that subsumes both concepts, while the 
descriptions are captured by the information content of 
the concepts themselves.  Lin’s metric had a correlation 
of .834 to human assessments (in contrast, when humans 
try to recreate the similarity assessments of other humans, 
correlation is .885 [9]).  Other semantic similarity metrics 
are based on the distance between two words in a 
taxonomy such as WordNet.  Additional semantic 
similarity measures are described by Widdows in the 
fourth chapter of his book “Geometry and Meaning” [10], 
and Budanitsky and Hirst compare the performance of 
five such metrics experimentally in [11].  The Java 
WordNet Similarity Library is an open source 
implementation of several semantic similarity metrics 
[14].   
 
Lexical and semantic methods work well for comparing 
individual string values such as the names of entities, but 
they cannot be used alone to compare groups of items, 
such as the descendents of different entities.  A set 
similarity metric is needed for this purpose.  One common 
such metric is the Dice coefficient.  The Dice coefficient 
of two sets is equal to twice the size of their intersection 
divided by the sum of their sizes. A very similar metric is 
the Jaccard index, which is equal to the size of the 



intersection of two sets divided by the size of their union.  
As an example of set comparisons, in order to compare 
the descendents of two entities we generally use a 
combination of lexical and semantic methods to 
determine which of their descendents are equal, compute 
the intersection (and possibly union) of the two sets using 
this equivalence information, and then compute the Dice 
or Jaccard value (or other set similarity metric).  It is also 
possible to recursively compute set metrics on these 
entities rather than just using lexical and semantic metrics 
to determine equality; however, this is computationally 
expensive and care must be taken to avoid infinite loops.  
Measures of graph isomorphism could also be considered 
a type of set similarity metric in the ontology mapping 
domain, but these are not widely used in current 
alignment algorithms.  Set similarity metrics are often 
useful in comparing structural aspects of two entities, 
such as their ancestors, descendents, neighbors, etc.   
 
2.4. Similarity Aggregation 

Overall, most of the research done in the field of ontology 
mapping has been concerned with developing appropriate 
similarity metrics.  Comparatively little research has been 
done with respect to similarity aggregation.  The standard 
approach is to simply normalize the values produced by 
the similarity metrics and then add them, possibly 
weighting the individual metrics different amounts.  The 
only variation the author is aware of is the work presented 
by Ehrig and Sure in [22] in which they compare the 
traditional weighted sum of linear inputs (where the 
weights were determined by an expert) to a weighted sum 
of sigmoid functions applied to each input and a weighted 
sum approach in which the weights were determined by a 
neural network.  The sigmoid function performed the best 
in their experiments.  Intuitively, this function focuses 
more on metrics whose values indicate similarity while 
mostly ignoring those that indicate no relation. 
 
2.5. Interpretation 

Interpretation is the process of taking the aggregated 
similarity metrics between all the different entity pairs 
considered and producing a set of (one-to-one, in our 
case) mappings between entities.  There are a variety of 
ways to go about this, some of which depend on the 
choices made during the computation and aggregation 
stages. 
 
When the value of a similarity metric is calculated, it 
alone does not tell us whether the two entities being 
compared should be considered equivalent – some type of 

threshold must typically be applied ( e.g. “if the 
Levenstein distance is less than 3, then the entities are 
considered equivalent”).  If several metrics are employed, 
the aggregation stage can normalize them and combine 
them into a single similarity value, or each metric can 
report a yes/no vote on the similarity of the two entities 
rather than the metric’s raw value.  In either case, a 
threshold – either an overall raw similarity value or a 
number of yes votes (and threshold values for the 
individual metrics) – is needed for interpretation.  
Determining an appropriate value for this threshold is a 
difficult task. 
 
Some systems designed to facilitate ontology mapping 
avoid the need to determine an appropriate threshold (and 
the whole interpretation question in general) by passing 
the decisions on to their users.  Many ontology editors, 
such as the Concept-map Ontology Environment, allow 
users to open up two ontologies at once and manually 
generate mappings between them by adding explicit 
equivalence relations.  Completely manual ontology 
mapping is practically infeasible for all but very small 
ontologies.  Alternatively, PROMPT is a semi-
autonomous ontology alignment tool that iteratively 
presents its user with suggested mappings and allows him 
or her to decide which mappings are valid [16].  
PROMPT is available as a plug-in for the popular open 
source Protégé ontology editor [23].  Fully autonomous 
ontology mapping systems may provide a default 
similarity threshold and allow the user to modify it.  It is 
also conceivable to use a heuristic or machine learning 
technique to arrive at a suitable threshold value, but the 
authors are not aware of such an approach. 
 
In autonomous ontology mapping systems, once an 
appropriate similarity threshold value has been set there is 
still the issue of how to choose mappings when several 
pairs of entities exceed the threshold.  Often several 
different mapping sets are equally valid and one must 
either choose randomly or impose additional constraints 
to differentiate among the available options.  For instance, 
Qazvinian et al. use a genetic algorithm to optimize 
overall similarity and edge preservation [24].  In [25] 
Melnik et al. note that the problem of choosing a “good” 
mapping can be considered analogous to the stable 
marriage problem, well-known from graph theory.  There 
are known algorithms for efficiently generating solutions 
to the stable marriage problem.  The problem can also be 
considered similar to finding the maximum weighted 
matching, which has also been examined as part of graph 
theory for quite some time.  Heß compared the 
performance of applying the stable marriage or 



maximum-weight constraints on the chosen mappings and 
found that the maximum-weight approach performed 
significantly better on the OAEI dataset [26]. 
 
2.6. Alignment Debugging 

Several of the more recently developed ontology mapping 
algorithms incorporate an alignment debugging phase.  
As mentioned in the previous section, there are often 
several reasonable mappings for a given entity and 
choices between them are frequently made incrementally 
using heuristics.  In some cases, these individual choices 
may not be coherent when considered as a whole.   For 
example, assume the mapping algorithm produces the 
partial interpretation shown in Figure 2.  Because it is 
unusual (though not impossible) that two entities which 
are siblings in one ontology would map to two entities 
that have a parent-child relationship in a second ontology, 
the incongruous mappings might be marked for 
reconsideration during a future iteration. 
 

 
Figure 2. Alignment Debugging 

 
ASMOV checks for five different types of inconsistencies 
during its alignment debugging phase, which are 
described more thoroughly in [2].  In essence, these 
checks assert that if two entities in the first ontology are 
related in some way then the entities that they are mapped 
to in the second ontology should be related in the same 
way.  The specific relations checked are parent-child, 
disjointness, subsumption, and domain/range of 
properties applied to classes.  In addition, the requirement 
of one-to-one mappings is verified.  Lily [3] uses the 
debugging method described in [15], which involves 
locating mappings that are redundant, imprecise, 
inconsistent, or abnormal.  Some of these checks involve 
mapping hierarchical relations other than equivalence; the 
checks for inconsistent and abnormal mappings are most 
useful for equivalence-only alignment algorithms.  These 
are quite similar in reasoning to those done by ASMOV.  
The alignment debugging process may attempt to resolve 
the inconsistencies automatically or it may flag 
problematic mappings to be re-examined in later 

iterations.  OMEN uses Bayesian networks on an 
ontology alignment to enhance existing mappings and 
invalidate false ones in a probabilistic approach to 
alignment debugging [20]. 
 
In practice, current ontology alignment systems are 
generally not accurate enough for most applications.  
Therefore, when alignment debugging is not done 
explicitly by the system (and often even when it is), the 
task of sanity-checking the mappings produced falls to 
humans.   

 
3. TOM APPROACH 
 
The rationale behind the Targeted Ontology Metric is that 
every pair of ontologies to be merged has different 
characteristics that are best dealt with by different 
combinations of similarity metrics.  Our goal is to provide 
TOM with an array of the best aspects of current state-of-
the-art ontology mapping algorithms and then allow it to 
dynamically choose which of those aspects to use based 
on an analysis of their performance on a subset of the 
problem at hand. 
 
3.1. Overview 
 
We now describe TOM according to the framework 
introduced in Section 2.  The algorithm uses JENA to 
parse OWL ontologies written in RDFS and extracts a 
variety of features, described in more detail in Section 3.2.  
TOM has a variety of similarity metrics available to it, 
which are also described more fully in Section 3.2.  The 
algorithm selects a subset of each ontology.  Using these 
subsets together with the mappings that exist between 
them (provided by humans), TOM determines which of 
the available lexical and semantic metrics perform the 
best on this particular pair of ontologies.  A genetic 
algorithm (described in more detail in Section 3.3) then 
selects the applicable features to be considered on-the-fly.  
The interpretation step looks at the vote tally of the 
different chosen similarity metrics.  In the current 
implementation, the suitable values for the thresholds of 
the individual similarity metrics and the vote tally were 
arrived at through empirical experimentation and are not 
adjusted for different ontology pairs – this is a potential 
area of future research.  The alignment debugging phase 
has not yet been implemented – we plan to use the 
technique described in [2].  The current TOM 
implementation is meant to test the general approach 
rather than run in a production system and therefore 
simply compares every entity in the first ontology to all of 
the entities of corresponding type (classes to classes, 



relations to relations, etc) in the second.  It is possible to 
add a next step heuristic (as described in Section 2.2) 
such as that used in QOM [5] in order to improve the 
speed of the algorithm.   TOM iterates until no new 
mappings are found. 
 

Table 1. Entity Features 
Entity  Feature Int Ext Lex Sem Com Set 
Class Name X  X X   
 URI X  X    
 Direct 

Instances 
 X   X X 

 All Instances  X   X X 
 Superclasses X    X X 
 Subclasses  X   X X 
 Ancestors  X   X X 
 Descendents  X   X X 
Prop. Name X  X X   
 URI X  X    
 Domain X    X X 
 Range X    X X 
 Superprops X    X X 
 Subprops  X   X X 
 Ancestors  X   X X 
 Descendents  X   X X 
Indiv. Label X  X    
 Data values X  X   X 

 

Table 2. Metrics 
Type Similarity Metric 
Lexical Levenshtein 
 SMOA 
 JaroWinkler 
Semantic Pirro-Seco 
 Resnick 
 Jiang 
Set DICE 
 Jaccard 

 
3.2. Features and Metrics 
 
The features used by TOM are shown in Table 1.  For 
each feature, the table explains to what type of 
ontological entity (class, property, or individual) the 
feature applies, whether the feature is intrinsic (local to 
the entity) or extrinsic (requires information outside the 
entity, such as knowledge of its neighbors), and what 
types of similarity metrics are applicable for comparing 
instances of this feature.  When the feature represents a 
set rather than a single element (e.g. ancestors versus 
name) then either a lexical or semantic or a combination 
of the two (indicated by the composite column) will need 
to be used in conjunction with a set metric.  Table 2 
contains a list of the similarity metrics that TOM has 
available to it, categorized in a manner corresponding to 
the last three columns of Table 1.  These metrics are 
defined in Section 2.3.  Additional features and metrics 
can be added to the system in a modular fashion.   

 
3.3. Genetic Algorithm 
 
A genetic algorithm (GA) is a biologically-inspired 
search process [27].  A population of individuals is 
created prior to beginning the evolutionary process.  
There are several different strategies for building the 
initial population, but we use a straightforward approach: 
one individual is set to the lexical metric on the class and 
property names (a strategy that has been shown to be 
reasonably effective in many cases), while the genes in 
the remaining chromosomes are set to either 0 or 1 with a 
probability of .75 and .25 respectively.  This is done to 
focus the search on solutions involving fewer metrics, in 
the interest of lowering the computation time for the 
composite metric.  The set metric uses the best individual 
from the population as its composite equality metric.  
Each generation (or epoch), the individuals in the 
population reproduce.  This is done by selecting two 
chromosomes (higher-performing individuals have a 
better chance of reproducing), randomly choosing a point 
along their length called a crossover point, and 
exchanging the genes from that point onward (for single-
point crossover).  Each chromosome also has a random 
chance of having one of its genes mutated (the value of 
the gene is flipped).  Reproduction provides depth to the 
search in order to focus on promising areas, while 
mutation adds breadth to avoid prematurely converging 
on a local optimum within the search space.  After the 
reproduction phase, the population is evaluated with 
respect to a fitness function, which is described below.  
Individuals are chosen to survive to the next generation 
using a deterministic tournament selection strategy with 
k=3.  It is possible for the fitness of the population to 
decrease (e.g. if the best individual is mutated in a 
disadvantageous manner).  In this case, the best 
individual is restored to the population.  The algorithm 
iterates until a stopping criterion is reached, which in this 
case was chosen to be when the change in the fitness of 
the best individual between two generations falls below a 
threshold. 

 
3.3.1. Chromosome Representation 
The current implementation reduces the size of the search 
space by determining in isolation (prior to beginning the 
GA) which single metric in the lexical, semantic, and set 
groups performs best (class name and subclasses are used 
as test cases for this purpose).  The chromosome then 
need only represent a choice between activating the 
feature using the applicable metric or ignoring the feature 
altogether.  This results in a chromosome containing 
twenty binary genes (note that both lexical and semantic 



metrics can be applied to class and property names).  The 
size of the search space is therefore 220, which equals 
1,048,576.    A genetic algorithm should be able to search 
a space of this size reasonably efficiently.  There is of 
course a drawback to making simplifying assumptions 
such as choosing a single lexical, semantic and set metric 
apriori.  Deciding about the optimal metric of each type in 
isolation is a form of greedy search heuristic and ignores 
potential gains related to the interaction of different 
metrics/features.  For instance, the effectiveness of a 
lexical metric may vary depending on the feature to 
which it is applied or on the choice of set metric. 

 
3.3.2. Fitness Function 
The fitness function of the GA is the most interesting 
aspect of the TOM approach.  Prior to initiating the GA, 
we select a small subset of each ontology.  There are 
several possible strategies to choosing this subset.  We 
begin by choosing all of the entities that do not have a 
parent, along with the direct neighbors of those entities.  
The rationale is that these entities are likely to be the most 
general concepts within the domain and therefore are the 
most likely to have matches in a second ontology that 
describes the same domain.  It is possible to include more 
than one level of neighbors in this selection – the number 
of entities selected from each ontology can be a parameter 
of TOM and should in practice be related to the overall 
size of the ontologies.  Our selection algorithm also 
insures that there is a mix of both classes and properties.  
Investigating other subsection selection strategies is a 
potential area of future work.  After the ontology subsets 
have been established, the GA begins.  For each 
individual chromosome in the population, the active 
similarity metrics are computed for each pair of entities in 
the ontology subsets.  Each metric “votes” on whether or 
not the pair of entities is equivalent, and the overall vote 
tally is counted.  TOM is envisioned to eventually run in 
both a supervised and an unsupervised mode (comparable 
to semi-autonomous versus autonomous approaches).  In 
supervised mode, which is the focus of this paper, the 
user provides the appropriate mappings between the two 
ontology subsets, and the fitness of each individual is 
judged with respect to f-measure (defined in Section 4.2) 
based on this ground truth along with a penalty factor 
based on the number of different metrics used, in order to 
give preference to simpler solutions.   

 
3.4. Related Work 
 
Several researchers have applied genetic algorithms or 
other machine learning-based approaches to the ontology 
mapping domain, but most of this work has been with 

respect to similarity computation rather than choosing 
which metrics to use and how they should be aggregated 
[18].  One work that does attempt to tackle this latter 
issue is the GOAL algorithm by Martinez-Gil and his 
colleagues [17].  Their system attempts to choose which 
of four similarity metrics (Levenstein, SIFO, Stolios, and 
QGrams).  The fitness function allows the user to 
optimize one of precision, recall, f-measure, or false 
positives.  While the authors do not state this directly, it is 
evident from these options for the fitness function that 
GOAL optimizes the choice of metrics only when the 
correct answers are already known.  No mention is made 
of using a subset of the ontology as a training set, which 
implies that the user must supply GOAL with the 
complete mapping for a pair of ontologies.  This does not 
appear to have much practical value, except possibly if 
many ontology pairs with similar characteristics to the 
training pair must be aligned.   
 
As mentioned in Section 2.4, Ehrig and Sure attempted to 
use a neural network to determine the appropriate weights 
for the similarity metrics used in their system.  They used 
20% of the entities in the ontologies as a training set and 
employed a neural network consisting of a linear input 
layer, a hidden layer with a tanh function, and a sigmoid 
output layer.  The resulting weights did not perform as 
well as the authors expected.  They attributed this to over-
fitting of the data and suggested that the general approach 
had merit [22].  A GA approach that attempts to 
determine only which metrics to include and not their 
weights may be less prone to over-fitting.  The other 
difference between Ehrig and Sure’s work and TOM is 
that they used several similarity metrics that were specific 
to the knowledge domain they were considering. 
 
GLUE is another machine learning approach to ontology 
mapping.  It is based on the joint probability distribution 
between pairs of entities.  Two base classifiers are learned 
in order to compute these probabilities, and a meta-
classifier is learned to aggregate their results.  While the 
authors are somewhat unclear on this point, it appears that 
GLUE requires a fairly extensive amount of instance data 
for training the classifiers (30-90 instances per node) and 
has a relatively high computational complexity as both 
the base classifiers and the meta-classifier need to be 
trained [19].  In general, machine learning based 
approaches to different aspects of the ontology matching 
problem often involve text processing of documents 
semantically related to the entities in the ontologies.  Both 
GLUE and OMEN (discussed in Section 2.6) fall into this 
category, as does the approach described by Pan et al. in 



[21].  GOAL and Ehrig and Sure’s neural network 
approach are exceptions. 
 

4. EXPERIMENTAL SETUP AND RESULTS 
 
In this section we describe the dataset used throughout 
this research effort and some preliminary results of the 
genetic algorithm used to determine which entity feature 
and similarity metric combinations will be considered by 
TOM.   
 
4.1. OAEI Contest 
 
The Ontology Alignment Evaluation Initiative [1] was 
started in 2004 with the goal of making it easier for 
researchers to compare the results of their ontology 
matching algorithms.  The organizers hold a contest each 
year in which participants run their algorithms on a large 
set of ontology matching problems and compare the 
results based on precision, recall, and f-measure.   
  
The OAEI suite of tests contains five tracks that test 
various aspects of ontology mapping algorithms, 
including their performance on relations other than 
equivalence, very large ontologies, and as part of a larger 
application task.  There are both synthetic and real world 
ontologies of varying size and complexity, and the results 
are either available to the researcher during the test, 
withheld until after the test, or evaluated individually by a 
human expert.  We focus here on the benchmark track, 
which consists of 111 pairs of variations on a 
bibliographic ontology.  The base ontology has 33 named 
classes, 24 object properties, 40 data properties, 56 named 
individuals and 20 anonymous individuals.  The base 
ontology is systematically altered in different ways in 
order to test different aspects of the ontology matching 
problem.  Each test involves comparing the original 
ontology with one of its mutations.  The mutations are 
based on different combinations of six types of 
modification (as described in [1]):  

 
 Name – entity names can be replaced by random 

strings (R/N), synonyms (S), names with 
different conventions (C), or translated to a 
foreign language (F) 
 

 Comments – comments can be removed (N) or 
translated to a foreign language (F) 

 

 Specialization Hierarchy – the hierarchy 
information can be removed (N), expanded (E), 
or flattened (F) 

 

 Instances – can be removed (N) 
 

 Properties – the restrictions (R) on classes can be 
removed or the properties can be removed 
entirely (N) 

 

 Classes – can be expanded (E) (i.e. replaced by 
several classes) or flattened (F) 

 
4.2. Preliminary Results 
 
The genetic algorithm was run with a population size of 
thirty, a mutation rate of 0.05 (for each gene), and a 
stopping criteria of 0.005 (i.e. when the fitness of the best 
individual failed to increase by that amount, the algorithm 
halted).  The ontology subsets were twenty percent of the 
full ontology sizes.  Seven cases from the OAEI 
benchmark suite were used for this initial test – they were 
numbers 201, 205, 206, 222, 224, 228, and 301.  Because 
GAs are nondeterministic each test case was run five 
times.  The results are shown in Table 3, which contains 
the test identification number, the best-performing 
chromosome, the average over the five runs of the f-
measure on the ontology subsets, and the average f-
measure on the full ontology mapping problem.  The 
genes correspond to the list in Table 1. 
 

Table 3. Preliminary Results 
Test Best-performing Genome Avg Subset 

F-measure 
Avg Full F-
measure 

201 01000001000001000000  0.2286 0.0588 
205 00001000110000010000  0.7101 0.2953 
206 10000000010010011000 0.4152 0.4936 
222 10000000010000000000  0.9143 0.6567 
224 10000000010000000000  0.9333 0.7564 
228 10000000010000000000  1.0000 0.8303 
301 10000000010000000010  0.7566 0.6645 

 
As expected, the f-measure on the subsets was most often 
higher than that of the f-measure on the complete 
ontologies.  However, these two values were correlated 
enough to enable the genetic algorithm to tailor a metric 
set that was relevant to the particular problem at hand.   
 
201 is the most difficult of the test cases considered.  The 
class names were removed.  The best metric set found 
consisted of the semantic class name, ancestor classes, 
and property ranges.  Because class names were removed, 
the first of these metrics is not capable of contributing to 
the overall f-measure.  The performance on this test was 
poor. 
 
Test 205 replaced class names with synonyms.  The best 
metric set found involved all of a class’s instances and 



descendent classes, along with lexical comparison of 
property names and subproperties.  This is a reasonable 
metric set, although it could be argued that semantic 
comparison of class names would have improved 
accuracy.   
 
Test 206 translated the class names from English to 
French.  The metric set that was evolved used lexical 
comparison of class names, lexical comparison of 
property names, property domains, subproperties, and 
ancestors.  This is again a reasonable choice of metrics.  
In particular, a lexical rather than semantic comparison of 
class names is more likely to result in accurate matches in 
this situation. 
 
Test 222 flattened the hierarchy (removed class-subclass 
relationships), test 224 removed all instances, and test 
228 removed all properties.  The metric set found in all 
three of these cases was lexical comparison of class and 
property names.  This is completely reasonable in the first 
two tests, and reasonable but inefficient in the third test 
(because the property metric will be ignored due to the 
lack of properties). 
 
Finally, test 301 compared the reference ontology to the 
real-world BibTex ontology from MIT.  The evolved 
composite metric consisted of lexical comparison of class 
names, property names, and instance labels. 
 
In summary, while the overall f-measures are not 
competitive with the OAEI competitors from 2009 (which 
used unsupervised algorithms), fine-tuning the algorithm 
parameters, particularly the metric thresholds, will likely 
improve performance drastically.  Meanwhile, these 
preliminary results do indicate that a GA can construct 
composite metrics that take advantage of the 
characteristics particular to the problem at hand.  The 
author wishes to stress the preliminary nature of these 
results – much more testing needs to be done to establish 
the validity of this approach. 
 
5. CONCLUSIONS AND FUTURE WORK 
 
Ontology mapping is a hard problem – even humans have 
a difficult time aligning their internal mental models with 
one another – but it is one that needs to be solved if 
ontologies are going to be used to provide semantic 
interoperability among systems.  Current approaches to 
the ontology mapping problem are not suitable for most 
real-world applications in terms of accuracy, scalability, 
or response time.  One of the goals of this paper was to 
provide system designers with an idea of the current state 

of ontology mapping research and the gaps that need to 
be addressed.  These issues are summarized here in the 
form of a list of questions to consider before relying on an 
ontology-based approach to system integration.   

 
 What ontology matching algorithm will be used 

and how does its performance compare with 
others in terms of both accuracy (precision, 
recall, f-measure) and memory and computation 
requirements? 
 

 What is the size of the largest pair of ontologies 
that can be processed? 

 

 What parameters/thresholds does the algorithm 
involve and how can the appropriate values be 
determined? 

 

 Does the algorithm do one-to-one matching or 
can it handle other types of relations? 

 

 What does the algorithm require from the user – 
parameter values, thresholds, sample mappings, 
interpretation/verification of results, etc? 

This paper also introduced a new ontology mapping 
algorithm – Targeted Ontology Mapping – specifically 
designed to perform at a consistent level on a wide variety 
of ontology pairs.  TOM uses a genetic algorithm on a 
carefully selected subset of the ontologies being aligned 
to dynamically determine which set of similarity 
measures provide the best accuracy for the least cost.  
Preliminary results show that the GA is capable of finding 
an appropriate combination of features and metrics in a 
reasonable amount of time. 
 
Future work will involve completing the implementation 
of TOM and finding more optimal values for parameters 
such as metric thresholds, population size, and stopping 
criterion.  We will also consider the possibility of an 
unsupervised version of TOM.   
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