

Targeted Ontology Mapping

Michelle Cheatham
The Design Knowledge Company
michelle.cheatham@gmail.com

ABSTRACT

We examine the ontology mapping problem with three
different groups of readers in mind: system designers,
who need to know what is and isn’t possible given the
current state of alignment algorithms and what pitfalls to
watch out for when someone suggests the use of
ontologies in a project; system developers, who require
knowledge of specific algorithms and useful software
libraries; and semantic interoperability researchers who
may be interested in the potential efficacy of using a
genetic algorithm to choose which similarity metrics
should be employed to map two ontologies, based on a
small, carefully-chosen subset of each ontology.

KEYWORDS: ontology alignment, ontology mapping,
genetic algorithm

1. INTRODUCTION

In this work we focus on the ontology mapping (or
alignment) problem. When two individuals are asked to
develop an ontology to describe an area of interest (food,
for example), it is very unlikely that they will produce
identical results. As a simple example, one may have a
class called “fruits and vegetables” while the other has a
class called “produce”, but both of these serve the same
role in their respective ontologies. In order for ontologies
to be useful in applications requiring semantic integration,
we need a method of determining that when agent A says
“fruits and vegetables”, agent B should hear “produce.”
Without this functionality it is not possible for the two
agents (which could be humans or software) to
collaborate effectively.

The essence of the ontology mapping problem is to take
two ontologies and determine which entities in the first
correspond in meaning to which entities in the second.
This can be formally defined as follows: let us assume we

have two ontologies O1 = {C1, R1, I1, A1} and O2 = {C2,
R2, I2, A2}; each ontology is a set of classes, relations,
instances, and axioms. We wish to define a mapping
function m(e1, e2, c) where e1 is any element from O1, e2
is an element from O2, and c is the confidence we have
that this particular mapping is correct. The general
approach is to choose mappings between e1 and e2 such
that one or more metrics indicate that the two entities are
more similar to one another than they are to any other
entities and the similarity value is above some validity
threshold. In this work entities will be mapped one-to-
one. Figure 1 shows a depiction of two ontologies and
some potential mappings between them.

Figure 1. Ontology Mapping

A variety of issues combine to make the ontology
matching problem a tough nut to crack. As mentioned
previously, users may choose different labels to represent
the same concept, a situation referred to as synonymy.
Conversely, polysemy refers to instances in which the
same word refers to two different concepts, as in the case
of “date,” which can be a piece of fruit, a specific
moment in time, or a rendezvous. Different users may
choose different units of measure for data values. They
may consider different details to be irrelevant or think at
different levels of abstraction. They may reify (consider

as an entity) different concepts. For instance, one person
may consider red and yellow apples to be different types
of the same entity, while another may consider them
distinct entities that are descended from the same parent.
Additionally, the ontologies may be large enough that
some mapping approaches are not computationally
feasible. Pavel Shvaiko and Jerome Euzenat provide
much more detail on this subject in [4], in which they
describe what they consider to be the top ten challenges
for ontology matching. Our work described here focuses
on the problem mentioned in Section 9 of that paper,
matcher selection and self-configuration. This challenge
concerns choosing the best matching algorithms, in the
best combination, with the best parameters for the
particular task at hand.

As we will see in a later section, many existing ontology
mapping algorithms perform well in the face of some of
the confounding issues mentioned above but none has
been shown to satisfactorily generate mappings in a wide
enough set of situations to be practically useful in many
applications. Their performance varies, often
substantially, based on the particular pair of ontologies
under consideration. In this research effort we consider
whether it is possible to reduce this variation by carefully
selecting a small subset of both ontologies and using a
genetic algorithm to determine the best set of mapping
approaches to apply in this particular case. If successful,
this technique would be another step towards making
ontologies useful for collaboration in practical
applications.

Ontology alignment has many applications within human-
machine and machine-machine collaborative systems. It
can be used to merge information from various data
sources, facilitate communication between software
agents, and aid in web service composition, among many
other possibilities.

2. CURRENT APPOACHES

Mark Ehrig and Steffen Staab, in [5], define a useful
overview of the ontology mapping process that we will
use to review current approaches. Their view of the
generic iterative process consists of five steps, to which
we have added alignment debugging, a relatively recent
advancement in the field.

1. Feature Engineering: input the ontologies and
extract the features that will be used in the later
steps.

2. Selection of Next Search Steps: determine the
subset of elements in O1 and O2 that will be
processed in successive steps (in the boundary
case, every element in O1 will be compared with
every element of O2 to test if they match).

3. Similarity Computation: execute one or more
similarity metrics on the candidate mappings.

4. Similarity Aggregation: combine the results of
multiple similarity metrics to compute a single
similarity value.

5. Interpretation: decide on the mappings using the
aggregation results (this may involve filtering
out some mappings that have low similarity
values and/or determining the best mapping
when there are several potential choices with
large similarity values).

6. Alignment Debugging: sanity checks identify
and filter out incongruous mappings.

2.1. Feature Engineering

The first phase of the feature engineering step – reading
in the ontologies – is relatively straightforward. There
are several open source libraries available for this purpose,
the most popular of these being a java library called
JENA [12]. There are some problems that arise when
dealing with extremely large ontologies that will not fit in
memory or with ontologies that make frequent references
to outside namespaces (so that a complete approach
would be to fetch all of the referenced ontologies as well).
These issues are a relatively open area of research. In
contrast many researchers have performed analyses of the
second phase of this step, determining which features are
most useful to extract from the ontologies. These features
can be classified into two groups: those intrinsic to an
entity versus those that are extrinsic. Intrinsic features
include the name given to an entity, its URI, its type (or
superclass), the domain and range of properties, data
types and values, etc. Examples of extrinsic features are
subclasses, ancestors, descendents, and level/depth in the
ontology, among others. Because intrinsic features are
local to the entity and can be easily retrieved rather than
requiring computation or extensive searches of the
ontology, they are preferable to extrinsic features when
they perform well.

2.2. Selection of Next Search Steps

The selection of next steps is another aspect of the
difficulty in dealing with large ontologies. The default

approach mentioned above – comparing every entity in
the first ontology to every entity in the second ontology –
is thorough but does not scale well, particularly when
considering that some of the similarity metrics may be
expensive in their own right. Some algorithms attempt to
reduce the number of candidate mappings considered
based on some filtering criteria. Arguably, some method
of reducing the number of comparisons performed must
be employed by an alignment scheme in order for it to be
practical in real-world situations. Some obvious choices
for heuristic filters include considering only those entities
whose labels have a reasonable level of lexical similarity,
examining entities which are at similar depths in the
ontological hierarchy, or having the current iteration
examine entities that border mappings found during the
previous iteration. Ehrig and Staab mention other
possibilities in [5]. Their approach, QOM, uses different
heuristics during different iterations. The first iteration
uses lexical similarity of labels. Subsequent iterations
expand on mappings found during previous rounds.
Finally, a random strategy is pursued. Lily, an ontology
alignment approach developed by Wang and Xu, also
uses heuristics to reduce the search space [3].

2.3. Similarity Computation

Researchers have considered a very wide array of
similarity metrics. These generally fall into three groups:
lexical, semantic, and set-based. Lexical metrics compare
two strings. The most common such metric is the
Levenstein distance, which is given by the minimum
number of single-character insertions, deletions, or
substitutions necessary to transform one string into
another. The Levenstein distance between “hello” and
“help” is two because p must be substituted for l and the
o must be deleted. A similar metric, developed by Jaro,
considers transpositions in addition to insertions and
deletions [29]. Winkler builds on this idea further by
proposing a modification of the Jaro distance metric that
considers strings more similar based on the length of their
prefixes that are identical. The JaroWinkler metric is
discussed more in [7]. Stoilos, Stamou, and Kollias argue
in [6] that because the vast majority of lexical metrics
were not developed with ontology mapping in mind, they
are not ideally suited for that application. They propose
an alternate metric that is designed to be fast, tolerant to
non-optimal threshold values, and unlikely to produce the
same similarity value when a string is compared to two
different strings. The metric is a combination of a
commonality measure (based on repeated application of a
substring metric), a difference measure (based on the
Hamacher triangular norm), and the JaroWinkler metric.

There are a slew of other lexical distance metrics, many
of which are available in the open source SecondString
library [13].

Semantic similarity metrics attempt to use information
about words beyond their spelling when computing
similarity. The majority of semantic metrics are currently
based either on the frequency and co-occurrence of words
in a large corpus of documents or on a human-generated
taxonomy such as WordNet. Resnik introduced a
semantic similarity metric based on the information
content of the most specific class that subsumes the two
words of interest in the taxonomy [28]. The information
content of a concept C is –logP(C) where P is the
probability that a randomly selected concept is a
descendent of C. There are many variants of this basic
idea. In [8], Lin proposes a similarity metric equal to the
twice the information content of the most specific class
that subsumes the two words of interest in the taxonomy
divided by the sum of the information content of those
two words. The rationale is that the similarity between
two concepts is a function of their commonalities and
differences. Alternatively, because the differences are
equal to their complete description less their
commonalities, we can say that the similarity of two
words is a function of their commonalities and
descriptions. The commonalities are captured by the most
specific class that subsumes both concepts, while the
descriptions are captured by the information content of
the concepts themselves. Lin’s metric had a correlation
of .834 to human assessments (in contrast, when humans
try to recreate the similarity assessments of other humans,
correlation is .885 [9]). Other semantic similarity metrics
are based on the distance between two words in a
taxonomy such as WordNet. Additional semantic
similarity measures are described by Widdows in the
fourth chapter of his book “Geometry and Meaning” [10],
and Budanitsky and Hirst compare the performance of
five such metrics experimentally in [11]. The Java
WordNet Similarity Library is an open source
implementation of several semantic similarity metrics
[14].

Lexical and semantic methods work well for comparing
individual string values such as the names of entities, but
they cannot be used alone to compare groups of items,
such as the descendents of different entities. A set
similarity metric is needed for this purpose. One common
such metric is the Dice coefficient. The Dice coefficient
of two sets is equal to twice the size of their intersection
divided by the sum of their sizes. A very similar metric is
the Jaccard index, which is equal to the size of the

intersection of two sets divided by the size of their union.
As an example of set comparisons, in order to compare
the descendents of two entities we generally use a
combination of lexical and semantic methods to
determine which of their descendents are equal, compute
the intersection (and possibly union) of the two sets using
this equivalence information, and then compute the Dice
or Jaccard value (or other set similarity metric). It is also
possible to recursively compute set metrics on these
entities rather than just using lexical and semantic metrics
to determine equality; however, this is computationally
expensive and care must be taken to avoid infinite loops.
Measures of graph isomorphism could also be considered
a type of set similarity metric in the ontology mapping
domain, but these are not widely used in current
alignment algorithms. Set similarity metrics are often
useful in comparing structural aspects of two entities,
such as their ancestors, descendents, neighbors, etc.

2.4. Similarity Aggregation

Overall, most of the research done in the field of ontology
mapping has been concerned with developing appropriate
similarity metrics. Comparatively little research has been
done with respect to similarity aggregation. The standard
approach is to simply normalize the values produced by
the similarity metrics and then add them, possibly
weighting the individual metrics different amounts. The
only variation the author is aware of is the work presented
by Ehrig and Sure in [22] in which they compare the
traditional weighted sum of linear inputs (where the
weights were determined by an expert) to a weighted sum
of sigmoid functions applied to each input and a weighted
sum approach in which the weights were determined by a
neural network. The sigmoid function performed the best
in their experiments. Intuitively, this function focuses
more on metrics whose values indicate similarity while
mostly ignoring those that indicate no relation.

2.5. Interpretation

Interpretation is the process of taking the aggregated
similarity metrics between all the different entity pairs
considered and producing a set of (one-to-one, in our
case) mappings between entities. There are a variety of
ways to go about this, some of which depend on the
choices made during the computation and aggregation
stages.

When the value of a similarity metric is calculated, it
alone does not tell us whether the two entities being
compared should be considered equivalent – some type of

threshold must typically be applied (e.g. “if the
Levenstein distance is less than 3, then the entities are
considered equivalent”). If several metrics are employed,
the aggregation stage can normalize them and combine
them into a single similarity value, or each metric can
report a yes/no vote on the similarity of the two entities
rather than the metric’s raw value. In either case, a
threshold – either an overall raw similarity value or a
number of yes votes (and threshold values for the
individual metrics) – is needed for interpretation.
Determining an appropriate value for this threshold is a
difficult task.

Some systems designed to facilitate ontology mapping
avoid the need to determine an appropriate threshold (and
the whole interpretation question in general) by passing
the decisions on to their users. Many ontology editors,
such as the Concept-map Ontology Environment, allow
users to open up two ontologies at once and manually
generate mappings between them by adding explicit
equivalence relations. Completely manual ontology
mapping is practically infeasible for all but very small
ontologies. Alternatively, PROMPT is a semi-
autonomous ontology alignment tool that iteratively
presents its user with suggested mappings and allows him
or her to decide which mappings are valid [16].
PROMPT is available as a plug-in for the popular open
source Protégé ontology editor [23]. Fully autonomous
ontology mapping systems may provide a default
similarity threshold and allow the user to modify it. It is
also conceivable to use a heuristic or machine learning
technique to arrive at a suitable threshold value, but the
authors are not aware of such an approach.

In autonomous ontology mapping systems, once an
appropriate similarity threshold value has been set there is
still the issue of how to choose mappings when several
pairs of entities exceed the threshold. Often several
different mapping sets are equally valid and one must
either choose randomly or impose additional constraints
to differentiate among the available options. For instance,
Qazvinian et al. use a genetic algorithm to optimize
overall similarity and edge preservation [24]. In [25]
Melnik et al. note that the problem of choosing a “good”
mapping can be considered analogous to the stable
marriage problem, well-known from graph theory. There
are known algorithms for efficiently generating solutions
to the stable marriage problem. The problem can also be
considered similar to finding the maximum weighted
matching, which has also been examined as part of graph
theory for quite some time. Heß compared the
performance of applying the stable marriage or

maximum-weight constraints on the chosen mappings and
found that the maximum-weight approach performed
significantly better on the OAEI dataset [26].

2.6. Alignment Debugging

Several of the more recently developed ontology mapping
algorithms incorporate an alignment debugging phase.
As mentioned in the previous section, there are often
several reasonable mappings for a given entity and
choices between them are frequently made incrementally
using heuristics. In some cases, these individual choices
may not be coherent when considered as a whole. For
example, assume the mapping algorithm produces the
partial interpretation shown in Figure 2. Because it is
unusual (though not impossible) that two entities which
are siblings in one ontology would map to two entities
that have a parent-child relationship in a second ontology,
the incongruous mappings might be marked for
reconsideration during a future iteration.

Figure 2. Alignment Debugging

ASMOV checks for five different types of inconsistencies
during its alignment debugging phase, which are
described more thoroughly in [2]. In essence, these
checks assert that if two entities in the first ontology are
related in some way then the entities that they are mapped
to in the second ontology should be related in the same
way. The specific relations checked are parent-child,
disjointness, subsumption, and domain/range of
properties applied to classes. In addition, the requirement
of one-to-one mappings is verified. Lily [3] uses the
debugging method described in [15], which involves
locating mappings that are redundant, imprecise,
inconsistent, or abnormal. Some of these checks involve
mapping hierarchical relations other than equivalence; the
checks for inconsistent and abnormal mappings are most
useful for equivalence-only alignment algorithms. These
are quite similar in reasoning to those done by ASMOV.
The alignment debugging process may attempt to resolve
the inconsistencies automatically or it may flag
problematic mappings to be re-examined in later

iterations. OMEN uses Bayesian networks on an
ontology alignment to enhance existing mappings and
invalidate false ones in a probabilistic approach to
alignment debugging [20].

In practice, current ontology alignment systems are
generally not accurate enough for most applications.
Therefore, when alignment debugging is not done
explicitly by the system (and often even when it is), the
task of sanity-checking the mappings produced falls to
humans.

3. TOM APPROACH

The rationale behind the Targeted Ontology Metric is that
every pair of ontologies to be merged has different
characteristics that are best dealt with by different
combinations of similarity metrics. Our goal is to provide
TOM with an array of the best aspects of current state-of-
the-art ontology mapping algorithms and then allow it to
dynamically choose which of those aspects to use based
on an analysis of their performance on a subset of the
problem at hand.

3.1. Overview

We now describe TOM according to the framework
introduced in Section 2. The algorithm uses JENA to
parse OWL ontologies written in RDFS and extracts a
variety of features, described in more detail in Section 3.2.
TOM has a variety of similarity metrics available to it,
which are also described more fully in Section 3.2. The
algorithm selects a subset of each ontology. Using these
subsets together with the mappings that exist between
them (provided by humans), TOM determines which of
the available lexical and semantic metrics perform the
best on this particular pair of ontologies. A genetic
algorithm (described in more detail in Section 3.3) then
selects the applicable features to be considered on-the-fly.
The interpretation step looks at the vote tally of the
different chosen similarity metrics. In the current
implementation, the suitable values for the thresholds of
the individual similarity metrics and the vote tally were
arrived at through empirical experimentation and are not
adjusted for different ontology pairs – this is a potential
area of future research. The alignment debugging phase
has not yet been implemented – we plan to use the
technique described in [2]. The current TOM
implementation is meant to test the general approach
rather than run in a production system and therefore
simply compares every entity in the first ontology to all of
the entities of corresponding type (classes to classes,

relations to relations, etc) in the second. It is possible to
add a next step heuristic (as described in Section 2.2)
such as that used in QOM [5] in order to improve the
speed of the algorithm. TOM iterates until no new
mappings are found.

Table 1. Entity Features
Entity Feature Int Ext Lex Sem Com Set
Class Name X X X
 URI X X
 Direct

Instances
 X X X

 All Instances X X X
 Superclasses X X X
 Subclasses X X X
 Ancestors X X X
 Descendents X X X
Prop. Name X X X
 URI X X
 Domain X X X
 Range X X X
 Superprops X X X
 Subprops X X X
 Ancestors X X X
 Descendents X X X
Indiv. Label X X
 Data values X X X

Table 2. Metrics
Type Similarity Metric
Lexical Levenshtein
 SMOA
 JaroWinkler
Semantic Pirro-Seco
 Resnick
 Jiang
Set DICE
 Jaccard

3.2. Features and Metrics

The features used by TOM are shown in Table 1. For
each feature, the table explains to what type of
ontological entity (class, property, or individual) the
feature applies, whether the feature is intrinsic (local to
the entity) or extrinsic (requires information outside the
entity, such as knowledge of its neighbors), and what
types of similarity metrics are applicable for comparing
instances of this feature. When the feature represents a
set rather than a single element (e.g. ancestors versus
name) then either a lexical or semantic or a combination
of the two (indicated by the composite column) will need
to be used in conjunction with a set metric. Table 2
contains a list of the similarity metrics that TOM has
available to it, categorized in a manner corresponding to
the last three columns of Table 1. These metrics are
defined in Section 2.3. Additional features and metrics
can be added to the system in a modular fashion.

3.3. Genetic Algorithm

A genetic algorithm (GA) is a biologically-inspired
search process [27]. A population of individuals is
created prior to beginning the evolutionary process.
There are several different strategies for building the
initial population, but we use a straightforward approach:
one individual is set to the lexical metric on the class and
property names (a strategy that has been shown to be
reasonably effective in many cases), while the genes in
the remaining chromosomes are set to either 0 or 1 with a
probability of .75 and .25 respectively. This is done to
focus the search on solutions involving fewer metrics, in
the interest of lowering the computation time for the
composite metric. The set metric uses the best individual
from the population as its composite equality metric.
Each generation (or epoch), the individuals in the
population reproduce. This is done by selecting two
chromosomes (higher-performing individuals have a
better chance of reproducing), randomly choosing a point
along their length called a crossover point, and
exchanging the genes from that point onward (for single-
point crossover). Each chromosome also has a random
chance of having one of its genes mutated (the value of
the gene is flipped). Reproduction provides depth to the
search in order to focus on promising areas, while
mutation adds breadth to avoid prematurely converging
on a local optimum within the search space. After the
reproduction phase, the population is evaluated with
respect to a fitness function, which is described below.
Individuals are chosen to survive to the next generation
using a deterministic tournament selection strategy with
k=3. It is possible for the fitness of the population to
decrease (e.g. if the best individual is mutated in a
disadvantageous manner). In this case, the best
individual is restored to the population. The algorithm
iterates until a stopping criterion is reached, which in this
case was chosen to be when the change in the fitness of
the best individual between two generations falls below a
threshold.

3.3.1. Chromosome Representation
The current implementation reduces the size of the search
space by determining in isolation (prior to beginning the
GA) which single metric in the lexical, semantic, and set
groups performs best (class name and subclasses are used
as test cases for this purpose). The chromosome then
need only represent a choice between activating the
feature using the applicable metric or ignoring the feature
altogether. This results in a chromosome containing
twenty binary genes (note that both lexical and semantic

metrics can be applied to class and property names). The
size of the search space is therefore 220, which equals
1,048,576. A genetic algorithm should be able to search
a space of this size reasonably efficiently. There is of
course a drawback to making simplifying assumptions
such as choosing a single lexical, semantic and set metric
apriori. Deciding about the optimal metric of each type in
isolation is a form of greedy search heuristic and ignores
potential gains related to the interaction of different
metrics/features. For instance, the effectiveness of a
lexical metric may vary depending on the feature to
which it is applied or on the choice of set metric.

3.3.2. Fitness Function
The fitness function of the GA is the most interesting
aspect of the TOM approach. Prior to initiating the GA,
we select a small subset of each ontology. There are
several possible strategies to choosing this subset. We
begin by choosing all of the entities that do not have a
parent, along with the direct neighbors of those entities.
The rationale is that these entities are likely to be the most
general concepts within the domain and therefore are the
most likely to have matches in a second ontology that
describes the same domain. It is possible to include more
than one level of neighbors in this selection – the number
of entities selected from each ontology can be a parameter
of TOM and should in practice be related to the overall
size of the ontologies. Our selection algorithm also
insures that there is a mix of both classes and properties.
Investigating other subsection selection strategies is a
potential area of future work. After the ontology subsets
have been established, the GA begins. For each
individual chromosome in the population, the active
similarity metrics are computed for each pair of entities in
the ontology subsets. Each metric “votes” on whether or
not the pair of entities is equivalent, and the overall vote
tally is counted. TOM is envisioned to eventually run in
both a supervised and an unsupervised mode (comparable
to semi-autonomous versus autonomous approaches). In
supervised mode, which is the focus of this paper, the
user provides the appropriate mappings between the two
ontology subsets, and the fitness of each individual is
judged with respect to f-measure (defined in Section 4.2)
based on this ground truth along with a penalty factor
based on the number of different metrics used, in order to
give preference to simpler solutions.

3.4. Related Work

Several researchers have applied genetic algorithms or
other machine learning-based approaches to the ontology
mapping domain, but most of this work has been with

respect to similarity computation rather than choosing
which metrics to use and how they should be aggregated
[18]. One work that does attempt to tackle this latter
issue is the GOAL algorithm by Martinez-Gil and his
colleagues [17]. Their system attempts to choose which
of four similarity metrics (Levenstein, SIFO, Stolios, and
QGrams). The fitness function allows the user to
optimize one of precision, recall, f-measure, or false
positives. While the authors do not state this directly, it is
evident from these options for the fitness function that
GOAL optimizes the choice of metrics only when the
correct answers are already known. No mention is made
of using a subset of the ontology as a training set, which
implies that the user must supply GOAL with the
complete mapping for a pair of ontologies. This does not
appear to have much practical value, except possibly if
many ontology pairs with similar characteristics to the
training pair must be aligned.

As mentioned in Section 2.4, Ehrig and Sure attempted to
use a neural network to determine the appropriate weights
for the similarity metrics used in their system. They used
20% of the entities in the ontologies as a training set and
employed a neural network consisting of a linear input
layer, a hidden layer with a tanh function, and a sigmoid
output layer. The resulting weights did not perform as
well as the authors expected. They attributed this to over-
fitting of the data and suggested that the general approach
had merit [22]. A GA approach that attempts to
determine only which metrics to include and not their
weights may be less prone to over-fitting. The other
difference between Ehrig and Sure’s work and TOM is
that they used several similarity metrics that were specific
to the knowledge domain they were considering.

GLUE is another machine learning approach to ontology
mapping. It is based on the joint probability distribution
between pairs of entities. Two base classifiers are learned
in order to compute these probabilities, and a meta-
classifier is learned to aggregate their results. While the
authors are somewhat unclear on this point, it appears that
GLUE requires a fairly extensive amount of instance data
for training the classifiers (30-90 instances per node) and
has a relatively high computational complexity as both
the base classifiers and the meta-classifier need to be
trained [19]. In general, machine learning based
approaches to different aspects of the ontology matching
problem often involve text processing of documents
semantically related to the entities in the ontologies. Both
GLUE and OMEN (discussed in Section 2.6) fall into this
category, as does the approach described by Pan et al. in

[21]. GOAL and Ehrig and Sure’s neural network
approach are exceptions.

4. EXPERIMENTAL SETUP AND RESULTS

In this section we describe the dataset used throughout
this research effort and some preliminary results of the
genetic algorithm used to determine which entity feature
and similarity metric combinations will be considered by
TOM.

4.1. OAEI Contest

The Ontology Alignment Evaluation Initiative [1] was
started in 2004 with the goal of making it easier for
researchers to compare the results of their ontology
matching algorithms. The organizers hold a contest each
year in which participants run their algorithms on a large
set of ontology matching problems and compare the
results based on precision, recall, and f-measure.

The OAEI suite of tests contains five tracks that test
various aspects of ontology mapping algorithms,
including their performance on relations other than
equivalence, very large ontologies, and as part of a larger
application task. There are both synthetic and real world
ontologies of varying size and complexity, and the results
are either available to the researcher during the test,
withheld until after the test, or evaluated individually by a
human expert. We focus here on the benchmark track,
which consists of 111 pairs of variations on a
bibliographic ontology. The base ontology has 33 named
classes, 24 object properties, 40 data properties, 56 named
individuals and 20 anonymous individuals. The base
ontology is systematically altered in different ways in
order to test different aspects of the ontology matching
problem. Each test involves comparing the original
ontology with one of its mutations. The mutations are
based on different combinations of six types of
modification (as described in [1]):

 Name – entity names can be replaced by random

strings (R/N), synonyms (S), names with
different conventions (C), or translated to a
foreign language (F)

 Comments – comments can be removed (N) or
translated to a foreign language (F)

 Specialization Hierarchy – the hierarchy
information can be removed (N), expanded (E),
or flattened (F)

 Instances – can be removed (N)

 Properties – the restrictions (R) on classes can be
removed or the properties can be removed
entirely (N)

 Classes – can be expanded (E) (i.e. replaced by
several classes) or flattened (F)

4.2. Preliminary Results

The genetic algorithm was run with a population size of
thirty, a mutation rate of 0.05 (for each gene), and a
stopping criteria of 0.005 (i.e. when the fitness of the best
individual failed to increase by that amount, the algorithm
halted). The ontology subsets were twenty percent of the
full ontology sizes. Seven cases from the OAEI
benchmark suite were used for this initial test – they were
numbers 201, 205, 206, 222, 224, 228, and 301. Because
GAs are nondeterministic each test case was run five
times. The results are shown in Table 3, which contains
the test identification number, the best-performing
chromosome, the average over the five runs of the f-
measure on the ontology subsets, and the average f-
measure on the full ontology mapping problem. The
genes correspond to the list in Table 1.

Table 3. Preliminary Results
Test Best-performing Genome Avg Subset

F-measure
Avg Full F-
measure

201 01000001000001000000 0.2286 0.0588
205 00001000110000010000 0.7101 0.2953
206 10000000010010011000 0.4152 0.4936
222 10000000010000000000 0.9143 0.6567
224 10000000010000000000 0.9333 0.7564
228 10000000010000000000 1.0000 0.8303
301 10000000010000000010 0.7566 0.6645

As expected, the f-measure on the subsets was most often
higher than that of the f-measure on the complete
ontologies. However, these two values were correlated
enough to enable the genetic algorithm to tailor a metric
set that was relevant to the particular problem at hand.

201 is the most difficult of the test cases considered. The
class names were removed. The best metric set found
consisted of the semantic class name, ancestor classes,
and property ranges. Because class names were removed,
the first of these metrics is not capable of contributing to
the overall f-measure. The performance on this test was
poor.

Test 205 replaced class names with synonyms. The best
metric set found involved all of a class’s instances and

descendent classes, along with lexical comparison of
property names and subproperties. This is a reasonable
metric set, although it could be argued that semantic
comparison of class names would have improved
accuracy.

Test 206 translated the class names from English to
French. The metric set that was evolved used lexical
comparison of class names, lexical comparison of
property names, property domains, subproperties, and
ancestors. This is again a reasonable choice of metrics.
In particular, a lexical rather than semantic comparison of
class names is more likely to result in accurate matches in
this situation.

Test 222 flattened the hierarchy (removed class-subclass
relationships), test 224 removed all instances, and test
228 removed all properties. The metric set found in all
three of these cases was lexical comparison of class and
property names. This is completely reasonable in the first
two tests, and reasonable but inefficient in the third test
(because the property metric will be ignored due to the
lack of properties).

Finally, test 301 compared the reference ontology to the
real-world BibTex ontology from MIT. The evolved
composite metric consisted of lexical comparison of class
names, property names, and instance labels.

In summary, while the overall f-measures are not
competitive with the OAEI competitors from 2009 (which
used unsupervised algorithms), fine-tuning the algorithm
parameters, particularly the metric thresholds, will likely
improve performance drastically. Meanwhile, these
preliminary results do indicate that a GA can construct
composite metrics that take advantage of the
characteristics particular to the problem at hand. The
author wishes to stress the preliminary nature of these
results – much more testing needs to be done to establish
the validity of this approach.

5. CONCLUSIONS AND FUTURE WORK

Ontology mapping is a hard problem – even humans have
a difficult time aligning their internal mental models with
one another – but it is one that needs to be solved if
ontologies are going to be used to provide semantic
interoperability among systems. Current approaches to
the ontology mapping problem are not suitable for most
real-world applications in terms of accuracy, scalability,
or response time. One of the goals of this paper was to
provide system designers with an idea of the current state

of ontology mapping research and the gaps that need to
be addressed. These issues are summarized here in the
form of a list of questions to consider before relying on an
ontology-based approach to system integration.

 What ontology matching algorithm will be used

and how does its performance compare with
others in terms of both accuracy (precision,
recall, f-measure) and memory and computation
requirements?

 What is the size of the largest pair of ontologies
that can be processed?

 What parameters/thresholds does the algorithm
involve and how can the appropriate values be
determined?

 Does the algorithm do one-to-one matching or
can it handle other types of relations?

 What does the algorithm require from the user –
parameter values, thresholds, sample mappings,
interpretation/verification of results, etc?

This paper also introduced a new ontology mapping
algorithm – Targeted Ontology Mapping – specifically
designed to perform at a consistent level on a wide variety
of ontology pairs. TOM uses a genetic algorithm on a
carefully selected subset of the ontologies being aligned
to dynamically determine which set of similarity
measures provide the best accuracy for the least cost.
Preliminary results show that the GA is capable of finding
an appropriate combination of features and metrics in a
reasonable amount of time.

Future work will involve completing the implementation
of TOM and finding more optimal values for parameters
such as metric thresholds, population size, and stopping
criterion. We will also consider the possibility of an
unsupervised version of TOM.

REFERENCES

[1] Ontology Alignment Evaluation Intiative,

http://oaei.ontologymatching.org/.

[2] Y. Jean-Mary, E. Shironoshita, and M. Kabuka.
“ASMOV: Results for OAEI 2009,” Fourth International
Workshop on Ontology Matching, Washington D.C., USA,
2009.

[3] P. Wang and B. Xu. “Lily: Ontology Alignment Results

for OAEI 2009,” Fourth International Workshop on
Ontology Matching, Washington D.C., USA, 2009.

[4] P. Shvaiko and J. Euzenat. “Ten Challenges for Ontology
Matching,” Seventh International Conference on
Ontologies, Databases, and Applications of Semantics,
2008.

[5] M. Ehrig and S. Staab. “QOM – Quick Ontology

Mapping,” Lecture Notes in Computer Science, vol. 3298,
pp. 683-697, 2004.

[6] G. Stoilos, G. Stamou, and S. Kollias. “A String Metric

For Ontology Alignment,” ISWC 2005, Lecture Notes in
Computer Science, vol. 3729, pp. 624-637, 2005.

[7] W. Winkler. “The state record linkage and current research

problems,” Technical report, Statistics of Income Division,
Internal Revenue Service Publication, 1999.

[8] D. Lin. “An Information-Theoretic Definition of

Similarity,” Fifteenth International Conference on Machine
Learning, pp. 296-304, 1998.

[9] J. Jiang and D. Conrath. “Semantic Similarity Based on

Corpus Statistics and Lexical Taxonomy,” International
Conference Research on Computational Linguistics
(ROCLING X), 1997, Taiwan.

[10] D. Widdows. GEOMETRY AND MEANING, CSLI

publications, 2004.

[11] A. Budanitsky and G. Hirst. “Semantic distance in

WordNet: An experimental, application-oriented evaluation
of five measures,” Workshop on WordNet and Other
Lexical Resources, 2001.

[12] “Jena – A Semantic Web Framework for Java,”

http://jena.sourceforge.net/index.html.

[13] The SecondString library,

http://secondstring.sourceforge.net/.

[14] G. Pirro and N. Seco. “Design, Implementation and

Evaluation of a New Similarity Metric Combining Feature
and Intrinsic Information Content,” ODBASE 2008, LCNS,
Springer Verlag, 2008.

[15] P. Wang and B. Xu. “Debugging Ontology Mappings: A

Static Approach,” Computing and Informatics, vol. 22,
2003, 1001-1015, v 2007-Feb-14.

[16] N. Noy and M. Musen. “PROMPT: Algorithm and Tool

for Automated Ontology Merging and Alignment,” 17th
National Conference on Artificial Intelligence (AAAI’02),
Edmonton, Alberta, Canada, August 2002.

[17] J. Martinez-Gil, E. Alba, and J.F. Aldana-Montes.
“Optimizing Ontology Alignments by Using Genetic
Algorithms”

[18] J. Wang, Z. Ding, and C. Jiang. “GAOM: Genetic
Algorithm based Ontology Matching,” 2006 Asia-Pacific
Conference on Services Computing (APSCC’06), 2006.

[19] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.

“Ontology Matching: A Machine Learning Approach,”
HANDBOOK ON ONTOLOGIES, edited by S. Staab and
R. Struder, Springer-Verlag, 2004.

[20] P. Mitra, N. Noy, andA. Jaiswal. “Ontology Mapping

Discovery with Uncertainty,” In Gil, Y., Motta, E.,
Benjamin, V.R., Musen, M.(Eds.) Fourth International
Semantic Web Conference (ISWC), Galway,
Ireland, Lecture Notes in Computer Science, Springer
Verlag GmbH, 3729 (2005): 537-547.

[21] R. Pan, Z. Ding, Y. Yu, and Y. Peng. “A Bayesian

Network Approach to Ontology Mapping,” Lecture Notes
in Computer Science, Springer, vol. 3729, 2005, pp. 563-
577.

[22] M. Ehrig and Y. Sure. “Ontology Mapping – An

Integrated Approach,” Lecture Notes in Computer Science,
Springer, vol. 3053, 2004, pp. 76-91.

[23] The Protégé Ontology Editor and Knowledge Acquisition

System, http://protege.stanford.edu/.

[24] V. Qazvinian, H. Abolhassani, and S. Hossein Haeri.

“Coincidence Based Mapping Extraction With Genetic
Algorithms,” Third International Conference on Web
Information Systems and Technologies (Webist 2007),
Barcelona, Spain, March 2007.

[25] S. Melnik, H. Garcia-Molina, and E. Rahm. “Similarity

Flooding: A Versatile Graph Matching Algorithm and Its
Application to Schema Matching,” 18th International
Conference on Data Engineering (ICDE’02), San Jose,
California, February, 2002.

[26] A. Heß. “An Iterative Algorithm for Ontology Mapping

Capable of Using Training Data,” Lecture Notes in
Computer Science, Springer, vol. 4011, 2006, pp. 19-33.

[27] J.H. Holland. ADAPTATION IN NATURAL AND

ARTIFICIAL SYSTEMS, Ann Arbor: The University of
Michigan Press, 1975.

[28] P. Resnik. “Using information content to evaluate

semantic similarity in a taxonomy,” 14th International Joint
Conference on Artificial Intelligence, pp. 448-453, 1995.

[29] M.A. Jaro. “Advances in Record-Linkage Methodology as

Applied to Matching the 1985 Census of Tampa, Florida,”
Journal of the American Statistical Association, vol. 89, pp.
414-420.

