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Abstract. We present a tableau algorithm for the description logic
ALCOV. This description logic is obtained by extending the description
logic ALCO with the expressive nominal schema construct that enables
DL-safe datalog with predicates of arbitrary arity to be covered within
the description logic framework. The tableau algorithm provides a ba-
sis to implement a delayed grounding strategy which was not facilitated
by earlier versions of decision procedures for satisfiability in expressive
description logics with nominal schemas.

1 Introduction

The quest for suitable ontology languages for the Semantic Web [1] has produced
a plethora of proposals drawing from all corners of KR research. Most notable
among the expressive languages is the W3C1 standard Web Ontology Language
(OWL) [2] whose major variant, OWL 2 DL, is based on the description logic
(DL) SROIQ [3]. At the same time, logic programming based approaches such
as F-Logic [4] have also been investigated prominently, and have eventually led
to the W3C standard Rule Interchange Format (RIF), which in its core variant,
called RIF Core [5], is essentially Datalog, i.e., function-free Horn logic.

This divergence in underlying paradigms, i.e., DLs on the one hand and logic
programming on the other, has naturally led to substantial efforts to reconcile
them in a satisfactory manner (see the related work section of [6] for a recent sur-
vey). However, satisfactory integrations are not easy to obtain, which is mainly
due to the fact that description logics are generally supposed to be decidable,
and because straightforward integrations with rules lead to undecidability.

The most prominent approach to date to overcome this decidability issue is
to alter the semantics of rule bases in such combined languages, and to do this
in such a way that variables occurring in rules can bind only to constants which
are explicitly present in the knowledge base—in DL lingua, these variables can
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bind only to known individuals. This reading of (Datalog) rules is only a mild vi-
olation of the usual semantics, because such rules are usually interpreted under
a Herbrand (minimal model) semantics anyway. Datalog rules with semantics
modified such as just mentioned are commonly called DL-safe Rules, and decid-
ability is retained if such rules are added to DL knowledge bases [7].

More recently, however, it was realized that this notion of DL-safety can be
relaxed such that only some of the variables in the rules have to be affected [8].
And very recently [9], the description logic syntax construct nominal schemas
was introduced, which not only further generalizes the notion of DL-safety, but
also allows one to express the DL-safe rules (and their generalizations) with
predicates of arbitrary arity within the description logic syntax, using the new
construct (see Appendix of [10]). It was also shown that extending standard DLs
with nominal schemas does not affect the decidability. In fact, in case of SROIQ,
adding nominal schemas does not increase the complexity. This decidability re-
sult, however, hinged on a rather straightforward but inefficient algorithmization
based on full grounding upfront which induces an exponential blow up already
at the beginning of reasoning (see Section 3.1). It is thus necessary to have a
smarter alternative which can be potentially more practical to implement.

In this paper, we explore one such alternative by adapting standard tableau
algorithm for DLs to work with nominal schemas while allowing for a delayed
grounding strategy. The rationale is that by delaying the grounding until it is
absolutely necessary to do so can minimize the blow up compared to performing
it fully at the beginning of reasoning. In order to make the presentation easier
to follow, we focus on the DL ALCOV — obtained by extending ALCO with
nominal schemas — which is less expressive than SROIQV. The employed ap-
proach should not be too difficult to generalize for other DLs more expressive
than ALCOV, including SROIQV.

The plan of the paper is as follows. We first define the syntax and semantics
of ALCOV. Then we present the tableau algorithm and prove its correctness.
Afterward, we proceed with discussion on how to extend the approach to more
expressive DLs. Finally, we conclude.

2 The DL ALCOV

Let NC , NR, NI , and NV be pairwise disjoint sets of concept names, role names,
individual names, and variables.

Definition 1. The set C of (ALCOV) concepts is defined by the grammar:

C ::= > | ⊥ | NC | {NI} | {NV } | C uC | C tC | ∃NR.C | ∀NR.C

A general concept inclusion (GCI) is an expression C v D where C,D ∈ C.
A TBox is a finite set of GCIs. An ABox assertion is either (i) a concept
assertion which is an expression of the form C(a); (ii) a role assertion which
is an expression of the form R(a, b); (iii) a negative role assertion which is
an expression of the form ¬R(a, b); or (iv) an inequality assertion which is an



expression of the form a 6 .= b; where C ∈ C, a, b ∈ NI , and R ∈ NR. An ABox is
a finite set of ABox assertions. An axiom is either a GCI or an ABox assertion.
A knowledge base (KB) is a finite set of axioms.

For every concept C, Var(C) is the set of all variables that occurs, possibly
more than once, in C. Likewise, Ind(C) is the set of all individual names oc-
curring in C. Both sets are naturally extended to sets of concepts, axioms and
knowledge bases.

The syntax of ALCOV only differs from that of ALCO by the presence of the
set NV of variables and the corresponding concept expression of the form {x}
for x ∈ NV which is called nominal schemas which generalize the notion of DL-
safety. In this regards, nominal schema is a kind of variable nominal, that is, an
x ∈ NV should be read as a variable which can bind only to known individuals,
i.e., elements of NI that appear explicitly in the KB. Since we only care about
variables and individual names appearing in the KB, we simply assume hence-
forth that NI = Ind(K) and NV = Var(K) where K is the KB in consideration,
and any complexity analysis based on K will take the signature into account.

Definition 2 (Variable Assignment). A variable assignment is a (total or
partial) function θ from NV to NI . The domain of θ is denoted dom(θ). If dom(θ)
only consists of one variable v, i.e., it is a singleton set, then we sometimes write
θ as [v/θ(v)]. If dom(θ) = NV , then θ is a total function and we say that θ is
a total variable assignment. For a variable assignment θ (not necessarily total)
and a set of variables M ⊆ dom(θ), the restriction of θ w.r.t. M is the variable
assignment θ|M defined as {x 7→ θ(x) | x ∈M}.

Definition 3 (Grounding). Let C be a concept. We say that C is ground
whenever Var(C) = ∅. Further, given a variable assignment θ, the concept Cθ is
obtained from C by syntactically substituting all occurrences of every variable x ∈
Var(C)∩dom(θ) with θ(x). In particular, Cθ = C whenever Var(C)∩dom(θ) = ∅.
Also, note that Cθ is ground when Var(C) ⊆ dom(θ), and we say that Cθ is a
ground form of C (w.r.t. θ).

The application of a variable assignment as defined above is called a ground-
ing. This definition is extended naturally to sets of concepts, axioms, or knowl-
edge bases.

Note that there are |NI ||NV | = |Ind(K)||Var(K)|, i.e., exponentially many total
variable assignment for a given knowledge base K. Thus, grounding K will yield
a knowledge base that is exponentially larger than K.

The semantics of ALCOV concepts is defined as in standard DLs, while
also taking into account variable assignments for nominal schemas. Essentially,
the semantics of a concept with nominal schemas is based on its ground form,
hence at least one total variable assignment is required whenever a nominal
schema appear anywhere in the knowledge base. To this end, we assume that
if NV 6= ∅, then also NI 6= ∅. This is somewhat similar to the way rules are
interpreted in Herbrand semantics. As discussed in Section 1, nominal schemas
are a generalization of DL-safety which is used to ensure the decidability of



integration between rules and description logics. Hence, the above assumption
is also in accordance with the aim of rule-DL integration because Herbrand
semantics also assumes that at least one constant symbol exists.

Definition 4. An interpretation I = (∆I , ·I) consists of a non-empty set ∆I

called the domain and a function ·I that maps each a ∈ NI to an element
aI ∈ ∆I , each A ∈ NC to a set AI ⊆ ∆I , and each R ∈ NR to a binary relation
RI ⊆ ∆I × ∆I . Given a total variable assignment θ and an interpretation I,
the semantics of ALCOV concepts, roles and individual names is defined w.r.t.
the function ·I,θ in the following where a ∈ NI , A ∈ NC , R ∈ NR v ∈ NV ,
t ∈ NI ∪ NV and C,D ∈ C.

AI,θ = AI RI,θ = RI

aI,θ = aI vI,θ = (θ(v))I,θ

>I,θ = >I = ∆I ⊥I,θ = ⊥I = ∅
{t}I,θ = {tI,θ} (¬C)I,θ = ∆I \ CI,θ

(C uD)I,θ = CI,θ ∩DI,θ (C tD)I,θ = CI,θ ∪DI,θ

(∃R.C)I,θ = {δ | ∃ε : 〈δ, ε〉 ∈ RI,θ and ε ∈ CI,θ}
(∀R.C)I,θ = {δ | ∀ε : if 〈δ, ε〉 ∈ RI,θ then ε ∈ CI,θ}

Given an interpretation I and a total variable assignment θ, we say that I θ-
satisfies:

(i) a GCI C v D, written I |=θ C v D, iff CI,θ ⊆ DI,θ;
(ii) a concept assertion C(a), written I |=θ C(a), iff aI,θ ∈ CI,θ;

(iii) an assertion R(a, b), written I |=θ R(a, b), iff 〈aI,θ, bI,θ〉 ∈ RI,θ;
(iv) an assertion ¬R(a, b), written I |=θ ¬R(a, b), iff 〈a, b〉 /∈ RI,θ; and
(v) an assertion a 6 .= b, written I |=θ a 6

.
= b, iff aI,θ 6= bI,θ.

For a KB K (i.e., a TBox, an ABox or a union of them), I θ-satisfies K,
written I |=θ K, iff I |=θ α for every α ∈ K. Further, I satisfies K, written
I |= K, iff I |=θ K for every total variable assignment θ. If such an I exists, we
say that K is satisfiable and I is a model of K. Finally, the KB-satisfiability
problem is the following reasoning problem: “Given a KB K, is K satisfiable?”.

Herein, axioms are assumed to be standardized apart : for every pair of dif-
ferent axioms α1 and α2 in a KB K, Var(α1) ∩ Var(α2) = ∅. This is analogous
to the way variables in rules are interpreted: the scope of a variable is within a
rule, i.e., if the same variable occurs in two different rules, they are considered
to be different (although syntactically the same). Standardizing apart simplifies
the treatment of nominal schemas as we do not need to specify to which variable
in which axiom is a grounding intended.

Note that the unique name assumption (UNA) is not made since it can be
easily enforced by simply asserting inequalities in the ABox between every pair
of individual names. Clearly, there is only at most a quadratic blow up of the
size of the KB if the UNA is enforced this way.



Finally, because nominals are present in ALCOV, KB satisfiability can be
easily reduced to TBox satisfiability as the ABox part can be internalized as
TBox axioms: C(a) can be expressed by {a} v C; R(a, b) by {a} v ∃R.{b};
¬R(a, b) by {a} v ∀R¬{b}; and a 6 .= b by {a} v ¬{b}.

Lemma 1. KB satisfiability in ALCOV can be polynomially reduced to satisfi-
ability of an ALCOV TBox.

Thus, from now on, for KB satisfiability in ALCOV, we assume that the
input KB only consists of TBox.

3 Reasoning Algorithm for ALCOV

3.1 Grounding Upfront

As noted in Section 2, the semantics of a KB is defined in terms of its ground
form. Given anALCOV KBK that contains some occurrences of nominal schemas,
it is easy to see that its ground form is an exponentially larger KB K′ that con-
tains no nominal schema. Obviously, K′ is actually an ALCO KB that carries
the classical DL semantics. In fact, this is the most obvious approach for rea-
soning with any DL extended with nominal schemas. Let L be the extension
of the DL L′ with nominal schemas and K a KB in L. To decide satisfiability
of K, we perform all possible grounding to all of the axioms in K yielding an
exponentially larger K′ which is expressible in L′, then we perform any existing
decision procedure of KB satisfiability for L′ on K′.

Such a combinatorial explosion is of course not desirable. We would prefer
an approach in which grounding is performed selectively only when needed. In
this section, we will describe a modification of standard tableau algorithms that
incorporates delayed grounding.

3.2 A Tableau Algorithm with Delayed Grounding for ALCOV

Standard tableau algorithms for DLs work on a graph structure whose nodes and
edges are respectively labeled with sets of concepts and roles. Those algorithms
are realized through a set of tableau rules, each of which is applied to a concept
of certain form occurring in a node’s label when certain conditions are satisfied.
Tableau algorithms proceed by exhaustively applying the rules so long as any
of them can be applied and no situation that indicate unsatisfiability — called
clash — occurs. If they terminate without generating a clash, the resulting graph
structure describes a model of the input KB or concept.

Our modification here follows the same setting, but also incorporate a ground-
ing rule which can be applied to concepts (containing nominal schemas) occur-
ring in a node label. The main idea is that if it is safe to apply a standard
tableau rule without first grounding the applicable concept, then the algorithm
should permit such a rule application to occur. The criteria as to which delay-
ing grounding is safe is intuitively related to how nominal schemas occur within



the applicable concept. Furthermore, in case grounding is really needed prior to
applying a tableau rule, we prefer to perform grounding partially, i.e., just on
sufficient number of nominal schemas so that some safe application of tableau
rules can proceed. At this point, the reader should keep in mind that the ground-
ing rule that we will specify later can still be applied, although safe application
of standard tableau rules is still possible. Thus, the grounding-upfront approach
illustrated in Section 3.1 can be seen as a special case of the tableau algorithm
with delayed grounding, although on the other hand, an efficient implementation
would most likely defer grounding as much as possible.

The following two lemmas ensure the correctness of partial grounding. The
proof of Lemma 2 is obvious from the semantics, while Lemma 3 follows from
Lemma 2.

Lemma 2 (Partial Grounding). Let C be a concept, I an interpretation,
s ∈ ∆I an element of domain of interpretation, θ a total variable assignment,
M1,M2 sets of variables with M1 ⊆ M2 ∈ NV . Then, s ∈ (Cθ|M1)I,θ iff s ∈
(Cθ|M2)I,θ.

Lemma 3. Let C be a concept, Υ a set of variables, I an interpretation, and θ
a total variable assignment. Then CI,θ = (Cθ|Υ )I,θ = (Cθ)I,θ.

For a concept C, NNF(C) is the concept this equivalent to C in negation
normal form, i.e., in which negation signs only appear directly in front of concept
names, nominals or nominal schemas. It is well-known that NNF(C) can be
computed from C in linear time.

We now describe the main part of the tableau algorithm for deciding ALCOV
KB satisfiability. Let T be a KB of which satisfiability is to be decided. By
Lemma 1, T consists only of GCIs and no other types of axioms. Define Φ as
the set of all total variable assignments. Also, the closure clos(C) of a concept
C is a set of concepts containing C and is closed under sub-concepts. We then
define the set fclos(T ) as follows:

fclos(T ) :=
⋃

CvD∈T
θ∈Φ,Υ⊆NV

clos(NNF(¬C tD)θ|Υ )

Clearly, fclos(T ) is finite because T , Φ and NV are finite. In addition, NNF(¬Ct
D) ∈ fclos(T ) for every GCI C v D ∈ T because Υ above can be empty. The
algorithm starts with an initial completion graph for T as defined below.

Definition 5 (Completion Graph). Let T be an ALCOV TBox and Φ is the
set of total variable assignments from NV to NI . Assume that |NI | = n and ai’s,
1 6 i 6 n, are all of its elements. A completion graph for T is a directed graph
G = (V,E, L,M) where V is a set of nodes, E ⊆ V × V is a set of edges, L
is a labeling function that labels each node r ∈ V with a set L(r) ⊆ fclos(T )
and each edge 〈r, r′〉 ∈ E with a set2 L(r, r′) ⊆ NR, and M is a function that

2 the extra brackets are dropped for readability



maps each node to a set of non-empty variable assignment, i.e., a subset of
{θ|Υ | θ ∈ Φ, Υ ⊆ NV , Υ 6= ∅}.

To simplify the notation, henceforth, by R ∈ L(r, r′), we mean that both
R ∈ L(r, r′) and 〈r, r′〉 ∈ E.

An initial completion graph for T with NI = Ind(T ) = {a1, . . . , an} is then
the completion graph G0 = (V0, ∅, L0, ∅) for T where V0 = {r1, . . . , rn}, and
L0(ri) = {>, {ai}} for 1 6 i 6 n. In addition, we specifically call the nodes
r1, . . . , rn in V0 as initial nodes.

If R ∈ L(r, r′), then we say that r′ is an R-successor of r and r is an R-
predecessor of r′. In this case, we also say that r′ is an (R)-neighbor of r. The
transitive closure of the predecessor relation is called the descendant relation and
the transitive closure of the successor relation is called the ancestor relation.

A node r ∈ V is a nominal node if L(r) contains a nominal. Otherwise, r is
a blockable node. Note that initial nodes are always nominal nodes.

Definition 6 (Clash). Let G = (V,E, L,M) be a completion graph for a TBox
T . A node r ∈ V contains a clash if at least one of the following holds:

(i) ⊥ ∈ L(x);
(ii) {A,¬A} ⊆ L(r) for some A ∈ NC ;

(iii) {{a},¬{a}} ⊆ L(r) for some a ∈ NI ;
We then say that G contains a clash if some of its nodes contains a clash.

Definition 7 (Blocking). A node r is blocked if r is blockable and one of
the following holds: (i) either r has a blocked ancestor; or (ii) r has a blockable
ancestor r′ such that L(r) = L(r′) and the path between r′ and r consists only of
blockable nodes; in this case we say that r′ (directly) blocks r.

The ALCOV tableau algorithm is thus as follows. Given a TBox T , we ex-
haustively apply the tableau expansion rules from Figure 1 to the completion
graph for T , which is initialized to its initial completion graph, until none of
the rules is applicable or the completion graph contains a clash. In the algo-
rithm, TBox-rule, u-rule, ∀-rule, t-rule, ∃t-rule, and ∃-rule are called gen-
erating rules, the O-rule is called the shrinking rule, while gr-rule, grv-rule,
grt-rule, gr∃t-rule, and gr∃-rule are called grounding rules. Used in some of the
tableau expansion rules, the set Tvar(C) is defined as: Tvar({v}) = {{v}} for any
v ∈ NV ; Tvar(¬C) = Tvar(C); Tvar(CuD) = Tvar(CtD) = Tvar(C)∪Tvar(D);
Tvar(∀R.C) = Tvar(∃R.C) = ∅; and Tvar(C) = ∅ if Var(C) = ∅. The comple-
tion graph is complete when none of the rules is applicable to it or it contains a
clash. If the expansion rules can be applied such that a complete, clash-free com-
pletion graph for T is generated, then the algorithm returns “T is satisfiable”.
Otherwise, it returns “T is unsatisfiable”.

In general, this tableau algorithm is similar to the tableau algorithm for the
DLs ALCO [11] (see also the tableau algorithms for DLs that cover ALCO:
SHOQ [12], and SHIO [13]). In fact, the action performed by the O-rule is
a merging of nodes and pruning parts of the completion graph due to nomi-
nals which is also described in the more expressive DLs DLs SHOIQ [14] and
SROIQ [3].



TBox-rule: if: for some C v D ∈ T , NNF(¬C tD) /∈ L(r) and r is not blocked,
then: L(r) := L(r) ∪ {NNF(¬C tD)}

O-rule: if: {a} ∈ L(r) for some a ∈ NI , r is not blocked
then: for some initial node s with {a} ∈ L(s), do the following four steps:

first, for each edge 〈r′, r〉 do: if 〈r′, s〉 ∈ E, set L(r′, s) := L(r′, s)∪L(r, s);
else set E := E ∪ {〈r′, s〉} and L(r′, s) := L(r, s)
second, for each edge 〈r, r′〉 where r′ is not blockable, do : if 〈s, r′〉 ∈ E, set
L(s, r′) := L(s, r′) ∪ L(r, r′); else set E := {〈s, r′〉} and L(s, r′) := L(r, r′);
third, set L(s) := L(s) ∪ L(r); and
fourth, perform Prune(r) which is the following recursive procedure:
(1) for every successor r′ of r, remove 〈r, r′〉 from E; and, if r′ is blockable,
then Prune(r′); (2) remove r from V .

u-rule: if: C uD ∈ L(r), r is not blocked, {C,D} * L(r)
then: L(r) := L(r) ∪ {C,D}

t-rule: if: CtD ∈ L(r), Var(C)∩Var(D) = ∅, r is not blocked, and {C,D}∩L(r) = ∅
then: L(r) := L(r) ∪ {C′} for some C′ ∈ {C,D}

∀-rule: if: ∀R.C ∈ L(r), r is not blocked, R ∈ L〈r, s〉 and C /∈ L(s) for some node s
then: L(s) := L(s) ∪ {C}

∃t-rule: if: ∃R.(C tD) ∈ L(r), Var(C) ∩ Var(D) = ∅, r is not blocked,
then: L(r) := L(r) ∪ {∃R.C′} for some C′ ∈ {C,D}

∃-rule: if: ∃R.C ∈ L(r), C is not a disjunction C′ t D′, Tvar(C) = ∅, r is not
blocked, r has no R-successor s with C ∈ L(s)

then: create a node s with L(r, s) := {R} and L(s) := {C}
grv-rule: if: (i) for some v ∈ NV and some a ∈ NI , either {v} ∈ L(r) and {a} /∈ L(r),

or ¬{v} ∈ L(r) and ¬{a} /∈ L(r); (ii) v/a /∈ M(r); and (iii) r is not blocked
then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}

grt-rule: if: (i) C tD ∈ L(r); (ii) (C tD)[v/a] /∈ L(r) for some v ∈ Var(C) ∩ Var(D)
and a ∈ NI ; (iii) v/a /∈ M(r); and (iv) r is not blocked

then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}
gr∃t-rule: if: (i) ∃R.(C tD) ∈ L(r); (ii) ∃R.(C tD)[v/a] /∈ L(r) for some v ∈ Var(C)∩

Var(D) and a ∈ NI ; (iii) v/a /∈ M(r); and (iv) r is not blocked
then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}

gr∃-rule: if: (i) ∃R.C ∈ L(r) and C is not a disjunction; (ii) ∃R.C[v/a] /∈ L(r) for
some v ∈ Tvar(C) and a ∈ NI ; (iii) v/a /∈ M(r); and (iv) r is not blocked

then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}
gr-rule: if: (i) C ∈ L(r); (ii) C[v/a] /∈ L(r), but v/a ∈ M(r) for some v ∈ Var(C) and

some a ∈ NI ; and (iii) r is not blocked
then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)}

Fig. 1. Tableau expansion rules for ALCOV.

The new contribution of this paper is the modification of those tableau algo-
rithms to incorporate delayed grounding to deal with nominal schemas. This is
realized through grounding rules and some additional precondition for the stan-
dard tableau expansion rules. All grounding rules non-deterministically choose
a variable assignment that can be used to partially ground the corresponding
concept. This provides some flexibility for incorporating some heuristics that



allow an implementation to ground variables in such a way that a clash can be
found as early as possible.

The intuition behind the grounding rules comes from the way concept ex-
pressions with nominal schemas are read as FOL formulas with equality. For
example, the concept ∃R.({x} u ∃S.{y}) can be read as the formula

(1) ∀x.∀y.∃z′.(R(s, z′) ∧ x = z′ ∧ ∃z′′.(S(z′, z′′) ∧ y = z′′))

where s is the meta-variable that represents a domain element for which the for-
mula holds. The universal quantifiers that correspond to (FO-)variables x, y and
z associated with nominal schemas are interpreted in a special way: they range
over the set of named individuals, i.e., not the whole domain. Thus, grounding
the nominal schemas to every possible individual names is equivalent to dropping
those universal quantifiers.

Now, suppose that during the execution of the algorithm, a node s of the
completion graph has the above concept in its label and the knowledge base
contains a and b as the named individuals (hence, there are two initial nodes
sa whose label contains {a} and sb whose label contains {b}). The gr∃-rule will
ground the concept to generate new concepts: ∃R.({a} u ∃S.{y}) and ∃R.({b} u
∃S.{y}) which can be read as the formulas

∀y.∃z′.(R(s, z′) ∧ a = z′ ∧ ∃z′′.(S(z′, z′′) ∧ y = z′′))(2)

∀y.∃z′.(R(s, z′) ∧ b = z′ ∧ ∃z′′.(S(z′, z′′) ∧ y = z′′))(3)

The algorithm will process the above two concepts in the labeling of s by gen-
erating two individuals, each of which are then merged by the O-rule to sa and
sb. This makes both sa’s and sb’s labels contains ∃S.{y}. This situation is the
same as having the following two formulas:

R(s, a) ∧ ∀y.∃z′′.(S(a, z′′) ∧ y = z′′)(4)

R(s, b) ∧ ∀y.∃z′′.(S(b, z′′) ∧ y = z′′)(5)

Clearly, the conjunction of (4) and (5) is equivalent to (1) if we interpret the
(first-ordervariable x to range only over named individuals. More importantly,
notice that the universal quantifier that binds y now moves “inside”. This is done
correctly because the existential quantifier that binds z′ has been instantiated
beforehand and all possible instantiations of z′ must be equal to some named
individuals due to x which generate, in this case, two different formulas. Note
that this cannot be done for the universal quantifier that binds x on (1) because
even if z′ is instantiated beforehand, there is only one formula which does not
capture all possible instantiations of z′.

The above example also illustrates that grounding y can be done after ∃-rule
is applied. This epitomises the delayed grounding strategy. A full grounding
upfront would have fully grounded y (in addition to x) in the labeling of s.
This would result in four new labels, instead of two as in the above example.
If this is followed by applications of ∃-rule, there will be four new individuals



∃hasReviewAssignment.(({x} u ∃hasAuthor.{y}) u ({x} u ∃atVenue.{z}))

u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z})

v ∃hasConflictingAssignedPaper.{x}
{p0} v ∃hasAuthor.{a1000} u ∃hasAuthor.{a1}
{pi} v ∃hasAuthor.{ai} u ∃hasAuthor.{ai+1}
{ai} v ∃hasSubmittedPaper.{pi−1} u ∃hasSubmittedPaper.{pi}

{a1000} v ∃hasSubmittedPaper.{p999} u ∃hasSubmittedPaper.{p0}
{pj} v ∃AtVenue.{ISWC}
{ak} v ∃hasReviewAssignment.{pk−4} u ∃hasReviewAssignment.{pk−3}
{a1} v ∃hasReviewAssignment.{p999} u ∃hasReviewAssignment.{p998}

Fig. 2. Example for delayed grounding. i = 1, . . . , 999, j = 0, . . . , 999, k = 4, . . . , 1000.

generated, although they will eventually be merged into two due to O-rule. This
unnecessary creation of new individuals is avoided if grounding y can be delayed.

In general, the precondition concerning variables specified in t-rule, ∃-rule
and ∃t-rule pinpoints which variables must be grounded before the concept can
be “split”. This is closely related to those situations in which universal quantifiers
can be moved inside a FOL formula as exemplified above. For t-rule, any variable
occurring in both disjuncts must be grounded before the disjunction can be split.
Intuitively, this is due to the fact that universal quantifiers cannot distribute
over disjunction, i.e., ∀x.(A(x) ∨ B(x)) is not equivalent to ∀x.A(x) ∨ ∀x.B(x).
This similarly holds for ∃t-rule which also pushes the disjunction outside. For
∃-rule that is applied to a concept ∃R.C with C not a disjunction, any variable
occurring in the set Tvar(C) must be grounded before the tableau algorithm
can process the concept by creating a new individual. Meanwhile, u-rule and
∀-rule can be safely applied without prior grounding of nominal schemas. This
should be clear as occurrences of nominal schemas induce universal quantifiers
and those quantifiers can be freely moved inside conjunction or other universal
quantifiers.

The above explanation should make the idea of delayed grounding clear to the
reader. To describe how the algorithm would potentially perform in comparison
to grounding-upfront approach described in 3.1, we use the knowledge base KB
in Figure 2. Given KB, we ask whether it entails the existence of a conflicting re-
view assignment, i.e., whether the conceptD := ∀hasConflictingAssignedPaper.⊥
is unsatisfiable w.r.t. KB.

The answer must be yes since a1 and a1000 co-author p0, but a1 has review
assignment on p999 whose authors include a1000. To run the algorithm, we first
add a GCI {r0} v D to KB where r0 is a new individual. This knowledge base
has 2002 individual names and three nominal schema {x}, {y} and {z}. Note
that if we solve this entailment by grounding the first axiom up front, we would
have more than 8× 109 new axioms.



On the other hand, our algorithm can discover the clash without necessar-
ily grounding everything up front. Initially, an initial completion graph is con-
structed with nodes, say, r0, a0, . . . , a999, and p0, . . . , p999, and iswc. We can
quickly add GCIs into r0, p999, and a1000. Because r0 contains only one nominal
{r0} in its label, r0 will immediately receive the RHSs of all GCIs in KB, except
the first GCI. Next, after a few applications of the u-rule, we apply the ∃-rule
and the o-rule to r0, a1000 and p999. We obtain, without applying the grounding
rule:

– p0 is a successor of both r0 and a1000 through the hasSubmittedPaper role.
– p999 is a successor of r0 through the hasReviewAssignment role.
– p999 is a successor of a1000 through the hasSubmittedPaper role.
– p0 and p999 has iswc as their successor through the atVenue role.
– a1000 is a successor of p999 through the hasAuthor role.

Next, we apply the t-rule on r0 to choose one of the disjuncts from NNF(¬C1 t
D1) where C1 v D1 is the first axiom inKB (the only one containing occurrences
of nominal schemas). Suppose the first disjunct is chosen on r0. Next, apply ∀-
rules and the GR3-rule to eventually obtain a clash when ¬{x} is grounded to
¬{p999} on p999. If we choose to propagate ¬{y} through the hasAuthor role,
again we get a clash when grounding ¬{y} to ¬{a1000} on a1000. Similarly, a
clash also occurs when we propagate ¬{z} through the atVenue role.

Next, suppose the second disjunct is chosen on r0. Propagating through the
hasSubmittedRole means that p0 must contain the label ∀hasAuthor.¬{y} t
∀atVenue.¬{z}. Similar to p999, any choice of disjunct here will lead to a clash. So
we can only now select the third disjunct on r0: ∃hasConflictingAssignedPaper.{x}.
Here, grounding x to p999 and applying the ∃-rule followed by the O-rule will
connect r0 to p999 through the hasConflictingAssignedPaper role. But then, r0
also contains ∀hasConflictingAssignedPaper.⊥ in its label. Hence, applying the
∀-rules will propagate ⊥ to p999 leading to a clash.

So, by only grounding x to p999, y to a1000 and z to ISWC, we can discover the
clashes quickly and derive the unsatisfiability of ∀hasConflictingAssignedPaper.⊥.
By delaying grounding and then performing it selectively, we can avoid the com-
binatorial explosion which is unavoidable when grounding is done upfront. Ob-
viously, this does not mean that combinatorial explosion can always be avoided.
On the other hand, this idea can lead to more practical heuristics that enable
efficient implementations for reasoning with nominal schemas.

4 Correctness of ALCOV Tableau Algorithm

We first show that the tableau algorithm for ALCOV as described in Section 3.2
terminates. We then proceed with soundness and completeness afterward. Due
to space restriction, we refer the reader to [15] for full proofs.

Lemma 4 (Termination). Given a ALCOV TBox T as input, the tableau
algorithm for ALCOV terminates.



Proof. Each application of the grounding rules add a new partially grounded
concepts to o con- cept labeling of a node in the completion graph. Thus, the
number of those rule applications is bounded by the number of partially grounded
SROIQV concept that can be generated from fclos(T ) which is finite due to the
fact the num- ber of all possible variable assignments is finite. The termination
would then follow from this, together with the termination of ALCO tableau
algorithm which is implied by termination of SHOQ tableau algorithm [12].

In order to show the soundness and completeness of the algorithm, we employ
the standard unraveling technique that is commonly used in many correctness
proofs of tableau algorithms in DLs. This technique is realized through the so-
called tableau structure that corresponds to a model of a TBox.

Definition 8 (Tableau for ALCOV). Let T be an ALCOV TBox and Φ the
set of all total variable assignments. A tableau for T is a triple T = (S,L, E)
such that S is a non-empty set, L : S → 2fclos(T ) maps every element of S to
a subset of fclos(T ), and E : NR → 2S×S maps each role to a set of pairs of
elements from S. Furthermore, T satisfies the following conditions:

(T0) for each s ∈ S, NNF(¬C tD) ∈ L(s) for every C v D ∈ T ;
(T1) for each a ∈ NI , {a} ∈ L(s) for some s ∈ S;
(T2) for each a ∈ NI and s, t ∈ S, {a} ∈ L(s) ∩ L(t) implies s = t;
(T3) for each v ∈ NV and s ∈ S, {v} ∈ L(s) implies {a} ∈ L(s) for every

a ∈ NI ;
(T4) for each v ∈ NV and s ∈ S, ¬{v} ∈ L(s) implies {a} /∈ L(s) for every

a ∈ NI ;
(T5) for each s ∈ S, > ∈ L(s) and ⊥ /∈ L(s);
(T6) for each s ∈ S, A ∈ L(s) implies ¬A /∈ L(s) where A atomic or nominal;
(T7) for each s ∈ S, if C uD ∈ L(s), then {C,D} ⊆ L(s).
(T8) for each s ∈ S, if ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some t ∈ S, then

C ∈ L(t).
(T9) for each s ∈ S, if C tD ∈ L(s), then

(T9a) if Var(C) ∩ Var(D) = ∅, then {C,D} ∩ L(s) 6= ∅ ;
(T9b) else, for every θ ∈ Φ, Υ ⊆ Var(C) ∩ Var(D), (C tD)θ|Υ ∈ L(s).

(T10) for each s ∈ S, if ∃R.C ∈ L(s), then
(T10a) if C is of the form DtE and Var(D)∩Var(E) = ∅, then {∃R.D, ∃R.E}∩

L(s) 6= ∅;
(T10b) if C is of the form DtE and Var(D)∩Var(E) 6= ∅, then for every

θ ∈ Φ and Υ ⊆ Var(D) ∩ Var(E), (∃R.C)θ|Υ ∈ L(s);
(T10c) if C is not of the form DtE and Tvar(C) = ∅, then there is some

t ∈ S such that 〈s, t〉 ∈ E(R) and C ∈ L(t);
(T10d) if C is not of the form D t E and Tvar(C) 6= ∅, then for every

θ ∈ Φ and Υ ⊆ Tvar(C), (∃R.C)θ|Υ ∈ L(s).
(T11) for each s ∈ S, if C ∈ L(s), then:

(i) if there exists {v} ∈ L(s) (resp. ¬{v} ∈ L(s)) for some v ∈ NV ,
and for every a ∈ NI , {a} ∈ L(s) (resp. ¬{a} ∈ L(s)), then for
each such a, C[v/a] ∈ L(s)



(ii) if there exists D = D1 t D2 ∈ L(s) and for every θ ∈ Φ and
Υ ⊆ Var(D1) ∩ Var(D2), Dθ|Υ ∈ L(s), then for each such θ and Υ ,
Cθ|Υ ∈ L(s);

(iii) if there exists D = ∃R.(D1 tD2) ∈ L(s), and for every θ ∈ Φ and
Υ ⊆ Var(D1) ∩ Var(D2), Dθ|Υ ∈ L(s), then for each such θ and Υ ,
Cθ|Υ ∈ L(s);

(iv) if there exists D = ∃R.D1, D1 is not a disjunction, and for every
θ ∈ Φ and Υ ⊆ Tvar(D1), Dθ|Υ ∈ L(s), then for each such θ and
Υ , Cθ|Υ ∈ L(s).

Lemma 5. An ALCOV TBox T is satisfiable iff there is a tableau for T .

Proof (of Lemma 5).
“If direction”: Let T be an ALCOV TBox and T = (S,L, E) be a tableau for

T . Define an interpretation I = (∆I , ·I) such that

– ∆I := S which is not empty;
– for every A ∈ NC , AI := {s ∈ ∆I | A ∈ L(s)};
– for every a ∈ NI , a

I := s for some s ∈ ∆I with {a} ∈ L(s); and
– for every R ∈ NR, RI := E(R).

We prove that I is a model of T and conforms the semantics from Definition
4 by showing the following claim: “For every concept C ∈ fclos(T ) and every
s ∈ ∆I , if C ∈ L(s), then s ∈ CI,θ for every total variable assignment θ.”

The claim is proved by induction on the length of C (which is in NNF).
The base cases where C is a concept name, top concept or bottom concept is
immediate from the definition of I and (T5). If C is a nominal, then the claim
is established by definition of I. Note also that I is well-defined due to (T1) and
(T2). If C is a nominal schema, then the claim holds because of (T3). Now, let
Φ be the set of every total variable assignment. We consider the other induction
cases as follows for every s ∈ ∆I = S:

– C = ¬{v} for some v ∈ NV : If ¬{v} ∈ L(s), then by (T4), there is no a ∈ NI
such that {a} ∈ L(s). By definition of I, s 6= aI for every a ∈ NI . Thus, for
every θ ∈ Φ, s 6= (vθ)I,θ which implies that s /∈ ({v}θ)I,θ = ({v})I,θ, i.e.,
s ∈ (¬{v})I,θ.

– C = ¬D where D is an atomic concept or a nominal: Suppose that ¬D ∈ L(s).
(T6) implies that D /∈ L(s). By definition of I, s /∈ DI = DI,θ for every θ ∈ Φ.
Thus, s ∈ (¬D)I,θ for every θ ∈ Φ.

– C = D u E: Suppose D u E ∈ L(s). By (T7), {D,E} ⊆ L(s). By induction,
s ∈ DI,θ and s ∈ EI,θ for every θ ∈ Φ. By the semantics, s ∈ (D u E)I,θ for
every θ ∈ Φ.

– C = ∀R.D: Suppose ∀R.D ∈ L(s) and 〈s, t〉 ∈ RI = E(R) for some t ∈ S. By
(T8), D ∈ L(t). Thus, by induction, t ∈ DI,θ for every θ ∈ Φ. Hence, by the
semantics, s ∈ (∀R.D)I,θ for every θ ∈ Φ.

– C = D t E: Let D t E ∈ L(s). First case: Var(D) ∩ Var(E) = ∅. By (T9a),
{D,E} ∩ L(s) 6= ∅. By induction, s ∈ DI,θ for every θ ∈ Φ or s ∈ EI,θ for



every θ ∈ Φ. Since Var(D) ∩ Var(E) = ∅, we have that s ∈ DI,θ or s ∈ EI,θ
for every θ ∈ Φ. Hence, s ∈ (D t E)I,θ for every θ ∈ Φ.
Second case: Var(D) ∩ Var(E) 6= ∅. By (T9b), (D t E)θ|Υ ∈ L(s) for every
θ ∈ Φ and Υ ⊆ Var(D) ∩ Var(E). In particular, when Υ = Var(D) ∩ Var(E),
(D t E)θ|Υ = Dθ|Υ t Eθ|Υ and Var(Dθ|Υ ) ∩ Var(Eθ|Υ ) = ∅. Thus, we can
apply the first case above to obtain s ∈ ((D t E)θ|Υ )I,θ for every θ ∈ Φ. By
Lemma 3, we thus have that s ∈ (D t E)I,θ for every θ ∈ Φ

– C = ∃R.D: Let ∃R.D ∈ L(s). First case: D = E1 t E2 for some concepts
E1, E2 and Var(E1)∩Var(E2) = ∅. By (T10a), {∃R.E1,∃R.E2}∩L(s) 6= ∅. By
induction, s ∈ (∃R.E1)I,θ for every θ ∈ Φ or s ∈ (∃R.E2)I,θ for every θ ∈ Φ.
Since Var(E1) ∩ Var(E2) = ∅, we have that s ∈ (∃R.E1)I,θ or s ∈ (∃R.E2)I,θ

for every θ ∈ Φ. Hence, for every θ ∈ Φ, s ∈ (∃R.E1)I,θ ∪ (∃R.E2)I,θ, i.e,.
s ∈ (∃R.E1 t∃R.E2)I,θ. It follows that s ∈ (∃R.(E1 tE2))I,θ for every θ ∈ Φ.
Second case: D = E1tE2 for some concepts E1, E2 and Var(E1)∩Var(E2) 6= ∅.
By (T10b), (∃R.D)θ|Υ ∈ L(s) for every θ ∈ Φ and Υ ⊆ Var(D) ∩ Var(E). In
particular when Υ = Var(D) ∩ Var(E), (∃R.D)θ|Υ = (∃R.(E1 t E2))θ|Υ =
∃R.(E1θ|Υ t E2θ|Υ ) and Var(E1θ|Υ ) ∩ Var(E2θ|Υ ) = ∅. Hence, the first case
holds, i.e., s ∈ (∃R.(E1θ|Υ t E2θ|Υ ))I,θ = ((∃R.(E1 t E2))θ|Υ )I,θ for every
θ ∈ Φ. Applying Lemma 3, we thus obtain that s ∈ (∃R.(E1 t E2))I,θ for
every θ ∈ Φ
Third case: D is not a disjunction and Tvar(D) = ∅. By (T10c), there is some
t ∈ S such that 〈s, t〉 ∈ E(R) = RI and D ∈ L(t). By induction, t ∈ DI,θ for
every θ ∈ Φ. So, we obtain that s ∈ (∃R.D)I,θ for every θ ∈ Φ.
Fourth case: D is not a disjunction and Tvar(D) 6= ∅. By (T10d), (∃R.D)θ|Υ ∈
L(s) for every θ ∈ Φ and Υ ⊆ Tvar(D). In particular, when Υ = Tvar(D),
(∃R.D)θ|Υ = ∃R.Dθ|Υ and Tvar(Dθ|Υ ) = ∅. Hence, the third case applies,
i.e., s ∈ ((∃R.D)θ|Υ )I,θ for every θ ∈ Φ. Finally, using Lemma 3, we conclude
that s ∈ (∃R.D)I,θ for every θ ∈ Φ.

In addition, (T11) does not invalidate the claim because of Lemma 3. Thus, the
claim is established and we conclude that I is a model of T from the claim and
the fact that T satisfies (T0).

“Only-if direction”: Let I be a model of T . Let Φ be the set of all total
variable assignment from NV to NI . We construct a tableau T = (S,L, E) for T
as follows:

– S := ∆I ;
– E(R) := RI ;
– for each s ∈ S, L(s) := {C ∈ fclos(T ) | s ∈ CI,θ for all θ ∈ Φ}

We show that T is indeed a tableau for T satisfying (T0)–(T10).

(T0): Immediate, due to the definition of T and the fact that I |= T .
(T1): Immediate, due to the definition of T and the semantics.
(T2): Immediate, due to the definition of T and the semantics.
(T3): Immediate, due to the definition of T and the semantics.
(T4): Immediate, due to the definition of T and the semantics.



(T5): Immediate, due to the definition of T and the semantics.

(T6): Immediate, due to the definition of T and the fact that I |= T .

(T7): Suppose C uD ∈ L(s). The definition of T implies that s ∈ (C uD)I,θ

for every θ ∈ Φ. By the semantics, we have that s ∈ CI,θ and s ∈ DI,θ.
Hence, by construction of L(s), {C,D} ⊆ L(s).

(T8): Let ∀R.C ∈ L(s) and 〈s, t〉 ∈ E(R) for some t ∈ S. By definition of T ,
s ∈ (∀R.C)I,θ and 〈s, t〉 ∈ RI for every θ ∈ Φ. By the semantics, clearly
t ∈ CI,θ for every θ ∈ Φ. Hence, by construction of L(t), C ∈ L(t).

(T9): Suppose C tD ∈ L(s). By definition of T , s ∈ (C tD)I,θ = CI,θ ∪DI,θ
for every θ ∈ Φ. Then, for every θ ∈ Φ, either s ∈ CI,θ or s ∈ DI,θ. To
establish (T9a), assume that Var(C)∩Var(D) = ∅. Then, either s ∈ CI,θ for
every θ ∈ Φ or s ∈ DI,θ for every θ ∈ Φ. Note that this only holds because
Var(C) ∩ Var(D) = ∅. Hence, definition of T implies that either C ∈ L(s) or
D ∈ L(s), i.e., {C,D}∩L(s) 6= ∅, establishing (T9a). Next, for (T9b), assume
that Var(C)∩Var(D) 6= ∅. Then, by Lemma 3, s ∈ ((C tD)θΥ )I,θ for every
θ ∈ Φ and Υ ⊆ Var(C)∩Var(D). Clearly, by definition of T , (CtD)θΥ ∈ L(s)
for every θ ∈ Φ and Υ ⊆ Var(C) ∩ Var(D)

(T10): Let ∃R.C ∈ L(s). By definition of T , s ∈ (∃R.C)I,θ for every θ ∈ Φ.

First, assume that C = D t E and Var(D) ∩ Var(E) = ∅. Then, we can
distribute existential restriction over disjunction, giving us s ∈ (∃R.D t
∃R.E)I,θ = (∃R.D)I,θ∪(∃R.E)I,θ for every θ ∈ Φ. Moreover, since Var(D)∩
Var(E) = ∅, we have that either s ∈ (∃R.D)I,θ for every θ ∈ Φ or s ∈
(∃R.E)I,θ for every θ ∈ Φ. Consequently, by definition of T , {∃R.D, ∃R.E}∩
L(s) 6= ∅, establishing (T10a).

Secondly, assume that C = D t E, but Var(D) ∩ Var(E) 6= ∅. Then, by
definition of T and Lemma 3, s ∈ (∃R.C)I,θ = ((∃R.C)θ|Υ )I,θ for every
θ ∈ Φ and Υ ⊆ NV , including when Υ ⊆ Var(D) ∩ Var(E). Hence, (T10b)
holds by definition of T .

Next, suppose that C is not a disjunction and Tvar(C) = ∅. Then, by def-
inition of T , s ∈ (∃R.C)I,θ for every θ ∈ Φ. Since Tvar(C) = ∅, there is a
t ∈ ∆I such that 〈s, t〉 ∈ RI = E(R) and for every θ ∈ Φ, t ∈ CI,θ. Note that
the latter holds because Tvar(C) = ∅. If Tvar(C) 6= ∅, then C is in one of the
following form for some v ∈ NV : (i) {v}; (ii) {v}uC ′; or (iii) ({v}tC ′′)uC ′.
For such forms of C, the existence of only one such t may not suffice because
{v} can be grounded into different individual names which may entail the
existence of more than one R-neighbor for s. Now, since Tvar(C) = ∅, we
have that one such t satisfies t ∈ CI,θ for every θ ∈ Φ. Hence, C ∈ L(t) by
construction, and thus, (T10c) is established.

For (T10d), assume that C is not a disjunction and Tvar(C) 6= ∅. Then, by
definition of T and Lemma 3, s ∈ (∃R.C)I,θ = (∃R.Cθ)I,θ = (∃R.Cθ|Υ )I,θ

for every θ ∈ Φ and Υ ⊆ NV , including when Υ ⊆ Tvar(C). (T10d) thus
holds by definition of T and since Υ exists.

(T11): Let C ∈ L(s). By definition of T , s ∈ CI,θ for every θ ∈ Φ. By Lemma
3, s ∈ (Cθ|Υ )I,θ for every Υ ⊆ NV . Hence by definition of T , in particular,
(i), (ii), (iii) and (iv) are satisfied.



We now have formalized the notion of tableau that corresponds to a model
of a TBox. This will be used to establish the soundness and completeness of the
al- gorithm. Intuitively speaking, what we do is to establish a correspondence
between tableaux and complete, clash-free completion graphs.

Lemma 6 (Soundness). Let T be an ALCOV TBox. If the tableau expansion
rules are applied to the initial completion graph for T in such a way that they
yield in a complete and clash-free completion graph for T , then T is satisfiable.

Proof (of Lemma 6). Let G = (V,E, L,M) be a complete and clash-free com-
pletion graph for T obtained from exhaustively applying the tableau expansion
rules to the initial completion graph for T . By Lemma 5, it suffices to show
that a tableau for T exists. We construct such a tableau by standard unraveling
where the idea is that each blockable node x is uniquely represented as a path
to x that is rooted in some nominal node of G.

Define a path p as a sequence of blockable nodes of the form p := [x0, . . . , xn],
n > 0. For such a path p, we define τ(p) := xn. Given a path p and a blockable
node x, [p|x] is the path obtained by appending x to end of p. Let Ω(G) be the
set of all nominal nodes in G. The set Π(G) of all paths in G is inductively
defined as:

– if x is a blockable node that is a successor of a nominal node in G, then
[x] ∈ Π(G);

– for each path p ∈ Π(G) and a blockable successor x of τ(p), if x is not blocked,
then [p|x] ∈ Π(G), whereas if x is blocked, then [p|b(x)] ∈ Π(G) where b(x)
is the node that blocks x.

Observe that every path contains no blocked node and for any two different
blockable nodes x and y, b(x) 6= b(y). Moreover, it is easy to see that for each
blockable node x, there is exactly one path p ∈ Π(G) such that τ(p) = x.

Define a tuple T = (S,L, E) where

S := Ω(G) ∪Π(G);

L(s) :=

{
L(s) if s ∈ Ω(G);

L(τ(s)) if wes ∈ Π(G)

E(R) := {〈s, t〉 ∈ Ω(G)×Ω(G) | 〈s, t〉 ∈ E and R ∈ L(s, t)}
∪ {〈s, p〉 ∈ Ω(G)×Π(G) | 〈s, τ(p)〉 ∈ E and R ∈ L(s, τ(p))}
∪ {〈p, s〉 ∈ Π(G)×Ω(G) | 〈τ(p), s〉 ∈ E and R ∈ L(τ(p), s)}
∪ {〈p, q〉 ∈ Π(G)×Π(G) | q = 〈p|x〉, 〈τ(p), x〉 ∈ E and R ∈ 〈τ(p), x〉}

It remains to verify that T is a tableau for T , i.e., it satisfies (T0)–(T10).

(T0): Satisfied because G is complete, hence TBox-rule is no longer applicable.
(T1): Satisfied because the construction of G is started from the initial com-

pletion graph for T .



(T2): Satisfied as G is complete; O-rule for merging two nodes is no longer
applicable.

(T3): Satisfied as G is complete; hence, grv-rule is no longer applicable.
(T4): Satisfied since otherwise, there is some a ∈ NI and v ∈ NV such that
{{a},¬{v}} ⊆ L(s). Because grv-rule is no longer applicable, it must be the
case that ¬{a} ∈ L(s), making G contains a clash which contradicts the fact
that G is clash-free.

(T5): Satisfied by construction of the initialization and clash-freeness of G.
(T6): Satisfied because G is clash-free.
(T7): Satisfied because G is complete; u-rule is no longer applicable.
(T8): Satisfied because G is complete; ∀-rule is no longer applicable
(T9): Satisfied as G is complete, t-rule and grt-rule are are no longer appli-

cable.
(T10): Satisfied as G is complete, ∃-rule, gr∃-rule and gr∃t-rule rules are no

longer applicable.
(T11): Satisfied as G is complete, gr-rule is no longer applicable.

Lemma 7 (Completeness). Let T be an ALCOV TBox. If T is satisfiable,
then the tableau expansion rules can be applied to the initial completion graph
for T such that they yield in a complete and clash-free completion graph for T .

Proof (of Lemma 7). By Lemma 5, it suffices to show that such a complete and
clash-free completion graph for T can be constructed if a tableau for T exists.
Hence, let T = (S,L, E) be a tableau for T . We show that starting from the initial
completion graph G = (V,E, L) for T , we can apply the tableau expansion rules
in Figure 1 in such a way that a complete and clash-free completion graph for
T is generated.

Let T = (S,L, E) be a tableau for T and Φ the set of total variable assign-
ment. We construct a complete and clash-free completion graph G = (V,E, L)
such that there exists a mapping µ : V → S that satisfies:

(C1) for all s ∈ V , L(s) ⊆ L(µ(s)) ∪ pg(L(µ(s)))
where pg(L(µ(s))) := {CθΥ | C ∈ L(µ(s)), θ ∈ Φ, Υ ⊆ Var(C)};

(C2) for each s, t ∈ V and R ∈ NR, if 〈s, t〉 ∈ E and R ∈ L(s, t), then
〈µ(s), µ(t)〉 ∈ E(R).

Let Gi = (Vi, Ei, Li,Mi) (resp. µi) be the completion graph for T (resp. a
mapping from Vi to S) obtained after the i-th rule application. Initially, we set
G0 as an initial completion graph for T : V0 := {ra | a ∈ Ind(T )}, E0 := ∅,
M0 := ∅ and L(ra) := {a}, for every a ∈ Ind(T ) = NI . By (T1), it holds that for
each a ∈ NI , there exists an s ∈ S such that {a} ∈ L(s). Thus, we set µ0 for
each ra ∈ V0 such that µ0(ra) := s iff {a} ∈ L(s). Clearly, (C1) and (C2) are
satisfied by µ0.

Next, assume that, for some i > 1, we have constructed Gi−1 and the cor-
responding µi−1, and we are at the point where the (i − 1)-st rule application
have just been done. We construct µi from µi−1 while performing the i-th rule
application. We assume that µi−1 already satisfies (C1) and (C2) and we en-
sure that the i-the rule application does not violate them. The cases depend on



which rule is being applied. Below, let r ∈ Vi−1 be the node on which the i-th
rule application is being done.

– TBox-rule is applied to some C v D ∈ T . Then, Vi := Vi−1, Ei := Ei−1,
Mi := Mi−1, Li(r) := Li−1(r)∪ {NNF(¬C tD)} and Li(t) := Li−1(t) for t 6= r.
We set µi := µi−1. Here, (C1) and (C2) are not violated by µi since they are
satisfied by µi−1 and (T0) is satisfied by T .

– u-rule is applied to some C u D ∈ Li−1(r). Then, Vi := Vi−1, Ei := Ei−1,
Mi := Mi−1, Li(r) := Li−1(r) ∪ {C,D}, and Li(t) := Li−1(t) for t 6= r. We set
µi := µi−1. (C1) and (C2) are not violated by µi since they are satisfied by
µi−1 and (T7) is satisfied by T .

– O-rule is applied to some nominal {a} ∈ Li−1(r). Then, there exists an initial
node s ∈ Vi−1 to which r is merged. Let P(r) be the set of blockable successor
of r that are pruned by O-rule. So,

Vi := Vi−1 \ ({r} ∪P(r))

Ei := (Ei−1 \ {〈t, t′〉, 〈t′, t〉 | t ∈ P(r)}) ∪ {〈r′, s〉 | 〈r′, r〉 ∈ Ei−1}
∪ {〈s, r′〉 | 〈r, r′〉 ∈ Ei−1, r not blockable}

Li(t) :=


Li−1(t) ∪ Li−1(r), when t = s,

Li−1(t), when t 6= s, t ∈ Vi,
undefined, otherwise

Mi(t) :=


Mi−1(t) ∪Mi−1(r), when t = s,

Mi−1(t), when t 6= s, t ∈ Vi,
undefined, otherwise

µi := µi−1 \ {〈t, µi−1(t)〉 | t ∈ {r} ∪P(r)}

Here, Vi, Ei, Li, and Mi are obtained from Vi−1, Ei−1, Li−1 and Mi−1 after
merging r to s and the subsequent pruning of blockable successors of r. We
set µi as µi−1 but restricted only to nodes in Vi. T satisfies (T1) and (T2)
which imply that µi−1(r) = µi−1(s) = µi(s). Since µi−1 satisfies (C1) and
(C2), we have

• Li−1(s) ⊆ L(µi−1(s)) ∪ pg(L(µi−1(s))); and
• Li−1(r) ⊆ L(µi−1(r)) ∪ pg(L(µi−1(r))) = L(µi−1(s)) ∪ pg(L(µi−1(s))).

So, Li(s) = Li−1(s) ∪ Li−1(r) ⊆ L(µ(s)) ∪ pg(L(µi(s))), ensuring (C1) and
(C2) are not violated.

– ∀-rule is applied to some ∀R.C ∈ Li−1(r). Then, 〈r, s〉 ∈ E and R ∈ Li−1(r, s)
for some s ∈ Vi−1. Applying this rule yields Vi := Vi−1, Ei := Ei−1, Mi :=
Mi−1, Li(s) := Li−1(s) ∪ {C}, and Li(t) := Li−1(t) for t 6= s. Hence, we set
µi := µi−1. (C1) and (C2) are not violated by µi because T satisfies (T8).

– t-rule is applied to some C t D ∈ Li−1(r). Then, Var(C) ∩ Var(D) = ∅,
Vi := Vi−1, Ei := Ei−1, Mi := Mi−1, Li(t) := Li−1(t) for all t 6= r. Additionally,
Li(r) := Li−1(r) ∪ {C ′} for some C ′ ∈ {C,D}. We set µi := µi−1. (C1) and
(C2) are not violated because T satisfies (T9).



– ∃t-rule is applied to some ∃R.(C tD) ∈ Li−1(r). Then, Var(C)∩Var(D) = ∅,
Vi := Vi−1, Ei := Ei−1, Mi := Mi−1, Li(t) := Li−1(t) for t 6= r, and L(r) :=
Li−1(r) ∪ {∃R.C ′} for some C ′ ∈ {C,D}. Set µi := µi−1. (C1) and (C2) are
not violated because T satisfies (T10a).

– ∃-rule is applied to some ∃R.C ∈ Li−1(r). Then, C is not a disjunction and
Tvar(C) = ∅. Thus, Vi := Vi−1 ∪ {s}, Ei−1 := Ei−1 ∪ {〈r, s〉}, Li(s) := {C},
Mi(s) := ∅ where s is a new node. In addition, Li(t) := Li−1(t) and Mi(t) :=
Mi−1(t) for every t ∈ Vi−1. Set µi := µi−1. (C1) and (C2) are not violated
because T satisfies (T10c).

– grv-rule is applied to some {v} ∈ Li−1(r), v ∈ NV . Then, Vi := Vi−1, Ei :=
Ei−1, Li(t) := Li−1(t) for all t 6= r. Also, for some a ∈ NI , Li(r) := Li−1(r) ∪
{D[v/a] | D ∈ Li−1(r)} and Mi(r) := Mi−1(r) ∪ {v/a}. Hence, we set µi :=
µi−1. (C1) and (C2) are not violated by µi as T satisfies (T3) and (T11).

– grt-rule is applied to some C t D ∈ Li−1(r). Then, Vi := Vi−1, Ei := Ei−1,
Li(t) := Li−1(t) for t 6= r, and Mi(t) := Mi−1(t) for t 6= r. Further, Li(r) :
= Li−1(r) ∪ {C ′[v/a] | C ′ ∈ Li−1(r)} and Mi(r) := Mi−1(r) ∪ {v/a} for some
v ∈ Var(C) ∩ Var(D) and a ∈ NI . We set µi := µi−1. (C1) and (C2) are not
violated because T satisfies (T9b) and (T11).

– gr∃t-rule is applied to some ∃R.(C t D) ∈ Li−1(r). Then, Vi := Vi−1, Ei :
= Ei−1, Li(t) := Li−1(t) for t 6= r, and Mi(t) := Mi−1(t) for t 6= r. Further,
Li(r) := Li−1(r) ∪ {C ′[v/a] | C ′ ∈ Li−1(r)} and Mi(r) := Mi−1(r) ∪ {v/a} for
some v ∈ Var(C)∩Var(D) and a ∈ NI . We set µi := µi−1. (C1) and (C2) are
not violated because T satisfies (T10b) and (T11).

– gr∃-rule is applied to some ∃R.C ∈ Li−1(r). Then, Vi := Vi−1, Ei := Ei−1,
Li(t) := Li−1(t) for t 6= r, and Mi(t) := Mi−1(t) for t 6= r. Further, Li(r) :
= Li−1(r) ∪ {C ′[v/a] | C ′ ∈ Li−1(r)} and Mi(r) := Mi−1(r) ∪ {v/a} for some
v ∈ Var(C) ∩ Var(D) and a ∈ NI . We set µi := µi−1. (C1) and (C2) are not
violated because T satisfies (T10d) and (T11).

– gr-rule is applied to some C ∈ Li−1(r). Then, Vi := Vi−1, Ei := Ei−1, Li(t) :=
Li−1(t) for t 6= r, and Mi := Mi−1. Further, Li(r) := Li−1(r) ∪ {C ′[v/a] | C ′ ∈
Li−1(r)} for some v/a ∈ Mi−1(r). We set µi := µi−1. (C1) and (C2) are not
violated because T satisfies (T11).

Because any sequence of rule applications terminate, there exists an n ∈ N
for which no rule is applicable to Gn. So, Gn is complete. Furthermore, as (C1)
and (C2) are satisfied by Gn and µn, we have that Gn is clash-free because:

(i) If ⊥ ∈ Ln(r) for some r ∈ Vn, then either ⊥ ∈ L(µn(r)), or ⊥ ∈ {CθΥ | C ∈
L(µn(r)), θ ∈ Φ, Υ ⊆ Var(C)}. Here, the second case implies the first case,
while the first case itself contradicts the property (T5) of T .

(ii) If {A,¬A} ⊆ Ln(r) for some r ∈ Vn where A is a concept name, then it must
be the case that {A,¬A} ⊆ L(µn(r)) which contradicts the property (T6) of
T . Note that whenever either A or ¬A is in the set {CθΥ | C ∈ L(µn(r)), θ ∈
Φ, Υ ⊆ Var(C)}, it must also be in L(µn(r)).

(iii) If {{a},¬{a}} ⊆ Ln(r) for some r ∈ Vj , a ∈ NI , then it must be the case
that {{a},¬{a}} ⊆ L(µn(r)) which contradicts the property (T6) of T .
Note that if {a} ∈ {CθΥ | C ∈ L(µn(r)), θ ∈ Φ, Υ ⊆ Var(C)}, then either



already {a} ∈ L(µn(r)), or {v} ∈ L(µn(r)) which, by (T1), implies that
{a} ∈ L(µn(r)). This holds analogously for ¬{a}.

5 Delayed Grounding for More Expressive DLs

The framework proposed in this paper can be generalized to more expressive
DLs. The general strategy for such a generalization can be realized by adding
some preconditions related to occurrences of nominal schemas to the standard
tableau rules, if necessary, and then specifying appropriate grounding rules. We
will briefly discuss how this can be done for many standard DL constructors
known from the literature.

First, it is rather obvious that many role constructors will be not be affected
by nominal schemas. This includes inverse roles, role hierarchy and role chains
(which generalizes many role characteristics such as transitivity, symmetry, etc.)
and Boolean role constructors. For those constructors, known techniques in ex-
isting tableau algorithms should be readily usable without modification when
the corresponding DLs are extended with nominal schemas. For example, au-
tomata translation of role chains in SROIQ [3] can be readily used including
the corresponding rules for universal restrictions. This line of reasoning can also
be applied when dealing with unqualified number restriction, and self-restriction
(∃R.Self) as both do not involve nominal schemas.

On the other hand, the adaptation is not so obvious for the only prominent
concept constructor that is not discussed in this paper, but may have some
interactions with nominal schemas, namely qualified number restrictions. For the
first variant, at-least restrictions, i.e., concepts of the form (> n R.C) where n ∈
N, the behavior is similar to existential restriction. Unfortunately, the approach
we use here where we distinguish the filler of an existential restriction into a
disjunction and non-disjunction may not be usable. The reason is that although
∃R.(C t D) ≡ ∃R.C t ∃R.D holds in general whenever Var(C) ∩ Var(D) = ∅,
it does not hold for at-least restrictions, i.e., (> n R.(C t D)) 6≡ (> n R.C) t
(> n R.D) even if Var(C) ∩ Var(D) = ∅. The only adaptation that can be
made is when the filler is not a disjunction. That is, if a concept (> n R.C)
where C is not a disjunction appears in a node labeling, the standard tableau
expansion rule (i.e., at-least-restriction rule, see e.g., >-rule in [14]) that creates
n different individuals, all satisfying C, can be applied as long as Tvar(C) = ∅.
This means that grounding before the at-least-restriction rule can be applied
is only necessary for those variables in Tvar(C). On the other hand, when C
is actually a disjunction, we may need to completely ground C before at-least-
restriction can be applied.

For at-most restriction, i.e., concepts of the form (6 n R.C), the standard
tableau expansion rule (e.g., 6-rule in [14]) is applied when there are more than
n role-fillers of the corresponding node that satisfy C. In this case, two of them
are merged, similar to merging that is done for O-rule. The situation is then
a bit simpler than at-least-restriction, because this rule does not involve the



propagation of concept labels. Therefore, it can also be used before performing
grounding.

6 Conclusion

We have presented a tableau algorithm for the description logic ALCOV which
is obtained through non-trivial modifications of standard tableau algorithms for
ALCO. It improves on the only known algorithm to deal with nominal schemas,
which is based on full grounding, by applying grounding in a selective and delayed
fashion. We have provided correctness results and an example which shows the
advantages of our approach over full grounding, by significantly pruning the
size of the tableau which needs to be constructed. Although the basic idea of
our approach seems to be intuitively simple (just ground when needed) and
described only for selected basic DL constructors, the approach can be adapted
easily to deal with more expressive DL constructors known in the literature.

In terms of realization of reasoning with nominal schemas, this paper is only
the beginning of our investigations. While our algorithm provides a flexible way
of delayed and selective grounding, for implementations it will be necessary to
obtain good heuristics for grounding choices. Finally, other automated reasoning
approaches, e.g., such based on resolution, may provide even better algorithmiza-
tions for DLs with nominal schemas.
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Möller, R., eds.: Proceedings of the 2004 International Workshop on Description
Logics (DL 2004), CEUR (2004)

14. Horrocks, I., Sattler, U.: A tableau decision procedure for shoiq. Journal of Auto-
mated Reasoning 39(3) (2007) 249–276

15. Krisnadhi, A., Hitzler, P.: A tableau algorithm for description
logics with nominal schemas. Technical report, Kno.e.sis Center,
Wright State University, Dayton, OH, U.S.A. (2012) Available from
http://knoesis.wright.edu/researchers/adila/pmwiki/uploads/Main/KriHitz-
TableauNS-TR12.pdf.


