Integrating OWL and Rules: A Syntax Proposal
for Nominal Schemas

David Carral Martinez, Adila A. Krisnadhi, Pascal Hitzler

Kno.e.sis Center, Wright State University, Dayton OH 45435, USA

Abstract. This paper proposes an addition to OWL 2 syntax to incor-
porate nominal schemas, which is a new description-logic style extension
of OWL 2 which was recently proposed, and which makes is possible
to express “variable nominal classes” within axioms in an OWL 2 on-
tology. Nominal schemas make it possible to express DL-safe rules of
arbitrary arity within the extended OWL paradigm, hence covering the
well-known DL-safe SWRL language. To express this feature, we extend
OWL 2 syntax to include necessary and minimal modifications to both
Functional and Manchester syntax grammars and mappings from these
two syntaxes to Turtle/RDF. We also include several examples to clarify
the proposal.

1 Introduction

Nominal schemas [45] are a new description-logic style extension of OWL 2
[10] which can be used like “variable nominal classes” within OWL 2 axioms.
Although their semantics restricts them only to stand for named individuals,
nominal schemas allow us to express arbitrarily shaped (Datalog) rules within
the description logic (DL) paradigm, hence pushing the expressivity of OWL 2
DL and its fragments even further.

While the semantic intuition behind nominal schemas is the same as the
one behind DL-safe variables presented in [§], the difference lies in the fact that
DL-safe variables are tied to rule languages, while nominal schemas integrate
seamlessly with DL syntax. The proposed extension encompasses DL-safe vari-
able SWRL [39/4] while staying within the DL/OWL language paradigm and
without employing hybrid approaches.

Nominal schemas have been introduced as a new general constructor for
DL, denoted by the letter V in the DL nomenclature. The addition of nominal
schemas has been considered for several DLs such as SROZQ that underlies
OWL 2 DL, and SROEL that underlies the OWL 2 EL profile (define DL
SROZQV and SROELV, respectively, as extensions of the DLs SROZQ and
SROEL). It has been shown in [5] that the worst-case complexity of SROZQV
remains N2EXPTIME-complete, i.e., no worse than SROZQ. Furthermore, in
the same paper, a tractable fragment of SROZQV has been identified. This
fragment is called SROELYV,, which is obtained by extending SROEL with

nominal schemas in a slightly restricted form. Nevertheless, it still cover&ﬂ both
OWL 2 EL and (DL-safe) OWL 2 RL.

We present an example of nominal schemas in the following. First, rules such
as are not expressible in the current OWL 2 DL standard.

hasFather(z,y) A hasBrother(y,z) A hasTeacher(z,z) — ChildTaughtByUncle(x)

(1)
Intuitively, this is due to the fact that the body of the above rules is not tree-
shaped. See [4] and [6] (which formally defines not tree-shaped rules that can
be expressed in SROZQ extended with role regularity) for further discussion.
In contrast, using nominal schemas, rule can be expressed as (2)).

JhasTeacher.{z} M JhasFather.JhasBrother.{z} C ChildTaughtByUncle. (2)

The expression {z} is a nominal schema, which is to be read as a variable
nominal that can only represent nominals (i.e., z binds to known individuals),
where the binding is the same for all occurrences of the same nominal schema in
an axiom. Variables x and y can still take arbitrary values and are hidden in the
DL syntax, z needs to be restricted to be DL-safe to retain the conclusion. For
a more detailed description of nominal schemas including their formal semantics
see [5].

This document proposes representations for nominal schemas for the promi-
nent variants of OWL syntax: Functional, Manchester, Turtle and RDF/XML.
For an introduction of the OWL syntax, consult [I0]. Mapping from Turtle triples
to RDF/XML is a well defined and automatized process so the RDF /XML based
syntax will not be directly addressed in this document, it is assumed that it can
be easily derived from the Turtle Syntax.

New reserved words are presented to mark the appearance of nominal schemas
in the different syntax variants (Functional, Manchester and Turtle) as well as
the necessary modifications to their grammars (Functional and Manchester). The
representation of nominal schemas in Turtle syntax is defined by the mappings
from Functional and Manchester.

Several approaches were considered for the representation and storage of
nominal schemas, such as the use of entities with the ontology namespace, but
this paper proposes the use of string literals. With this approach, we prevent
the possible overlap that could be produced by giving the same name to two
different nominal schemas. If these are declared as entities and, by error, two of
them share the same name, they will end up pointing to the same node in an
RDF graph when they most likely refer to different individuals.

The selected approach, the use of a xsd:string datatype, is also considered by
the RIF XML format [I1]. Note that the same nominal schema can never appear
in two different statements of an ontology—more precisely, if the same variable
occurs in different axioms, then they are considered distinct (i.e., local to the
axiom), in a way similar to the use of variables in rules. So a specific nominal
schema is local to one single axiom. By using a string type, the occurrence of

I without datatype-related features

the nominal schema is exclusively bound to the axiom where it appears and
the same string could be repeated in different axioms along the ontology safely.
Even if two nominal schemas use the same string, they will be considered as
different occurrences of a datatype and therefore, they can be understood as two
separated nodes in an RDF graph.

Using the underscore to mark the appearance of a nominal schema, as it is
done for Turtle blank nodes, was also considered. This approach was rejected
because it could induce errors. Although in some cases both nominal schemas
and blank nodes can represent individuals in an RDF graph they are completely
different concepts. Using the underscore to mark both could be tricky and would
make mappings from and to Turtle syntax difficult to define. With such a similar
syntax the mapping may produce errors confusing nominal schemas with blank
nodes and problems may arise when we want to move from the Turtle syntax to
an RDF Graph.

The document is structured as follows. Section 2] contains the necessary mod-
ifications that have to be made to the Manchester and Functional Syntax gram-
mars in order to include nominal schemas. Section [3|refers to the mappings from
these syntaxes to Turtle. Section [4] concludes. Appendix [A] contains two exam-
ples for the usage of nominal schemas in the different syntax variants that are
discussed in the document.

2 Grammar Modifications

We propose several changes to the grammars of the different OWL syntaxes in
order to include nominal schemas. The presented changes are designed to be
minimal and imply very small modifications to the formal definitions of these
grammars.

Functional Syntax Grammar Modifications

We define in this section the required modifications we propose for the Functional
Syntax grammar [1]. The reserved word ObjectVariable will be used to mark the
appearance of a nominal schema. Nominal schemas will be in parentheses and
will always be followed by the expression ’~ “xsd:string’. The changes are formally
defined in the next paragraphs.

Add the next production rule to the grammar:

ObjectVariable := ’ObjectVariable (* quotedString’” “xsd:string)’

Add the non-terminal symbol ObjectVariable, to the ClassExpression next
production rule:

ClassExpression := Class | ObjectIntersectionOf | ObjectUnionOf |
ObjectComplementOf | ObjectOneOf |
ObjectSomeValuessFrom | Object AllValuesFrom |
ObjectHasValue | ObjectHasSelf |
ObjectMinCardinality | ObjectMaxCardinality |
ObjectExactCardinality | DataSomeValuesFrom |
DataAllValuesFrom | DataHasValue |
DataMinCardinality | DataMaxCardinality |
DataExactCardinality | ObjectVariable

Although nominal schemas are not conceptually class expressions, their ad-
dition in this part of the grammar has been chosen in order to keep the modifi-
cations as small as possible.

Manchester Syntax Grammar Modifications
Again, the reserved word ObjectVariable will be used to mark the appearance of
the nominal schemas in the Manchester Syntax [2]. As in the Functional Syntax,

the nominal will be in parentheses and followed by '~ “xsd:string’. The needed
changes to this grammar are:

Add the non-terminal symbol ObjectVariable to the atomic production rule:

atomic := classIRI | ’{’individualList’}’ | ’("description’)’ |
ObjectVariable

Add the next production rule to the grammar:

ObjectVariable := ’'ObjectVariable (" quotedString’* “xsd:string)’

3 Mapping FS and MS to Turtle

We define the syntax of nominal schemas in Turtle through the mapping from
Functional and Manchester Syntaxes to the triple-notation. We assume that from
this notation the process to move to RDF /XML is already formalized so, as said
before, the XML syntax will not be directly addressed in this document.

Functional Syntax to and from Turtle

The W3C document containing the formal mapping from FS to Turtle can be
found in [7]. To add nominal schemas syntax to the mappings, first add the next
row to the mapping from FS to Turtle:

Functional-Style Syntax S Triples Generated Main Node
in an Invocation of T(S) of T(S)
ObjectVariable(”v1” "~ "xsd:string)|-:x rdf:type owl:ObjectVariable|_:x

_:x owl:variableld ”v1”

Then add the next row to the mapping from Turtle to FS:

RDF /XML Triples Functional Syntax
_x rdf:itype owl:ObjectVariable|ObjectVariable(”v1” " “xsd:string)
_:x owl:variableld ”v1”

Manchester Syntax to and from Turtle

The mappings between Manchester Syntax and Turtle are defined in a similar
way as the one from the Functional Syntax. To include nominal schemas in this
mapping, we first need to add the next row to the table from MS to Turtle:

Manchester-Style Syntax |S Triples Generated Main Node
in an Invocation of T(S) of T(S)
Variable 7v1” " "xsd:string|_:x rdf:type owl:ObjectVariable|_:x

_:x owl:variableld ”v1”

Then add the next row to the mapping from Turtle to FS:

RDF /XML Triples Manchester Syntax
_:x rdf:type owl:ObjectVariable|Variable ”v1” " “xsd:string
_:x owl:variableld ”v1”

4 Conclusions

In this document we propose ways for representing nominal schemas in the dif-
ferent syntaxes of the OWL language. Reserved words have been provided for
Functional, Manchester, Turtle and RDF /XML syntaxes, along with the consis-
tent modifications to their grammars and mapping functions. Nominal schemas
will be stored as string values in the OWL syntaxes to prevent overlapping errors.
In the appendix of this document two examples are presented showing nominal
schemas across the different covered syntaxes of OWL.

Acknowledgements: This work was partially supported by the National Science
Foundation under award 1017225 “III: Small: TROn—Tractable Reasoning with
Ontologies.” The first author acknowledges support from Programa de Inter-
cambio de la Universidad Pontificia de Salamanca 2010/11. The second author
acknowledges support by a Fulbright Indonesia Presidential Scholarship PhD
Grant 2010.

References

1. Peter F. Patel-Scheneider Boris Motik and Bijan Parsia, editors. OWL 2 Web
Ontology Language: Structural Specification and Functional-Style. W3C Recom-
mendation 27 October 2009, 2009. http://www.w3.org/TR/owl2-syntax/.

2. Matthew Horridge and Peter F. Patel-Scheneider. OWL 2 Web Ontology Lan-
guage: Manchester Syntar. W3C Working Group Note 27 October 2009, 2009.
http://www.w3.org/ TR /owl2-manchester-syntax/.

3. Tan Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. W3C Member Submission 21 May 2004, 2004. Available
from http://www.w3.org/Submission/SWRL/.

4. Adila A. Krisnadhi, Frederick Maier, and Pascal Hitzler. OWL and Rules. In
A. Polleres, C. d’Amato, M. Arenas, S. Handschuh, P. Kroner, S. Ossowski, and
P.F. Patel-Schneider, editors, Reasoning Web. Semantic Technologies for the Web
of Data. 7th International Summer School, pages 382-415. Lecture Notes in Com-
puter Science Vol. 6848, Springer, Heidelberg, 2011, pp. 382-415., Galway, Ireland,
August 2011.

5. Markus Kroétzsch, Frederick Maier, Adila A. Krisnadhi, and Pascal Hitzler. A Bet-
ter Uncle for OWL: Nominal Schemas for Integrating Rules and Ontologies. In
S. Sadagopan, Krithi Ramamritham, Arun Kumar, M.P. Ravindra, Elisa Bertino,
and Ravi Kumar, editors, Proc. of the 20th International World Wide Web Con-
ference (WWW’11), pages 645654, Hyderabad, India, March/April 2011. ACM,
New York.

6. David Carral Martinez and Pascal Hitzler. Extending Description Logic Rules. In
Proceedings of the 9th Extended Semantic Web Conference, ESWC' , May 2012.,
Heraklion, Crete, Greece,, 2012. Lecture Notes in Computer Science, Springer,
Heidelberg (2012), to appear.

7. Boris Motik and Peter F. Patel-Scheneider, editors. OWL 2 Web Ontology Lan-
guage: Mapping to RDF Graphs. W3C Recommendation 27 October 2009, 2009.
http://www.w3.org/TR/owl2-mapping-to-rdf/.

8. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for OWL-DL with
rules. Journal of Web Semantics: Science, Services and Agents on the World Wide
Web, 3(1):41-60, 2005.

9. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with
rules. Web Semant., 3:41-60, July 2005.

10. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Querview.
W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-overview/|

11. Harold Boley Gary Hallmark Michael Kifer Adrian Paschke Axel Polleres Dave
Reynolds, editor. OWL 2 Web Ontology Language: Manchester Syntax. W3C
Recommendation 22 June 2010, 2010. http://www.w3.org/ TR /rif-core.

A Syntax Examples

A.1 Example 1
Rule Syntax
hasFather(z, y) AhasBrother(y, z) AhasTeacher(x, 2)A — ChildTaughtByUncle(z)

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

DL Syntax

JhasFather.(JhasBrother.{z}) M JhasTeacher.{z} C ChildTaughtByUncle

Functional Syntax

SubClassOf(

ObjectIntersectionOf(
ObjectSomeValuesFrom(:hasFather
ObjectSomeValuesFrom(:hasBrother ObjectVariable(”v1” " “xsd:string)))
ObjectSomeValuesFrom(:hasTeacher ObjectVariable(”v1” " “xsd:string))

)

:ChildTaughtByUncle
)

RDF /XML Syntax

_x1 rdfs:subClassOf :ChildTaughtByUncle

_ix1 rdf:type owl:Class
_:x1 owl:intersectionOf (_:x2 _:x3)

_:x2 rdf:type owl:Restriction
_x2 owl:onProperty :hasFather
_x2 owl:someValuesFrom _:x5

_x4 rdf:type owl:Restriction
_x4 owl:onProperty :hasBrother
_:x4 owl:someValuesFrom :x6

_:xb rdf:type owl:ObjectVariable
_:xb owl:variableld ”v1”

Manchester Syntax

Class: ChildTaughtByUncle
SubClassOf:

_:x3 rdf:type owl:Restriction
_:x3 owl:onProperty :hasTeacher
_:x3 owl:someValuesFrom _:x4

_:x6 rdf:type owl:ObjectVariable
_:x6 owl:variableld ”v1”

(hasTeacher some (Variable ”v1” " "xsd:string))

and
(hasSubmittedPaper some

(hasFather some (hasBrother some (Variable ”v1” " “xsd:string))))

A.2 Example 2

Rule Syntax

hasReviewAssignment(v,) A hasAuthor(z, y) A atVenue(x,z) A
hasSubmittedPaper(v, u) A hasAuthor(u, y) A atVenue(u, z)
— ReviewerWithConflicting Assignment (v)

DL Syntax

JhasReviewAssignment.(FhasAuthor.{a} M JatVenue.{b}) M
JhasSubmittedPaper.(FhasAuthor.{a} M JatVenue.{b})
C Reviewer WithConflicting Assignment

Functional Syntax

SubClassOf(

ObjectIntersection Of(

ObjectSomeValuesFrom (:hasReviewAssign ObjectIntersectionOf (
ObjectSomeValuesFrom (:hasAuthor ObjectVariable(”v1” " “xsd:string))
ObjectSomeValuesFrom (:atVenue — ObjectVariable(”v2” " “xsd:string)))

)

ObjectSomeValuesFrom (:hasSubmittedPaper ObjectIntersectionOf (
ObjectSomeValuesFrom (:hasAuthor ObjectVariable(”v1” " “xsd:string))
ObjectSomeValuesFrom (:atVenue ObjectVariable(”v2” " “xsd:string)))

)
)

:Reviewer WithConflicting Assignment

)

RDF /XML Syntax

_x1 rdfs:subClassOf :Reviewer WithConflicting Assignment

_ix1 rdf:type owl:Class
_:x1 owl:intersectionOf (_:x2 _:x3)

_:x2 rdf:type owl:Restriction

_x2 owl:onProperty :hasReviewAssign _:x3 owl:onProperty :hasSubmittedPaper

x2 owl:intersectionOf (:x4 _:x5)

_x4 rdf:type owl:Restriction
_:x4 owl:onProperty :hasAuthor
_:x4 owl:someValuesFrom _:x6

_x6 rdf:type owl:ObjectVariable
_:x6 owl:variableld "v1”

_x5 rdf:type owl:Restriction
_xb owl:onProperty :atVenue

_:x5 owl:someValuesFrom _:x7

_:x7 rdf:type owl:ObjectVariable
_:x7 owl:variableld ”v2”

Manchester Syntax

Class: Reviewer WithConflictingAssignment

SubtClassOf:
(hasReviewAssign some

_:x3 rdf:type owl:Restriction

:x3 owl:intersectionOf (:x8 _:x9)

_:x8 rdf:type owl:Restriction
_:x8 owl:onProperty :hasAuthor
_:x8 owl:someValuesFrom :x10

_x10 rdf:type owl:ObjectVariable
_:x10 owl:variableld ”v1”

_x9 rdf:type owl:Restriction
_:x9 owl:onProperty :atVenue
_:x9 owl:someValuesFrom :x11

_:x11 rdf:type owl:Object Variable
_x11 owl:variableld ”v2”

((hasAuthor some (Variable ”v1” " “xsd:string)) and
(atVenue some (Variable "v2” " “xsd:string))))

and
(:hasSubmittedPaper some

((hasAuthor some (Variable ”v1” " “xsd:string))
and (atVenue some (Variable ”v2” " “xsd:string))))

	 Integrating OWL and Rules: A Syntax Proposal for Nominal Schemas

