
Complexities of Horn Description Logics

MARKUS KRÖTZSCH
Department of Computer Science, University of Oxford, United Kingdom
SEBASTIAN RUDOLPH
Institute AIFB, Karlsruhe Institute of Technology, Germany
and
PASCAL HITZLER
Kno.e.sis Center, Wright State University, Dayton OH

Description Logics (DLs) have become a prominent paradigm for representing knowledge bases
in a variety of application areas. Central to leveraging them for corresponding systems is the
provision of a favourable balance between expressivity of the knowledge representation formalism
on the one hand, and runtime performance of reasoning algorithms on the other. Due to this, Horn
description logics (Horn DLs) have attracted attention since their (worst-case) data complexities
are in general lower than their overall (i.e. combined) complexities, which makes them attractive
for reasoning with large sets of instance data (ABoxes). However, the natural question whether
Horn DLs also provide advantages for schema (TBox) reasoning has hardly been addressed so
far. In this paper, we therefore provide a thorough and comprehensive analysis of the combined
complexities of Horn DLs. While the combined complexity for many Horn DLs studied herein
turns out to be the same as for their non-Horn counterparts, we identify subboolean DLs where
Hornness simplifies reasoning. We also provide convenient normal forms for Horn DLs.

Categories and Subject Descriptors: I.2.4 [Knowledge Representation Formalisms and
Methods]: Representation languages; F.2.2. [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problem—Complexity of Proof Procedures; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—Computational Logic

General Terms: Languages, Theory

Additional Key Words and Phrases: description logics, Horn logic, computational complexity

1. INTRODUCTION

One of the driving motivations behind description logic (DL) research is to design
languages which maximise the availability of expressive language features for the
knowledge modelling process, while at the same time striving for the most inex-
pensive languages in terms of computational complexity. A particularly prominent

Author’s address: M. Krötzsch, Department of Computer Science, University of Oxford, Wolfson
Building, Parks Road, OX1 3QD Oxford, UK, markus.kroetzsch@cs.ox.ac.uk.
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under the ExpresST
project, and by the National Science Foundation under award 1017225 III: Small: TROn—
Tractable Reasoning with Ontologies.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2011 ACM 1529-3785/2011/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011, Pages 1–34.

2 · Markus Krötzsch et al.

case in point is the DL-based Web Ontology Language OWL [OWL Working Group
2009], which is a W3C recommended standard since 2004. OWL (more precisely,
OWL DL) is indeed among the most expressive knowledge representation languages
which are also decidable.

Of particular interest for practical investigations are tractable DLs, i.e., DLs
which are of polynomial worst-case time complexity [Grosof et al. 2003; Baader
et al. 2005; Calvanese et al. 2007; Krötzsch et al. 2008; Krötzsch 2011]. While
not being Boolean closed, and thus relatively inexpressive, they receive increasing
attention as they promise to provide a good trade-off between expressivity and
scalability. This is also reflected by the fact that the 2009 revision of the OWL
standard of the World Wide Web consortium (W3C) adopted several of them as
designated important fragments of OWL [Motik et al. 2009].

At the same time, Horn DLs have been introduced [Grosof et al. 2003; Hustadt
et al. 2005], which are based on the idea of defining Horn logic fragments of DLs.
In first-order logic, Horn clauses are disjunctions of atomic formulae and negated
atomic formulae that contain at most one non-negated formula. Many kinds of
rules in logic programming, and especially Datalog rules, thus correspond to Horn
clauses. In terms of Datalog, the restriction to Horn clauses disallows disjunctions
in the head of rules, and thus allows for deterministic evaluation strategies. This
simplification is also visible in terms of computational complexities: inferencing in
Datalog is ExpTime-complete w.r.t. the size of the program, while it is NExpTime-
complete in disjunctive Datalog. Similar differences are found when considering
data complexity, the complexity of inferencing w.r.t. the number of ground facts of
the program, which increases from P to (co-)NP when adding disjunctions.

This has motivated the study of cases where DL knowledge bases can be reduced
to Datalog in such a way that it results in non-disjunctive Datalog programs, i.e.
in sets of Horn clauses, and the corresponding description logics have been dubbed
Horn description logics accordingly. The first and most prominent such DL was
Horn-SHIQ, which was obtained naturally from the KAON2 system [Motik and
Sattler 2006], but other well-known DLs such as EL++ [Baader et al. 2005] also
share characteristics of Horn DLs. Since, under these approaches, ABox facts can
usually be directly rewritten into Datalog facts, Horn description logics necessarily
allow standard inference tasks to be solved in polynomial time w.r.t. the size of
the ABox that contains no complex concepts (i.e., in terms of data complexity). It
turned out that this useful property of Horn DLs can also be exploited in inferencing
algorithms that do not rely on reductions to Datalog, e.g., in [Motik et al. 2009;
Kazakov 2009].

In this paper, we generalise the definition of Horn-SHIQ to arbitrary DLs that
are fragments of SROIQ, and we provide a comprehensive analysis of the worst-
case complexities of the resulting logics. While low data complexity is a character-
istic (and well-known) feature of Horn DLs, our results show that the complexity of
inferencing w.r.t. the overall size of the knowledge base is not necessarily lower in
the Horn case. However, we are able to identify restricted DLs for which inferencing
is significantly harder than for their Horn versions.

Our observations also highlight the close connections of Horn DLs to Description
Logic Programs (DLP) [Grosof et al. 2003] that have been proposed as an “inter-
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 3

section” of Horn and description logic. Indeed basic DLP languages are interesting
simple formalisms that allow for straightforward rule-based implementations. This
was one of the central motivations for the definition of the OWL 2 RL ontology
language [Motik et al. 2009] which we can also relate to a suitable Horn DL below.

The paper is structured as follows. In Section 2 we recall some preliminaries
required throughout the paper. In Section 3 we define Horn-SROIQfree as a large
Horn DL that provides the framework for defining the more specific logics that
are considered herein. Increasingly expressive fragments of Horn-SROIQfree are
studied in subsequent sections. Section 4 introduces the tractable Horn-FL0, Sec-
tion 5 shows that reasoning for all DLs between Horn-FL− and Horn-FLOH− is
PSpace-complete, and Section 6 establishes ExpTime-completeness for all DLs
between Horn-FLE and Horn-SHIQ. An overview of related work is provided in
Section 7, and the results are discussed in Section 8.

This article is a significantly rewritten and extended compilation of [Krötzsch
et al. 2006; Krötzsch et al. 2006; Krötzsch et al. 2007].

2. PRELIMINARIES AND NOTATION

We generally assume that the reader is familiar with basic description logics, but in
order to make the paper relatively self-contained, we introduce them briefly here.
[Baader et al. 2007] provides introductory and advanced material on many aspects
of DL research, while a textbook introduction to description logics in the context
of Semantic Web technologies can be found in [Hitzler et al. 2009].

Because it will make our content more easily accessible, we first define a very
general description logic, called SROIQfree, and then specialize this definition,
throughout the paper, as needed for introducing other DLs.

2.1 Syntax

SROIQfree and all other DLs considered herein are based on three disjoint sets of
individual names I, concept names A, and role names N. We call such a triple
〈I,A,N〉 a DL signature. Throughout this work, we assume that these basic sets
are finite, and consider them to be part of the given knowledge base when speaking
about the “size of a knowledge base.” We further assume N to be the union of
two disjoint sets of simple roles Ns and non-simple roles Nn. Later on, the use of
simple roles in conclusions of logical axioms will be restricted to ensure, intuitively
speaking, that relationships of these roles are not implied by chains of other role
relationships. The reason for this is that in some cases simple roles can be used in
axioms where non-simple roles might lead to undecidability.

The approach we take here assumes an a priori declaration of simple and non-
simple role names. A common alternative approach is to derive a maximal set of
simple roles from the structure of a given DL knowledge base. This a posteriori ap-
proach of determining the sets Nn or Ns is more adequate in practical applications
where it is often not viable to declare simplicity of roles in advance. Especially if
ontologies are dynamic, simplicity of roles may need to be changed over time to suit
the overall structure of axioms. For the investigation of theoretical properties, how-
ever, pre-supposing complete knowledge about the names of simple and non-simple
roles can simplify definitions.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

4 · Markus Krötzsch et al.

Definition 2.1. Consider a DL signature S = 〈I,A,N〉 with N = Ns ∪ Nn.
The set R of SROIQfree role expressions (or simply roles) for S is defined by the
following grammar:

R ::= U | N | N−

where U is called the universal role. The set Rs ⊆ R of all simple role expressions
is defined to contain all role expressions that contain no non-simple role names.
The set Rn of non-simple role expressions is Rn := R \Rs. A bijective function
Inv : R → R is defined by setting Inv(R) := R−, Inv(R−) := R, and Inv(U) := U
for all R ∈ N.

The set C of SROIQfree concept expressions (or simply concepts) for S is
defined by the grammar

C ::= > |⊥ |A | {I} | ∃R.Self | ¬C | (CuC) | (CtC) | ∀R.C | ∃R.C |>nR.C |6nR.C

where n is a non-negative integer.

Concepts are used to model classes while roles represent binary relationships.
In some application areas of description logics, especially in relation to the Web
Ontology Language OWL, “class” is used as a synonym for “concept.” Similarly, it
is also common to use the term “property” as a synonym for “role” in some contexts,
but we will not make use of this terminology here.

Parentheses are typically omitted if the exact structure of a given concept expres-
sion is clear or irrelevant. Also, we will commonly assume a signature and according
sets of concept and role expressions to be given using the notation of Definition 2.1,
mentioning it explicitly only to distinguish multiple signatures if necessary. Using
these conventions, role and concept expressions can be combined into axioms:

Definition 2.2. A SROIQfree RBox axiom is an expression of one of the follow-
ing forms:

—R1 ◦ . . . ◦Rn v R where R1, . . . , Rn, R ∈ R and where R /∈ Rn only if n = 1 and
R1 ∈ Rs,

—Ref(R) (reflexivity), Tra(R) (transitivity), Irr(R) (irreflexivity), Dis(R,R′) (role
disjointness), Sym(R) (symmetry), Asy(R) (asymmetry), where R,R′ ∈ R.

A SROIQfree TBox axiom is an expression of the form C v D or C ≡ D with
C,D ∈ C. A SROIQfree ABox axiom is an expression of the form C(a), R(a, b),
or a ≈ b where C ∈ C, R ∈ R, and a, b ∈ I.

RBox axioms of the form R1 ◦ . . . ◦ Rn v R are also known as role inclusion
axioms (RIAs), and a RIA is said to be complex if n > 1. Expressions such as
Ref(R) are called role characteristics. Note that, in our formulation, the universal
role U is introduced as a constant (or nullary operator) on roles, and not as a
“special” role name. In particular U ∈ Rs. Treating U as a simple role deviates from
earlier works on SROIQ, but it can be shown that U can typically be allowed in
axioms that are often restricted to simple roles (cf. Definition 2.4) without leading
to undecidability or increased worst-case complexity of reasoning [Rudolph et al.
2008b]. TBox axioms are also known as terminological axioms or schema axioms,
and expressions of the form C v D are known as generalised concept inclusions
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 5

Symbol Expressive Feature Example
I inverse roles R−

O nominals {a}
Q qualified number restrictions 63R.C, >2S.D

H role hierarchies R v T
R role inclusion axioms R ◦ S v T

Fig. 1. Nomenclature for important DL features

(GCIs). ABox axioms are also called assertional axioms, where axioms C(a) are
concept assertions, axioms R(a, b) are role assertions, and axioms a ≈ b are equality
assertions.

Many of the above types of axioms can be expressed in terms of other axioms,
so that substantial syntactic simplifications are possible in many DLs. Relevant
abbreviations are discussed in Section 2.3 below. Logical theories in description
logic are called knowledge bases:

Definition 2.3. A SROIQfree RBox (TBox, ABox) is a set of SROIQfree RBox
axioms (TBox axioms, ABox axioms). A SROIQfree knowledge base is the union
of a (possibly empty) SROIQfree RBox, TBox, and ABox.

The above definitions still disregard some additional restrictions that are relevant
for ensuring decidability of common reasoning tasks. The next definition therefore
introduces SROIQ as a decidable sublanguage of SROIQfree.

Definition 2.4. A SROIQ role expression is the same as a SROIQfree role
expression. A SROIQ concept expression C is a SROIQfree concept expression
such that all subconcepts D of C that are of the form ∃S.Self, >nS.E, or 6nS.E
are such that S ∈ Rs is simple.

A SROIQfree RBox is regular if there is a strict (irreflexive) total order ≺ on R
such that

—for R /∈ {S, Inv(S)}, we find S ≺ R iff Inv(S) ≺ R, and
—every RIA is of one of the forms:

R ◦R v R, Inv(R) v R,

R1 ◦ . . . ◦Rn v R, R ◦R1 ◦ . . . ◦Rn v R, R1 ◦ . . . ◦Rn ◦R v R

such that R,R1, . . . , Rn ∈ R, and Ri ≺ R for i = 1, . . . , n.

A SROIQ RBox is a regular SROIQfree RBox that contains role characteristics
of the forms Irr(S), Dis(S, T), and Asy(S) only for simple role names S, T ∈ Ns. A
SROIQ TBox (ABox) is a SROIQfree TBox (ABox) that contains only SROIQ
concept expressions. A SROIQ knowledge base is the union of a SROIQ RBox,
TBox, and ABox. A SROIQ (RBox, TBox, or ABox) axiom is an axiom that
occurs within some SROIQ knowledge base (in the RBox, TBox, or ABox).

A variety of different DLs has been studied, most of which can be described as
sublanguages of SROIQ. Names such as SROIQ are typically (partly) descriptive
in that they encode some of the language constructors available in the language.
The most common letters used in these acronyms are listed in Fig. 1. For example,

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

6 · Markus Krötzsch et al.

Name Syntax Semantics
inverse role R− {〈x, y〉 ∈ ∆I ×∆I | 〈y, x〉 ∈ RI}
universal role U ∆I ×∆I

top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominals {a} {aI}
univ. restriction ∀R.C {x ∈ ∆I | 〈x, y〉 ∈ RI implies y ∈ CI}
exist. restriction ∃R.C {x ∈ ∆I | for some y ∈ ∆I , 〈x, y〉 ∈ RI and y ∈ CI}
Self concept ∃S.Self {x ∈ ∆I | 〈x, x〉 ∈ SI}
qualified number 6nS.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI and y ∈ CI} ≤ n}
restriction >nS.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI and y ∈ CI} ≥ n}

Fig. 2. Semantics of role and concept expressions in SROIQfree for an interpretation I with
domain ∆I

SHIQ is the fragment of SROIQ that does not allow nominals, and that restricts
to RBox axioms of the form Tra(R), Sym(R), and S v R. We will introduce a
number of further SROIQ fragments later on. Some historic names do not follow
a clear naming scheme, but we still adhere to Fig. 1 when extending such DLs.

2.2 Semantics and Inferencing

The semantics of description logics is typically specified by providing a model theory
from which notions like logical consistency and entailment can be derived in the
usual way. We specify these notions for the most general case of SROIQfree but
they can readily be applied to DLs contained in SROIQfree. The basis for this
approach is the definition of a DL interpretation:

Definition 2.5. An interpretation I for a SROIQfree signature S = 〈I,A,N〉
is a pair I = 〈∆I , ·I〉, where ∆I is a non-empty set and ·I is a mapping with the
following properties:

—if a ∈ I then aI ∈ ∆I ,
—if A ∈ A then AI ⊆ ∆I ,
—if R ∈ N then RI ⊆ ∆I ×∆I .

The mapping ·I is extended to arbitrary role and concept expressions as specified
in Fig. 2, where #S denotes the cardinality on the set S.

The set ∆I is called the domain of I. We often do not mention an interpretation’s
signature S explicitly if it is irrelevant or clear from the context. We can now define
when an interpretation is a model for some DL axiom.

Definition 2.6. Given an interpretation I and a SROIQfree (RBox, TBox, or
ABox) axiom α, we say that I satisfies (or models) α, written I |= α, if the
respective conditions of Fig. 3 are satisfied. I satisfies (or models) a SROIQfree

knowledge base KB, denoted as I |= KB, if it satisfies all of its axioms. In these
situations, we also say that I is a model of the given axiom or knowledge base.

This allows us to derive standard model-theoretic notions as follows:
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 7

Axiom α Condition for I |= α

R1 ◦ . . . ◦Rn v R RI1 ◦ . . . ◦RIn ⊆ RI
Tra(R) if RI ◦RI ⊆ RI
Ref(R) 〈x, x〉 ∈ RI for all x ∈ ∆I

Irr(S) 〈x, x〉 /∈ SI for all x ∈ ∆I

Dis(S, T) if 〈x, y〉 ∈ SI then 〈x, y〉 /∈ TI for all x, y ∈ ∆I

Sym(R) if 〈x, y〉 ∈ RI then 〈y, x〉 ∈ RI for all x, y ∈ ∆I

Asy(S) if 〈x, y〉 ∈ SI then 〈y, x〉 /∈ SI for all x, y ∈ ∆I

C v D CI ⊆ DI

C(a) aI ∈ CI
R(a, b) 〈aI , bI〉 ∈ RI
a ≈ b aI = bI

◦ on the right-hand side denotes standard composition of binary relations:
RI ◦ TI := {〈x, z〉 | 〈x, y〉 ∈ RI , 〈y, z〉 ∈ TI}

Fig. 3. Semantics of SROIQfree axioms for an interpretation I with domain ∆I

Definition 2.7. Consider SROIQfree knowledge bases KB and KB′.

—KB is consistent (satisfiable) if it has a model and inconsistent (unsatisfiable)
otherwise,

—KB entails KB′, written KB |= KB′, if all models of KB are also models of KB′.

This terminology is extended to axioms by treating them as singleton knowledge
bases. A knowledge base or axiom that is entailed is also called a logical consequence.

When description logics are applied as an ontology modelling language, it is
important to discover logical consequences. The (typically automatic) process of
deriving logical consequences is called reasoning or inferencing, and a number of
standard reasoning tasks play a central rôle in DLs:

—Inconsistency checking: Is KB inconsistent?
—Concept subsumption: Given concepts C,D, does KB |= C v D hold?
—Instance checking: Given a concept C and individual name a, does KB |= C(a)
hold?

—Concept unsatisfiability: Given a concept C, is there no model I |= KB such that
CI 6= ∅?

Further reasoning tasks are considered as “standard” in some works. Common
problems include instance retrieval (finding all instances of a concept) and clas-
sification (computing all subsumptions between concept names). We restrict our
selection here to ensure that all standard reasoning tasks can be viewed as decision
problems that have a common worst-case complexity for all logics studied within
this paper.

Proposition 2.8. The standard reasoning tasks in SROIQfree can be reduced
to each other in linear time, and this is possible in any fragment of SROIQfree

that includes axioms of the form A(a) and A u C v ⊥.

Proof. We find that KB is inconsistent if the concept > is unsatisfiable. C is
unsatisfiable in KB if KB |= C v ⊥. Given a fresh individual name a, we obtain
KB |= C v D if KB ∪ {C(a)} |= D(a). For a fresh concept name A, KB |= C(a)

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

8 · Markus Krötzsch et al.

if KB ∪ {A(a), A u C v ⊥} is inconsistent. This cyclic reduction shows that all
reasoning problems can be reduced to one another.

2.3 Simplifications and Normal Forms

Description logics have a very rich syntax that often provides many different ways
of expressing equivalent statements.

Every SROIQfree GCI C v D can be expressed as > v ¬C tD, i.e. by stating
that the concept ¬C tD is universally valid. In the following, we will often tacitly
assume that GCIs are expressed as universally valid concepts, and we will use
concept expressions C to express axioms > v C. Nonetheless, we still use v
whenever this notation appears to be more natural for a given purpose. Likewise,
we consider C ≡ D as an abbreviation for {C v D,D v C}, and omit ≡ as an
atomic constructor for axioms.

Many DL constructs can be considered as “syntactic sugar” in the sense that
they can readily be expressed in terms of other operators. Examples are found
by applying basic propositional equivalences such as A t B ≡ ¬(¬A u ¬B) or
> ≡ A t ¬A. These simplifications are applicable when dealing with DLs that are
characterised by a set of operators which can freely be combined to form concept
expressions. In this paper, however, we derive more complex syntactic restrictions
to arrive at DLs that are not closed under typical propositional equivalences. We
thus do not exclude any operators from our considerations.

There still are some general simplifications that we can endorse in the sequel:

—Whenever a DL features counting quantifiers, we use >1R.C instead of ∃R.C,
and 60R.¬C instead of ∀R.C.

—We exploit commutativity and associativity of u, as given by the equivalences
A u B ≡ B u A and A u (B u C) ≡ (A u B) u C, to generally disregard nesting
and ordering of conjuncts. For example, “a concept of the form ∃R.A u C with
C arbitrary” is used to refer to concept expressions B u ∃R.A (C = B) or B u
(B′ u ∃R.A) (C = B u B′). This convention introduces some non-determinism,
e.g. if B′ = ∃R.A in the previous example, but the choice will never be essential
in our arguments.

—We exploit commutativity and associativity of t as in the case of u.

These conventions reduce the amount of cases that need to be considered in
definitions.

We will make use of a negation normal form transformation in the sequel. While
the standard negation normal form transformation (see, e.g., [Hitzler et al. 2009,
Chapter 5]) normalises the uses of negation in concept expressions, it does often not
contribute significantly to a simplified presentation. The reason is that concepts
D in expressions 6nR.D also occur under a negative polarity, i.e. they behave like
negated subexpressions; see also Section 3. Therefore a modified version, called
positive negation normal form, is more effective for our purposes.

Definition 2.9. A SROIQfree concept expression C is in positive negation nor-
mal form (pNNF) if

—if 6nR.D is a subconcept of C, then D has the form ¬D′, and
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 9

C pNNF(C)

>,⊥, A,¬A, {a},¬{a}, C
∃R.Self,¬∃R.Self
¬> ⊥
¬⊥ >
¬¬D pNNF(D)

D1 uD2 pNNF(D1) u pNNF(D2)

D1 tD2 pNNF(D1) t pNNF(D2)
¬(D1 uD2) pNNF(¬D1) t pNNF(¬D2)

¬(D1 tD2) pNNF(¬D1) u pNNF(¬D2)

6nR.D 6nR.¬pNNF(¬D)
¬6nR.D >(n+ 1)R.pNNF(¬D)

>nR.D >nR.pNNF(D)

¬>0R.D ⊥
¬>nR.D (n > 1) 6(n− 1)R.¬pNNF(¬D)

Fig. 4. Negation normal form transformations for DL concept expressions. A a concept name, a
an individual name, R a role name, D(i) concept expressions.

—every other occurrence of ¬ in C is part of a subconcept ¬D where D is of the
form ¬A (A a concept name), ¬{a}, or ¬∃R.Self.

Every concept expression C can be transformed into a semantically equivalent
concept expression pNNF(C) that is in positive negation normal form. It is easy to
see that this can be achieved in linear time using the recursive definitions of Fig. 4.

Role expressions and RBox axioms also allow for a number of simplifications.
Sym(R) and Tra(R) are equivalent to R− v R and R ◦R v R, respectively. Ref(R)
is equivalent to > v ∃R.Self but the latter is not admissible in SROIQ if R is
not simple. As an alternative, Ref(R) can be expressed by {> v ∃S.Self, S v R}
where S is a fresh simple role name. Irreflexivity Irr(S) and asymmetry Asy(S) are
again equivalently expressed by ∃S.Self v ⊥ and Dis(S, Inv(S)), respectively. In
summary, Dis(S, T) is the only role characteristic that is not expressible in terms
of other constructs in most DLs.

Finally, a number of simplifications can be applied to ABox axioms as well. Most
importantly, DLs that support nominals can typically express ABox assertions as
TBox axioms by transforming axioms C(a), R(a, b), a ≈ b into {a} v C, {a} v
∃R.{b}, and {a} v {b}, respectively.

3. A HORN FRAGMENT OF SROIQ
We first provide a direct definition of a Horn fragment of SROIQfree that will be
the basis for the various Horn DLs studied herein. Our definition is motivated by
the DL Horn-SHIQ [Hustadt et al. 2005], and we will show below that it is indeed
a generalisation of the original definition of this logic.

Definition 3.1. A Horn-SROIQfree knowledge base over a DL signature S is
a set of SROIQfree axioms which are

—SROIQfree RBox axioms over S , or
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

10 · Markus Krötzsch et al.

C1 ::= C0 | A | {I} | ∃R.Self | 60R.¬C1 | 61R.¬C0 | >nR.C1 | C1 uC1 | C1 tC0

C0 ::= > | ⊥ | ¬A | ¬{I} | ¬∃R.Self | 60R.¬C0 | C0 uC0 | C0 tC0

Fig. 5. Horn-SROIQfree concept expressions in positive negation normal form

C|ε = C pol(C, ε) = 1

(¬C)|1p = C|p pol(¬C, 1p) = −pol(C, p)
(C1 2C2)|ip = Ci|p pol(C1 2C2, ip) = pol(Ci, p) for 2 ∈ {u,t}, i ∈ {1, 2}
6nR.C|3p = C|p pol(6nR.C, 3p) = −pol(C, p)
>nR.C|3p = C|p pol(>nR.C, 3p) = pol(C, p)

Fig. 6. Positions in a concept (left) and their polarity (right)

D pl+(D) pl−(D)

⊥ 0 0

> 0 0

A 1 0
¬C pl−(C) pl+(C)d
Ci maxi sgn(pl+(Ci))

∑
i sgn(pl−(Ci))⊔

Ci
∑
i sgn(pl+(Ci)) maxi sgn(pl−(Ci))

>nR.C 1
n(n−1)

2
+ n sgn(pl−(C))

6nR.C n(n+1)
2

+ (n+ 1) sgn(pl−(C)) 1

Fig. 7. Definition of pl+(D) and pl−(D)

—GCIs C v D over S such that pNNF(¬C t D) is a C1 concept as defined in
Fig. 5, or

—ABox axioms C(a) where the pNNF(C) is a C1 concept as defined in Fig. 5.

Note that Fig. 5 exploits some syntactic simplifications as discussed in Section 2,
and in particular that existential and universal restrictions are not mentioned ex-
plicitly. When convenient, we will still use this notation when considering fragments
of Horn-SROIQfree below.

The original definition of Horn-SHIQ in [Hustadt et al. 2005] is rather more
complex than the above characterisation, using a recursive function that counts the
positive literals that would be needed when decomposing an axiom into equisatisfi-
able formulae in disjunctive normal form. In order to show that our definition leads
to the same results, we first recall the definition from [Hustadt et al. 2005] which
requires us to introduce some auxiliary concepts.

Subconcepts of some description logic concept are denoted by specifying their
position. Formally, a position p is a finite sequence of natural numbers, where ε
denotes the empty position. Given a concept C, C|p denotes the subconcept of C
at position p, defined recursively as in Fig. 6 (left). In this paper, we consider only
positions that are defined in this figure, and the set of all positions in a concept C
is understood accordingly. Given a concept C and a position p in C, the polarity
pol(C, p) of C at position p is defined as in Fig. 6 (right). Using this notation, we
can state the following definition of Horn knowledge bases.

Definition 3.2. Let pl+ and pl− denote mutually recursive functions that map a
SHIQ concept D to a non-negative integer as specified in Fig. 7 where sgn(0) = 0

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 11

and sgn(n) = 1 for n > 0. We define a function pl that assigns to each SHIQ
concept C and position p in C a non-negative integer by setting:

pl(C, p) =

{
pl+(C|p) if pol(D, p) = 1,
pl−(C|p) if pol(D, p) = −1,

A concept C is Horn if pl(C, p) ≤ 1 for every position p in C, including the empty
position ε. A SHIQ knowledge base KB is Horn if ¬C tD is Horn for each GCI
C v D of KB, and C is Horn for each assertion C(a) of KB.

The corresponding Definition 1 in [Hustadt et al. 2005] refers to ALCHIQ1 in-
stead of SHIQ since an elimination procedure for transitive roles that is considered
in [Hustadt et al. 2005] may introduce axioms that are not Horn in the above sense.
However, it turns out that transitive roles – and SROIQ role chains in general –
can also be eliminated without endangering the Hornness of a knowledge base (see,
e.g., [Kazakov 2008]). Hence we can safely extend the definition to SHIQ.

While suitable as a criterion for checking Hornness of single axioms or knowledge
bases, Definition 3.2 is not particularly suggestive as a description of the class of
Horn knowledge bases as a whole. Indeed, it is not readily clear for which formulae pl
yields values smaller or equal to 1 for all possible positions in the formula. Moreover,
Definition 3.2 is still overly detailed as pl calculates the exact number of positive
literals being introduced when transforming some (sub)formula.

To show that Definition 3.1 is a suitable generalisation of Definition 3.2, we first
observe that Hornness is not affected by transformation to positive negation normal
form.

Lemma 3.3. A SHIQ concept C is Horn according to Definition 3.2 iff its pos-
itive negation normal form pNNF(C) is Horn according to this definition.

Proof. The result is shown by establishing that the steps of the normal form
transformation in Fig. 4 do not affect the value of pl+. The same could be shown for
pl− but this part can be omitted by noting that the concepts that are transformed in
the recursive definition of pNNF are always in positive positions. The claim clearly
holds if C is a concept name, >, or ⊥. Consider the case that C = ¬(D1uD2). Then
pl+(C) = sgn(pl−(D1)) + sgn(pl−(D2)) = sgn(pl+(¬D1)) + sgn(pl+(¬D2)). By the
induction hypothesis this equals sgn(pl+(pNNF(¬D1))) + sgn(pl+(pNNF(¬D2))) =
pl+(pNNF(¬(D1 u D2))), as required. The other cases of the induction are simi-
lar.

Proposition 3.4. A SHIQ concept C is Horn according to Definition 3.2 iff
it is Horn according to Definition 3.1.

Proof. “⇐” We need to show that pNNF(D) ∈ C1 (pNNF(D) ∈ C0) implies
pl+(D) ≤ 1 (pl+(D) = 0). Focussing on pl+ suffices since subconcepts that occur
with negative polarity within a concept in positive negation normal form are either
atomic or of the form ¬D′ with D′ ∈ C1. By Lemma 3.3, it suffices to show that
D ∈ C1 (D ∈ C0) implies pl+(D) ≤ 1 (pl+(D) = 0). This can be established
with some easy inductions over the structure of C0 and C1, where all cases follow

1ALCHIQ is SHIQ without transitivity declarations for roles.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

12 · Markus Krötzsch et al.

by straightforward calculation of pl+, applying the induction hypothesis to obtain
results for subexpressions.

“⇒” By Lemma 3.3, we can again restrict attention to concepts in positive nega-
tion normal form. We first show that, whenever D in pNNF is such that pl+(D) = 0,
we find that D ∈ C0. The contrapositive – if D /∈ C0 then pl+(D) 6= 0 – can be
shown by induction over the structure of D. The result is immediate for D ∈ A,
and follows by simple calculation in all other cases. As an example, consider
D = 6nR.¬D′. If n > 0, then pl+(D) ≤ 1 is immediate. If n = 0 then D′ /∈ C0

and pl+(D′) = sgn(pl+(D′)), where the later is 1 by the induction hypothesis.
To establish the claim, we can now show that, whenever D in pNNF is such that

pl+(D) ≤ 1, we find that D ∈ C1. The required induction is similar to the C0 case,
so we omit the details.

The previous result shows that Definition 3.1 is indeed a generalisation of the
original definition of Horn-SHIQ. The extension with nominals and Self expres-
sions may appear natural, but it remains to be shown that it actually leads to
appropriate results. We will not study Horn-SROIQfree as such in the sequel,
but we will rather consider various fragments of this logic. Recall the following
definitions of subboolean description logics from [Baader et al. 2007]:

Definition 3.5. Consider a SROIQfree concept expression C.

—C is an FLE concept if it uses only the constructors >, ⊥, u, ∃, and ∀.
—C is an FL− concept if it is an FLE concept and all of its existential role restric-
tions have the form ∃R.>.

—C is an FL0 concept if it is an FL− concept that does not contain existential role
restrictions.

The description logics FLE , FL−, and FL0 allow for arbitrary GCIs and concept as-
sertions that contain only concept expressions of the respective type. RBox axioms
are not supported.

When defining the Horn variant of each of these description logics, it is relevant
whether GCIs or globally valid concept expressions are considered when applying
the syntactic restrictions. For example, the GCI A u B v C is in FL0 but the
corresponding universally valid concept expression ¬(A u B) t C and its pNNF
¬A t ¬B t C are not. Disjunction could be included to overcome this issue – the
Hornness conditions restrict its expressive power as done in Horn-SHIQ – but then
concepts such as ∀R.¬A t ∀S.B would be expressible, whereas the corresponding
GCI ∃R.A v ∀S.B cannot be expressed in FL0. Therefore, we apply restrictions
on the level of GCIs and do not include concept unions, thus ensuring that all
Horn-FL0 knowledge bases are also expressible in FL0. Note that the normal
form transformations that were used in Definition 3.1 are not affected by such
considerations, since Horn restrictions are invariant under negation normal form
transformations as illustrated in Lemma 3.3.

Definition 3.6. The description logic Horn-FLE (Horn-FL−, Horn-FL0) allows
for the following axioms:

—GCIs C v D such that the concepts C,D are in FLE (FL−, FL0) and we find
that pNNF(¬C tD) ∈ C1, or

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 13

—concept assertions C(a) such that the concept C is in FLE (FL−, FL0) and
pNNF(C) ∈ C1,

where C1 is defined as in Fig. 5.

These basic Horn DLs form the basis of our subsequent investigations, and it
will turn out that they have very different computational properties in spite of
the rather similar syntax. We will also extend the previously defined Horn DLs to
include further features of Horn-SROIQfree that are not included yet. For example,
we will consider the logic Horn-FLOH− that extends Horn-FL− with nominals and
role hierarchies.

4. A LIGHT-WEIGHT HORN DL: HORN-FL0

The description logic FL0 is indeed very simple: >, ⊥, u, and ∀ are the only
operators allowed. Yet, checking the satisfiability of FL0 knowledge bases is already
ExpTime-complete [Baader et al. 2005]. It is not hard to see that Horn-FL0 is in
P, and thus is much simpler than its non-Horn counterpart.

Proposition 4.1. The standard reasoning tasks for Horn-FL0 are P-complete.

Proof. An axiom of Horn-FL0 is in normal form if it is of one of the following
forms: A v C, AuB v C, A v ⊥, > v C, A v ∀R.C, C(a), R(a, b), where A,B,C
are concept names, R is a role name, and a, b are individual names. Now it is easy
to see that every Horn-FL0 knowledge base KB is equisatisfiable to a Horn-FL0

knowledge base in normal form that can be computed in linear time w.r.t the size
of KB. An according normal form transformation is detailed for Horn-FLOH− in
Lemma 5.6, and the transformation for Horn-FL0 is an easy special case thereof,
with the only difference that GCIs {a} v C must be written as C(a) in Horn-FL0.

It is easy to see that every Horn-FL0 knowledge base in normal form can be
translated to a semantically equivalent Datalog program.2 Indeed, this translation
is obtained by applying the standard transformation of SROIQ axioms to first-
order logic with equality as can be found, e.g., in [Hitzler et al. 2009, Chapter 5].
For example, the axiom A v ∀R.B is transformed to A(x) ∧ R(x, y) → B(y) (as
usual, we omit the ubiquitous universal quantifiers when writing Datalog formulae).
Since all of the rules that are obtained by translating normal form axioms have at
most three variables, the result follows from the fact that satisfiability checking
is P-complete for Datalog programs with a bounded number of variables per rule
[Dantsin et al. 2001]. Moreover, we also note that the reductions of standard
reasoning problems to satisfiability checking are possible in Horn-FL0 as well.

This simple result could be established even when extending Horn-FL0 with fur-
ther expressive features. In particular, this is the case for all features of SROIQ
for which the standard first-order translation would lead to Datalog axioms, pos-
sibly even with equality. This includes nominals, inverse roles, role chains,3 local
reflexivity (Self), and the universal role. Moreover, role conjunctions and concept

2Here, Datalog refers to function-free and ∃-free Horn logic under first-order logic semantics. We
have no need of considering non-monotonic Datalog semantics.
3RIAs must be normalised to obtain RIAs with at most three roles, e.g., transformingR1◦R2◦R3 v
R to R1 ◦R2 v S and S ◦R3 v R, where S is a fresh role name.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

14 · Markus Krötzsch et al.

products as discussed in [Rudolph et al. 2008a; 2008b] are easily integrated into
this setting as well, even without restricting to simple roles. Description logics that
can faithfully be expressed in Datalog have been called Description Logic Programs
(DLP) [Grosof et al. 2003].

Two additional features – disjunction and qualified functionality restrictions of
the form 61R.C – are of interest for us to obtain a Horn DL that is more closely
related to the OWL RL profile [Motik et al. 2009]. Considering Definition 3.1
and Fig. 5, we observe that Horn DLs allow for at most one C1 concept in each
disjunction. Every GCI that is Horn in this sense can therefore be expressed in a
form where said C1 concept constitutes the right-hand side of the concept inclusion
axiom, while all other disjunctions occur on the left-hand side. Such disjunctions
on the left-hand side of GCIs, however, can easily be eliminated during normal form
transformation since A t B v C is equivalent to {A v C,A v C}. Therefore, the
addition of Horn-disjunction does not increase the expressiveness of the DL.

Qualified functionality restrictions in turn are only allowed in C1 expressions of
the form61R.¬C with C ∈ C0. Such expressions can be simplified by replacing ¬C
with a fresh concept name A while introducing a new axiom ¬C v A (this is Horn
since C ∈ C0). In addition, it is easy to see that axioms of the form B v 61R.A
are translated to Datalog rules B(x)∧R(x, y1)∧A(y1)∧R(x, y2)∧A(y2)→ y1 ≈ y2,
so they can safely be included into an extension of Horn-FL0 where equality ≈ is
axiomatised as usual. Summing up the above discussion, we obtain the following
result:

Proposition 4.2. Let Horn-SROIQ(u)free be Horn-SROIQfree extended with
arbitrary conjunctions of roles, and let RL denote the fragment of the Horn DL
Horn-SROIQ(u)free comprising all knowledge bases that contain no maximality
restrictions for numbers other than 1, no existential restrictions, and no minimality
restrictions. The standard reasoning problems for RL are P-complete.

Proof. It has been sketched in the above discussion how to extend the normal
form transformation to cover Horn disjunction of concepts and qualified function-
ality restrictions on the right-hand side of GCIs. A suitable normal form for GCIs
is defined by requiring all left-hand sides to be of the forms >, A or A u B, and
all right-hand sides to be of the form ⊥, A, ∀R.A, or 61R.A, where A and B are
concept names, nominals, or expressions ∃S.Self, and where R,S are role names.
A normal form of RIAs allows only axioms of the form R v T , R ◦ S v T , and
R u S v T (see [Rudolph et al. 2008b] for an introduction to role conjunctions),
where R,S, T are role names, inverses of role names, or the universal role. Clearly,
any RL knowledge base is equisatisfiable to an RL knowledge base in normal form
that can be computed in polynomial time – in fact, since all transformations can
be accomplished in a single pass, it is even possible to achieve the normalisation in
LogSpace.

A polynomial-time inferencing algorithm is obtained by further translating nor-
malised RL knowledge bases into Datalog programs with a bounded number of
variables per rule, as in Proposition 4.1.

The reason why the rather exotic description logic RL is specifically mentioned
here is that it includes essentially all features of the OWL 2 RL ontology language
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 15

which are not related to datatypes [Motik et al. 2009]. Adding datatypes is no
major difficulty but requires extended preliminary discussions that are beyond the
scope of this work. The only syntactic feature of OWL RL that RL is missing are
existential quantifiers on the left-hand side of GCIs which do not increase expres-
siveness but which syntactically extend OWL RL. Horn DLs do not restrict the
use of existentials, so introducing them to RL would require additional constraints
that do not fit well into the framework of Horn DLs. In contrast, restrictions on
the use of existentials appear naturally when studying DLP [Krötzsch et al. 2010].
This indicates that Horn DLs are based on first-order Horn logic with functions,
while DLP refers to the function-free fragment Datalog.

5. PSPACE-COMPLETE HORN DLS: FROM HORN-FL− TO HORN-FLOH−

Horn-FL− is the Horn fragment of ALC that allows >, ⊥, u, ∀, and unqualified
∃, i.e. concept expressions of the form ∃R.>. Although Horn-FL− is only a very
small extension of Horn-FL0, we will see that it is PSpace-complete. Moreover,
not all of the extensions that could be added to Horn-FL0 can also be added to
Horn-FL− without further increasing the complexity. The extension of FL− that
we will consider below is defined as follows.

Definition 5.1. The description logic FLOH− is the extension of FL− with nomi-
nals, and role hierarchies. The logic Horn-FLOH− is the restriction of FLOH− that
contains only GCIs C v D and concept assertions E(a) such that pNNF(¬CtD) ∈
C1 and pNNF(E) ∈ C1.

In the following sections, we show that all logics between Horn-FL− and Horn-
FLOH− are PSpace-complete.

5.1 Hardness

We directly show that Horn-FL− is PSpace-hard by reducing the halting prob-
lem for polynomially space-bounded Turing machines to checking unsatisfiability
in Horn-FL−.

Definition 5.2. A deterministic Turing machine (TM)M is a tuple (Q,Σ,∆, q0)
where

—Q is a finite set of states,
—Σ is a finite alphabet that includes a blank symbol �,
—∆ ⊆ (Q× Σ)× (Q× Σ× {l, r}) is a transition relation that is deterministic, i.e.

(q, σ, q1, σ1, d1), (q, σ, q2, σ2, d2) ∈ ∆ implies q1 = q2, σ1 = σ2, and d1 = d2.
—q0 ∈ Q is the initial state, and
—QA ⊆ Q is a set of accepting states.

A configuration ofM is a word α ∈ Σ∗QΣ∗. A configuration α′ is a successor of a
configuration α if one of the following holds:

(1) α = wlqσσrwr, α′ = wlσ
′q′σrwr, and (q, σ, q′, σ′, r) ∈ ∆,

(2) α = wlqσ, α′ = wlσ
′q′�, and (q, σ, q′, σ′, r) ∈ ∆,

(3) α = wlσlqσwr, α′ = wlq
′σlσ

′wr, and (q, σ, q′, σ′, l) ∈ ∆,
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

16 · Markus Krötzsch et al.

where q ∈ Q and σ, σ′, σl, σr ∈ Σ as well as wl, wr ∈ Σ∗. Given some natural
number s, the possible transitions in space s are defined by additionally requiring
that |α′| ≤ s+ 1.

The set of accepting configurations is the least set which satisfies the following
conditions. A configuration α is accepting iff

—α = wlqwr and q ∈ QA, or
—at least one the successor configurations of α are accepting.

M accepts a given word w ∈ Σ∗ (in space s) iff the configuration q0w is accepting
(when restricting to transitions in space s).

The complexity class PSpace is defined as follows.

Definition 5.3. A language L is accepted by a polynomially space-bounded TM
iff there is a polynomial p such that, for every word w ∈ Σ∗, w ∈ L iff w is accepted
in space p(|w|).

In this section, we exclusively deal with polynomially space-bounded TMs, and
so we omit additions such as “in space s” when clear from the context.

In the following, we consider a fixed TMM denoted as in Definition 5.2, and a
polynomial p that defines a bound for the required space. For any word w ∈ Σ∗, we
construct a Horn-FL− knowledge base KBM,w and show that w is accepted byM
iff KBM,w is unsatisfiable. Intuitively, the elements of an interpretation domain of
KBM,w represent possible configurations of M, encoded by the following concept
names

—Aq for q ∈ Q: the TM is in state q,
—Hi for i = 0, . . . , p(|w|)− 1: the TM is at position i on the storage tape,
—Cσ,i with σ ∈ Σ and i = 0, . . . , p(|w|)− 1: position i on the storage tape contains
symbol σ.

Based on these concepts, elements in each interpretation of a knowledge base
encode certain states of the Turing machine. A role S will be used to encode
the successor relationship between states. The initial configuration for word w is
described by the concept expression Iw:

Iw := Aq0 uH0 u Cσ0,0 u . . . u Cσ|w|−1,|w|−1 u C�,|w| u . . . u C�,p(|w|)−1,

where σi denotes the symbol at the ith position of w.
It is not hard to describe runs of the TM with Horn-FL− axioms, but formulating

the acceptance condition is slightly more difficult. The reason is that in absence of
statements like ∃S.A and ∀S.A in the condition part of Horn-axioms, one cannot
propagate acceptance from the final accepting configuration back to initial configu-
ration. The solution is to introduce a new concept F that states that a state is not
accepting, and to propagate this assumption forwards along the runs to provoke an
inconsistency as soon as an accepting configuration is reached. Thus we arrive at
the axioms given in Fig. 8.

Next we need to investigate the relationship between elements of an interpreta-
tion that satisfies KBM,w and configurations of M. Given an interpretation I of
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 17

(1) Left and right transition rules:
Aq uHi u Cσ,i v ∃S.> u ∀S.(Aq′ uHi+1 u Cσ′,i) with δ = (q, σ, q′, σ′, r), i < p(|w|)−1

Aq uHi u Cσ,i v ∃S.> u ∀S.(Aq′ uHi−1 u Cσ′,i) with δ = (q, σ, q′, σ′, l), i > 0

(2) Memory:
Hj u Cσ,i v ∀S.Cσ,i i 6= j

(3) Failure: (4) Propagation of failure:
F uAq v ⊥ q ∈ QA F v ∀S.F

The axioms are instantiated for all q, q′∈Q, σ, σ′∈Σ, i, j∈{0, . . . , p(|w|)− 1}, and δ ∈ ∆.

Fig. 8. Knowledge base KBM,w simulating a polynomially space-bounded TM

KBM,w, we say that an element e of the domain of I represents a configuration
σ1 . . . σi−1qσi . . . σm if e ∈ AIq , e ∈ HIi , and, for every j ∈ {0, . . . , p(|w|) − 1},
e ∈ CIσ,j whenever

j ≤ m and σ = σm or j > m and σ = �.

Note that we do not require uniqueness of the above, so that a single element might
in fact represent more than one configuration. As we will see below, this does not
affect our results. If e represents a configuration as above, we will also say that e
has state q, position i, symbol σj at position j etc.

Lemma 5.4. Consider some interpretation I that satisfies KBM,w. If some el-
ement e of I represents a configuration α and some transition δ is applicable to α,
then e has an SI-successor that represents the (unique) result of applying δ to α.

Proof. Consider an element e, state α, and transition δ as in the claim. Then
one of the axioms (1) applies, and e must also have an SI-successor. This successor
represents the correct state, position, and symbol at position i of e, again by the
axioms (1). By axiom (2), symbols at all other positions are also represented by all
SI-successors of e.

Lemma 5.5. A word w is accepted byM iff {Iw(i), F (i)} ∪KBM,w is unsatisfi-
able, where i is a new constant symbol.

Proof. Let I be a model of {Iw(i), F (i)} ∪KBM,w. I being a model for Iw(i),
iI clearly represents the initial configuration of M with input w. By Lemma 5.4,
for any further configuration reached by M during computation, iI has a (not
necessarily direct) SI successor representing that configuration.

Since I satisfies F (i) and axiom (4) of Fig. 8, a simple induction argument shows
that F I contains all SI successors of iI . But then I satisfies axiom (3) only if
none of the configurations that are reached have an accepting state. Since I was
arbitrary, {Iw(i), F (i)} ∪ KBM,w can only have a satisfying interpretation if M
does not reach an accepting state.

It remains to show the converse: if M does not accept w, there is some inter-
pretation I satisfying {Iw(i), F (i)} ∪ KBM,w. To this end, we define a canonical
interpretation M as follows. The domain of M is the set of all configurations of
M that have size p(|w|) + 1 (i.e. that encode a tape of length p(|w|), possibly with
trailing blanks). The interpretations for the concepts Aq, Hi, and Cσ,i are defined

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

18 · Markus Krötzsch et al.

A v C > v C A v ∀R.C R v S
A uB v C A v ⊥ R(c, d)

Fig. 9. Normal forms for Horn-FLOH− with A,B,C ∈ B basic concepts (including existential
restrictions), R, S role names, and c, d individual names

Ĉ v D̂ 7→ {Ĉ v X,X v D̂} Ĉ uA v B 7→ {Ĉ v X,X uA v B}
⊥ v C 7→ ∅ A v C uD 7→ {A v C,A v D}
C v > 7→ ∅ A v ∀R.Ĉ 7→ {A v ∀R.X,X v Ĉ}
A, B basic concept expressions, >, or ⊥; X a fresh concept name;
C, D concept expressions; Ĉ, D̂ concept expressions that are not basic

Fig. 10. Normal form transformation for Horn-FLOH−

as expected so that every configuration represents itself but no other configuration.
Especially, IMw is the singleton set containing the initial configuration. Given two
configurations α and α′, and a transition δ, we define (α, α′) ∈ SM iff there is a
transition δ from α to α′. FM is defined to be the set of all configurations that are
reached during the run ofM on w.

It is easy to see that M satisfies the axioms (1), (2), and (3) of Fig. 8. Axiom
(4) is satisfied since, by our initial assumption, none of the configurations reached
byM is in an accepting state.

Thus checking satisfiability of Horn-FL− knowledge bases is PSpace-hard.

5.2 Containment

To show that inferencing for Horn-FLOH− is in PSpace, we develop a tableau
algorithm for deciding the satisfiability of a Horn-FLOH− knowledge base. To this
end, we first present a normal form transformation that allows us to restrict atten-
tion to simple forms of axioms. Afterwards, we present the tableau construction
and show its correctness, and demonstrate that it can be executed in polynomial
space.

To simplify notation, we define a FLOH− concept expression C to be basic if it
is of the form A ∈ A, {a}, or ∃R.>. The set of all basic concepts is denoted by B,
assuming that the underlying signature is irrelevant or clear from the context.

Lemma 5.6. Every Horn-FLOH−knowledge base KB is equisatisfiable to a Horn-
FLOH− knowledge base that contains only axioms in the normal form given in
Fig. 9, and that can be computed in linear time with respect to the size of KB.

Proof. ABox axioms C(a) can clearly be expressed as GCIs {a} v C. To
express arbitrary GCIs, we exhaustively apply the transformation rules in Fig. 10,
where each rule application consists in replacing the axiom on the left-hand side by
the axioms on the right-hand side. It is easy to see that the resulting axioms are
equisatisfiable to the original axioms for each rule, so the result follows by induction.
It is also easy to see that only a linear number of steps are required, where it must
be noted that the rule for A v C u D is only applicable if A is not a compound
term, so that the duplication of A still leads to only a linear increase in size.

Next, we are going to present a procedure for checking satisfiability of Horn-FL−

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 19

knowledge bases. In the following we assume without loss of generality that the DL
signature in consideration has at least one individual name.

Definition 5.7. Consider a Horn-FLOH− knowledge base KB in normal form,
with B the set of basic concepts, R the set of roles, and I the set of individual
names. A set of relevant concept expressions is defined by setting

cl(KB) = B ∪ {∀R.C|R ∈ R, C ∈ B} ∪ {>,⊥}.

Given a set I of individual names, a set TI of ABox expressions is defined as follows:

TI := {C(e) | C ∈ cl(KB), e ∈ I} ∪ {R(e, f) | R ∈ R, e, f ∈ I}.

For a set T ⊆ TI and individuals e, f ∈ I, we use Te 7→f to denote the set

{C(f) | C(e) ∈ T} ∪ {R(f, g) | R(e, g) ∈ T, g ∈ I} ∪ {R(g, f) | R(g, e) ∈ T, g ∈ I}.

For the special case that e = f , we use the abbreviation Te := Te 7→e. A tableau for
KB is given by a (possibly infinite) set I of individual names, and a set T ⊆ TI
such that I ⊆ I and the following conditions hold:

(1) if e ∈ I, then >(e) ∈ T and, if e ∈ I, {e} ∈ T ,
(2) if A(e) ∈ KB (R(e, f) ∈ KB), then A(e) ∈ T (R(e, f) ∈ T),
(3) if {f}(e) ∈ T , then C(e) ∈ T iff C(f) ∈ T , R(e, g) ∈ T iff R(f, g) ∈ T , and

R(g, e) ∈ T iff R(g, f) ∈ T , for all C ∈ cl(KB), R ∈ R, and g ∈ I,
(4) if A v C ∈ KB and A(e) ∈ T , then C(e) ∈ T ,
(5) if A uB v C ∈ KB, A(e) ∈ T , and B(e) ∈ T , then C(e) ∈ T ,
(6) if R v S ∈ KB and R(e, f) ∈ T , then S(e, f) ∈ T ,
(7) ∃R.>(e) ∈ T iff R(e, f) ∈ T for some f ∈ I,
(8) if ∀R.C(e) ∈ T , then C(f) ∈ T for all f ∈ I with R(e, f) ∈ T ,

A tableau is said contain a clash if it contains a statement of the form ⊥(e).

Proposition 5.8. A Horn-FLOH− knowledge base KB is satisfiable iff it has
a clash-free tableau.

Proof. Assume that KB has a clash-free tableau 〈I, T 〉. An interpretation I is
defined as follows. Due to condition 3 in Definition 5.7, we can define an equivalence
relation ∼ on I by setting e ∼ f iff there is some g ∈ I with {{g}(e), {g}(f)} ⊆ T .
The domain I∼ of I is the set of equivalence classes of ∼. The interpretation
function is defined by setting eI = [e]∼, eI ∈ CI iff C(e) ∈ T , and (eI , fI) ∈ RI
iff R(e, f) ∈ T , for all elements e, f ∈ I, concept names C, and role names R. It is
easy to see that I satisfies KB.

For the converse, assume that KB is satisfiable, and that it thus has some model
I. We define a tableau 〈I, T 〉 where I is the domain of I. Further, we set C(e) ∈ T
iff e ∈ CI , and R(e, f) ∈ T iff (e, f) ∈ RI , where C ∈ cl(KB), and R some role
name. Again, it is easy to see that this meets the conditions of Definition 5.7.

As is evident by the Turing machine construction in the previous section, some
Horn-FLOH− knowledge bases may require a model to contain an exponential
number of individuals, even within single paths of the computation. Detecting
clashes in polynomial space thus requires special care. In particular, a standard

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

20 · Markus Krötzsch et al.

(T1) T := T ∪ {>(e)}
(T2) if e ∈ I is an individual name, T := T ∪ {{e}(e)}
(T3) for each A(e) ∈ KB, T := T ∪ {A(e)}
(T4) for each R(e, f) ∈ KB, T := T ∪ {R(e, f)}
(T5) for each {f}(e) ∈ T

(T5a) for each C(f) ∈ T , T := T ∪ {C(e)},
(T5b) for each g ∈ I and each R(f, g) ∈ T , T := T ∪ {R(e, g)}; R(e, g) is

marked inactive,
(T5c) for each g ∈ I and each R(g, f) ∈ T , T := T ∪ {R(g, e)}; R(g, e) is

marked inactive,
(T5d) for each C(e) ∈ T , T := T ∪ {C(f)},
(T5e) for each g ∈ I and each R(e, g) ∈ T , T := T ∪ {R(f, g)}; R(f, g) is

marked inactive,
(T5f) for each g ∈ I and each R(g, e) ∈ T , T := T ∪ {R(g, f)}; R(g, f) is

marked inactive
(T6) for each A v C ∈ KB, if A(e) ∈ T then T := T ∪ {C(e)}
(T7) for each A uB v C ∈ KB, if A(e) ∈ T and B(e) ∈ T then T := T ∪ {C(e)}
(T8) for each R v S ∈ KB, do the following:

(T8a) for each f ∈ I, if R(e, f) ∈ T and R(e, f) is not inactive, then T :=

T ∪ {S(e, f)},
(T8b) if ∃R.>(e) ∈ T then T := T ∪ {∃S.>(e)}

(T9) for each f ∈ I and R(e, f) ∈ T with R(e, f) not inactive, T := T ∪{∃R.>(e)}
(T10) for each ∀R.C(e) ∈ T and each f ∈ I with R(e, f) ∈ T ,

if R(e, f) is not inactive, then T := T ∪ {C(f)}

(∃) for each ∃R.>(e) ∈ T , if R(e, f) /∈ T for all f ∈ I then
I := I ∪ {g} and T := T ∪ {R(e, g)}, where g is a fresh individual

Fig. 11. Constructing tableaux for Horn-FLOH− knowledge bases

tableau procedure with blocking does not execute in polynomial space. Therefore,
we first provide a procedural description of a canonical tableau which will form the
basis for our below decision algorithm.

Definition 5.9. An algorithm that computes a tableau-like structure 〈I, T 〉 is
defined as follows. Initially, we set I := I, and T := ∅. The algorithm executes the
steps:

(1) Iterate over all individuals e ∈ I. To each such e, apply rules (T1) to (T10) of
Fig. 11.

(2) If T was changed in the previous step, go to (1).
(3) Apply rule (∃) of Fig. 11 to all existing elements e ∈ I.
(4) If T was changed by the previous step, go to (1).
(5) Halt.

While most rules should be obvious, some require explanations. The rules (T5)
are used to ensure that individuals e satisfying a nominal class are synchronised
with the respective named individual f ∈ I. The six sub-rules are needed since
one generally cannot add {e}(f) to T as e might not be an element of I. However,
role statements that are inferred in this way need not be taken into account as
premises in other deduction rules, since they are guaranteed to have an active
original. Whatever could be inferred using copied role statements and rules (T8a),
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 21

(T9), or (T10), can as well be inferred via the active original from which the inactive
role was initially created. Note that this argument involves an induction over the
number of applications of rule (T5).

Rule (T8) is also special. In principle, one could omit (T8b), and use rules (T8a)
and (T9) instead. This inference, however, is the only case where a role-successor
of some individual e might contribute to the classes inferred for e. By providing
rule (T8b), the class expressions containing e can be computed without considering
any role successor, and rule (T9) is essential only when role expressions have been
inferred from ABox statements. In combination with the delayed application of
rule (∃), this ensures that concepts are indeed inferred by (T8b) rather than by
(T8a)+(T9), which will be exploited in the proof of Lemma 5.13 below.

Also note that the algorithm of Definition 5.9 is not a decision procedure, since
we do not require the algorithm to halt. What we are interested in, however, is the
(possibly infinite) tableau that the algorithm constructs in the limit. The existence
of this limit is evident from the fact that all completion rules are finitary, and that
each rule monotonically increases the size of the computed structure. It is easy to
see that there is a correspondence between the rules of Fig. 11 and the conditions
of Definition 5.7, so that the limit structure will indeed meet all the requirements
imposed on a tableau. For a given knowledge base KB, we write 〈ĪKB, T̄KB〉 to
denote the canonical tableau constructed by the above algorithm from KB, where
the subscripts are omitted when understood. It is easy to see that, whenever the
canonical tableau contains a clash, this must be the case for all possible tableaux.

The algorithm of Definition 5.9 can be viewed as a “breadth-first” construction
of a canonical tableau. Due to the explicit procedural description of tableau rules,
any role and class expression of the canonical tableau is first computed after a well-
defined number of computation steps.4 Accordingly, we define a total order ≺ on
T̄ by setting F ≺ G iff F is computed before G.

The canonical tableau and the order ≺ are the main ingredients for showing the
correctness of the following non-deterministic decision algorithm. The definition
uses notation introduced in Definition 5.7.

Definition 5.10. Consider a Horn-FLOH− knowledge base KB with canonical
tableau 〈Ī , T̄ 〉. A set of individuals I is defined as I := I ∪ {a, b}, where a, b /∈ Ī.
Non-deterministically select one element g ∈ I, and initialise T ⊆ TI by setting
T := {⊥(g)}.
The algorithm repeatedly modifies T by non-deterministically applying one of the

following rules:

(N1) Given any X ∈ TI , set T := T ∪ {X}. If X is a role statement, decide
non-deterministically whether X is marked inactive.

(N2) If there is some individual e ∈ I and X ∈ T such that X can be derived
from T \ {X} using one of the rules (T1) to (T10) in Fig. 11, set T :=
T \ {X}. Rules (T5b), (T5c), (T5e), and (T5f) can only be used if X is
marked inactive.

4For this to be true, one must also specify the order for the involved iterations, e.g. by ordering
elements lexicographically and adopting a naming scheme for newly introduced elements. We
assume that such an order was chosen.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

22 · Markus Krötzsch et al.

(N3) If Ta = {R(e, a)} for some e ∈ I \{a} such that ∃R.>(e) ∈ T , set T := T \Ta.
(N4) If Ta = ∅, set T := (T ∪ Tb 7→a) \ Tb.
(N5) If T = ∅, return “unsatisfiable.”

Lemma 5.11. The algorithm of Definition 5.10 can be executed in polynomially
bounded space.

Proof. Since |I|, |B|, and |R| are polynomially bounded by the size of the
knowledge base, so is cl(KB) and thus T .

Lemma 5.12. If there is a sequence of choices such that the algorithm of Defini-
tion 5.10 returns “unsatisfiable” after some finite time, KB is indeed unsatisfiable.

Proof. Intuitively, the non-deterministic algorithm applies rules of the algo-
rithm in Definition 5.9 in reverse order, deleting a conclusion whenever it can be
derived from the remaining statements. The anonymous individuals a and b are
used to dynamically represent (various) elements from the canonical tableau. For
a formal proof, assume that the algorithm terminates within finitely many steps,
and, without loss of generality, that each step involves a successful application of
one of the rules (N1) to (N5). We use Tn to denote the state of the algorithm n
steps before termination. In particular, T 0 = ∅.

We claim that for each Tn there are individuals e, f ∈ Ī, such that Tna7→e, b 7→f ⊆ T̄ .
This is verified by induction over the number of steps executed by the algorithm.
Since T 0 = ∅, the claim for T 0 holds for any e, f ∈ Ī.

For the induction step, assume that Tna7→e, b 7→f ⊆ T̄ . To show the claim for Tn+1,
we distinguish by the transformation rule that was applied to obtain Tn from Tn+1:

(N1) Since Tn+1 ⊂ Tn, we conclude Tn+1
a 7→e, b 7→f ⊆ T̄ .

(N2) Tn+1 = Tn ∪ {X}, where X can be derived from Tn by one of the rules
(T1) to (T10). Since those rules have been applied exhaustively in T̄ , we find
Tn+1
a 7→e, b 7→f ⊆ T̄ .

(N3) We find Tna = ∅ and, for some g ∈ I \ {a} and R ∈ R, Tn+1 = Tn ∪{R(g, a)}
and ∃R.>(g) ∈ Tn. Define g′ := f if g = b, and g′ = g otherwise. We
conclude that ∃R.>(g′) ∈ T̄ and thus there is some individual e′ ∈ Ī with
R(g′, e′). We conclude that Tn+1

a7→e′, b 7→f ⊆ T̄ .
(N4) This rule merely exchanges b with (the unused) a, so we have Tn+1

a7→f, b7→e ⊆ T̄ .

Applying the above induction to the initial state {⊥(g)}, we find {⊥(g)}a7→e, b 7→f ∈
T̄ . Hence T̄ indeed contains a clash and KB is unsatisfiable.

Lemma 5.13. Whenever KB is unsatisfiable, there is a sequence of choices such
that the algorithm of Definition 5.10 returns “unsatisfiable” after some finite time.

Proof. We first specify a possible sequence of choices, and then show its cor-
rectness. If KB is unsatisfiable, there is some element e ∈ Ī in the canonical tableau
such that ⊥(e) ∈ T̄ . Pick one such e. We use a′ and b′ to denote the elements of
Ī that are currently simulated by a and b. Initially, we set a′ = b′ = � for some
element � /∈ Ī. Rule (N1) of the algorithm will repeatedly be used to close T under
relevant inferences that are ≺-smaller than some statement X. Given X ∈ T̄ , we
define:
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 23

↓X =
{
C(f) ∈ T̄ | C(f) � X, f ∈ I ∪ {a′, b′}

}
a′ 7→a, b′ 7→b

∪{
R(f, g) ∈ T̄ | R(f, g) not inactive,R(f, g)�X, f, g ∈ I∪{a′, b′}

}
a′ 7→a, b′ 7→b

.

This selects all elements in T̄ that can be represented using the elements from
I with the current representation of a′ as a, and b′ as b. Throughout the below
computation, the following property will be preserved:

Ta7→a′, b 7→b′ ⊆ T̄ (†)

Now if e ∈ I, set a′ := e. Using the non-deterministic initialisation and rule (N1),
the algorithm of Definition 5.10 can now compute T = ↓{⊥(e)}. The algorithm
now repeatedly executes steps according to the following choice strategy.

Single Step Choice Strategy. If Ta is non-empty, let X be the ≺-largest element of
Ta. Else, letX be the ≺-largest element of T . By property (†), there is someX ′ ∈ T̄
with {X}a7→a′, b 7→b′ = {X ′}. Applying rule (N1), the algorithm first computes
T := T ∪ ↓X (∗). The algorithm non-deterministically guesses the rule of Fig. 11
that was used to infer X ′, and proceeds accordingly:

—If X ′ was inferred by one of the rules (T1), (T2), (T3), (T4), (T6), (T7), (T8a),
(T8b), and (T9), the premises of a respective rule application in T have been
computed in (∗). This is so since the required premises are ≺-smaller and not
inactive, and since they only involve individuals that are also found in X, i.e.
which are represented by I with the current choice of a′ and b′. Hence the
algorithm can apply rule (N2) to reduce X.

—If X ′ was inferred by one of the rules of (T5), then one of the premises used was
of the form {f}(e), and thus f ∈ I. Since inactive roles are not generated by any
of the given choices, rules (T5b), (T5c), (T5e), and (T5f) are not relevant. If X ′
was inferred by rule (T5a) then X can directly be reduced by applying rule (N2).
The existence of the premises in T follows again from (∗).
If X ′ was inferred by rules (T5d), then X ′ is of the form C(f) and thus Ta = ∅.
If the individual e in the premise is in I, then X again can be reduced by rule
(N2). If e /∈ I, set a′ = e and use rule (N1) to compute Ta = {{f}(e), C(e)}.
Apply (N2) to reduce X.

—If X ′ was inferred by rule (T10), then X ′ = C(g) for some element g, and there
is some element e such that {∀R.C(e), R(e, g)} ⊆ T̄ . We distinguish two cases:
—If g ∈ I, then X = C(g) and Ta = ∅. Set a′ = e and use rule (N1) to compute
Ta = {∀R.C(a), R(a, g)}. Use rule (N2) to reduce X.

—If g /∈ I, then X = C(a) and e 6= a′. If e ∈ I ∪ {b′}, then {∀R.C(e), R(e, a)} ⊆
T by (∗). Use rule (N2) to reduce X. If e /∈ I ∪ {b′}, then b′ = � and
Tb = ∅, as we will show below. Set b′ = e and use rule (N1) to compute
Tb = {∀R.C(b), R(b, g)}. Use rule (N2) to reduce X.
We claimed that b′ = � whenever it is not equal to the predecessor e. This is
so, since a′ /∈ I is ensured by each step of the algorithm, and since elements that
are not in I are involved in active role statements of exactly one predecessor
(the one which generated a′). This is easily verified by inspecting the rules
that can create role statements.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

24 · Markus Krötzsch et al.

—If X ′ was inferred by rule (∃), we have X ′ = R(e, g) for some newly introduced
element g /∈ I. Thus X is of the form R(e′, a), and, since X was selected to be
≺-maximal, Ta = {X}. Thus we can apply rule (N3) to reduce X. In addition,
the algorithm applies rule (4) to copy b to the (now empty) a, and we set a′ := b′

and b′ := �.

With the above choices, the algorithm instantiates elements a on demand, and
repeatedly reduces the statements of those elements. The individual rules show that
this reduction might require another (predecessor) individual b to be considered,
but that no further element is needed. Also note that rule (T8b) is required to
ensure that all concept expressions in Ta can be reduced without generating any
role successors for a. Hence, it is evident that the above choice strategy ensures
that exactly one of the above reductions is applicable in each step.

Finally, we need to show that the algorithm terminates. This claim is established
by defining a well-founded termination order. For details on such approaches and
the related terminology, see [Baader and Nipkow 1998]. Now considering T as a
multiset, the multiset-extension of the well-founded order ≺ is a suitable termi-
nation order, which is easy to see since in every reduction step, the element X is
deleted, and possibly replaced by one or more elements that are strictly smaller
than X.

The above lemmata establish an NPSpace decision procedure for detecting un-
satisfiability of Horn-FLOH− knowledge bases. But NPSpace is known to coincide
with PSpace, and we can conclude the main theorem of this section.

Theorem 5.14. Unsatisfiability of a Horn-FLOH− knowledge base KB can be
decided in space that is polynomially bounded by the size of KB.

Proof. Combine Lemma 5.11, 5.12, and 5.13 to obtain a non-deterministic
time-polynomial decision procedure for detecting unsatisfiability. Apply Savitch’s
Theorem to show the existence of an according PSpace algorithm [Papadimitriou
1994].

Summing up the result from the previous two sections, we obtain the following.

Theorem 5.15. The standard reasoning problems for any description logic be-
tween Horn-FL− and Horn-FLOH− are PSpace-complete.

Proof. Combine Lemma 5.5 and Theorem 5.14.

6. HORN-SHIQ AND OTHER EXPTIME-COMPLETE HORN DLS

FLE further extends FL− by allowing arbitrary existential role quantifications,
which turns out to raise the complexity of standard reasoning tasks for Horn-FLE
to ExpTime, thus establishing ExpTime-completeness of Horn-SHIQ. Note that
inclusion in ExpTime is obvious since FLE is a fragment of SHIQ which is also
in ExpTime [Tobies 2001]. To show that Horn-FLE is ExpTime-hard, we reduce
the halting problem of polynomially space-bounded alternating Turing machines,
defined next, to the concept subsumption problem.
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 25

6.1 Alternating Turing Machines

Definition 6.1. An alternating Turing machine (ATM)M is a tuple (Q,Σ,∆, q0)
where

—Q = U ∪̇ E is the disjoint union of a finite set of universal states U and a finite
set of existential states E,

—Σ is a finite alphabet that includes a blank symbol �,
—∆ ⊆ (Q× Σ)× (Q× Σ× {l, r}) is a transition relation, and
—q0 ∈ Q is the initial state.

A (universal/existential) configuration ofM is a word α∈Σ∗QΣ∗ (Σ∗UΣ∗/Σ∗EΣ∗).
A configuration α′ is a successor of a configuration α if one of the following holds:

(1) α = wlqσσrwr, α′ = wlσ
′q′σrwr, and (q, σ, q′, σ′, r) ∈ ∆,

(2) α = wlqσ, α′ = wlσ
′q′�, and (q, σ, q′, σ′, r) ∈ ∆,

(3) α = wlσlqσwr, α′ = wlq
′σlσ

′wr, and (q, σ, q′, σ′, l) ∈ ∆,

where q ∈ Q and σ, σ′, σl, σr ∈ Σ as well as wl, wr ∈ Σ∗. Given some natural
number s, the possible transitions in space s are defined by additionally requiring
that |α′| ≤ s+ 1.

The set of accepting configurations is the least set which satisfies the following
conditions. A configuration α is accepting iff

—α is a universal configuration and all its successor configurations are accepting,
or

—α is an existential configuration and at least one of its successor configurations
is accepting.

Note that universal configurations without any successors here play the rôle of
accepting final configurations, and thus form the basis for the recursive definition
above.
M accepts a given word w ∈ Σ∗ (in space s) iff the configuration q0w is accepting

(when restricting to transitions in space s).

This definition is inspired by the complexity classes NP and co-NP, which are
characterised by non-deterministic Turing machines that accept an input if either
at least one or all possible runs lead to an accepting state. An ATM can switch
between these two modes and indeed turns out to be more powerful than classical
Turing machines of either kind. In particular, ATMs can solve ExpTime problems
in polynomial space [Chandra et al. 1981].

Definition 6.2. A language L is accepted by a polynomially space-bounded ATM
iff there is a polynomial p such that, for every word w ∈ Σ∗, w ∈ L iff w is accepted
in space p(|w|).

Fact 6.3. The complexity class APSpace of languages accepted by polynomially
space-bounded ATMs coincides with the complexity class ExpTime.

We thus can show ExpTime-hardness of Horn-SHIQ by polynomially reducing
the halting problem of ATMs with a polynomially bounded storage space to in-
ferencing in Horn-SHIQ. In the following, we exclusively deal with polynomially

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

26 · Markus Krötzsch et al.

space-bounded ATMs, and so we omit additions such as “in space s” when clear
from the context.

6.2 Simulating ATMs in Horn-FLE
In the following, we consider a fixed ATM M denoted as in Definition 6.1, and a
polynomial p that defines a bound for the required space. For any word w ∈ Σ∗,
we construct a Horn-FLE knowledge base KBM,w and show that acceptance of w
by the ATMM can be decided by inferencing over this knowledge base.

In detail, KBM,w depends onM and p(|w|), and has an empty ABox.5 Accep-
tance of w by the ATM is reduced to checking concept subsumption, where one
of the involved concepts directly depends on w. Intuitively, the elements of an
interpretation domain of KBM,w represent possible configurations of M, encoded
by the following concept names:

—Aq for q ∈ Q: the ATM is in state q,

—Hi for i = 0, . . . , p(|w|)− 1: the ATM is at position i on the storage tape,

—Cσ,i with σ ∈ Σ and i = 0, . . . , p(|w|)− 1: position i on the storage tape contains
symbol σ,

—A: the ATM accepts this configuration.

This approach is pretty standard, and it is not too hard to axiomatise a succes-
sor relation S and appropriate acceptance conditions in ALC (see, e.g., [Lutz and
Sattler 2005]). But this reduction is not applicable in Horn-SHIQ, and it is not
trivial to modify it accordingly.

One problem that we encounter is that the acceptance condition of existential
states is a (non-Horn) disjunction over possible successor configurations. To over-
come this, we encode individual transitions by using a distinguished successor re-
lation for each translation in ∆. This allows us to explicitly state which conditions
must hold for a particular successor without requiring disjunction. For the accep-
tance condition, we use a recursive formulation as employed in Definition 6.1. In
this way, acceptance is propagated backwards from the final accepting configura-
tions.

In the case of ALC, acceptance of the ATM is reduced to concept satisfiability,
i.e. one checks whether an accepting initial configuration can exist. This requires
that acceptance is faithfully propagated to successor states, so that any model of
the initial concept encodes a valid trace of the ATM. Axiomatising this requires
many exclusive disjunctions, such as “The ATM always is in exactly one of its
states Hi.” Since it is not clear how to model this in a Horn DL, we take a dual
approach: reducing acceptance to concept subsumption, we require the initial state
to be accepting in all possible models. We therefore may focus on the task of prop-
agating properties to successor configurations, while not taking care of disallowing
additional statements to hold. Our encoding ensures that, whenever the initial
configuration is not accepting, there is at least one “minimal” model that reflects
this.

5The RBox is empty for FLE anyway.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 27

(1) Left and right transition rules:
Aq uHi u Cσ,i v ∃Sδ.(Aq′ uHi+1 u Cσ′,i) with δ = (q, σ, q′, σ′, r), i < p(|w|)− 1

Aq uHi u Cσ,i v ∃Sδ.(Aq′ uHi−1 u Cσ′,i) with δ = (q, σ, q′, σ′, l), i > 0

(2) Memory: (3) Existential acceptance:
Hj u Cσ,i v ∀Sδ.Cσ,i i 6= j Aq u ∃Sδ.A v A for all q ∈ E

(4) Universal acceptance:
Aq uHi u Cσ,i u

d
δ∈∆̃(∃Sδ.A) v A q ∈ U , x ∈ {r | i < p(|w|)− 1} ∪ {l | i > 0}

∆̃ = {(q, σ, q′, σ′, x) ∈ ∆}
Rules are instantiated for all q, q′∈Q, σ, σ′∈Σ, i, j∈{0, . . . , p(|w|)− 1}, and δ ∈ ∆.

Fig. 12. Knowledge base KBM,w simulating a polynomially space-bounded ATM

After this informal introduction, consider the knowledge base KBM,w given in
Fig. 12. The roles Sδ, δ ∈ ∆, describe a configuration’s successors using the transla-
tion δ. The initial configuration for a word w is described by the concept expression
Iw:

Iw := Aq0 uH0 u Cσ0,0 u . . . u Cσ|w|−1,|w|−1 u C�,|w| u . . . u C�,p(|w|)−1,

where σi denotes the symbol at the ith position of w. We will show that check-
ing whether the initial configuration is accepting is equivalent to checking whether
Iw v A follows from KBM,w. The following is obvious from the characterisation
given in Definition 3.1.

Lemma 6.4. KBM,w and Iw v A are in Horn-FLE.

Next we need to investigate the relationship between elements of an interpreta-
tion that satisfies KBM,w and configurations of M. Given an interpretation I of
KBM,w, we say that an element e of the domain of I represents a configuration
σ1 . . . σi−1qσi . . . σm if e ∈ AIq , e ∈ HIi , and, for every j ∈ {0, . . . , p(|w|) − 1},
e ∈ CIσ,j whenever

j ≤ m and σ = σm or j > m and σ = �.

Note that we do not require uniqueness of the above, so that a single element might
in fact represent more than one configuration. As we will see below, this does not
affect our results. If e represents a configuration as above, we will also say that e
has state q, position i, symbol σj at position j etc.

Lemma 6.5. Consider some interpretation I that satisfies KBM,w. If some el-
ement e of I represents a configuration α and some transition δ is applicable to α,
then e has an SIδ -successor that represents the (unique) result of applying δ to α.

Proof. Consider an element e, state α, and transition δ as in the claim. Then
one of the axioms (1) applies, and e must also have an SIδ -successor. This successor
represents the correct state, position, and symbol at position i of e, again by the
axioms (1). By axiom (2), symbols at all other positions are also represented by all
SIδ -successors of e.

Lemma 6.6. A word w is accepted byM iff Iw v A is a consequence of KBM,w.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

28 · Markus Krötzsch et al.

Proof. Consider an arbitrary interpretation I that satisfies KBM,w. We first
show that, if any element e of I represents an accepting configuration α, then
e ∈ AI .

We use an inductive argument along the recursive definition of acceptance. If α is
a universal configuration then all successors of α are accepting, too. By Lemma 6.5,
for any δ-successor α′ of α there is a corresponding SIδ -successor e

′ of e. By the
induction hypothesis for α′, e′ is in AI . Since this holds for all δ-successors of α,
axiom (4) implies e ∈ AI . Especially, this argument covers the base case where α
has no successors.

If α is an existential configuration, then there is some accepting δ-successor α′
of α. Again by Lemma 6.5, there is an SIδ -successor e

′ of e that represents α′, and
e′ ∈ AI by the induction hypothesis. Hence axiom (3) applies and also conclude
e ∈ AI .

Since all elements in IIw represent the initial configuration of the ATM, this shows
that IIw ⊆ AI whenever the initial configuration is accepting.

It remains to show the converse: if the initial configuration is not accepting,
there is some interpretation I such that IIw 6⊆ AI . To this end, we define a canon-
ical interpretation M of KBM,w as follows. The domain of M is the set of all
configurations of M that have size p(|w|) + 1 (i.e. that encode a tape of length
p(|w|), possibly with trailing blanks). The interpretations for the concepts Aq, Hi,
and Cσ,i are defined as expected so that every configuration represents itself but
no other configuration. Especially, IMw is the singleton set containing the initial
configuration. Given two configurations α and α′, and a transition δ, we define
(α, α′) ∈ SMδ iff there is a transition δ from α to α′. AM is defined to be the set of
accepting configurations.

By checking the individual axioms of Fig. 12, it is easy to see that M satisfies
KBM,w. Now if the initial configuration is not accepting, IMw 6⊆ AM by con-
struction. Thus M is a counterexample for Iw v A which thus is not a logical
consequence.

We can summarise our results as follows.

Theorem 6.7. The standard reasoning problems for any description logic be-
tween Horn-FLE and Horn-SHIQ are ExpTime-complete.

Proof. Inclusion is obvious as Horn-SHIQ is a fragment of SHIQ for which
these problems are in ExpTime [Tobies 2001]. Regarding hardness, Lemma 6.6
shows that the word problem for polynomially space-bounded ATMs can be reduced
to checking concept subsumption in KBM,w. By Lemma 6.4, KBM,w is in Horn-
FLE . The reduction is polynomially bounded due to the restricted number of
axioms: there are at most 2× |Q| × p(|w|)× |Σ| × |∆| axioms of type (1), p(|w|)2×
|Σ| × |∆| of type (2), |Q| × |Σ| of type (3), and |Q| × p(|w|)× |Σ| of type (4).

Note that, even in Horn logics, it is straightforward to reduce knowledge base
satisfiability to the entailment of the concept subsumption > v ⊥. The proof that
was used to establish the previous result is suitable for obtaining further complexity
results for logical fragments that are not above Horn-FLE .

Theorem 6.8. Consider the description logics
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 29

(a) ELF obtained by extending EL with number restrictions of the form 61R.>,
(b) FL◦− obtained by extending FL− with composition of roles while restricting to

regular RBoxes, and
(c) FLI− obtained by extending FL− with inverse roles,

and let Horn-ELF , Horn-FL◦−, and Horn-FLI− denote the respective Horn DLs
defined as in Definition 3.6.

Horn-FL◦− is ExpTime-hard. Horn-ELF and Horn-FLI−are ExpTime-complete.

Proof. The results are established by modifying the knowledge base KBM,w to
suite the given fragment. We restrict to providing the required modifications; the
full proofs are analogous to the proof for Horn-FLE .

(a) Replace axioms (2) in Fig. 12 with the following statements:
> v ≤1Sδ.> Hj u Cσ,i u ∃Sδ.> v ∃Sδ.Cσ,i, i 6= j

(b) Replace axioms (1) with axioms of the form
Aq uHi u Cσ,i v ∃Sδ.> u ∀Sδ.(Aq′ uHi±1 u Cσ′,i).

Any occurrence of concept A is replaced by ∃RA.>, with RA a new role. More-
over, we introduce roles RAδ for each transition δ, and replace any occurrence
of ∃Sδ.A with ∃RAδ.>. Finally, the following axioms are added:

Sδ ◦RA v RAδ for each δ ∈ ∆.
(c) Axioms (1) are replaced as in (b). Any occurrence of ∃Sδ.A is now replaced

with a new concept name ASδ, and the following axioms are added:
A v ∀S−1δ .ASδ for each δ ∈ ∆.

It is easy to see that those changes allow for analogous reductions. Inclusion results
for Horn-ELF and Horn-FLI− are immediate from their inclusion in SHIQ.

ExpTime-completeness of ELF was shown in [Baader et al. 2005] (where it
was called EL≤1), but the above theorem sharpens this result to the Horn case,
and provides a more direct proof. Theorems 6.7 and 6.8 thus can be viewed as
sharpenings of the hardness results on extensions of EL.

7. RELATED WORK

Horn-SHIQ has originally been introduced in [Hustadt et al. 2005] where it has
been defined as discussed in Section 3 but with additional implicit restrictions
related to the presence of transitivity. The latter was caused by a method of
transitivity elimination that creates non-Horn axioms of the form ∀R.A v ∀R.∀R.A
for transitive roles R which must be taken into account when defining Horn-SHIQ.
As discussed in Section 3, this problem can be avoided by encoding transitivity
(and other RIAs) by means of automata encoding techniques as used in [Demri
and Nivelle 2005] which have first been applied to DLs in [Kazakov 2008]. Taking
this into account, our formulation of Horn-SHIQ is slightly more general than the
one in [Hustadt et al. 2005] and than the formulations used in precursors to this
work [Krötzsch et al. 2006; Krötzsch et al. 2006; Krötzsch et al. 2007]. While the
data complexity of Horn-SHIQ has been one of the main motives for defining it in
[Hustadt et al. 2005], the combined complexity result reported herein is new. Recent

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

30 · Markus Krötzsch et al.

investigations revealed that even entailment of conjunctive queries for Horn-SHIQ
can be performed in ExpTime [Eiter et al. 2008], whereas this problem is known
to be 2ExpTime-complete for SHIQ [Glimm et al. 2008]. Another recent result
established the exact reasoning complexity of Horn-SHOIQ and Horn-SROIQ to
be ExpTime and 2ExpTime, respectively [Ortiz et al. 2010].

The lower data complexity of reasoning in Horn-SHIQ has first been exploited by
the KAON2 system as described in [Motik 2006; Motik and Sattler 2006]. Further
algorithms and implementations have since been able to exploit the simpler struc-
ture of Horn knowledge bases to achieve tangible performance gains. An example
is the hypertableau reasoner HermiT that can handle arbitrary SROIQ (OWL 2)
knowledge bases [Motik et al. 2009; 2007]. The “consequence-driven” reasoning
method of [Kazakov 2009] is restricted to Horn-SHIQ, but shows outstanding
performance for practically relevant ontologies that fall into that fragment. The
restriction of consequence-driven reasoning to Horn DLs has recently been relaxed
[Simančík et al. 2011].

Other notable examples of Horn DLs are provided by light-weight description
logics. Indeed, disjunctive information makes reasoning NP-hard in all DLs that
support conjunction and GCIs, and hence it is excluded from DLs that allow for
polynomial-time reasoning. Thus, it is no surprise to find that EL++ [Baader et al.
2005; 2008] and various versions of DL-Lite [Calvanese et al. 2007] are Horn DLs in
the sense of this paper. The same is true for various formulations of DLP [Grosof
et al. 2003; Volz 2004], as has already been observed in Section 4.

Reducing inference problems of DL to inference problems of corresponding Data-
log programs has been considered in a number of approaches. Examples include
resolution-based approaches for EL [Kazakov 2006], for its extension ELP [Krötzsch
et al. 2008] and for SHIQ [Hustadt et al. 2005; Motik 2006], as well as approaches
for SHIQ based on ordered binary decision diagrams [Rudolph et al. 2008d; 2008c].
In many of these cases, disjunctive Datalog is required [Motik 2006; Rudolph et al.
2008d; 2008c]. Notable exceptions occur when considering Horn description log-
ics as discussed herein [Hustadt et al. 2005; Kazakov 2006] or the language ELP
[Krötzsch et al. 2008]. However, not all approaches lead to non-disjunctive Datalog
when applied to Horn DLs, as illustrated by the reduction in [Rudolph et al. 2008d;
2008c] that requires disjunctions to encode binary decision diagrams.

The description logic FL− dates back to [Brachman and Levesque 1984] where it
was introduced as a presumably tractable variant of the frame language FL. While
subsumption of individual concept expressions can indeed be decided in polynomial
time, the subsumption problem for FL− and even in FL0 is ExpTime-hard in
the presence of arbitrary FL− TBoxes, as was first shown by McAllester in an
unpublished manuscript of 1991 [Donini et al. 1996].

8. CONCLUSIONS

In this paper, we have generalised the well-known definition of Horn-SHIQ to
Horn-SROIQfree, and derived a simplified characterisation of Horn DLs based on
a formal grammar. We have then studied a number of increasingly expressive Horn
description logics that are obtained as fragments of Horn-SROIQfree w.r.t. their
worst-case inferencing complexities. The reported results are summarised in Fig. 13.
ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 31

EL

NEXPTIME

EXPTIME

PSPACE

PTIME

Horn-FLE

Horn-SHIQ

Horn-FLOH -

Horn-FL-

Horn-FLI -Horn-ELF

Horn-FL0
RL

SHIQ

SHOIQ

Horn-SHOIQ

Horn-FL°-

SROIQN2EXPTIME

2EXPTIME Horn-SROIQ

Fig. 13. Reasoning complexities of Horn DLs; the exact position of Horn-FL◦− is not known

Some non-Horn DLs – EL, RL, SHIQ, SHOIQ, and SROIQ – are also displayed
in this context, while FL0 and FL− (both ExpTime) are omitted to simplify the
presentation. The complexity results for Horn-SHOIQ and Horn-SROIQ do not
follow from this work: they have been established only recently [Ortiz et al. 2010].

The entry for Horn-FL◦− in Fig. 13 is displayed in a dotted box to indicate
that its exact position is not certain. We have established ExpTime hardness,
which suffices to demonstrate that this extension of Horn-FL− does no longer admit
reasoning in PSpace.6 The 2ExpTime upper bound for the complexity follows
from the according result for Horn-SROIQ [Ortiz et al. 2010]. Further checks are
needed to determine the exact complexity of Horn-FL◦−. But when considering the
fact that no Horn DL is known to be complete for a non-deterministic complexity
class, it seems to be extremely unlikely that this DL is complete for NExpTime.
Indeed, we conjecture that this avoidance of non-determinism is inherent to Horn
DLs.

A tableau algorithm for reasoning in description logics between Horn-FL− and
Horn-FLOH− has been devised to show the upper complexity bound for reasoning
in these logics. In essence, this algorithm achieves its goal in polynomial space
by storing only very small portions of the constructed tableau, corresponding to
very restricted “local” environments in the according model. The main result there-
fore consists in showing that such an extremely limited view suffices for complete
reasoning in the considered logics. As opposed to Horn-FL0, the addition of nomi-
nals to Horn-FL− significantly complicates reasoning procedures, although it does
not lead to increased worst-case complexities. Due to a high amount of unguided
non-determinism, the tableau algorithm for Horn-FLOH− is clearly unsuitable for
practical implementation.

Another important theme in this paper was to establish hardness results that
require only a minimal amount of logical expressivity, and which can therefore be

6Unless PSpace = ExpTime.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

32 · Markus Krötzsch et al.

useful to derive hardness results for many other DLs as well. This was achieved
by directly simulating Turing machine computations in terms of DL inferencing,
where polynomially space-bounded Alternating Turing Machines have been found
a convenient tool for showing ExpTime hardness. The versatility of this approach
was illustrated by deriving a number of additional hardness results for extensions
of EL and FL− which extended or strengthened existing results.

REFERENCES

Baader, F., Brandt, S., and Lutz, C. 2005. Pushing the EL envelope. See Kaelbling and
Saffiotti [2005], 364–369.

Baader, F., Brandt, S., and Lutz, C. 2008. Pushing the EL envelope further. In Proceedings
of the OWLED 2008 DC Workshop on OWL: Experiences and Directions, K. G. Clark and
P. F. Patel-Schneider, Eds. CEUR Workshop Proceedings, vol. 496. CEUR-WS.org.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., Eds.
2007. The Description Logic Handbook: Theory, Implementation, and Applications, Second
ed. Cambridge University Press.

Baader, F. and Nipkow, T. 1998. Term Rewriting and All That. Cambridge University Press.
Brachman, R. J. and Levesque, H. J. 1984. The tractability of subsumption in frame-based

description languages. In Proceedings of the 4th National Conference on Artificial Intelligence
(AAAI’84), R. J. Brachman, Ed. AAAI Press, 34–37.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R. 2007. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. Journal of
Automated Reasoning 39, 3, 385–429.

Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. 1981. Alternation. Journal of the
ACM 28, 1, 114–133.

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Demri, S. and Nivelle, H. 2005. Deciding regular grammar logics with converse through first-
order logic. Journal of Logic, Language and Information 14, 3, 289–329.

Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A. 1996. Reasoning in description
logics. In Principles of Knowledge Representation, G. Brewka, Ed. Studies in Logic, Language,
and Information. CLSI Publications, 193–238.

Eiter, T., Gottlob, G., Ortiz, M., and Simkus, M. 2008. Query answering in the description
logic Horn-SHIQ. See Hölldobler et al. [2008], 166–179.

Glimm, B., Lutz, C., Horrocks, I., and Sattler, U. 2008. Answering conjunctive queries in
the SHIQ description logic. Journal of Artificial Intelligence Research 31, 150–197.

Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. 2003. Description logic programs:
combining logic programs with description logic. In Proceedings of the 12th International
Conference on World Wide Web (WWW’03). ACM, 48–57.

Hitzler, P., Krötzsch, M., and Rudolph, S. 2009. Foundations of Semantic Web Technolo-
gies. Chapman & Hall/CRC.

Hölldobler, S., Lutz, C., and Wansing, H., Eds. 2008. Proceedings of the 11th European
Conference on Logics in Artificial Intelligence (JELIA’08). LNAI, vol. 5293. Springer.

Hustadt, U., Motik, B., and Sattler, U. 2005. Data complexity of reasoning in very expres-
sive description logics. See Kaelbling and Saffiotti [2005], 466–471.

Kaelbling, L. and Saffiotti, A., Eds. 2005. Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI’05). Professional Book Center.

Kazakov, Y. 2006. Saturation-based decision procedures for extensions of the guarded fragment.
Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany.

Kazakov, Y. 2008. RIQ and SROIQ are harder than SHOIQ. In Proceedings of the 11th
International Conference on Principles of Knowledge Representation and Reasoning (KR’08),
G. Brewka and J. Lang, Eds. AAAI Press, 274–284.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

Complexities of Horn Description Logics · 33

Kazakov, Y. 2009. Consequence-driven reasoning for horn SHIQ ontologies. In Proceedings
of the 21st International Conference on Artificial Intelligence (IJCAI’09), C. Boutilier, Ed.
IJCAI, 2040–2045.

Krötzsch, M. 2011. Efficient rule-based inferencing for OWL EL. See Walsh [2011], 2668–2673.
Krötzsch, M., Hitzler, P., Vrandečić, D., and Sintek, M. 2006. How to reason with OWL

in a logic programming system. In Proceedings of the 2nd International Conference on Rules
and Rule Markup Languages for the Semantic Web (RuleML’06). IEEE Computer Society
Press.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2006. On the complexity of Horn description
logics. In Proceedings of the 2nd Workshop on OWL: Experiences and Directions, B. Cuenca
Grau, P. Hitzler, C. Shankey, and E. Wallace, Eds. CEUR WS Proceedings, vol. 216. CEUR-
WS.org.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2007. Complexity boundaries for Horn descrip-
tion logics. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI’07).
AAAI Press, 452–457.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2008. ELP: Tractable rules for OWL 2. See
Sheth et al. [2008], 649–664.

Krötzsch, M., Rudolph, S., and Schmitt, P. H. 2010. On the semantic relationship between
datalog and description logics. In Proceedings of the 4th Interational Conference on Web
Reasoning and Rule Systems (RR’10). LNCS, vol. 6333. Springer, 88–102.

Lutz, C. and Sattler, U. 2005. Description Logics. Lecture at the ICCL Summer School
2005, Dresden, Germany. Slides available at http://www.computational-logic.org/content/
events/iccl-ss-2005/.

Motik, B. 2006. Reasoning in description logics using resolution and deductive databases. Ph.D.
thesis, Universität Karlsruhe (TH), Germany.

Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., and Lutz, C., Eds. 27
October 2009. OWL 2 Web Ontology Language: Profiles. W3C Recommendation. Available at
http://www.w3.org/TR/owl2-profiles/.

Motik, B. and Sattler, U. 2006. A comparison of reasoning techniques for querying large de-
scription logic ABoxes. In Proceedings of the 13th International Conference on Logic for Pro-
gramming, Artificial Intelligencen, and Reasoning (LPAR’01), M. Hermann and A. Voronkov,
Eds. LNCS, vol. 4246. Springer, 227–241.

Motik, B., Shearer, R., and Horrocks, I. 2007. Optimized reasoning in description logics us-
ing hypertableaux. In Proceedings of the 21st Conference on Automated Deduction (CADE’07),
F. Pfenning, Ed. LNAI, vol. 4603. Springer, 67–83.

Motik, B., Shearer, R., and Horrocks, I. 2009. Hypertableau reasoning for description
logics. Journal of Artificial Intelligence Research 36, 165–228.

Ortiz, M., Rudolph, S., and Simkus, M. 2010. Worst-case optimal reasoning for the Horn-DL
fragments of OWL 1 and 2. In Proceedings of the 12th International Conference on Principles
of Knowledge Representation and Reasoning (KR’10), F. Lin, U. Sattler, and M. Truszczynski,
Eds. AAAI Press, 269–279.

OWL Working Group, W. 27 October 2009. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation. Available at http://www.w3.org/TR/owl2-overview/.

Papadimitriou, C. H. 1994. Computational Complexity. Addison Wesley.
Rudolph, S., Krötzsch, M., and Hitzler, P. 2008a. All elephants are bigger than all mice.

In Proceedings of the 21st International Workshop on Description Logics (DL’08), F. Baader,
C. Lutz, and B. Motik, Eds. CEUR Workshop Proceedings, vol. 353. CEUR-WS.org.

Rudolph, S., Krötzsch, M., and Hitzler, P. 2008b. Cheap Boolean role constructors for
description logics. See Hölldobler et al. [2008], 362–374.

Rudolph, S., Krötzsch, M., and Hitzler, P. 2008c. Description logic reasoning with decision
diagrams: Compiling SHIQ to disjunctive datalog. See Sheth et al. [2008], 435–450.

Rudolph, S., Krötzsch, M., and Hitzler, P. 2008d. Terminological reasoning in SHIQ with
ordered binary decision diagrams. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI’08). AAAI Press, 529–534.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

34 · Markus Krötzsch et al.

Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., and
Thirunarayan, K., Eds. 2008. Proceedings of the 7th International Semantic Web Conference
(ISWC’08). LNCS, vol. 5318. Springer.

Simančík, F., Kazakov, Y., and Horrocks, I. 2011. Consequence-based reasoning beyond
Horn ontologies. See Walsh [2011], 1093–1098.

Tobies, S. 2001. Complexity results and practical algorithms for logics in knowledge represen-
tation. Ph.D. thesis, RWTH Aachen, Germany.

Volz, R. 2004. Web ontology reasoning with logic databases. Ph.D. thesis, Universität Karlsruhe
(TH), Germany.

Walsh, T., Ed. 2011. Proceedings of the 22nd International Conference on Artificial Intelligence
(IJCAI’11). AAAI Press/IJCAI.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.

