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1. INTRODUCTION

The concepts of (1) the ‘distance between two objects’ and (2)

whether or not two objects are in some sense ‘close’ are

fundamental both as mathematical ideas in themselves and

in the many and varied applications of mathematics to other

subjects. Therefore, it is not surprising that such ideas are

important within a number of areas of information theory

and the theory of computation.

These two concepts can be formalized as follows. First, at a

completely general level, a (generalized) distance function d

defined on a set X is simply a mapping d : X � X! A,

where A is some suitable set of values (a value set), and the

distance between x and y is taken to be the element d(x, y)

of A. Second, and again at a completely general level,

closeness can be defined by assigning to each element x of a

set X a family Ux of subsets U of X called neighbourhoods

of x; then y can be thought of as close to x if y belongs to

some neighbourhood U of x. Under suitable restrictions

these notions are very familiar in mathematics leading on

the one hand to metrics, ultra-metrics, pseudo-metrics and the

like, and on the other hand to topologies. In turn, these con-

cepts have many ramifications including: (i) fixed points of

functions f defined on a set X, say, or in other words elements

x of X with the property that f(x) ¼ x (x and f(x) perhaps being

thought of as zero distance apart), and (ii) limits of sequences

and nets (or filters) for describing convergence.

The level of generality just considered is too high to be useful

without some conditions being imposed on d or on A or on both d

and A. Furthermore, in many ways the notions of ‘distance

between two objects’ and ‘closeness’ are synonymous. There-

fore, conditions on d and A on the one hand should correspond

to conditions on the families Ux of neighbourhoods on the

other. If one asks what distance functions d are generally appro-

priate in mathematical analysis, say, the answer is relatively

simple: metrics (perhaps derived from norms on vector spaces)

and families of seminorms. On the other hand, the question of

appropriate limits to the generality of d and of A in the definition

of a distance function in relation to computation is not so easy to

answer. This is partly due to the diversity of situations encoun-

tered in computation, and we discuss this point in the next para-

graph. One pointer in the direction of such appropriate limits is

provided by Smyth in his chapter on topology in [1], in which

he discusses observable properties. Here, one envisages a

black box outputting a binary sequence in the presence of

an observer, and it is shown that the class of properties which

the observer can verify forms a topology, called the topology

of observable properties. Furthermore, a number of important

connections between topology and computer science are

discussed in [1]. However, useful examples of structures more

general than topologies have been encountered within the

semantics of computation; see [2]. Nevertheless, it is

convenient to take as a starting point in discussing distance
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functions and families of neighbourhoods, that level of

generality which corresponds to conventional topologies

(or equivalently, their associated neighbourhoods) and gives an

equivalence between these latter notions and that of distance

function. Therefore, our conceptual framework can be viewed

as being that of continuity spaces and continuity functions [3],

since these give precisely the equivalence just mentioned.

However, we make no real use of continuity spaces and simply

show that each distance function we consider in the paper, at

least in the form in which we use it, actually is a continuity

function.

There are many non-trivial applications of distance functions

to computer science and information theory in general, some of

them quite old and some more recent. Indeed, the following list is

quite long, although by no means exhaustive: the use of ultra-

metrics in the study of infinite trees by Arnold and Nivat in

[4], and their use in non-determinism in [5] (see [1, Section

6.2] for further, related examples); the use of ultra-metrics in

cognitive information (see [6–8]), in time series (see [9, 10])

and in bioinformatics (see [11, 12]); the use of metrics in study-

ing processes and concurrency [13] (see also the articles in [14]

by Barrett and Goldsmith and by de Bakker and Rutten); the

many uses of the Hamming distance and other (pseudo-)metrics

in information theory, and elsewhere in measuring the distance

between logical formulae (for an interesting application to

neural networks, see [15]); the use of distance functions in deriv-

ing fixed-point theorems and their appplications to the semantics

of programs and their correctness, and the proof of program prop-

erties; attempts to measure the ‘distance’ between programs, and

attempts to make quantitative statements about processing

speed, speed of convergence and complexity of programs and

algorithms by means of partial metrics and (weighted) quasi-

metrics in quantitative domain theory; the use of quasi-metrics

in abstract interpretation, and in access prediction in the

context of replicated databases. In Section 7, we comment

further on the more recent of these applications of distance func-

tions, but the reader should also consult the companion papers in

this volume for more detailed information on these and other

applications of distance functions. In addition, there is the

overall question of unifying the qualitative (order-theoretic)

view of computation and the quantitative (distance-theoretic)

view by means of suitable distance functions, and we consider

this point in Section 2. Thus, within computing, there is a wide

variety both of distance functions of various types and of their

applications.

We will concentrate here on the use of distance functions

within the semantics of computation and particularly within

the semantics of logic programming, and the reason for this is

as follows. In conventional programming language semantics,

such as the denotational semantics of functional and imperative

programs, fixed points of operators (and of functors) play an

important role, and indeed are fundamental wherever recursion

and self-reference are encountered. However, in that context

the operators which arise are usually monotonic, indeed

continuous. Therefore, the main fixed-point theorem in general

use in classical semantics is the well-known Knaster–Tarski

theorem based on order theory, which we state as follows: if T

is defined and monotonic on a complete partial order X, then T

has a least fixed point which is also the least pre-fixed point

of T. In fact, if T is continuous, then the least fixed point of T is

the supremum of the set of iterates Tn(?), where ? denotes the

bottom element of X; see [16]. This latter statement is sometimes

referred to as Kleene’s theorem or the fixed point-theorem, and

we adopt this nomenclature here. Furthermore, the same sort

of representation of the least fixed point of T can even be obtained

for arbitrary monotonic T if one works transfinitely with ordinal

powers; see [17]. On the other hand, the situation in the semantics

of logic programs is rather different. Once one introduces nega-

tion, which is certainly desirable from the point of view of

expressiveness and enhanced syntax, then certain of the import-

ant operators associated with logic programs are not monotonic

and therefore not continuous (see Section 3), and in consequence

neither the Knaster–Tarski theorem nor Kleene’s theorem is

applicable to them. Various ways have been proposed to over-

come this problem. One such is to introduce syntactic conditions

on programs, see [18, 19] for example; and to disallow those

programs not meeting these conditions, in an attempt to

recover continuity in the order-theoretic sense. Another is to con-

sider different operators, and we discuss this later. The third main

solution is to introduce techniques from topology and analysis to

augment arguments based on order. Thus, one finds methods

based on topology [20–26], on metrics [27–29], on quasi-

metrics [30, 31], on ultra-metrics and on d-ultra-metrics, as we

see later. Indeed, logic programming semantics is a very fertile

area in respect of the use of various distance functions in its study.

Thus, the purpose of this paper is to discuss the role of distance

functions and their applications in general within the theory of

computation, with special emphasis on logic programming

semantics, including the roles of the associated topologies and

fixed-point theorems. An especially important consideration as

we proceed is the provision of various conditions and restrictions

that one can place on distance functions, and the corresponding

effect these have on applications within the theory of compu-

tation. This includes, in particular, the important issue of the pro-

vision of fixed-point theorems or, in other words, the

determination of conditions on d and A which guarantee that

functions f : X! X have fixed points. Throughout, we will

make considerable use of elementary ideas from order theory,

and we refer the reader to [32] for background in this subject.1

1Ordered sets, in particular complete lattices, play a fundamental role in

topics such as Formal Concept Analysis; see [33]. In turn, the interplay

between topology and order, see for example [34], suggests a link between

Formal Concept Analysis and the topic of this paper, and indeed some use

of distance functions has already been made in Formal Concept Analysis;

see [35]. We are grateful to one of the referees for drawing our attention to

this link. At the same time, interrelations between logic programming,

Formal Concept Analysis, and domain theory have been studied—albeit not

from a metric perspective—in [36, 37].
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It is convenient to divide the paper into two parts, Part I in

which we consider, in their own right, many of the main distance

functions encountered in the theory of computation, and Part II in

which we consider some substantial applications of these to logic

programming semantics. Thus, the structure of the paper is as

follows. In Section 2 of Part I, we briefly summarize the result

of Kopperman [3] that all topologies come from generalized dis-

tance functions via continuity spaces. As already noted, we view

this as providing a uniform and, for our purposes, sufficiently

general setting in which to discuss distance functions. Following

this, we consider a number of specific distance functions,

including: metrics, ultra-metrics, quasi-metrics, generalized

ultra-metrics, partial metrics, d-ultra-metrics, and generalized

metrics (in the sense of Khamsi, Kreinovich and Misane),

together with their properties, associated fixed-point theorems

and some general applications they have. In Part II, we discuss

the applications of some of the results of Part I in deriving

several of the important standard fixed-point semantics encoun-

tered in logic programming, as follows. In Section 4, we derive in

detail the semantics of F*-accessible programs, an important

class containing the acceptable programs of [38]. In Section 5,

we show in summary, giving references to the proofs, that

every locally stratified program has a supported model, and

that every locally hierarchical program has a unique supported

model (its perfect model). In Section 6, we show, again in

summary, that every locally stratified extended disjunctive

logic program (or database) admits a stable model. A certain

minimum amount of background and notation from logic pro-

gramming is needed, and this we present in Section 3. It

should be noted that the original derivation of the various seman-

tics just listed was by completely different means. Therefore,

what we illustrate here is the application of distance functions

in obtaining a unified approach to the fixed-point theory of

very general and significant classes of logic programs and data-

bases. Finally, in Section 7, we summarize other, recent appli-

cations of various distance functions within the theory of

computation, and in Section 8 we present our conclusions.

The main results and applications we discuss here involve

ultra-metrics (and ultra-metric topology) or generalized ultra-

metrics. Therefore, overall, the paper can be viewed as making

a contribution to the theory of programming languages within

the general theme of ultra-metric information theory.

PART I: GENERALIZED DISTANCE FUNCTIONS

2. DISTANCE FUNCTIONS

In this section, we discuss distance functions in considerable

generality including, we believe, most of the important special

cases of them arising in computer science. It is well known

that the fixed points of operators determined by algorithms and

programs are fundamental in studying their semantics, and

hence we include also the main fixed-point theorems associated

with the various distance functions we consider.

We begin by sketching the result of [3] that every topology

arises by means of some generalized distance function, in the

setting of continuity spaces. We refer also to [39] and related

papers where the notion of continuity space has been

developed further in a number of directions, and to [40] for

further background.

2.1. The generality of distance functions

It will be convenient to start with the definition of a topology

on a set X.

DEFINITION 2.1. By a topology T on a set X we mean a

collection of subsets of X containing the empty set Ø and X

itself and closed under the formation of finite intersections

and arbitrary unions of its members. Thus, Ø, X, O1 > O2

and <i[IOi are elements of T whenever O1, O2 [ T and fOi

ji [ Ig is any collection of elements of T. The elements of T
are called open sets. A subset U of X is called a neighbourhood

of an element x of X if there is an open set O [ T such that

x [ O#U.

Of course, neighbourhoods, as defined here, satisfy certain

properties one might consider to be characteristic of closeness:

for example, if U is a neighbourhood of x, there is some

neighbourhood V of x such that if y [ V, then there is a

neighbourhood W of y satisfying W#U. Indeed, the concept

of neighbourhood can be taken as fundamental and that of

topology as derived from it, see [41] for details.

Take for a moment the familiar case of distance functions d

which are metrics; see Definition 2.6 and the remark following

it. Thus, the usual value set A of d in this case is the interval

[0, 1). Given some real number 1 . 0, one defines the

(open) ball N1(x) of radius 1 about a point x [ X by setting

N1(x) ¼ fy [ X j d(x, y) , 1g. A subset O of X is then declared

to be open if, for each x [ X, there is some 1 . 0 such that

N1(x) # O. It is easy to see that the collection of such open

sets O forms a topology on X. Notice that in defining ‘open’

sets O here, one can equivalently require B10(x) # O for

suitable 10 . 0, where B1(x) ¼ fy [ X j d(x, y) � 1g denotes

the (closed) ball of radius 1 about a point x [ X.

However, it is not true that every topology on X arises thus

via a metric d and, for example, this statement applies to the

Scott topology on a directed complete partial order; see

Definition 2.8 for the definition of the Scott topology.

Nevertheless, as already noted, every topology can be

generated by means of a suitable distance function. Indeed,

following [3], we next consider briefly the details of one way

of establishing this claim, beginning with several definitions.

DEFINITION 2.2. A value semigroup A is an additive abelian

semigroup with identity 0 and absorbing element 1,2 where 1

= 0, satisfying the following axioms.

2An element satisfying a þ1 ¼1 þa ¼1 for all a [ A.
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(1) For all a, b [ A, if a þ x ¼ b and b þ y ¼ a for some x,

y [ A, then a ¼ b.

(Note that, using this property, we can define a

partial order � on A by setting a � b if and only if

b ¼ a þ x for some x [ A; we call � the partial order

induced on A by the operation þ.)

(2) For each a [ A, there is a unique b (¼a/2) [ A such

that b þ b ¼ a.

(3) For all a, b [ A, the infimum a^b of a and b exists in A

relative to the partial order � defined in (1).

(4) For all a, b, c [ A, (a^b) þ c ¼ (a þ c)^(b þ c).

Note that if f(Ai, þi, 0i, 1i)ji [ Ig is a family of

value semigroups, then so is their product (A, þ, 0,

1), where þ, 0, 1 are defined coordinatewise.

DEFINITION 2.3. A set P of positives in a value semigroup A

is a subset P of A satisfying the following axioms.

(1) If r, s [ P, then r^s [ P.

(2) If r [ P and r � a, then a [ P.

(3) If r [ P, then r/2 [ P.

(4) If a � b þ r for all r [ P, then a � b.

EXAMPLE 2.1. The set R of extended real numbers [0, 1]

together with addition forms a value semigroup, the set

(0, 1] is a set of positives for this example, and the induced

partial order � is the usual one on R.

DEFINITION 2.4. ([3]). A continuity space is a quadrupleX ¼
(X, d, A, P), where X is a non-empty set, A is a value

semigroup, P is a set of positives in A, and d : X � X! A

is a function, called a continuity function, satisfying the

following axioms.

(d1) For all x [ X, d(x, x) ¼ 0.

(d2) For all x, y, z [ X, d(x, z) � d(x, y) þ d(y, z).

Finally, we define the topology generated by a continuity

space.

DEFINITION 2.5. Suppose thatX ¼ (X, d, A, P) is a continuity

space. Let x [ X and let b [ P. Then Bb(x) ¼ fy [ X j d(x,

y) � bg is called the ball of radius b about x. The topology

T(X) generated by X consists of all those subsets O of X satis-

fying the property: if x [ O, then Bb(x)#O for some b [ P.

The main result concerning continuity spaces is the

following theorem.

THEOREM 2.1. ([3]). Given a continuity spaceX¼ (X, d, A, P),

the collection T (X) of subsets of X is a topology on X. Conversely,

given a topology T on a set X, there is a continuity spaceX¼ (X,

d, A, P) with the property that T ¼ T(X).

Given a topology T on X, it is worth noting that the continuity

spaceX¼ (X, d, A, P) with the property that T¼ T(X) used in the

proof in [3] of Theorem 2.1. is obtained by taking A to be the

product of T copies of R, and P to be the product of T copies

of (0, 1]. The continuity function d is defined coordinatewise

by d(x, y)(S)¼ dS(x, y) for each S [ T, where dS(x, y)¼ 0 if (x

[ S implies y [ S), dS(x, y)¼ q otherwise, where q is an

element of (0, 1] fixed once and for all.

2.2. Important cases of distance functions and

corresponding fixed-point theorems

The results of the previous subsection are satisfactory in

indicating the generality of distance functions, and in

providing a framework within which to discuss them.

However, it is usual to impose various conditions on the

distance functions employed in practice, and we consider

some of these next. In addition, once suitable conditions are

imposed on distance functions, one can expect to be able to

establish fixed-point theorems in their presence, and we

present certain of these also. In fact, multivalued functions

(see Section 2.2.2 for the definition) arise in a number of

places of importance in our discussion, so some of the

fixed-point theorems we discuss are given for multivalued

mappings; in each case, they specialize to meaningful

statements for single-valued functions also.

2.2.1. Metrics, ultra-metrics and quasi-metrics

In effect, the most familiar examples of distance functions

occur in the setting obtained in Example 1 by taking the

value semigroup A to be R. Of course, the conditions (d1)

and (d2) of Definition 2.4 are then perfectly meaningful.

DEFINITION 2.6. Let d : X � X! [0, 1]. Consider the

following conditions on d, where x, y, z are arbitrary

elements of X.

(d3) d(x, y) ¼ d(y, x).

(d4) d(x, y) ¼ 0 implies x ¼ y.

(d5) d(x, z) � maxfd(x, y), d(y, z)g.

We call d: a metric if it satisfies (d1)–(d4); an ultra-metric if

it satisfies (d1), (d3), (d4), and (d5); a pseudo-metric if it

satisfies (d1)–(d3); a quasi-metric if it satisfies (d1), (d2)

and the following axiom:

(d6) if d(x, y) ¼ d(y, x) ¼ 0, then x ¼ y;

and an ultra-quasi-metric if it satisfies (d1), (d5), (d6). We

denote any of these structures by (X, d), where d is any

one of the distance functions just defined, and the context

will determine the exact nature of d.

In Definition 2.6, it is convenient to take the codomain of d

to be [0, 1] rather than the more usual [0, 1). Notice also

that (d5) implies (d2), and hence an ultra-metric is a

metric and, furthermore, all the notions just defined are con-

tinuity functions. Moreover, given a pseudo-metric d, there

is a standard procedure for passing to a metric defined on the

equivalence classes of the relation � defined by x � y if and

only if d(x, y) ¼ 0, and it often, although not always, suf-

fices to work with this derived metric instead of with the
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pseudo-metric. Since any metric is a quasi-metric, the main

notion emerging in this subsection for our purposes is that of

quasi-metric, and there are good reasons for developing this

notion further, as follows. First, there are many non-trivial

applications of (ultra-)metrics in computing as already

mentioned, and we will consider more later in this paper;

in a general sense, quasi-metrics subsume these applications

of (ultra-)metrics, of course. Second, two of the main spaces

used in the semantics of programming languages are

(i) metric spaces (and the Banach contraction mapping

theorem, Theorem 2.3), see [13] for example, and (ii)

Scott domains (and the fixed-point theorem) especially;

see [42] and the many other papers of Scott on this latter

subject. Third, as indicated in the Introduction, there has

been a lot of interest in reconciling these two spaces for

denotational semantics, and quasi-metrics have proved to

be important in this respect; see [43, 44, 45] for example,

see also [46] and [47] for a different viewpoint.

For a given quasi-metric d on X, there is an associated

metric dw defined on X by dw(x, y) ¼ maxfd(x, y),

d(y, x)g. One says that (X, d) is totally bounded if the

metric space (X, dw) is totally bounded; that is, given any

1 . 0, there is a finite subset E of X with the property that

for each y in X there is an x in E satisfying dw(x, y) � 1.

There are two interesting examples of quasi-metrics

related to computer science discussed in [45] as follows;

we will return to them again later.

EXAMPLE 2.2. ([45]). Let (D, h) be an arbitrary partially

ordered set and define d on D � D by

dðx; yÞ ¼
0 if x v y;
1 otherwise:

�

Then d is an ultra-quasi-metric, called the discrete

quasi-metric, and is totally bounded if and only if D is finite.

Before presenting the second example, Example 2.4, it is

necessary to include the definition of a domain in the form

in which we will use it later in Part II.

DEFINITION 2.7. A partially ordered set (D, h) is called a

Scott-Ershov domain or simply a domain with set DC of

compact elements (see [16]), if the following conditions hold.

(i) (D, h) is a directed complete partial order (dcpo), that

is, D has a bottom element ?, and the supremum sup A

exists for all directed subsets A of D.

(ii) The elements a [ DC are characterized as follows:

whenever A is directed and a h sup A, then a h x

for some x [ A.

(iii) For each x [ D, the set approx(x) ¼ fa [ DC j a h xg

is directed and x ¼ sup approx(x) (this property is

called algebraicity of D).

(iv) If the subset A of D is consistent (there exists x [ D

such that a h x for all a [ A), then sup A exists in D

(this property is called consistent completeness of D).

The conditions in this definition ensure the existence and con-

struction of fixed points of continuous functions and the exist-

ence of function spaces. Moreover, the compact elements

provide an abstract notion of computability. As is well

known, domains are an important means of providing struc-

tures for modelling computation and in providing spaces to

support the denotational semantics approach to

understanding programming languages; see [16].

EXAMPLE 2.3.

(i) The set of all partial functions from Nn into N ordered

by graph inclusion is a domain whose compact

elements are the finite functions.

(ii) The set (IP, #) of interpretations for a logic program

P, see Section 3, is a domain whose compact elements

are the finite subsets of BP.3

(iii) The set (IP,3, #) of three-valued interpretations, see

Section 3, is a domain whose compact elements are

the pairs (C1, C2) of disjoint finite subsets of BP.

Associated with a dcpo is its Scott topology, and we pause to

give next the definition of the open sets in this topology.

DEFINITION 2.8. A subset O of a dcpo (D, h) is called Scott

open if it satisfies the following two conditions: (i) O is

upwards closed, that is, whenever x [ O and x h y, we have

y [ O and (ii) whenever A#D is directed and sup A [ O,

then A > O = Ø.

EXAMPLE 2.4. ([45]). Let (D, h) be any Scott domain and let

r : DC! N be a map (a rank function) such that r21(n) is a

finite set for each n [ N. Define d on D � D by

dðx; yÞ ¼ inf f2�nje � x implies e � y

for all e [ DC with rðeÞ � ng:

Then d is an ultra-quasi-metric which induces the Scott top-

ology of D and (D, d) is totally bounded.

In fact, it is usually the Scott topology which is employed to

study domains. However, as we will see in Section 2.2.2,

domains can be endowed with the structure of a spherically

complete generalized ultra-metric space. Given that there are

3Given a logic program P, the Herbrand base BP for P (or more correctly

for the underlying first-order language L of P) is the set of all ground

(or variable-free) atoms which can be formed by using predicate symbols

from L with ground terms from L as arguments. Thus, for example, if p, f,

a, and b are respectively a binary or two-place predicate symbol, a unary or

one-place function symbol, and constant symbols, all in L, then the corre-

sponding elements of BP are those (infinitely many) atoms of which the fol-

lowing are typical: p(a, a), p(a, b), p(b, a), p(b, b), p(f(a), a), p(a, f(a)),

p(f(a), b),. . ., p(f(f(a)), a), p(f(f(a)), b), p(a, f(f(a))). . ., p(f(a), f(f(a))). . .. The

reader should consult Section 3 for further details of these matters.
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many ultra-metrics which are useful in theoretical computer

science, as mentioned in the Introduction and in Section 7

(see also the results we consider in Section 2.2.2), it seems

likely that generalized ultra-metric spaces, as well as

quasi-metric spaces, may well be a useful complement to the

Scott topology in studying domains.

Turning now to fixed points, we note that many fixed-point

theorems in various settings are established by iterating on

some suitable element and that the resulting sequence is

required to converge in some sense. If this approach is to

work, some notion of completeness is required. In the case

of metrics, it is the familiar and elementary notion of comple-

teness which is appropriate, namely, convergence of each

Cauchy sequence. However, in the case of quasi-metrics the

situation is a bit more complicated due to the non-symmetry

of the distance function involved, and we consider this issue

next; the resulting notions collapse to the familiar ones if the

quasi-metric involved is actually a metric or ultra-metric.

DEFINITION 2.9. A sequence (xn) in the quasi-metric space

(X, d) is said to be:

(1) forward Cauchy if, for each 1 . 0, there is a natural

number k such that d(xl, xm) � 1 whenever k � l � m;

(2) bi-Cauchy if, for each 1 . 0, there is a natural number

k such that d(xl, xm) � 1 whenever k � l, m.

There is also a notion of backward Cauchy sequence which is

obtained by replacing d(xl, xm) by d(xm, xl) in the first part of

this definition, though we have no need of it here. Indeed, in

[45] the point is made that the computationally most signifi-

cant of these concepts is that of forward Cauchy, and that all

three are equivalent in the presence of total boundedness

[45, Theorem 10].

In the general context of a quasi-metric space (X, d), the

appropriate notion of ‘limit’ of a forward Cauchy sequence

(xn) seems to be as given in [48] and [45, Definition 11] and

is as follows; it is important in the developments made in

[43, 45, 48] and also in what we wish to discuss here; see

especially Theorem 2.2.

DEFINITION 2.10. Let (xn) be a forward Cauchy sequence in

a quasi-metric space (X, d). A point x [ X is a limit of (xn),

which we write as x ¼ limn!1 xn or simply x ¼ lim xn if, for

every y [ X, we have d(x, y) ¼ limn!1 d(xn, y). The space

X is said to be complete if every forward Cauchy sequence

in X has a limit.

Note that this definition can be made for arbitrary sequences

(xn). However, for forward Cauchy sequences (xn) it is the case

that the sequence d(xn, y) is itself Cauchy in the real line;

see [48]. Thus, limn!1 d(xn, y) exists in the extended real

line relative to the usual metric, which is understood in Defi-

nition 2.10, and it follows that this definition is always mean-

ingful for forward Cauchy sequences. Moreover, limits, in this

sense, of forward Cauchy sequences are always unique when

they exist. In [43] such limits are called metric limits.

It should be further noted that this definition requires no

underlying topology for its formulation and indeed Smyth in

[1, 44, 45] and Bonsangue et al. in [43] have quite extensively

examined the interplay between such limits and topological

limits.

We next consider some concepts applying to mappings

between quasi-metric spaces. Amongst these is that of

continuity as defined by Rutten in [48] (see also [43])

which, as with limits, does not involve any topology in its

formulation; in [43] it is referred to as metric continuity.

DEFINITION 2.11. Let (X, d) be a quasi-metric space and

suppose f : X! X is a mapping. We say that:

(1) f is non-expansive if, for all x, y [ X, we have d(f(x),

f(y)) � d(x, y),

(2) f is contractive or is a contraction if there exists a

positive number c , 1 such that, for all x, y [ X, we

have d(f(x), f(y)) � c d (x, y),

(3) f is continuous if, for all forward Cauchy sequences (xn)

and x in X, whenever lim xn ¼ x, we have

lim f(xn) ¼ f(x).

We are now ready to give the statement of Rutten’s theorem

[48, Theorem 3.7]. First note that the proof given by Rutten

does not make essential use of the ulta-metric condition (d5)

and easily extends to quasi-metrics; see also [49, Page 6 and

Theorem 6.3]. Therefore, we state the result for quasi-metrics

rather than for ultra-quasi-metrics. Note also that if (X, d) is a

quasi-metric space, then there is an associated order � X

induced on X by x � X y if and only if d(x, y) ¼ 0.

THEOREM 2.2. Let (X, d) be a complete quasi-metric space

and suppose f : X! X is non-expansive.

(1) If f is continuous and there is an x in X with the property

that d(x, f(x)) ¼ 0 (that is, x � X f(x)), then f has a fixed

point which is the least fixed point above x in the

order � X.

(2) If f is continuous and contractive, then f has a unique

fixed point.

Part 1 of this theorem implies Kleene’s theorem. Furthermore,

the terms ‘completeness’ and ‘contraction’ used in relation to

quasi-metrics have their usual meaning when specialized to

metric spaces. Therefore, Part 2 of Theorem 2.2 contains, as

a special case, Banach’s well-known contraction mapping

theorem which we state next for completeness.

THEOREM 2.3. (BANACH). Suppose f : X! X is a contrac-

tion on a complete metric space X. Then f has a unique fixed

point x0 which can be obtained as the limit of the sequence

(f n(x))n[N for any x [ X.

Notice that neither non-expansiveness nor contractivity of f

imply continuity of f in general in the sense that continuity is

employed in Theorem 2.2. Various implications between these

and other concepts are examined in [43, 48].
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Because of the comment immediately following its

statement, Theorem 2.2 has turned out to be important in

reconciling the metric and order-theoretic approaches to

conventional programming language semantics. Furthermore,

both Examples 2.2 and 2.4 have been considered in [31] in the

context of logic programming semantics by means of Theorem

2.2. In particular, Example 2.2 was used in [31] to derive the

basic fixed-point properties of the single-step operator TP for

definite logic programs P; see Theorem 3.1. Indeed, it turns

out that TP is always non-expansive and continuous relative

to the quasi-metric of Example 2.2, and hence Theorem 2.2

is applicable and yields the fixed-point properties of TP.

Example 2.4 was used to define natural quasi-metrics arising

from logic programs, which can be used in company with

Theorem 2.2 in analysing the programs in question.

However, we will postpone further discussion of the

applications of the results in Part I to logic programming

until we reach Part II.

2.2.2. Generalized ultra-metric spaces

The next concept we introduce is that of a generalized

ultra-metric, following [50, 51]. Here, the distance function

d takes values in a partially ordered set G with least element,

and axioms (d1), (d3), (d4) and a suitably modified version

of (d5) hold. Specifically, we make the following definition.

DEFINITION 2.12. Let X be a set, and let G be a partially

ordered set with least element 0. The pair (X, d) is called a

generalized ultra-metric space or gum if d : X � X! G is a

function satisfying the following axioms for all x, y, z [ X

and g [ G.

(gum1) d(x, x) ¼ 0.

(gum2) d(x, y) ¼ 0 implies x ¼ y.

(gum3) d(x, y) ¼ d(y, x).

(gum4) If d(x, y) � g and d(y, z) � g, then d(x, z) � g.

For 0 = g [ G and x [ X, the set Bg(x) ¼ fy [ X j

d(x, y) � gg is called a g-ball or just a ball in X with centre

x and radius g.

Notice that at the level of generality of the previous

definition, the function d this time is not a continuity

function; that is, G need not be a value semigroup. However,

in the applications we will actually consider, d will indeed

be a continuity function.

Once again, a suitable form of completeness is needed, this

time for generalized ultra-metrics, and this is provided by the

notion of ‘spherical completeness’, as follows. A generalized

ultra-metric space X is called spherically complete if >C= Ø

for any chain C of balls in X, where the term ‘chain of balls’

means, of course, a set of balls which is totally ordered by

inclusion. Note that for ultra-metric spaces, spherical comple-

teness implies completeness, but not conversely, see [23,

Proposition 10].

As mentioned earlier, we will be concerned at certain places

with fixed points of multivalued mappings, that is, with map-

pings f : X! 2X, where 2X denotes the power set of the set X.

A fixed point of such a mapping f is a point x [ X with the

property that x [ f(x). A multivalued mapping f is called

non-empty if, for all x [ X, f(x) = Ø.

Whilst the standard notion of contraction involving a

numerical constant c , 1 (see Definition 2.11) is not

available in the context of generalized ultra-metric spaces,

appropriate and useful contractivity notions for mappings

defined on such spaces can be given as follows.

DEFINITION 2.13. A mapping f : X! X on a generalized

ultra-metric space X is called:

(i) contracting (on X) if, for all x, y [ X, we have d(f(x),

f(y)) � d(x, y),

(ii) strictly contracting (on X) if, for all x, y [ X with x =

y, we have d(f(x), f(y)) , d(x, y),

(iii) strictly contracting on orbits if, for all x [ X with f(x)

= x, we have d(f2(x), f(x)) , d(f(x), x).

One then has the following theorem, due to Priess-Crampe and

Ribenboim [52].

THEOREM 2.4. Let (X, d,G) be a spherically complete general-

ized ultra-metric space and let f : X! X be contracting on X and

strictly contracting on orbits. Then f has a fixed point. If f is

strictly contracting on X, then the fixed point is unique.

For multivalued functions, the previous definition immedi-

ately generalizes as follows.

DEFINITION 2.14. A multivalued mapping f : X! 2X on a

generalized ultra-metric space X is called:

(i) contracting (on X) if, for all x, y [ X and for every a [
f(x), there exists an element b [ f(y) such that d(a,

b) � d(x, y),

(ii) strictly contracting (on X) if, for all x, y [ X with x =

y and for every a [ f(x), there exists a b [ f(y) such

that d(a, b) , d(x, y),

(iii) strictly contracting on orbits if, for all x [ X and for

every a [ f(x) with a = x, there exists a b [ f(a)

such that d(b, a) , d(a, x).

For a multivalued mapping f : X! 2X, let Px ¼ fd(x, y)jy[
f(x)g, and for a subset D#G denote by min D the set of all

minimal elements of D.

The main theorem here is as follows.

THEOREM 2.5 (PRIESS-CRAMPE AND RIBENBOIM [50, (3.1)]). Let

(X, d) be a spherically complete generalized ultra-metric

space. Let f : X! 2X be a non-empty contraction which is

strictly contracting on orbits, and assume that for every x [
X the set min Px is finite and that every element of Px has a

lower bound in min Px. Then f has a fixed point.

This result has several corollaries, both for multivalued

mappings and for single-valued mappings, and we state next
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those that we need in the sequel. Note that Theorem 2.7 is a

slight extension of Theorem 2.4.

THEOREM 2.6 (PRIESS-CRAMPE AND RIBENBOIM [50 (3.4)]). Let

(X, d) be spherically complete, and let G be narrow, that is,

such that every trivially ordered subset of G is finite. Let f :

X! 2X be non-empty, strictly contracting on orbits and

such that f(x) is spherically complete for every x [ X. Then f

has a fixed point.

THEOREM 2.7 (PRIESS-CRAMPE AND RIBENBOIM [50, 53]). Let

(X, d) be a generalized ultra-metric space which is spherically

complete, and let f : X! X be contracting on X. Then either f

has a fixed point or there exists a ball Bp(z) such that d(y,

f(y)) ¼ p for all y [ Bp(z). If, in addition, f is strictly contract-

ing on orbits, then f has a fixed point. Finally, this fixed point is

unique if f is strictly contracting on X.

As already noted, the set G used here in general need not be

a value semigroup. However, for the applications we have in

mind our choice of G will be a value semigroup, and we con-

sider this point next.

Let g . 1 denote an arbitrary countable ordinal, and denote

by Gg the set f22a
ja � gg of symbols 22a. Then Gg is totally

ordered by 22a , 22b if and only if b , a, and indeed 22g is

the bottom element of Gg. (Notice that Gg is really

nothing other than g þ 1 endowed with the dual of the usual

ordering, but it is convenient to use the symbols 22a rather

than the symbols a to denote typical elements, as will be

seen later. Notice also that we regard an ordinal g as the

set of all ordinals n such that n [ g, that is, the set of

ordinals n such that n , g.) We define the binary operation þ

on Gg by

2�a þ 2�b ¼ maxf2�a; 2�bg;

and take 22g as the identity and 220 as the absorbing element,

noting that 22g
= 220 by our mild assumption that g . 1,

where 0 denotes the finite limit ordinal zero. Notice that we

will sometimes also use 0 to denote 22g, where this does not

cause confusion. Then Gg is a value semigroup in which

a/2 ¼ a, where a ¼ 22a denotes a typical element of Gg, and

moreover the partial order induced on Gg by þ coincides

with that already defined. Furthermore, the set f22a
ja , gg

is a set of positives in Gg.

Using this construction we can turn a domain (D, h) into a

generalized ultra-metric space essentially using the construc-

tion of Example 2.4, as follows.

DEFINITION 2.15. Let r : DC! g be a function, again called

a rank function, form the set Gg, and suppose that r satisfies the

condition4 that for all b , g there exist b0 � b and c [ DC

such that r(c) ¼ b0. Define dr : D � D! Gg by

drðx; yÞ ¼ inff2�ajc v x if and only if c v y

for all c [ DC with rðcÞ , ag:

The following result was established in [54, Theorem 4.7].

THEOREM 2.8. The space (D, dr) is a spherically complete

generalized ultra-metric.

Indeed, (D, dr) is called the generalized ultra-metric space

induced by r. The intuition behind dr is that two elements x

and y of the domain D are ‘close’ if they dominate the same

compact elements up to a certain rank (and hence agree in

this sense up to this rank); the higher the rank giving

agreement, the closer are x and y.

2.2.3. Partial metrics and d-metrics

It is perhaps surprising that distance functions which fail to

satisfy axiom (d1) should prove to be of any interest.

Nevertheless, there are several instances in computer science

where distance functions satisfying d(x, x) = 0 arise, and we

will examine two of them here. These discussions suggest

that distance functions satisfying the axiom d(x, x) = 0 may

have other interesting applications within computer science.

The first case we consider is that of the (weak) partial

metrics defined next. These were introduced by Matthews in

[55, 56] in connection with the semantics of data flow

networks as studied by Kahn in [57].

DEFINITION 2.16. Let X be a set, and let d : X � X! [0, 1]

be a function. We call d a partial metric on X if it satisfies the

following axioms, where x, y, z are arbitrary elements of X.

(p1) x ¼ y if and only if d(x, x) ¼ d(x, y) ¼ d(y, y).

(p2) d(x, x) � d(x, y).

(p3) d(x, y) ¼ d(y, x).

(p4) d(x, z) � d(x, y) þ d(y, z) 2 d(y, y).

A weak partial metric is a function d satisfying conditions (p1),

(p3) and (p4), but not necessarily the condition (p2) of small

self-distances.

Partial metrics and weak partial metrics were also studied in

[47, 58, 59]; in fact, in [59] partial metrics are allowed to take

negative distances. A (weak) partial metric d need not satisfy

axiom (d1), and so d(x, x) need not be zero. Indeed, the value

of d(x, x) has been called the size of x by Matthews [56], and

used to express the extent to which x is partially defined: x is

totally defined if d(x, x) ¼ 0. Thus, a (weak) partial metric is

not a continuity function in the sense employed in Definition

2.4. Nevertheless, the set of balls it determines yields a top-

ology, and thus (weak) partial metrics fall into our general fra-

mework in which distance functions correspond to topologies.

Furthermore, strong relationships between the topologies

arising from partial metrics and the topologies usually

4Mild conditions such as this prevent pathology arising by excluding the

possibility that r is constantly zero; see also Example 2.4.

450 A. K. SEDA AND P. HITZLER

THE COMPUTER JOURNAL, Vol. 53 No. 4, 2010



discussed in domain theory can be established; see for

example [60, 56, 47].

Another example of the occurrence of distance functions

failing to satisfy axiom (d1) is provided by d-metrics which we

consider next. These were studied in [55], where they are

called metric domains, and also in [23], where they are used in

the context of logic programming semantics and will be dis-

cussed further here in that same context in Part II.

DEFINITION 2.17. Let d : X � X! [0, 1] be a function. We

call d a d-metric on X if it satisfies axioms (d2)–(d4), and call

d a d-ultra-metric if it satisfies axioms (d3)–(d5).

It is clear that any (weak) partial metric is a d-metric.

Furthermore, it is routine to extend the usual notions of limit of

a sequence (called d-limits), Cauchy sequence and completeness

to d-metric spaces. Once that is done, one then obtains the fol-

lowing generalization of the Banach contraction mapping

theorem to d-metric spaces, due to Matthews [55]; see also [23].

THEOREM 2.9. Let (X, d) be a complete d-metric space and

let f : X! X be a contraction. Then f has a unique fixed

point x0 which can be obtained as the d-limit of the sequence

(f n(x))n[N for any x [ X.

Again, d-metrics are not continuity functions, since in general

they fail to satisfy axiom (d1). Furthermore, whilst it is true, as

already noted, that the set of balls determined by a (weak)

partial metric yields a topology in the conventional sense, this

is not the case for d-metrics. However, given a d-metric d, one

can associate with d a metric d0 defined by setting d0(x, y) ¼

d(x, y) for x = y and setting d0(x, x) ¼ 0 for all x [ X. Then d0

is complete if and only if d is complete, and a function f which

is a contraction relative to d is a contraction relative to d0; see

[23, Propositions 26 and 27]. Indeed, the notions of d-topological

space and d-neighbourhood system of a point x in a d-metric

space have been examined in [61] and shown to have very

similar properties to conventional, topologies, respectively

neighbourhood systems; for example, the property of conven-

tional neighbourhoods quoted immediately following the

definition of a topology, Definition 2.1, is essentially valid. In

effect, therefore, d-metrics also fall within our general

framework in which distance functions correspond to systems

of neighbourhoods with natural properties. Further, purely topo-

logical results of this nature have been established in [62] under

the name of relational topology, a concept which includes

d-topological spaces.

One can also extend the definition of a generalized ultra-

metric to obtain the definition of a d-generalized ultra-metric,

or simply a d-gum, by dropping the axiom (gum1), but retaining

axioms (gum2)–(gum4) in Definition 2.12. The concepts

defined for generalized ultra-metric spaces then easily extend

to d-gums, noting that g-balls may be empty in the case of

d-gums and hence in defining spherical completeness one

needs to stipulate that the chain C consists of non-empty balls.

Furthermore, the definitions made for mappings between gums

also extend to d-gums.

The following lemma, proved in [23], is well known for

ordinary ultra-metric spaces; see [52]. We include its short

proof for the sake of completeness.

LEMMA 2.1. Let (X, d, G) be a d-gum. For a, b [ G and x, y

[ X, the following statements hold.

(1) If a � b and Ba(x) > Bb(y) = Ø, then Ba(x) # Bb(y).

(2) If Ba(x) > Ba(y) = Ø, then Ba(x) ¼ Ba(y).

(3) Bd(x, y)(x) ¼ Bd(x, y)(y).

Proof. Let a [ Ba(x) and b [ Ba(x) > Bb(y). Then d(a, x) � a

and d(b, x) � a, hence d(a, b) � a � b. Since d(b, y) � b, we

have d(a, y) � b, and hence a [ Bb(y), which proves the first

statement. The second statement follows from (1) by

symmetry. For the third statement, we note that d(x, y) � d(x,

y) ¼ d(y, x), and it follows from (gum4) that d(x, x) � d(x, y)

for all x, y [ X. Hence, x [ Bd(x, x)(x)#Bd(x, y)(x) and also x [
Bd(x, y)(y), and therefore Bd(x, y)(x) > Bd(x, y)(y) = Ø. Statement

(3) now follows from (2) on taking a to be equal to d(x, y) in (2).

A

The following theorem unites Theorem 2.9 of Matthews [55]

and Theorem 2.4 of Priess-Crampe and Ribenboim [52]. The

proof of the latter theorem given in [52] in fact carries over

directly to our more general setting of d-gums, and we include

it to illustrate the methods used.

THEOREM 2.10. Let (X, d, G) be a spherically complete

d-gum and let f : X! X be contracting on X and strictly

contracting on orbits. Then f has a fixed point. If f is strictly

contracting on X, then the fixed point is unique.

Proof. Assume that f has no fixed point. Then for all x [ X, d(x,

f(x)) = 0. We define the set B by B ¼ fBd(x, f(x))(x)jx [ Xg, and

note that each ball in this set is non-empty. By Lemma 2.1(3),

we know that Bd(x, f(x))(x) ¼ Bd(x, f(x))(f(x)). Now let C be a

maximal chain in B. Since X is spherically complete, there

exists a z [ > C. We show that Bd(z, f(z))(z)#Bd(x, f(x))(x) for all

Bd(x, f(x))(x) [ C and hence, by maximality, that Bd(z, f(z))(z) is

the smallest ball in the chain. Let Bd(x, f(x))(x) [ C. Since z [
Bd(x, f(x))(x), and noting our earlier observation that

Bd(x, f(x))(x) ¼ Bd(x, f(x))(f(x)) for all x, we obtain d(z, x) �

d(x, f(x)) and d(z, f(x)) � d(x, f(x)). Since f is contracting, we

get d(f(z), f(x)) � d(z, x) � d(x, f(x)). It follows by (gum4)

that d(z, f(z)) � d(x, f(x)) and therefore that Bd(z, f(z))(z)#Bd(x,

f(x))(x) for all Bd(x, f(x))(x) [ C by Lemma 2.1(1). Now, since

f is strictly contracting on orbits, d(f(z), f2(z)) , d(z, f(z)),

and therefore z � Bd(f(z), f2(z))(f(z)) , Bd(z, f(z)) (f(z)). By

Lemma 2.1(2), this is equivalent to Bd(f(z), f2(z))(f(z)) ,
Bd(z, f(z))(z), which is a contradiction to the maximality of C.
Thus, f has a fixed point.

Now let f be strictly contracting on X, and assume that x, y are

two distinct fixed points of f. Then we get d(x, y) ¼ d(f(x), f(y)) ,

d(x, y), which is impossible. So, the fixed point of f is unique in

this case. A
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Note 2.1. We note here that uniqueness of fixed points, as in

the theorem just given and earlier ones, is not usually some-

thing which can be derived from the Knaster–Tarski

theorem or from Kleene’s theorem.

2.2.4. Generalized metrics and quasi-metrics in the context

of multivalued mappings

In [29], Khamsi, Kreinovich and Misane introduced a notion

of generalized metric in order to study the stable model seman-

tics of locally stratified programs; see Section 6. The notion of

generalized metric defined in [29] is closely related to that of

generalized ultra-metric introduced in Section 2.2.2, at least in

the case which concerns us here, and we discuss this connec-

tion in this section.

By an ordered semigroup V with identity 0, we mean a semi-

group V with identity 0 on which there is defined an

ordering � satisfying: 0 � v for all v [ V, and if v1 � v2 and

v01 � v02, then v1 þ v01 � v2 þ v02.

DEFINITION 2.18. Let V be an ordered abelian semigroup

with identity 0, and let X be an arbitrary set. A generalized

metric on X is a mapping d : X � X! V which satisfies the

usual metric axioms (d1)–(d4); that is, d satisfies the following

axioms for all x, y, z [ X.

(i) d(x, y) ¼ 0 if and only if x ¼ y.

(ii) d(x, y) ¼ d(y, x).

(iii) d(x, z) � d(x, y) þ d(y, z).

The pair (X, d) consisting of a set X and a generalized metric d

on X is called a generalized metric space relative to V.

DEFINITION 2.19. Let V be an ordered abelian semigroup

with identity 0. Assume that a � 1 is either a countable

ordinal or v1, the first uncountable ordinal, and that v ¼

(vb)b,a is a decreasing family of elements of V. Finally, let

X be a generalized metric space relative to V, and let

(xb)b,a be a family of elements of X. Then:

(i) (xb) is said to v-cluster to x [ X if, for all b, we have

d(xb, x) , vb whenever b , a;

(ii) (xb) is said to be v-Cauchy if, for all b and d, we have

d(xb, xd) , vb whenever b , d , a;

(iii) X is said to be complete if, for every v, every v-Cauchy

family v-clusters to some element of X;

(iv) a set Y#X will be called complete if, for every v,

whenever a v-Cauchy family consists of elements of

Y, it v-clusters to some element of Y.

Remark 2.1. As in Section 2.2.2, let g . 1 be an arbitrary

countable ordinal, form the set Gg with the ordering defined

in Section 2.2.2 and denote 22g by 0. Taking V as Gg and

the binary operation þ as before, that is, u þ v ¼ maxfu, vg,

we obtain an ordered abelian semigroup V with identity 0.

It will be convenient to write 1/2 22a for 22(aþ1), but note

that 1/2 22a is not then being used with its meaning in

Section 2.2.2. However, with a slight change of notation

(which we will not trouble to make and will not cause con-

fusion in so doing), on taking V as Gg, a generalized metric

is then a continuity function as in Definition 2.4.

Note 2.2. For the rest of this section, V will be taken to be Gg as

in Remark 2.1.

A mapping T : X! 2X is called a multivalued

1/2-contraction if, for every x [ X, for every y [ X and for

every a [ T(x), there exists a b [ T(y) such that d(a, b) �

1/2d(x, y).

The following theorem was established in [29].

THEOREM 2.11. Let X be a complete generalized metric

space, let T be a multivalued 1/2-contraction on X such that

T (x) is not empty for some x [ X and suppose that for every

x [ X the set T (x) is complete. Then T has a fixed point.

Let (X, d) be a generalized metric space in the sense of

Definition 2.18 with respect to V as given in Remark 2.1.

Then it is easy to see that d is in fact a generalized ultra-metric

in the sense of Section 2.2.2. However, to avoid confusion

arising from overuse of the term ‘generalized ultra-metric’,

we will refrain from employing this term to mean a general-

ized metric in the sense of Definition 2.18, which happens to

satisfy axiom (gum4).

The next two results were established in [54].

PROPOSITION 2.1. Let X be a complete generalized metric space

with respect to V, where V is as defined in Remark 2.1. Then X

is spherically complete in the sense of Section 2.2.2.

PROPOSITION 2.2. Let (X, d, V) be a spherically complete gene-

ralized ultra-metric space in the sense of Section 2.2.2, where

V is as defined in Remark 2.1. Then X is complete in the sense

of the present section.

This means, by virtue of Theorem 2.5, that we can reformu-

late the assumptions in Theorem 2.11 and thereby obtain the

following theorem, Theorem 2.12. In fact, our conclusion

relative to the second statement in Theorem 2.12 is a special

case of Theorem 2.6.

THEOREM 2.12. Let X be a spherically complete generalized

ultra-metric space (with respect to V) and let f be multivalued,

non-empty and strictly contracting on X. Then either of the

following conditions ensures the existence of a fixed point of f.

(i) The set fd(x, y) j y [ f(x)g has a minimum in X for all

x[X.

(ii) The set f(x) is spherically complete for each x [ X.

Finally, to close this section and the first part of the paper, we

mention a result involving quasi-metrics in the context of mul-

tivalued mappings, as follows. In addition to the results of

Khamsi, Kreinovich and Misane already discussed above,

these authors also established in [29] a version of the

Banach contraction mapping theorem for multivalued map-

pings. In [30] a version of Kleene’s theorem and a version of

Theorem 2.2 were established for multivalued mappings.
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The latter result achieved, using quasi-metrics, a unification

for multivalued mappings of Kleene’s theorem, as given in

[30], and the Banach contraction mapping theorem of

Khamsi et al. comparable with that obtained by Rutten,

Smyth and others for single-valued mappings. The reader is

referred to [30] for full details.

PART II: SOME APPLICATIONS OF GENERALIZED

DISTANCE FUNCTIONS

We are now in a position to discuss the role of some of the the-

orems we have just described in the context of the theory of

computation and in logic programming semantics in particu-

lar, and we proceed to do this next. We begin by presenting

the minimum background needed in logic programming, con-

centrating on semantics and largely ignoring implementation

and procedural matters. Our general reference for this

subject is [17]; we refer to [63] for an account of the growth

of logic programming and of its role as a major tool in

various parts of computer science, such as database systems,

artificial intelligence, natural language processing, machine

learning and building expert systems etc.

3. LOGIC PROGRAMS

A logic programming system comprises four main facets:

(i) the syntax or expressiveness of the system and its compu-

tational adequacy (relative, say, to SLDNF-resolution);5 (ii)

the procedural semantics of the system or what is output by

the interpreter; (iii) the declarative semantics or logical

meaning of the output; and (iv) the fixed-point semantics.

These four issues are highly interconnected, and it is important

that the three semantics just mentioned should coincide in

some sense; see Theorem 3.1 for example. In fact, what is

usually meant by the term declarative semantics is some

natural model canonically associated with each program per-

mitted by the syntax, and realized as the (least, minimal,

unique etc.) fixed point of an operator determined by the

program. The existence of such models is an advantage

possessed by logic programs over conventional imperative or

object-oriented programs in giving logic programs a clear,

machine-independent meaning. Unfortunately, most systems

with enhanced syntax permit many canonical models, and it

is by no means obvious in general which of them best captures

the intended meaning of the programmer, depending on his or

her view of non-monotonic reasoning. Indeed, the study of

these standard models, such as the well-founded model

(van Gelder et al. [64]), the stable model (Gelfond and

Lifschitz [65]) or the perfect model and the weakly perfect

model (Przymusinski [19]), and of the corresponding

operators, accounts for a high proportion of the research

undertaken on the foundations of the subject. It should be

noted that the canonical models just mentioned are in

general different, and it is interesting to know when they are

equal, for this provides conditions under which we have

coincidence of the various ways of considering non-monotonic

reasoning; we take up this point in Section 4.

3.1. Syntax of normal logic programs

Given a first-order language L, a normal logic program P

(with underlying language L) is a finite set of clauses of the

form

8ðA B1 ^ � � � ^ Bk ^ :Bkþ1 ^ � � � ^ :BnÞ;

usually written as

A B1; . . . ;Bk;:Bkþ1; . . . ;:Bn

or as

A L1; . . . ;Ln

or more simply as

A body;

where body denotes the conjunction L1^. . .^Ln, usually

written as L1, . . . , Ln. Here, A and all the Bi are atoms in L,

each Li is a literal in L (an atom Bi or a negated atom :Bi),

 denotes implication, and the universal quantifier is under-

stood. The atom A is called the head of the clause, and each

Li is called a body literal of the clause. By an abuse of

notation, we allow n to be zero or, in other words, we allow

the body to be empty, in which case we are dealing with the

unit clause, or fact, A . A program P is called positive or

definite if no clause contains a negated atom.

EXAMPLE 5. The following program (taken from [38])

computes the transitive closure of a graph.

rðX;Y;E;VÞ  mð½X; Y �;EÞ

rðX; Z;E;VÞ  mð½X; Y �;EÞ;:mðY;VÞ; rðY;Z;E; ½YjV �Þ

mðX; ½XjT �Þ  

mðX; ½YjT �Þ  mðX;TÞ

eðaÞ  for alla [ N

Here, N denotes a finite set containing the nodes appearing

in the graph as elements. In the program, uppercase letters

5For example, the class of definite logic programs is computationally ade-

quate relative to SLD-resolution; that is, it can compute all partial recursive

functions. We note further that SLD-resolution is a standard implementation

of logic programming and means Linear resolution with Selection function

for Definite clauses. Similarly, SLDNF-resolution stands for SLD-resolution

augmented with the Negation as Failure rule. We refer the reader to [17] for

full details of these matters.
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denote variable symbols, lowercase letters constant symbols,

and lists are written using square brackets as usual under

Prolog. One evaluates a goal (the negation of the object one

wishes to compute) such as  r(x, y, e, [x]), where x and y

are nodes and e is a graph specified by a list of pairs denoting

its edges. The goal is supposed to succeed (or the interpreter

outputs ‘yes’) when x and y can be connected by a path in

the graph. The predicate m implements membership of a list.

The last argument of the predicate r acts as an accumulator

which collects the list of nodes which have already been

visited in an attempt to reach y from x.

3.2. Semantics of normal logic programs

The usual approach to the declarative semantics of logic

programs P is via Tarski’s notions of interpretation and

model, which are standard apparatus in mathematical logic.

However, since we are at all times dealing with sets of

clauses, Herbrand interpretations will suffice for our purposes;

see [17, Chapter 1]. Thus, given a logic program P with

underlying language L, we form the Herbrand base BP of P

as defined in Example 2.3. Then a two-valued interpretation

or simply an interpretation for P is a mapping from BP to

the classical, or two-valued, truth set ftrue, falseg. Such an

interpretation gives a truth value to each ground atom in L
and extends, in the usual way, to give truth value to any

closed well-formed formula, including clauses. Moreover,

each interpretation can be identified with the subset of BP on

which it takes the value true. Thus, the set IP of all interpret-

ations will be naturally identified with the power set of BP; it

therefore carries the structure of a complete lattice (and a

domain) under the order of set inclusion. In particular, a

model for P is an interpretation I for P such that all clauses

in P evaluate to true in I. Of course, as already noted,

models are of particular importance in studying the semantics

of P. Since clauses are universally quantified, checking their

truth relative to an interpretation amounts to checking the

truth of all their ground instances in that interpretation. We

denote the set of all ground instances of clauses in P by

ground(P), and it is often this set that one works with, rather

than with P, when discussing questions of a theoretical nature.

A partial interpretation or three-valued interpretation I is a

mapping from BP to the truth set ftrue (t), false (f), undefined

(u)g and can be identified with a pair (Iþ, I2) of disjoint

subsets of BP. Given a partial interpretation I ¼ (Iþ, I2),

atoms in Iþ carry the truth value true in I and atoms in I2

the value false in I. Atoms which are neither in Iþ nor in I2

carry the truth value undefined. Partial interpretations are

interpreted in one of the standard three-valued logics such as

Kleene’s strong three-valued logic, which tells one how the

undefined value, u, relates to the other truth values under con-

junction, disjunction and negation; see [21, 22, 66]. Once this

is done, a truth value can again be given to any ground formula

in L. A partial interpretation (Iþ, I2) is called total if Iþ <
I2 ¼ BP, and such an interpretation can be naturally identified

with an element of IP. The set IP,3 of all partial interpretations

is a complete partial order, indeed complete semilattice, and a

domain under the ordering: (I1
þ, I1

2) � (I2
þ, I2

2) if and only if

I1
þ#I2

þ and I1
2#I2

2, where we take the bottom element to be

? ¼ (Ø,Ø). Total interpretations are in fact maximal elements

in the ordering just given.

3.3. Some operators determined by logic programs

There are various operators associated with a logic program P.

They map interpretations to interpretations, and their import-

ance lies in the fact that the various canonical models for P

can be realized as fixed points of one or other of them. We

discuss two of these operators now and others later on. The

first, and perhaps the most important, is the immediate conse-

quence operatoror single-step operator TP : IP! IP due to

Kowalski and van Emden, see [17, 67, 68], defined as

follows: TP (I) is the set of all A [ BP such that there is a

ground instance A L1, . . . , Ln of a clause in P with head

A satisfying IoL1^. . .^Ln, where IoL1^. . .^Ln means that

L1^. . .^Ln is true in I.

The operator TP has many important and pleasing proper-

ties, and we summarize some of these next. First, if P is

definite, then TP is continuous on IP. Therefore, it has a least

fixed point lfp (TP) given by Kleene’s theorem. Moreover,

one has the following theorem due to Apt, Kowalski and

van Emden, see [67, 68] which, amongst other things, gives

a form of the Gödel completeness theorem relating soundness

and completeness for definite logic programming systems, see

also [17].

THEOREM 3.1. For any definite logic program P, we have lfp

(TP) ¼ TP " v¼ fA [ BP j PrAg ¼ fA [ BP j PoAg ¼ MP.

Thus, provability (r) from P of a ground atom A relative to

SLD-resolution coincides with it being a logical consequence

(o) of P, and both coincide with truth relative to the least

Herbrand model MP, which is the intersection of all Herbrand

models for P. Moreover, because of continuity, the iterates TP
n

of TP close off at v, which gives us the means, in principle, of

finding MP. For these reasons, MP is, for definite programs P,

usually taken to be the standard model for P or, in other words,

the programmer’s intended meaning for P, as mentioned

earlier.

Next, for any normal logic program, whether definite or not,

TP has the property that an interpretation I is a (two-valued)

model for P precisely when TP (I)#I or, in other words, pre-

cisely when I is a pre-fixed point of TP. The fixed points of TP

are of particular importance since they are the supported

models or models for the Clark completion of P; see

[17, 69]. It is argued in [18] that they are the appropriate

models to consider, since an atom A belongs to such a

model M if and only if there is a clause A body in ground
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(P) with body true in M, and hence the program itself supports

the belief that A is true in M. Thus, the supported model

semantics or Clark completion semantics is important, and it

can be argued that it is ‘the’ standard model for P or the

model best able to capture the intended meaning of P.

Therefore, it can be further argued that the fixed points of TP

are fundamental in studying the semantics of logic program-

ming systems. Yet a major problem arises: if P is not definite,

then TP is not monotonic as can easily be seen by considering

the program with the two clauses p(0) and p(s(x)) :p (x),

which computes the even natural numbers. Therefore, the

Knaster–Tarski theorem is not in general applicable as a

means of finding fixed points, and this is the primary reason

for our interest in alternative methods, such as those based

on generalized distance functions, for finding fixed points of

(non-monotonic) operators.

The second operator we consider is due to Fitting [66] and is

the three-valued operator FP defined as a mapping on partial

interpretations K ¼ (Kþ, K2) as follows. We set FP (K) ¼

(Iþ, I2), where Iþ is the set of all A [ BP with the property

that there exists a clause A body in ground (P) such that

body is true in K, and I2 is the set of all A [ BP such that

for all clauses A body in ground (P) we have that body

is false in K, truth and falsehood being taken here relative to

a three-valued logic as mentioned earlier.

We note that FP is always monotonic, but not necessarily

continuous. Thus, the Knaster–Tarski theorem applies and

shows the existence of a least fixed point of FP, although

we may really have to iterate into the transfinite to reach it

in the absence of continuity. It was shown in [66], and in

[21, 22, 38] for acceptable programs, how fixed points of FP

relate to those of TP. We see later in Section 5 that the

fixed-point theorems of [50, 52] can sometimes be applied

to show uniqueness of the fixed points of FP which, inciden-

tally, cannot be shown by means of the Knaster–Tarski

theorem, as already noted.

4. ACCEPTABLE AND F*-ACCESSIBLE

PROGRAMS

The use of ultra-metrics in algebra and in logic is

well-established; see, for example, [70, 71] for such appli-

cations within valuation theory and algebraic geometry. In

the opposite direction, see [72] for some interesting decidabil-

ity and model-theoretic results relating to ultra-metrics arising

in the context of (i) fields with valuations and (ii) sets Al of

mappings from ordinals l to sets A. However, metric and

ultra-metric methods were introduced to logic programming

by Fitting in [27] in analysing the semantics of the acceptable

programs of Apt and Pedreschi [38] (these programs are

important in termination analysis). Therefore, the fixed-point

theorem employed in [27] is the Banach contraction

mapping theorem. This is rather restrictive in so much as it

is often useful to make transfinite constructions and

definitions, although these may well be shown later to close

off at v, as this is important for computability purposes. In

[22, 61], the present authors, inspired by the properties of

acceptable programs, defined certain classes of programs,

called F-accessible and F*-accessible programs, which

have the property that each program in the class has a

unique supported model, and showed that it follows from

this property that all the different semantics mentioned in

Section 3 in fact coincide. These latter classes of programs

were defined in terms of various three-valued logics and

include the acceptable programs and certain other important

classes, and are also known to be computationally adequate;

they therefore are interesting in providing a semantically

unambiguous setting with enhanced syntax and full

computational power.

The proof of the existence and uniqueness of the supported

models we gave in [22] for the F-accessible and F*-accessible

programs was by means of three-valued logics. In this section,

we give an alternative proof based on Theorem 2.10 thereby

illustrating the use of d-gums in logic programming semantics.

The following definition is taken from [38], where it was

employed in defining acceptable programs; we will use it

here as the basis of the more general F*-accessible programs.

DEFINITION 4.1. Let P be a logic program, and let p and q be

predicate symbols occurring in P.

(1) p refers to q if there is a clause in P with p in its head

and q in its body.

(2) p depends on q if (p,q) is in the reflexive, transitive

closure of the relation refers to.

(3) NegP denotes the set of predicate symbols in P which

occur in a negative literal in the body of a clause in P.

(4) Neg*P denotes the set of all predicate symbols in P on

which the predicate symbols in NegP depend.

(5) P2 denotes the set of clauses in P whose head contains

a predicate symbol from Neg*P.

By the term level mapping for P, we mean a function l : BP

! g, where g is an arbitrary (countable) ordinal .1; given a

level mapping l, we always assume that l has been extended to

all literals by setting l (:A) ¼ l (A) for each A [ BP. If l (A) ¼

n, we say that the level of A is n or that A has level n. Level

mappings have been used in logic programming in a variety

of contexts including problems concerned with termination,

and with completeness, and also to define (generalized)

metrics; see [27, 31, 38, 45]. We will see in Section 5 how

they can be used to define generalized ultra-metrics in the

sense of Definition 2.12. However, one of their main uses is

in providing syntactic conditions on programs under which a

satisfactory standard model can be obtained, and an instance

of this usage is given in the next definition.

DEFINITION 4.2. A program P is called F*-accessible if and

only if there exists a level mapping l for P and a model I for P
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which is a supported model for P2, such that the following

condition holds. For each clause A L1, . . . , Ln in

ground(P), we either have IoL1^. . .^Ln and l (A) . l (Li)

for all i ¼ 1, . . . , n or there exists an i [ f1, . . . , ng such

that IpLi and l (A) . l (Li).

The F*-accessible programs are a common generalization

of acyclic, locally hierarchical and acceptable programs; see

[38, 73]. As already noted, the present authors gave a

unified treatment in [22] of these classes of programs by

means of operators in various three-valued logics.

For the remainder of this section, let P denote a

F*-accessible program which satisfies the defining conditions

with respect to a model I and a level mapping l : BP! g. As in

Section 2, we let Gg denote the set f22a
ja � gg ordered by

22a , 22b if and only if b , a, and here denote 22g by 0.

For J, K [ IP, we now define d (K, K) ¼ 0, and d (J, K) ¼

22a, where J and K differ on some atom A [ BP of level a, but

agree on all ground atoms of lower level. It was shown in [25]

that (IP, d) is a spherically complete generalized ultra-metric

space. For K [ IP, we denote by K0 the set K restricted to

the predicate symbols in Neg*P. By analogy with [27], we

now define for all J, K [ IP: d1 (J, K) ¼ d(J0, K0) and d2

(J, K) ¼ d (JnJ0, KnK0). Next, we define the function f : IP

! G by f (K) ¼ 0 if KnK0#I and otherwise f (K) ¼ 22a,

where a is the smallest ordinal such that there is an atom A

[ KnK0 with l (A) ¼ a and A � I. Finally, we define

@(J, K) ¼ maxfd1 (J, I), d1 (K, I), d2 (J, K), f (J), f (K)g for

all J, K [ IP.

PROPOSITION 4.1. The space (IP, @) is a spherically complete

d-ultra-metric.

Proof. That (IP, @) is a d-ultra-metric space we leave to the

reader. For spherical completeness, let (Ba) be a (decreasing)

chain of balls in IP with centres Ia. Let K be the set of all atoms

which are eventually in Ia, that is, the set of all A [ BP such

that there exists some ordinal b with A [ Ia for all a � b.

We show that for each ball B22a (Ia) in the chain we have d

(Ia, I)� 22a, which suffices to show that K is in the intersec-

tion of the chain. Indeed, it is easy to see by the definition of @

that all Ib with b . a agree on all atoms of level less than a.

Hence, by definition of K we obtain that K and Ia agree on all

atoms of level less than a, as required. A

The next proposition is analogous to [27, Proposition 7.1].

PROPOSITION 4.2. Let P be F*-accessible with respect to a

level mapping l and a model I. Then for all J, K [ IP with

J =K we have @(TP (J),TP (K)) , @(J, K). In particular, the

following results hold.

(i) d1 (TP (J), I) , d1 (J, I), whenever d1 (J, I) = 0, and d1

(TP (J), I) ¼ 0 whenever d1 (J, I) ¼ 0.

(ii) f (TP (J)), f (TP (K)) , @(J, K).

(iii) d2 (TP (J), TP (K)) , @(J, K).

Proof. It suffices to prove properties (i)–(iii). For

convenience, we identify Neg*P with the subset of BP

containing predicate symbols from Neg*P.

(i) First note that d1 (TP (J), I) ¼ d1 (TP 2 (J), I) since d1

only depends on the predicate symbols in Neg*P. Let d

(J, I) ¼ 22a. We show that d (TP 2 (J), I) � 22(aþ1).

We know that J0 and I0 agree on all ground atoms of

level less than a and differ on an atom of level a. It

suffices to show now that TP 2 (J)0 and I0 agree on all

ground atoms of level �a.

Let A be a ground atom in Neg*P with l (A) � a and

suppose that TP2 (J) and I differ on A. Assume first that

A [ TP 2 (J) and A � I. Then there must be a ground

instance A L1, . . . , Lm of a clause in P2 such that

JoL1^. . .^Lm. Since I is a fixed point of TP2, and

using Definition 4.2. there must also be a k such that

I p Lk and l (Lk) , a. Note that the predicate symbol

in Lk is contained in Neg*P. So we obtain I p Lk,

J o Lk and l (Lk) , a, which is a contradiction to the

assumption that J and I agree on all atoms in Neg*P
of level less than a. Now assume that A [ I and A �
TP2 (J). It follows that there is a ground instance A

 L1, . . . , Lm of a clause in P2 such that

IoL1^...^Lm and l (A) . l (L1), . . . , l (Lm) by Defi-

nition 4.2.. But then J o L1^. . .^Lm since J and I

agree on all atoms of level less than a and conse-

quently A [ TP2 (J). This contradiction establishes

the first statement in (i). The second statement in (i)

follows by a similar argument, noting that in this

case J0 ¼ I0.

(ii) It suffices to show this for K. Assume @(J, K) ¼ 22a.

We show that f (TP (K)) � 22(aþ1), for which in turn

we have to show that, for each A [ TP (K) not in

Neg*P with l(A) � a, we have A [ I. Assume that A

� I for such an A. Since A [ TP (K), there is a

ground instance A L1, . . . , Lm of a clause in P

with KoL1^. . .^Lm. Since A � I, there must also be

a k with IpLk and l(A) . l(Lk) by Definition 4.2. If

the predicate symbol of Lk belongs to Neg*P then,

since K and I agree on all atoms in Neg*P of level

less than a, we obtain K p Lk which contradicts

KoL1^. . .^Lm. If the predicate symbol in Lk does

not belong to Neg*P, then Lk is an atom and since f

(K) � 22a we obtain I o Lk, which is again a

contradiction.

(iii) Let @(J, K) ¼ 22a, and let A be not in Neg*P with l

(A) � a and A [ TP (J). By symmetry, it suffices to

show that A [ TP (K). Since A [ TP (J), we must

have a ground instance A L1, . . . ,Lm of a clause in

P with JoL1^. . .^Lm. If IoL1^. . .^Lm, then l

(Lk) , l(A) � a for all k, and since J and K agree on

all atoms of level less than a we obtain

K o L1^. . .^Lm, and hence A [ TP (K). If there is
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some Lk such that I p Lk, then without loss of general-

ity l (Lk) , l(A) � a by Definition 4.2. Now, if the pre-

dicate symbol of Lk belongs to Neg*P then, since d1

(J, I) � 22a, we obtain from J o Lk that I o Lk,

which is a contradiction. Also, if the predicate

symbol of Lk does not belong to Neg*P, then Lk is an

atom and since f (J) � 22a, we obtain I o Lk, again a

contradiction. This establishes (iii) and completes the

proof. A

We are now in a position to prove the main result of this

section.

THEOREM 4.1. Let P be a F*-accessible program. Then P

has a unique supported model.

Proof. By Proposition 4.2, TP is strictly contracting with

respect to @, which in turn is a spherically complete

d-ultra-metric by Proposition 4.1. So, by Theorem 2.10, the

operator TP must have a unique fixed point, yielding a

unique supported model for P. A

5. LOCALLY STRATIFIED PROGRAMS

We now turn our attention to the class of locally stratified

programs due to Przymusinski [19], beginning with their

definition.

DEFINITION 5.1. Let P be a normal logic program, let

l : BP! g be a level mapping and let A A1, . . . ,

Ak1
, 2B1,. . .2Bl1

denote a typical clause in ground (P).

Then P is called:

(1) locally stratified (with respect to l) if the inequalities

l(A) � l(Ai) and l(A) . l(Bj) hold for all i and j in

each clause in ground (P),

(2) locally hierarchical (with respect to l) if the inequalities

l(A) . l(Ai), l(Bj) hold for all i and j in each clause in

ground (P).

Notice the use, again, of the level mapping involved in this

definition as a syntactic device. This time, the stated con-

ditions prevent ‘negation through recursion’, that is, they

prevent an atom occurring in the head of a clause and simul-

taneously occurring negated in its body. It is this fact which

permits the demonstration of the existence of a satisfactory

standard model and also the derivation of its properties.

The locally stratified programs form one of the most important

classes in logic programming and are in fact a generalization of

the stratified programs defined by Apt, Blair and Walker in [18].

Przymusinski gave a non-constructive, and fairly involved, argu-

ment to show that each locally stratified program has a unique

natural, supported model, known as the perfect model, preferable

to any other model in a precise sense defined in [19]; constructive

proofs of its existence and properties were given in [25, 74]. Of

course, the locally hierarchical programs form a strict subclass of

the locally stratified programs. Furthermore, it is known that

many programs used in practice fall into the former class (of

locally hierarchical programs), that each program in it has a

unique supported model [25, 74] and that this class is computa-

tionally adequate, provided that the safe use of cuts is allowed

[26]. We will sketch here how the fixed-point theory of these

classes of programs can be treated by means of the theorems in

Section 2.2.2, referring the reader to [54] for full details.

In order to proceed, we next cast IP into a generalized ultra-

metric space. We do this by first viewing IP as a domain, as in

Example 2.3, and then forming the rank function given by Defi-

nition 2.15. Specifically, suppose that P is a logic program

which is locally stratified with respect to the level mapping

l:BP! g, as in Definition 5.1. Then, as noted in Example 2.3,

IP can be thought of as a domain whose compact elements are

the interpretations corresponding to the finite subsets of BP.

Now form the set Gg as in Section 2.2.2, and define the rank

function rl induced by l by setting rl(I) ¼ maxfl(A); A [ Ig for

every finite I = Ø and take rl (Ø) ¼ 0. Denote the generalized

ultra-metric resulting from rl by dl. Then, by Theorem 2.8, we

see that (IP, dl) is a spherically complete generalized ultra-

metric space.

We now have the following result.

THEOREM 5.1. Let P be a normal logic program which is

locally stratified with respect to a level mapping l. Then P has

a supported model. If, further, P is locally hierarchical with

respect to l, then P has a unique supported model.

Proof. It was shown in [53] that TP is contracting since P is

locally stratified, and that there cannot exist a ball Bp(J) in

(IP, dl) such that d (I, TP (I)) ¼ p for all I [ Bp(J). Therefore,

it follows from Theorem 2.7 that TP has a fixed point and

hence that P has a supported model.

Next, if P is locally hierarchical, it was shown in [25] that

TP is strictly contracting. Therefore, by Theorem 2.7 again,

it follows that TP has a unique fixed point and so P has a

unique supported model, as required. A

In the same way, the domain IP,3 can be turned into a gener-

alized ultra-metric space and we obtain a result corresponding

to Theorem 5.1. In particular, we see that for locally hierarch-

ical programs P, both FP and the related operator FP*, defined

in [22], have a unique fixed point. Programs for which FP*

possesses a unique fixed point (the F*-accessible programs)

have already been observed to be interesting and important

insomuch as many of the standard models for them coincide,

and therefore, for such programs, the various ways of

viewing non-monotonic reasoning coincide. The locally hier-

archical programs have this property and so, too, do the accep-

table programs of [38]. Classes of programs with this property

have elsewhere been called unique supported model classes by

the authors, and characterized in [21, 22] in terms of the fixed

points of FP* in various three-valued logics. Theorem 5.1, or

rather its (sketch) proof as given here, shows that generalized
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ultra-metric methods and Theorem 2.7 are powerful tools in

carrying out investigations of this type.

6. THE STABLE MODEL SEMANTICS

We finally consider briefly, from our current point of view, the

well-known and important stable model semantics of Gelfond

and Lifschitz; see [65].

When studying non-monotonic reasoning and deductive

databases, it is often convenient to consider extended disjunc-

tive logic programs and to allow two different kinds of

negation. One of these is interpreted as classical negation

and the other is interpreted procedurally as negation as

failure; see [17] for this notion. We introduce the following

terminology following [29, 54, 65] closely.

Let L denote a first-order language. A literal L in L is called

ground if it contains no variable symbols. We denote the set of

all ground literals in L by Lit. A rule r in L is a universally

quantifed expression of the following type:

L1 _ � � � _ Ln  Lnþ1 ^ � � � ^ Lm ^ not Lmþ1 ^ � � �

^ not Lk;

where each Li [ Lit. Given such a rule r, we define Head(r) ¼

fL1, . . . , Lng, Pos(r) ¼ fLnþ1, . . . , Lmg and Neg(r) ¼ fLmþ1,

. . . ,Lkg. The keyword not may be interpreted as negation as

failure. An (extended disjunctive) program P is a set of

(disjunctive) rules. The term ‘extended’ refers to the fact

that two kinds of negation are employed, and the term

‘disjunctive’ refers to the appearance of more than a single

literal in the heads of rules and to the disjunction between

them. A normal logic program can therefore be understood

as a special type of extended disjunctive program (in which

‘:’ is replaced by ‘not’).

We note that a program is usually defined as a finite set of

rules as above, but the literals Li are allowed to be non-ground.

However, as with a normal logic program, we can always

replace a program by the set of all ground instances of its

rules. This will yield an infinite set if function symbols are

present, and a finite set otherwise (in which case P is called

an extended disjunctive database). Either way, in the sequel

we assume that all the rules in an extended program are

ground. Finally, a rule r, as above, will usually be written in

the form

L1; . . . ; Ln  Lnþ1; . . . ;Lm;not Lmþ1; . . . ;not Lk:

Given a set P of ground rules as just defined, it is possible to

define a multivalued version TP of the single-step operator, to

define supported models for P, and to show that these coincide

with the fixed points of TP, see [22]. Thus, fixed points of

multivalued mappings and, consequently, corresponding

fixed-point theorems enter very generally into the discussion.

We shall not, however, pursue this line here in complete

generality. Instead, we briefly consider another multivalued

operator which encapsulates a view of non-monotonic reason-

ing due to Gelfond and Lifschitz. This leads to the well-known

concept of stable model, and we show how its existence can be

derived from Theorem 2.5.

In order to describe the stable model semantics or answer

set semantics for programs, we first consider programs

without negation, not. Thus, let P denote a disjunctive

program in which Neg(r) is empty for each rule r [ P.

A subset X of Lit, that is, X [ 2Lit, is said to be closed by

rules in P if, for every rule r [ P such that Pos(r) #X, we

have that Head(r) > X = Ø. The set X [ 2Lit is called an

answer set for P if it is closed by rules in P and satisfies

the following conditions:

(1) if X contains complementary literals, then X ¼ Lit,

and

(2) X is minimal; that is, if A#X and A is closed by rules of

P, then A ¼ X.

We denote the set of answer sets of P by a(P).

Now suppose that P is a disjunctive program that may

contain not. For a set X [ 2Lit, consider the program PX

defined by:

(1) if r [ P is such that Neg(r) > X is not empty, then we

remove r, that is, r � PX, and

(2) if r [ P is such that Neg(r) > X is empty, then the rule

r0 belongs to PX, where r0 is defined by Head(r0) ¼

Head(r), Pos(r0) ¼ Pos(r) and Neg(r0) ¼ Ø.

It is clear that the program PX does not contain not and

therefore a(PX) is defined. Following Gelfond and Lifschitz

[65], we define the operator GL : 2Lit! 22Lit

by GL(X) ¼

a(PX). Finally, we say that X is an answer set or a stable

model for P if X [ a(PX), that is, if X [ GL(X). In other

words, X is an answer set for P if it is a fixed point of the mul-

tivalued mapping GL. Again, we use the notation a(P) for the

set of answer sets of P in the general case.

The following example will help to illustrate these ideas.

EXAMPLE 6.1. Take P as follows:

pð0Þ _ qð0Þ  

pðaÞ _ qð0Þ  qð0Þ ^ not pð0Þ:

If X is any set of literals not containing p(0), then PX is the

program

pð0Þ _ qð0Þ  

pðaÞ _ qð0Þ  qð0Þ;
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and the answer sets of PX are fp(0)g and fq(0)g. Thus, a(PX) ¼

ffp(0)g,fq(0)gg. Since X ¼ fq(0)g is a suitable choice of X in

that it does not contain p(0), we see that X [ a(PX) and

hence that fq(0)g is an answer set for P.

On the other hand, suppose that X is any set of literals which

does contain p(0). In this case, the program PX is as follows:

pð0Þ _ qð0Þ  :

Again, the only answer sets of PX are fp(0)g and fq(0)g.

Since X ¼ fp(0)g is a suitable choice of X in that it does

contain p(0) this time, we see that fp(0)g is an answer set for

P, and indeed is the only one other than fq(0)g. Thus,

a(P) ¼ ffp(0)g, fq(0)gg.

In this example, GL(X) contains the two elements fp(0)g and

fq(0)g for any set X of literals, and hence is multivalued.

Moreover, both fp(0)g and fq(0)g are fixed points of GL.

DEFINITION 6.1. An extended disjunctive program P is

called locally stratified if there exists a mapping (a level

mapping) l : Lit  g, where g is as usual a countable

ordinal, such that for every (ground) rule r of P, where r

has the form

L1; . . . ;Ln  Lnþ1; . . . ; Lm;not Lmþ1; . . . ;not Lk;

the following inequalities hold: l(L) � l(L0) and l(L) . l(L00),

where L, L0 and L00 denote, respectively, elements of

Head(r), Pos(r) and Neg(r).

This definition clearly generalizes Definition 5.1.

We close this section by showing that the existence of a stable

model for a locally stratified extended disjunctive logic program

P follows from Proposition 2.1 and Theorem 2.12, and hence,

ultimately, from Theorem 2.5. Thus, Theorem 2.5 gives a

unified treatment of the fixed-point theory of locally stratified

programs and extended disjunctive programs.

Proceeding along the lines of Definition 2.15, first let Lita
denote the set fL [ Lit j l(L) ¼ ag, where l is the level

mapping with respect to which P is locally stratified. We now

define a generalized metric d on 2Lit as follows: if A ¼ B, then

d (A, B) ¼ 0; if A = B, then d (A, B) ¼ 22a, wherea is the smal-

lest ordinal for which A > Lita = B > Lita. The resulting

generalized metric space turns out to be complete, as shown in

[29]. It is straightforward to see that the GL operator satisfies

the assumptions of Theorem 2.12. Therefore, GL has a fixed

point which is a stable model of P, as required.

7. SOME RECENT DEVELOPMENTS
AND FURTHER WORK

In this section, we make brief comments on a number of recent

and fairly recent applications of distance functions to the

theory of computation, and give some pointers to the literature.

In the main, these have not yet been discussed in the paper,

other than to mention them in the Introduction, and they are,

we believe, areas and applications where promising new

results may be expected. In presenting them, we more or less

follow the order in which we introduced the various distance

functions we have considered.

First, metrics themselves have many more applications in

semantics than we have specifically mentioned earlier; see the

book [13] (or [75] for a summary) for applications to transition

systems, and [76] for applications to Scott’s information

systems, for example. In a rather different direction, we refer

to our own recent and ongoing work in relation to the integration

of logic-based systems and neural networks, in which metrics

play a vital role; see [77–79] for example. Furthermore, the

ideas concerning level mappings and generalized ultra-metrics

discussed here have been taken up in [80, 81] in further develop-

ing logic programming semantics itself.

As far as ultra-metrics are concerned, the references [6–8]

(and the references within these works) contain a comprehensive

account of a mathematical model of cognitive processes in which

a key idea is that of the p-adic hierarchical tree-like space. The

development employs ultra-metrics significantly in, for

example, constructing information models over various tree-like

structures corresponding to ultra-metric topologies. Similar

ideas, namely, that there are natural tree-like structures defined

by ultra-metric topologies are employed in the papers [9, 10].

One of the problems considered in the papers just cited is to

characterize how well time series data can be embedded in an

ultra-metric topology, and this has applications in a number of

areas including unique fingerprinting of a time series. Finally,

we mention some applications of ultra-metrics in bioinformatics

in the papers [11, 12]. In particular, in [11], basic properties of

p-adic numbers are used in a new approach to describing the

main aspects of DNA sequences and the genetic code. A

central role in this is played by an ultra-metric p-adic information

space whose basic elements are nucleotides, codons and genes. It

is shown that genetic code degeneracy is related to the p-adic dis-

tance between codons. It is clear that these all represent

especially interesting application areas for ultra-metric

methods in information processing in which yet more, important

results may be expected.

Turning to quasi-metrics, we mention a number of appli-

cations, as follows. (i) First, in [82], complexity spaces were

introduced in order to study complexity analysis of programs.

These spaces are quasi-metric spaces and have been exten-

sively examined in [82, 83] and later papers; in particular, in

[83] it is shown that O’Neill’s conjecture [59] on the relation-

ship between norms and valuations holds in the context of the

theory of semivaluation spaces. It turns out also that the

weightable quasi-metrics (or partial metrics) are important in

this context, and this fact relates complexity analysis and

denotational semantics nicely. (ii) In [84], quasi-metrics are

used to define abstract interpretations of programs in static

analysis in the sense of Cousot and Cousot. The value d (x,
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y) encodes not only the fact of approximation between x and y,

but also the error introduced by the approximation. For this

reason, d is a quasi-metric, but not a metric: if x approximates

y, it does not follow that y approximates x. In this framework,

Theorem 2.2 is used in place of the Knaster–Tarski theorem.

(iii) In [85], the authors consider the problem of estimating the

probability of accessing objects in replicated databases in

order to minimize overload (and problems related to conflicts

and consistency in the databases) in accessing a given object x

in the database. This is done by introducing a simple ‘prob-

ability of access’ v(x) intended to estimate the probability

that object x will be accessed in a time interval [0, T]. It is

shown, empirically, that v(x) is a good estimator and also

that an appropriate mathematical framework for the theory

is that of a quasi-metric lattice. The latter has the structure

of both a quasi-metric and a lattice satisfying the properties:

d (x_z, y_z) � d(x, y), and d (x^z, y^z) � d(x, y) for all x,

y, z, where _ and ^ denote the lattice operations. (iv)

Another application of ‘quasi-metrics’ to programming

languages is given in [86], but note that the use of the term

quasi-metric in [86] is stronger than ours (axioms (d1), (d2)

and (d4) of Section 2.1 are assumed in [86]). Here, the

authors consider the space of all finite and infinite words

over an alphabet. They consider metrics and (balanced)6

quasi-metrics d, in their sense, defined on this space and

closely related to the well-known Baire metric; see [16].

They establish a fixed-point theorem for mappings f on X,

which satisfy a contraction property on some orbit,7 and

apply it to discuss the average-case analysis of probabilistic

divide and conquer algorithms.

As already noted, the relationship between generalized dis-

tance functions of various types and (Scott–Ershov) domains,

both viewed as abstract models of computation, has been

explored in considerable depth. This is especially so in relation

to attempts to reconcile these two concepts. We mention next

two recent developments in this theme, the first to be found in

[87, 88] and the second in [89].

In [87, 88], partial metrics are shown to be related to the

so-called Martin measurements [90]. The latter were

introduced as a quantitative means of capturing the degree of

indefiniteness of elements in a Scott–Ershov domain

considered as objects arising within a computational approxi-

mation. Several correspondences between partial metrics,

measurements on domains and properties of the respective

spaces are established in [87, 88]. In the same vein, we refer

to the papers [91–93] in which it is shown, respectively, that

all domains can be equipped with a partial metric (obtained

independently in [88]); that partial metrics can be interpreted

as a non-trivial generalization of Birkhoff’s notion of a valua-

tion on a lattice to a semivaluation on a semilattice; and that

many of the important constructions of Matthews for partial

metrics hold for the more general class of partial quasi-metrics.

In [89], generalized ultra-metrics are examined in relation to

domains. The starting point of these investigations is the

formal-balls model of [47], which was introduced as a means

of capturing properties of metric spaces by domain-theoretic

methods, including a proof of the Banach contraction

mapping theorem (Theorem 2.3) by applying Kleene’s

theorem (Page 2). In [23], this approach is employed to give a

proof of Theorem 2.4 (for f strictly contracting) by means of

the Knaster–Tarski theorem (Page 2 also). In [89], the resulting

correspondence between domains and generalized ultra-

metrics is investigated in category-theoretic terms, and it

turns out that many properties of a generalized ultra-metric

can be characterized by conditions on its formal-balls model.

Furthermore, two modified fixed-point theorems related to

Theorems 2.3 and 2.4 are established in [89]. Nevertheless,

the work of [89] casts considerable doubt on the extent to

which these methods can be used for connecting generalized

ultra-metrics and domain theory, and indeed shows that they

are somewhat limited. Despite this, we have been able to

utilize essentially these ideas in a satisfactory way, as can be

seen in the appropriate sections of this paper. The general

question of how one may unify generalized ultra-metrics and

domains, however, remains open.

Finally, in a direction related to those in the previous two or

three paragraphs, Michael Bukatin argues in his PhD thesis,

[94], for an approach to software engineering based on

continuity and approximation and, in particular, continuity

in (constructive and ‘continuous’) mathematics; somewhat

similar thinking (the use of continuous mathematics) underlies

the probabilistic semantics presented in [95]. Bukatin and

J. S. Scott take this idea further in [96] where they propose

to measure the distance between programs. Their framework

is that of domain theory, and they show that a suitable distance

function for measuring the distance between two programs

must be a relaxed metric, a notion very close to partial

metrics (again, the axiom d (x, x) ¼ 0 is dropped) and close

to the valuations of O’Neill [59]. Preliminary results in a

similar theory for logic programs were obtained in [97],

based on the results of [95].

8. CONCLUSIONS

Our discussion shows that there is a considerable number of

different and interesting generalized distance functions

which have significant use within the theory of computation.

In relation to the theory of programming languages, it is true

that the majority of developments and applications

(of denotational semantics, for example) are expressed in

terms of order theory and are therefore qualitative.

Nevertheless, the results discussed here show that the quanti-

tative approach provided by distance functions can be viewed

6See [40] for the definition of this term.
7Specifically, there is a point x [ X and c [ (0,1) such that for all n [ N,

we have d(fnþ1(x),fn(x)) � cd(fn(x), fn21(x)).
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as complementary and orthogonal to the qualitative approach

and indeed is sometimes indispensible, just as it is in

mathematics and computer science in general.
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and Tirado, P. (2007) A Quasi-Metric Lattice Approach for

Access Prediction in Replicated Database Protocols. Technical
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Politécnica de Valencia, Spain.

[86] Rodrı́guez-López, J., Romaguera, S. and Valero, O. (2007)

Denotational semantics for programming languages, balanced

quasi-metrics and fixed points. Int. J. Comput. Math., to appear.

[87] Waszkiewicz, P. (2002) Quantitative Continuous Domains. PhD

Thesis, School of Computer Science, The University of

Birmingham Edgbaston, Birmingham B15 2TT, UK.

[88] Waszkiewicz, P. (2003) Quantitative continuous domains. Appl.

Categ. Struct., 11, pp. 41–67.
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