Reasoning with Fuzzy-£ £ Ontologies Using MapReduce

Zhangquan Zhou and Guilin Qi !

Abstract. Fuzzy extension of Description Logics (DLs) allows the
formal representation and handling of fuzzy knowledge. In this pa-
per, we consider fuzzy-£L£™, which is a fuzzy extension of £L£7.
We first present revised completion rules for fuzzy-££" that can be
handled by MapReduce programs. We then propose an algorithm for
scale reasoning with fuzzy-£ LT ontologies based on MapReduce.

1 INTRODUCTION

The Web Ontology Language OWL has been designed as one of
the major standards for formal knowledge representation and auto-
mated reasoning in the Semantic Web. OWL 2 EL, which is essen-
tially based on description logic ££1, stands out for its positive
complexity results and the sufficient expressive power for many real
ontologies, such as the medical ontology SNOMED-CT. However,
description logics are not able to represent fuzzy information, which
is available in some applications, such as multimedia and bioinfor-
matics. Fuzzy extension of description logics has been proposed to
provide more expressive power. One of the challenging problems of
fuzzy description logics is reasoning with large scale fuzzy ontolo-
gies. Such ontologies can be extracted from different sources, such
as multimedia.

Parallel reasoning is an obvious choice to achieve the scalability
goal. One of the most successful attempts is WebPIE [5], an effi-
cient inference engine for large ontologies under pD* semantics us-
ing MapReduce. This work is further extended in [2] to handle fuzzy
knowledge. In [3] a parallel classification algorithm using MapRe-
duce is given for classical ££T. However, this algorithm is not opti-
mized for implementation and cannot handle reasoning in fuzzy on-
tologies.

In this paper, we consider a fuzzy extension of £V, called fuzzy-
ELT, which is introduced in [4]. Although a polynomial time al-
gorithm is given to classify fuzzy-E£" ontologies, it is not imple-
mented and it may not scale to large ontologies. In order to provide
scalable reasoning in fuzzy-£ £, we consider using parallel reason-
ing techniques based on MapReduce. Since the completion rules for
fuzzy-ELT cannot be handled by MapReduce programs, we revise
some of them and propose a novel algorithm for scale reasoning with
fuzzy-£ L™ ontologies based on MapReduce.

2 PRELIMINARIES

A fuzzy language extending the description logic ££7 is introduced
in [4]. Concepts in fuzzy-£ L™ are defined according to the following
grammar:

1 University of Southeast, China, email: 220111394, gqi @seu.edu.cn

2 University of Shanghai Jiaotong, China, email: liuchang @apex.sjtu.edu.cn

3 University of Wright State, America, email: pascalhitzler,
mutharaju.2 @wright.edu

and Chang Liu ? and Pascal Hitzler and Raghava Mutharaju 3

C,D == T|A|ICND|3r.C

where A ranges over the set of concept names (CN) and r over the
set of role names (RN). A fuzzy-£ L™ ontology is a finite set of fuzzy
general concept inclusions (F-GCls) of the form (C C D, n), where

€ (0,1], and role inclusions (RIs) of the form rio,...,or; C s,
where k is a positive integer. Note that the role inclusions axioms are
not fuzzified in [4]. A polynomial algorithm is given to perform clas-
sification of fuzzy-£L£" ontologies. The algorithm first transforms
the given ontology O into normal form O/, where all concept inclu-
sions are of the form (A1 M ...M Ay C B,n), (A C 3Ir.B,n) or
(3r.B C A, n), and all role inclusions are of the form r1 o r2 C s
or r C s. The normalization can be done in linear time. In the fol-
lowing, we assume that an input ontology O is in normal form. The
algorithm is formulated by two mappings S and R, where S ranges
over subsets of CN x [0, 1] and R over subsets of CNxCN x [0, 1]. In-
tuitively, (B, n) € S(A) implies (A C B, n) and (A, B,n) € R(r)
implies (A C 3r.B, n). The two mappings are initialized by setting
S(A) = {(A,1),(T, 1)} for each class name A, and R(r) = () for
each role name r in the input O. Then the two sets S(A) and R(r)
are extended by applying the completion rules in Table 1 until no
more rules can be applied.

Table 1. Completion rules for fuzzy-£L£+
Rl If <A17ﬂ1> € S(X), ..., (A, ny) € S(X),
(Ap ... AEBk)G(’)and
(B, m) gé S(X), where m = min (n1, ..., n, k)
thenS(X) = S(X) U {(B,m)}, where m = min (n1, ...,n;, k)

R2 If(A,n)e€ S(X),(AC Ir.B,k) € O,and

(X, B, m) ¢ R(r), where m = min (n, k)

then R(r) := R(r) U {(X, B, m)}, where m = min (n, k)
R3 If(X,Y,n1) € R(r), (A, ng) e S(Y),

S
(3r.AC B,n3) € O, and

(B,m) ¢ S(X), where m = min (n1, n2,n3s)

then S(X) := S(X) U {(B,m)}, where m = min (n1, n2,n3s)

R4 If(X,Yn)€R(r),rCs€ O,and (X,Yn) & R(s)
then R(s) := R(s) U{(X,Y,n)}

R5 If(X,Y,n1) € R(r),(Y,Z,n2) € R(s),rosCt € O,and
(X,Z,m) ¢ R(t), where m = min (n1,n2)
then R(¢) := R(t) U {(X, Z,m)}, where m = min (n1,n2)

MapReduce is a programming model for parallel processing over
huge data sets [1]. A MapReduce task consists of two phases: a map
phase and a reduce phase. In map phase a user-defined map function
receives a key/value pair and outputs a set of key/value pairs. All
pairs sharing the same key are grouped and passed to reduce phase.
Then a user-defined reduce function is set up to process the grouped
pairs. The grouping procedure between map and reduce phase is
called shuffle that is the key factor to determine the efficiency of a
task. The tradeoff of load overhead, number of tasks and burden over
shuffle leads us to design and optimize our algorithms in following
work.

3 A REASONING ALGORITHM FOR
Fuzzy-£ LT USING MAPREDUCE

Since R2 and R4 have only one joint in their preconditions, they can
be directly handled by MapReduce programs. The rest of rules R1,
R3 and RS have more than one joints in the preconditions, so they
need to be modified. We give revised fuzzy-£L™ rules in Table 2.

Table 2. Revised fuzzy-£LT rules

Key [Completion Rule For MapReduce
If (A1,n1) € S(X) and
A1 R1-1 (Al MAg C B,n2> €O
then P(X) := P(X) U {(A2,B,m)},
where m = min(ny,ns)
If (A,n1) € S(X)and
A R1-2 ((A,B,n2) € P(X)or (AL B,na) € O)
then S(X) = S(X) U {(B,m)},
where m = min(ni,ng)
If (A,n1) € S(X)and (AC Ir.B,n2) € O
A R2 then R(r) := R(r) U {{X,B,m)},
where m = min(ni,ng)
If (X,Y,n1) € R(r)and (Ir.AC B,n3) € O
r R3-1* thenQ(X) = Q(X) U {(Y,; A, B,m)},
where m = min(ni,ng)
If (A,n1) € S(Y) and
Y(orA) | R3-2* (Y, A, B,n1) € Q(X)
then S(X) := S(X) U {(B,m)},
where m = min(ni,ng)
r R4 If(X,Y,n) € R(r)andr Cs € O
then R(s) := R(s) U {(X,Y,n)}
If (X, Z,n1) € R(r),(Z,Y,n2) € R(s) and
Z R5 rosCteO
then R(t) := R(t) U {{X,Y,m)},
where m = min(ni,ng)

We adopt the mapping P introduced in [3] to split R1 into R1-1
and R1-2. (A, B,n) € P(X) means that if (A,m) € S(X) then
(B, k) € S(X), where k = min(n, m). In other words, P(X) con-
tains the intermediate or incomplete derived information that is used
in R1-2 to complete the inference task of R1. Initially, P(X) is set to
() for each X. For R1-1, we should take another normalization step:
each axiom of the form (A:M...NA, C A, k) withn > 2 is replaced
by <A1 |_|A2 E Nl, k‘>, <N1 |_|A3 E NQ, k>,..., <Nn_2mAn E A, k‘>,
where all N;(z = 1,...,n — 2) are newly introduced concept names
which will be ignored in the final knowledge base and does not
change the subsumption hierarchy between concept names of the
original ontology. The axiom of the form (A C B, k), that is when
n = 1, is covered by R1-2 alone.

The modification of R3 given in [3] results in expansion of the
original ontology O, which is not expected since the added informa-
tion are trivial in final results. Inspired by the introduction of map-
ping P, we introduce a new mapping @ and replace R3 with R3-1*
and R3-2" (here we use the symbol * to show the difference with
modified rules of R3 given in [3]). This treatment avoids modifica-
tion of input ontology O. @ records the intermediate information
of R3. (Y, A, B,n) € Q(X) means that if (A, m) € S(Y") holds
then (B, k) € S(X) should be added into the final knowledge base,
where k = min(n, m). Q(X) is Initially set to () for each X.

Unlike the work presented in [3], we keep R5 unmodified and just
parallelize the axioms of the form (X,Y,n) € R(r) into different
nodes and load the axioms of property chain into memory to com-
plete the application of rule RS. This is based on the observation that
the number of role inclusion axioms of the formr C sorros C ¢
is much less than that of the concept inclusion axioms in real ontolo-
gies such as SNOMED-CT. This treatment helps reduce the numbers

of MapReduce tasks.

We further discuss the rationales behind these rules. Rules R2, R4
and R5 are almost unchanged except the preconditions like (B, m) ¢
S(X) or (X,B,m) ¢ R(r) are omitted, as they are only used for
termination judgment. Since we will consider the termination condi-
tion in our reasoning algorithm, there is no difference between these
rules in Table 1 and Table 2. Rule R1 (resp. rule R3) is replaced by
RI1-1 and R1-2 (resp. R3-1* and R3-2"). The outputs of R1-1 (resp.
R3-17%) are only used in the precondition of R1-2 (resp. R3-2%), so
it does not have any effect on final results. The algorithm terminates
when there is no more conclusions obtained from any rule, that is a
fix point is reached.

We give our reasoning algorithm based on the revised fuzzy-£L£
rules. The algorithm first transforms all input axioms to normal forms
and initializes .S, R, P and (). The main part of the algorithm consists
of two phases:

e Computes the complete role inclusion closure (RIC), which
stands for the reflexive transitive closure of the axiom r» C s
in O. This work can be done in memory.

e Iteratively applies the fuzzy-£L' rules until a fix point is
reached. a MapReduce task is used to delete the duplicates and
get the greatest fuzzy value for an axiom obtained from com-
pletion rules.

The application of each rule can be handled by a MapReduce task.
In map phase, each axiom which satisfies one of the preconditions of
the rule is given as output in form of a key/value pair , where key is
concept or role as shown in the left part of Table 2. All axioms having
the same key are grouped from different map nodes and passed to one
reduce node. The conclusions of the rule can be achieved in reduce
phase. Since we can load the axioms of property chain into different
nodes, the application of R5 can be done in one MapReduce task. We
use RIC in the reduce phases of R2 and RS to complete the inference
task of R4, thus R4 can be omitted from iteration.

4 CONCLUSION

In this paper, we proposed a MapReduce algorithm of classification
for large-scale fuzzy-EL£™T ontologies. For this purpose, we revised
completion rules for fuzzy-£ £ that can be handled by MapReduce
programs. We introduced a new mapping @ for R3 to keep the input
ontology unmodified and this algorithm needs less MapReduce tasks
than that of [3] due to the treatments for RS and R4, which may result
in a better performance. Some optimizations are also introduced in
our work for the two mappings P and (). Moreover, our algorithm
can handle fuzzy knowledge. Our next step is to implement this al-
gorithm using Hadoop framework for evaluation and practical use.

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat, ‘MapReduce: Simplified Data Pro-
cessing on Large Clusters’, in OSDI, pp. 137-150, (2004).

[2] Chang Liu, Guilin Qi, Haofen Wang, and Yong Yu, ‘Large Scale Fuzzy
pD* Reasoning Using MapReduce’, in International Semantic Web Con-
ference (1), pp. 405-420, (2011).

[3] Raghava Mutharaju, Frederick Maier, and Pascal Hitzler, ‘A Mapreduce
Algorithm for £ L1, in Description Logics, (2010).

[4] Giorgos Stoilos, Giorgos B. Stamou, and Jeff Z. Pan, ‘Classifying Fuzzy
Subsumption in Fuzzy-£ L1, in Description Logics, (2008).

[5] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen,
and Henri E. Bal, ‘OWL Reasoning with WebPIE: Calculating the Clo-
sure of 100 Billion Triples’, in International Semantic Web Conference
(1), pp. 213-227, (2010).

