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1 INTRODUCTION

One of the key objectives of research in Artificial Intelligence (AI) from its very
beginning is the ability to represent information on a domain of interest in a
compact way and, at the same time, to derive implicit information from this
representation. This field in AI research is known as Knowledge Representation
and Reasoning (KRR).

Description Logics (DLs) [Baader et al., 2007a; Baader et al., 2007b; Calvanese
et al., 2001; Hitzler et al., 2010] emerged within KRR research from early network-
based approaches, by building on their structured/taxonomic organization of a
terminology of a domain of interest, but equipping it with a well-understood logic-
based semantics. In fact, concepts (classes of objects) can be interpreted as unary
predicates and roles (properties linking such classes) as binary predicates, and
complex expressions can be built using logic-based constructors in an inductive
way.

This formal underpinning proves very useful when developing inference services
in Description Logics, all the more so, as it turns out that the full expressive
power of first-order logic is often not required. Rather, a decidable fragment of
it usually suffices, which paves the way for efficient reasoning procedures tailored
to the particular language, i.e., to the necessary complex constructors, and to the
concrete KRR application in mind.

Overall, the research in Description Logics and the development of KRR systems
that build on DLs follow a number of important principles that distinguish the
area from others in KRR research.

First, as already pointed out, the terms in the knowledge base are organized in
a taxonomic, ontological way and the semantics based on first-order logics strictly
adheres to the so-called open world assumption, in which inferences can only be
drawn based on the content explicitly present in the knowledge base. This makes
DLs particularly suitable for applications where these properties are beneficial or
even required, such as modeling ontologies in the Semantic Web (cf. the corre-
sponding chapter in this volume).

Second, as first introduced in [Brachman and Levesque, 1984], a crucial idea pur-
sued in DL research is the trade-off between the expressive power of the language
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(given the provided complex constructors) and the computational complexity of
reasoning in that language. In this sense, one has to balance the admitted com-
plex constructors for an application domain w.r.t. what is expressible and how
fast inferences can be obtained. One should note here, that the aim is always to
obtain a balance in which reasoning tasks are at least decidable, (independently of
the concrete computational complexity), unlike other KRR formalisms that may
trade decidability for more expressive power.

A third principle is the close connection between theory and practice. This is
witnessed throughout the history of DLs by the mutual direct impact theoretical
research and implementations (driven by actual applications, such as in natural
language processing, database management, medical informatics, and software en-
gineering to name but a few) had on each other.

Illustrating these principles, in this chapter we give an overview of Description
Logics as a KRR formalism, pointing out its historic roots (Sect. 2), its syntax
and semantics (Sect. 3), and algorithmic aspects (Sect. 4). We also discuss recent
developments in DLs (Sect. 5) before we conclude (Sect. 6). Note that the material
presented here is not meant to be exhaustive. More details can be found in [Baader
et al., 2007a; Baader et al., 2007b; Calvanese et al., 2001; Hitzler et al., 2010]. In
particular the DL Handbook [Baader et al., 2007a] offers a very detailed account
on all aspects of theory, implementation, and application of Description Logics.
Furthermore, the chapter Logics for the Semantic Web (in this volume) discusses
Description Logics in the context of the Semantic Web field, which is its currently
most prominent application area.

2 HISTORIC ROOTS

Knowledge Representation and Reasoning as a field became considerably popular
in the early 1970s and a large variety of different approaches emerged, whose un-
derlying motivations and rationales differed substantially. Among these proposals,
logic-based formalisms stem from the idea that a formalization in first-order pred-
icate logic is most suitable due to its generality and highly expressive language.
That, however, also means that reasoning, i.e., the computation of logical deduc-
tions, is in general not decidable, and also usually considerably less efficient than
reasoning in a language that is tailored to the requirements of the application in
mind (see, e.g., [Tsarkov et al., 2004] for a more recent such comparison).

At the same time, a variety of non-logic-based formalisms were introduced.
Common to them is that they were obtained by observing human behavior on
resolving certain tasks or by performing cognitive experiments, and then creating
formal representations that model the observations and emulate intelligent be-
havior. Though based on concrete observations, it was then expected that such
systems would be applicable in general also to other problem domains. Unlike the
logic-based approaches, knowledge representation and reasoning was achieved in a
rather ad-hoc manner driven by the specific needs of an application and therefore
potentially quite different from one application to the other.
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One such early formalism is rule-based expert systems, such as MYCIN that, with
around 450 IF-THEN rules, was able to diagnose blood infections in a similar man-
ner as some experts and better than junior doctors (see [Russell and Norvig, 2010],
also for other systems similar in spirit). These systems were, however, criticized for
their lack of structure in the represented information (see, e.g., [Lehmann, 1992a]),
in the sense that neither the system nor the non-expert human reader had any
way to distinguish whether the encoded information was meaningful or not, so the
entire search space had to be considered when reasoning, and consequently the
re-use of expert systems for other purposes was rather difficult.

So-called network-based structures seemed to offer a solution for providing
the (expert) knowledge in a more structured way. Network-based structures
[Lehmann, 1992a; Lehmann, 1992b] themselves also represent a variety of ap-
proaches, the first being semantic networks [Quillian, 1967], in which a model
of human memory is created by transferring information from a dictionary into
a network of elements and their interconnections. Another prominent approach
are frame systems [Minsky, 1981], in which frames serve as prototypes and rela-
tionships between such frames are expressible. Despite their differences, common
to these early KRR formalisms is the objective to model sets of classes and the
relations between these classes in a structured, taxonomic way.

However, the lack of formal semantics for these network-based structures meant
that structured information could still be ambiguous and was therefore cause for
considerable criticism [Brachman, 1977; Hayes, 1977; Hayes, 1979; Woods, 1975].
For example, a relation between two classes of individuals could mean that either
there is some relation between the individuals of these classes, or that the relation
is true for all individuals of these related classes, or even that the relation only
holds (by default) as long as no knowledge to the contrary is explicitly available
(see also [Brachman, 1983; Palomki and Kangassalo, 2012]). The consequence of
this ambiguity is that many early systems building on network-based structures
behave differently despite appearing to be almost identical.

In [Hayes, 1979], it was realized that a formal semantics could be provided for
frames, basically by relying on first-order predicate logic: sets of individuals can
be represented by unary predicates, and relations between such sets can be repre-
sented by binary predicates. One may wonder now whether this would not result
simply in a logic-based formalism as described before including its disadvantages.
As it turns out, network-based structures do not require the full expressiveness of
first-order logic [Brachman and Levesque, 1985]. It suffices to use fragments of it,
and the varying features in those network-based structures can then be represented
by different (Boolean) constructors resulting in different fragments of first-order
logic. As a consequence, it was recognized that reasoning in such structure-based
representations could be achieved by specialized reasoners without relying on full
first-order theorem provers. In addition to that, it was discovered that there is a
trade-off between the expressive power of the language resulting from the inductive
combination of the admitted language constructors and the computational prop-
erties of that language [Brachman and Levesque, 1984]. This also introduced the
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idea of studying computational properties in terms of computational complexity
to the area of DLs, and mapping out the computational complexity of different
DL languages became one of the driving forces in DL research.

The first system based on such a formal semantics was KL-ONE [Brachman and
Schmolze, 1985], which is based on structured inheritance networks [Brachman,
1977; Brachman, 1978]. As pointed out in [Nardi and Brachman, 2007], KL-ONE

introduced many of the key notions used in Description Logics, for example, the
notions of concepts and roles and the relation between them; “value restriction”
and “number restriction” as new ideas that changed the use of roles when defining
concepts; and the reasoning tasks of subsumption and classification (see Sect. 3 for
explanations on these terms). It also paved the way towards the later distinction
between TBox and ABox and provided a first example of the close connection
between theory and practice in Description Logics. Moreover, KL-ONE triggered
the appearance of so-called hybrid systems, such as KRYPTON [Brachman et al.,
1983], that combined an expressive logic- or rule-based reasoner for the ABox with
a taxonomic reasoner for the TBox, and the examination and evaluation of KL-
ONE and similar systems then would be the starting point for description logic
systems that will be briefly described in Sect. 4.1

3 SYNTAX AND SEMANTICS

Traditionally speaking, a description logic is a decidable fragment of first-order
predicate logic,2 where decidability is obtained by disallowing function symbols
and by suitably restricting the use of quantifiers. We will formally introduce
the description logic ALC (from Attributive Logic with Complement), which is
usually considered to be the most basic description logic. We will also discuss
some prominent extensions and fragments of ALC. While this is only a very brief
introduction, we refer the reader to [Baader et al., 2007a; Baader et al., 2007b;
Hitzler et al., 2010] for further details.

Let NC , NR, and NI be countably infinite sets of concept names, role names, and
individual names, respectively. Concept names are also called atomic concepts or
atomic classes. Complex concepts (in short, concepts) can now be formed according
to the grammar

C ::= > | ⊥ | A | ¬C | C uD | C tD | ∃R.C | ∀R.C,

where A ∈ NC is an atomic concept, R ∈ NR is a role, and C, D are complex
concepts. > is called the top concept, while ⊥ is called the bottom concept. A
general inclusion axiom (GCI ) is a statement of the form C v D, where C and
D are concepts. A TBox is a finite set of general inclusion axioms. An ABox is a

1More details on these DL systems and its predecessors can be found in the chapter on
Description Logic Systems in the DL Handbook [Möller and Haarslev, 2007].

2However, see Sect. 5 for pointers to recent developments, which sometimes incorporate al-
ternative semantics.
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> true
⊥ false
A A(x)
¬C ¬C(x)

C uD C(x) ∧D(x)
C tD C(x) ∨D(x)
∃R.C ∃y(R(x, y) ∧D(y))
∀R.C ∀y(R(x, y)→ D(y))
C v D ∀x(C(x)→ D(x))
C(a) C(a)

R(a, b) R(a, b)

Table 1. Translating description logic axioms into first-order predicate logic.

finite set of concept assertion axioms and role assertion axioms. The former are
of the form C(a), where C is a concept and a ∈ NI , and the latter are of the form
R(a, b), where a, b ∈ NI and R ∈ NR. An ALC knowledge base is a union of an
ABox and a TBox.

In terms of first-order predicate logic, individuals are constants, concepts are
unary predicates, and roles are binary predicates. In fact, every axiom can be
translated directly into first-order predicate logic as indicated in Table 1. Of
course, this translation has to be applied recursively, with suitable variable renam-
ings. ALC indeed inherits its model-theoretic semantics from first-order predicate
logic by means of this translation.

With the semantics in place, a number of standard inference problems can be
defined. Given an ALC knowledge base K, K is called consistent if it has a model.
A concept C is satisfiable w.r.t. K if there exists a model I of K with CI 6= ∅, in
which case we call I a model of C w.r.t. K. Concept C is subsumed by concept D
w.r.t. K, written C vK D, if CI ⊆ DI holds for all models I of K. Two concepts,
C and D are equivalent w.r.t. K, written C ≡K D, if C is subsumed by D and
vice-versa, and disjoint w.r.t. K if CI ∩DI = ∅ for every model I of K. Also, an
individual a is an instance of a concept C w.r.t. K, written K |= C(a), if aI ∈ CI

holds for all models I of K. Likewise, a pair of individuals (a, b) is an instance of
a role r w.r.t. K, written K |= r(a, b), if (aI , bI) ∈ rI holds for all models I of K.

The definition of these reasoning tasks carries over to other DLs. Depending on
the constructors available in a concrete DL, reasoning tasks can be reduced to each
other, which means that quite often only one of those tasks has to be considered
when developing inference engines. This applies for example to ALC [Baader and
Nutt, 2007], and it was shown that reasoning in ALC is decidable [Schmidt-Schauß
and Smolka, 1991], namely when establishing that concept satisfiability in ALC
is PSpace-hard for acyclic TBoxes, i.e., where GCIs do not form cycles, and later
also ExpTime-complete in general [Schild, 1991; Donini and Massacci, 2000]. More
details on complexity and related algorithms follow in Sect. 4.
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≤nR.C Q max card.
∧n+1

i=1 (R(x, yi) ∧ C(yi))→
∨

i,j yi = yj

≥nR.C Q min card. ∃n
i=1yi(

∧
i(R(x, yi) ∧ C(yi) ∧

∧n
j=1 yi 6= yj))

{a} O nominal x = a
R1 v R2 H role incl. R1(x, y)→ R2(x, y)

R1 ◦ · · · ◦Rn v R R role chain (
∧n

i=1 Ri(xi, xi+1))→ R(x1, xn+1))
R−1 v R2 I inverse R1(y, x)→ R2(x, y)

Table 2. More description logic constructs (left column), where Ri and R are
roles, C is a class, a is an individual, and n is a non-negative integer. The second
column gives a letter which is used to identify the construct in the commonly
used description logic naming convention. In addition, the letter S is used as an
abbreviation for ALCH with transitivity axioms of the form R ◦ R v R. The
letter N is the restriction of Q to the case where C = >. N and Q are also called
number restrictions. The last column gives a translation into first-order predicate
logic. Role chains are also sometimes called complex role inclusion axioms.

Further reasoning tasks that are commonly not of the same computational com-
plexity can be obtained as variations of the previous ones. Classification requires
to compute subsumptions between all concept names in the knowledge base. In-
stance retrieval focuses on the finding of instances of a given concept, while in the
realization problem, we are searching for the most specific concept C such that
K |= C(a) for a given individual a. Other non-standard reasoning tasks are also
listed as follows because of their potential interest for applications. Among them
are least common subsumer [Baader et al., 1999b; Küsters and Molitor, 2001],
matching [Baader et al., 1999a; Baader and Küsters, 2000] and approximation
and difference [Brandt et al., 2002]. Also of increasing importance are explana-
tions for entailed information [Horridge et al., 2008] also considered under axiom
pinpointing [Kalyanpur et al., 2005; Meyer et al., 2006; Schlobach et al., 2007;
Baader and Peñaloza, 2010] and conjunctive query answering [Glimm et al., 2008;
Eiter et al., 2009; Calvanese et al., 2013a].

Additional constructs have been introduced for extending ALC while retaining
decidability. We give some of the most important ones in Table 2. In some cases,
additional global syntactic restrictions have to be enforced to retain decidability.

Description logics which contain ALC are very expressive but of high com-
putational complexities (see Section 4). Description logics of comparatively low
computational complexity (e.g., PTime) have also been introduced more recently,
e.g. the logic EL++, which essentially supports only class conjunction (u), the top
concept >, existential quantification (∃R.C), nominals, and role chains [Baader et
al., 2005].

An example for a description logic knowledge base is given in Figure 1. It
describes the formal definition of a so-called ontology design pattern [Gangemi,
2005] for the notion of trajectory. The key idea behind the pattern is that a
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Fix v ∃atTime.TemporalThing u ∃hasLocation.Position

u ∃hasFix−.SemanticTrajectory (1)
Segment v ∃startsFrom.Fix u ∃endsAt.Fix (2)

> v ≤1startsFrom.> (3)
> v ≤1endsAt.> (4)

Segment v ∃hasSegment−.SemanticTrajectory (5)

startsFrom− ◦ endsAt v hasNext (6)
hasNext v hasSuccessor (7)

hasSuccessor ◦ hasSuccessor v hasSuccessor (8)

hasNext− v hasPrevious (9)

hasSuccessor− v hasPredecessor (10)
Fix u ¬∃endsAt.Segment v StartingFix (11)

Fix u ¬∃startsFrom.Segment v EndingFix (12)
Segment u ∃startsFrom.StartingFix v StartingSegment (13)

Segment u ∃endsAt.EndingFix v EndingSegment (14)
SemanticTrajectory v ∃hasSegment.Segment (15)

hasSegment ◦ startsFrom v hasFix (16)
hasSegment ◦ endsAt v hasFix (17)
∃hasSegment.Segment v SemanticTrajectory (18)

∃hasSegment−.SemanticTrajectory v Segment (19)
∃hasFix.Segment v SemanticTrajectory (20)

∃hasFix−.SemanticTrajectory v Fix (21)

Figure 1. Example of a SRIN knowledge base. It encodes a so-called ontology
design pattern for the notion of trajectory. The example is taken from [Hu et al.,
2013].

trajectory consists of a sequence of segments, each of which has a start point and
an end point—these points (together with temporal information) are called fixes
of the segment. Axiom (1) indeed states that each fix has a location and carries
temporal information (both of which are not further specified in this pattern).
Furthermore, a fix is always a fix of some trajectory. Axiom (2) states that each
segment starts from a fix and ends at a fix. The cardinality statements in axioms
(3) and (4) state then that these two roles are functional in the sense that they
represent binary predicates which are in fact functions. Axiom (5) states that
every segment is indeed a segment of some trajectory. Axiom (6) uses role chains
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to ensure that the role hasNext connects each fix in a trajectory directly to the
next fix in the trajectory. Axioms (11) and (12) identify the first and last fix of a
trajectory, while (13) and (14) identify the first and last segment of a trajectory.
The remaining axioms further declare relationships between the concepts and roles,
please refer to [Hu et al., 2013] for further information about this pattern and the
design rationales underlying it. The example can be expressed in the description
logic SRIN : Axioms (2), (11) to (15), (18) and (20) are in ALC, role hierarchies
(H) are used, e.g., in (7) and also transitivity is used in (8) – S stands for ALCH
plus transitivity. Role chains (R) are used, e.g., in (17), as well as cardinalities
(N ) for the functionality statements in (3) and (4), and several occurrences of
inverse roles (I).

4 ALGORITHMIC ASPECTS

In the following, we discuss algorithmic advances, the systems in which these are
applied, and point out important results in computational complexity [Papadim-
itriou, 1994], thus drawing an arc from the first still limited DL systems in the
early 1990s to the systems of today ranging from highly expressive general purpose
DL reasoners to specialized highly efficient reasoners tailored to particular DLs.

In general, many of the first DL systems employ so-called structural subsump-
tion algorithms, in which two descriptions are normalized and then their structure
is compared recursively [Nebel, 1990a; Borgida and Patel-Schneider, 1994]. These
algorithms are in general efficient (polynomial) for a restricted language but in-
complete for more expressive DLs in the sense that not all possible inferences
can be derived, and different systems adopt different positions within that scale.
Namely, CLASSIC [Brachman et al., 1991] permits only a limited set of constructors
such that the computation is efficient and complete, while other approaches, such
as LOOM [MacGregor and Bates, 1987; MacGregor, 1991] and BACK [Nebel and
von Luck, 1988; Peltason, 1991], are incomplete but allow for a more expressive
language. Further investigations revealed that the source of incompleteness in
such systems are certain combinations of constructors in the language and that a
slight increase in the expressiveness could turn reasoning intractable [Brachman
and Levesque, 1985; Nebel, 1990b]. Additionally, all these systems employ rule-
based and/or closed-word reasoning services (mainly on the ABox) which adds
further expressiveness to the system, but causes problems since it deviates from
the formal semantics due to the additions being rather ad-hoc.

Trying to overcome the limitations of these early DL systems led to the develop-
ment of sound and complete algorithms for more expressive DLs and subsequently
to new systems, such as KRIS [Baader and Hollunder, 1991] and CRACK [Bresciani
et al., 1995], that were less efficient but expressive and complete. The basic idea
behind these new tableau-based algorithms [Schmidt-Schauß and Smolka, 1991;
Donini et al., 1991; Hollunder et al., 1990] is trying to find a proof for the unsatis-
fiability of a concept in a constructive way. If the proof fails, then a canonical model
representing a counterexample is obtained. Other reasoning tasks can be achieved
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by reducing them into (un)satisfiability of a concept, which is always possible for
the languages based on ALC in such systems. Initially, the high worst-case com-
plexity (ExpTime in general for ALC alone) was considered problematic [Buchheit
et al., 1993], but empirical analysis revealed that the combinations of constructors
leading to this high complexity are rarely occurring [Nebel, 1990b] and with some
optimizations, the performance of a DL system could be considerably improved
on average [Baader et al., 1992]. Due to their generality, these new systems also
turned out to be useful for comparing and benchmarking other systems [Baader
et al., 1992; Heinsohn et al., 1992].

In general, tableau-based algorithms became the dominating approach in DL
research for a number of reasons. Namely, the approach is rather flexible, i.e.,
a variety of languages can be covered by simply adapting the considered tableau
expansion rules [Hollunder et al., 1990], but also, if necessary, adopting more
advanced mechanisms to ensure termination [Baader, 1991; Buchheit et al., 1993].
It also turned out that, for several DL languages, the worst-case complexity of the
algorithm is not worse than the complexity of deciding satisfiability for the logic
[Hollunder et al., 1990], making tableaux also a widely used tool in complexity
analysis.

At the same time of the appearance of these first tableau-based systems, an
alternative for devising algorithms and complexity analysis was introduced by
establishing relations to other logical formalisms. For example, it can easily be seen
from the translation of DLs to first-order predicate logic in Section 3, thatALC falls
within L2 [Borgida, 1996], the two-variable fragment of first-order predicate logic,
whose decidability was already shown in [Mortimer, 1975]. Not all of the additional
constructors shown in Table 2 can be expressed in L2, but number restrictions can
be expressed in C2, i.e., L2 extended by counting quantifiers, that is also decidable
[Grädel et al., 1997; Pacholski et al., 1997]. However, algorithms building on
this correspondence are in general not optimal, i.e., of higher complexity than
necessary.

This differs for the relation between multi-modal logic and DLs [Schild, 1991]
essentially obtained by viewing ∃R and ∀R as modalities. In fact, ALC is a variant
of the propositional multi-modal logic K, and ALC with transitive closure of roles
[Baader, 1991] matches Propositional Dynamic Logic (PDL). This not only yielded
the precise complexity of so-calledALCtrans (ExpTime-complete [Fischer and Lad-
ner, 1979]), but was also used in subsequent years to transfer known decidability
results from modal logics to DLs [Schild, 1994; De Giacomo and Lenzerini, 1994a;
De Giacomo and Lenzerini, 1994b; De Giacomo and Lenzerini, 1996]. Addition-
ally, there exists a strong similarity between algorithms for deciding satisfiability
in PDL and the tableau-based algorithms in DLs.

As requested by applications and driven by the just mentioned correspondence
and results on tableau-based algorithms for more expressive DLs [Horrocks and
Sattler, 1999; Horrocks et al., 2000], the next generation of tableau-based DL
systems emerged at the end of the 1990s, namely FaCT [Horrocks, 1998], RACE

[Haarslev and Möller, 1999], and DLP [Patel-Schneider, 1999]. These reasoners
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employ considerably more expressive DL languages than before, but the use of
sophisticated optimization techniques [Horrocks, 2007] ensures that these reason-
ers are usable in practice. Continuous further improvements, incorporating and
optimizing more and more expressive features, in particular driven by the W3C
standard OWL for the Semantic Web, led to highly expressive general purpose DL
reasoners based on tableau algorithms incorporating DL languages whose worst-
case is N2ExpTime-complete, such as FaCT++ [Tsarkov and Horrocks, 2006], Pel-
let [Sirin et al., 2007], RACER [Haarslev et al., 2012] or Konclude [Steigmiller et
al., 2013].

In addition, more recently a number of approaches have been developed that
explore alternative algorithms commonly focusing on a restricted language and
aiming at more efficient reasoning. Among them is KAON2 [Motik and Sattler,
2006], which is based on ordered resolution as a means of translating SHIQ DL
knowledge bases into disjunctive Datalog. Datalog-based reasoning has also been
applied to more restricted DL languages, e.g., for DLP [Grosof et al., 2003], the
Horn fragment of DLs, and for EL++ [Krötzsch, 2010]. HermiT [Motik et al.,
2009] builds on a combination of hypertableau and hyperresolution for SHOIQ+.
Another approach is based on type elimination [Rudolph et al., 2008a; Rudolph
et al., 2008b; Rudolph et al., 2012] for SHIQbs extended with DL-safe rules by
basically transforming the TBox into ordered binary decision diagrams and then to
disjunctive datalog. A further line of investigation follows so-called consequence-
based approaches, such as CEL [Baader et al., 2006] for EL++, CB [Kazakov, 2009]
for Horn-SHIQ, ConDOR [Simancik et al., 2011] for ALCH, and ELK [Kazakov
et al., 2011] again for EL++, that classify the entire ontology in a bottom-up-
like fashion achieving considerable better performance than general tableau-based
algorithms.

It can be expected, that further research and new requirements from applica-
tions will push the limits of current DL systems even further. The ORE workshop
[Gonçalves et al., 2013] may be a good indicator for novel tendencies of DL sys-
tems, including currently among others the idea of modular reasoners, as well as
reasoners for mobile devices with potentially limited resources.

5 RECENT DEVELOPMENTS

We briefly discuss some of the recent research developments regarding Descrip-
tion Logics, and give some key pointers to the literature. Our list is by no means
exhaustive; an excellent way to understand the state of the art is to peruse the
proceedings of the annual Description Logic Workshop3 and to follow central Se-
mantic Web outlets, such as the International Semantic Web Conference (ISWC),
the Journal of Web Semantics (Elsevier), or the Semantic Web journal (IOS Press).

One of the major trends which started in the mid-2000s was to look at tractable
(i.e., polynomial time complexity) Description Logics. Obvious important can-

3See http://dl.kr.org/workshops/.
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didates are certain Horn fragments of Description Logics [Grosof et al., 2003;
Krötzsch et al., 2008; Krötzsch et al., 2013], but a major stepping stone was
the discovery of EL++ [Baader et al., 2005], which does allow tractable standard
reasoning tasks, essentially, by excluding the constructors ¬, t, and ∀, and its
application in the life sciences [Baader et al., 2006]. At the same time, the DL-
Lite family of Description Logics emerged [Calvanese et al., 2007], that focuses
on answering queries, basically by translating a conjunctive query by means of
the TBox into an SQL query which can be processed using data base technology.
This has gained further momentum recently with Ontology-based Data Access
(ObDA) [Calvanese et al., 2011; Calvanese et al., 2013b; Kharlamov et al., 2013],
i.e., utilizing an ontology to facilitate data access by providing views and queries
solely based on the language of the ontology. The importance of such tractable
languages is further emphasized by the fact that they were included in the latest
revision of the Web Ontology Language (OWL) standard by the World Wide Web
Consortium (W3C) [Motik et al., 2012; Hitzler et al., 2012].

Rather classical KRR topics make their reappearance in the context of Descrip-
tion Logics, usually driven by the need to enhance expressivity. These include,
e.g., fuzzy and probabilistic logics [Straccia, 2001; Bobillo and Straccia, 2009;
Lukasiewicz and Straccia, 2009; Borgwardt and Peñaloza, 2012; Borgwardt and
Peñaloza, 2013; Klinov and Parsia, 2013], temporal logics [Lutz, 2001; Sturm
and Wolter, 2002; Artale et al., 2013], and inconsistency handling, either through
bugfixing [Huang et al., 2005; Schlobach et al., 2007] or through paraconsistency
[Maier et al., 2013]. Novel is the emphasis on decidability and on complexity is-
sues. In particular the latter serve as a type of a-priori assessment of efficient
implementability, although typical complexities are very high (see Section 4).

Important are also the relationships to other established reasoning paradigms,
in particular the relation to rule-based approaches, see, e.g., [Grosof et al., 2003;
Horrocks et al., 2004; Horrocks et al., 2005; Krötzsch et al., 2013; Krötzsch et
al., 2008; Krötzsch et al., 2011; Krisnadhi et al., 2011] and also the chapter on
Logics for the Semantic Web in this volume. It was also argued very early that
aspects of the closed world assumption would be required for some application
contexts (see, e.g., [Grimm and Hitzler, 2008]), and so non-monotonic extensions
of description logics have been created, mostly based on established approaches in
the KRR field [Baader and Hollunder, 1995; Donini et al., 1998; Donini et al., 2002;
Bonatti et al., 2009; Sengupta et al., 2011], and of course this has led to a combined
study of rules and non-monotonicity in relation to DLs, see, e.g., [Eiter et al., 2008;
Motik and Rosati, 2010; Knorr et al., 2011; Krisnadhi et al., 2011; Knorr et al.,
2012] and the references contained therein.

Concrete domains [Baader and Hanschke, 1991], i.e., the enhanced use of data
types, are also considered important for modeling and have drawn renewed atten-
tion recently [Lutz, 2004; Lutz et al., 2005; Lutz and Milicic, 2007]. Other investi-
gations are driven by Semantic Web-related use cases, in the wake of the adoption
of Description Logics for the W3C Web Ontology Language OWL [McGuinness
and van Harmelen, 2004; Hitzler et al., 2012], e.g., distributed knowledge bases
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[Borgida and Serafini, 2003], justifications for reasoning results [Horridge et al.,
2008; Horridge et al., 2013], or enhancing efficiency by massive parallelization
[Schlicht and Stuckenschmidt, 2010; Mutharaju et al., 2013].

6 CONCLUSIONS

We have introduced Description Logics and described their historic roots. We also
discussed algorithmic aspects from a historic perspective and considered recent
research developments.

Description Logics can be traced back to network-based structures and frames.
Once they became established, their development was distinguished from previous
approaches to KRR by a focus on complexity and decidability. In the wake of
the Semantic Web [Hitzler et al., 2010], and in particular due to their adoption as
one of the main Semantic Web standards [McGuinness and van Harmelen, 2004;
Hitzler et al., 2012]. Research on theoretical and practical aspects of Description
Logics is still going strong, and its development in the near and intermediate future
will likely depend on further developments related to Semantic Web technologies.4
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tion and Difference in Description Logics. In Dieter Fensel, Fausto Giunchiglia, Deborah L.
McGuinness, and Mary-Anne Williams, editors, Proceedings of the Eights International Con-
ference on Principles and Knowledge Representation and Reasoning (KR-02), Toulouse,
France, April 22-25, 2002, pages 203–214. Morgan Kaufmann, 2002.

[Bresciani et al., 1995] Paolo Bresciani, Enrico Franconi, and Sergio Tessaris. Implementing and
Testing Expressive Description Logics: Preliminary Report. In Proc. of the 1995 Description
Logic Workshop (DL’95), pages 131–139, 1995.

[Buchheit et al., 1993] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable
Reasoning in Terminological Knowledge Representation Systems. J. Artif. Intell. Res. (JAIR),
1:109–138, 1993.

[Calvanese et al., 2001] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Daniele Nardi. Reasoning in Expressive Description Logics. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 1581–1634. Elsevier and
MIT Press, 2001.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Tractable Reasoning and Efficient Query Answering in De-
scription Logics: The DL-Lite Family. J. Autom. Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2011] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. The MASTRO system for ontology-based data access. Semantic Web,
2(1):43–53, 2011.

[Calvanese et al., 2013a] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, and Riccardo Rosati. Data complexity of query answering in description logics.
Artif. Intell., 195:335–360, 2013.

[Calvanese et al., 2013b] Diego Calvanese, Martin Giese, Peter Haase, Ian Horrocks, Thomas
Hubauer, Yannis E. Ioannidis, Ernesto Jiménez-Ruiz, Evgeny Kharlamov, Herald Kllapi,
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Patrick Lambrix, Alexander Borgida, Maurizio Lenzerini, Ralf Möller, and Peter F. Patel-
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and Sebastian Rudolph, editors. OWL 2 Web Ontology Language: Primer (Sec-
ond Edition). W3C Recommendation 11 December 2012, 2012. Available from
http://www.w3.org/TR/owl2-primer/.

[Hollunder et al., 1990] Bernhard Hollunder, Werner Nutt, and Manfred Schmidt-Schauß. Sub-
sumption Algorithms for Concept Description Languages. In 9th European Conference on
Artificial Intelligence, ECAI’90, Stockholm, Sweden, pages 348–353, 1990.

[Horridge et al., 2008] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and Precise
Justifications in OWL. In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana
Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, The Semantic Web -
ISWC 2008, 7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany,
October 26-30, 2008. Proceedings, volume 5318 of Lecture Notes in Computer Science, pages
323–338. Springer, 2008.

[Horridge et al., 2013] Matthew Horridge, Samantha Bail, Bijan Parsia, and Uli Sattler. Toward
cognitive support for OWL justifications. Knowl.-Based Syst., 53:66–79, 2013.

[Horrocks and Sattler, 1999] Ian Horrocks and Ulrike Sattler. A Description Logic with Transi-
tive and Inverse Roles and Role Hierarchies. J. Log. Comput., 9(3):385–410, 1999.

[Horrocks et al., 2000] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical Reasoning
for Very Expressive Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

[Horrocks et al., 2004] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combin-
ing OWL and RuleML. W3C Member Submission 21 May 2004, 2004. Available from
http://www.w3.org/Submission/SWRL/.

[Horrocks et al., 2005] Ian Horrocks, Peter F. Patel-Schneider, Sean Bechhofer, and Dmitry
Tsarkov. OWL Rules: A Proposal and Prototype Implementation. Journal of Web Semantics,
3(1):23–40, 2005.

[Horrocks, 1998] Ian Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In
Anthony G. Cohn, Lenhart K. Schubert, and Stuart C. Shapiro, editors, Proceedings of the
Sixth International Conference on Principles of Knowledge Representation and Reasoning
(KR’98), Trento, Italy, June 2-5, 1998, pages 636–649. Morgan Kaufmann, 1998.

[Horrocks, 2007] Ian Horrocks. Implementation and Optimization Techniques. In Franz Baader,
Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, ed-
itors, The Description Logic Handbook: Theory, Implementation, and Applications, pages
306–346. Cambridge University Press, 2007.



Description Logics 17

[Hu et al., 2013] Yingjie Hu, Krzysztof Janowicz, David Carral Mart́ınez, Simon Scheider,
Werner Kuhn, Gary Berg-Cross, Pascal Hitzler, Mike Dean, and Dave Kolas. A Geo-ontology
Design Pattern for Semantic Trajectories. In Thora Tenbrink, John G. Stell, Antony Galton,
and Zena Wood, editors, Spatial Information Theory - 11th International Conference, COSIT
2013, Scarborough, UK, September 2-6, 2013. Proceedings, volume 8116 of Lecture Notes in
Computer Science, pages 438–456. Springer, 2013.

[Huang et al., 2005] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije. Reason-
ing with Inconsistent Ontologies. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intel-
ligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, pages 454–459. Professional Book
Center, 2005.

[Kalyanpur et al., 2005] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James A. Hendler.
Debugging unsatisfiable classes in OWL ontologies. J. Web Sem., 3(4):268–293, 2005.

[Kazakov et al., 2011] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. Concurrent
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[Krötzsch et al., 2008] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, and Nikolaos M.
Avouris, editors, Proceeding of the 18th European Conference on Artificial Intelligence, Pa-
tras, Greece, July 21-25, 2008, volume 178, pages 80–84, Amsterdam, The Netherlands, 2008.
IOS Press.



18 Matthias Knorr and Pascal Hitzler
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1, 1999, volume 22 of CEUR Workshop Proceedings. CEUR-WS.org, 1999.

[Peltason, 1991] Christof Peltason. The BACK System - An Overview. SIGART Bull., 2(3):114–
119, 1991.

[Quillian, 1967] M. Ross Quillian. Word concepts: A theory and simulation of some basic
capabilities. Behavioral Science, 12:410–430, 1967.

[Rudolph et al., 2008a] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Description
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