
A Preferential Tableaux Calculus for
Circumscriptive ALCO ?

Stephan Grimm1, Pascal Hitzler2

1 FZI Research Center for Information Technologies, Univ. of Karlsruhe, Germany
2 Institute AIFB, University of Karlsruhe, Germany

Abstract. Nonmonotonic extensions of description logics (DLs) allow
for default and local closed-world reasoning and are an acknowledged
desired feature for applications, e.g. in the Semantic Web. A recent ap-
proach to such an extension is based on McCarthy’s circumscription,
which rests on the principle of minimising the extension of selected pred-
icates to close off dedicated parts of a domain model. While decidabil-
ity and complexity results have been established in the literature, no
practical algorithmisation for circumscriptive DLs has been proposed so
far. In this paper, we present a tableaux calculus that can be used as
a decision procedure for concept satisfiability with respect to concept-
circumscribed ALCO knowledge bases. The calculus builds on existing
tableaux for classical DLs, extended by the notion of a preference clash
to detect the non-minimality of constructed models.

1 Introduction

Modern description logics (DLs) [8] are formalisations of semantic networks and
frame-based knowledge representation systems that build on classical logic and
are the foundation of the W3C Web Ontology Language OWL [16]. However, to
also capture non-classical features, such as default and local closed-world reason-
ing, nonmonotonic extensions to DLs have been investigated. While in the past
such extensions were primarily devised using autoepistemic operators [4, 12, 10]
and default inclusions [1], a recent proposal [2] is to extend DLs by circumscrip-
tion and to perform nonmonotonic reasoning on circumscribed DL knowledge
bases. In circumscription, the extension of selected predicates – i.e. concepts or
roles in the DL case – can be explicitly minimised to close off dedicated parts of
a domain model, resulting in a default reasoning behaviour. In contrast to the
former approaches, nonmonotonic reasoning in circumscriptive DLs also applies
to “unknown individuals” that are not explicitly mentioned in a knowledge base,
but whose existence is guaranteed due to existential quantification [7].

The proposal in [2] presents a semantics for circumscriptive DLs together
with decidability and complexity results, in particular for fragments of the logic
ALCQIO. However, a practical algorithmisation for reasoning in circumscrip-
tive DLs has not been addressed so far. In this paper, we present an algorithm
that builds on existing DL tableaux methods for guided model construction. In

? This work is partially supported by the Deutsche Forschungsgemeinschaft (DFG)
under the ReaSem project and by the the German Federal Ministry of Education
and Research (BMBF) under the Theseus project, http: //theseus-programm.de.

particular, we present a tableaux calculus that supports reasoning with concept-
circumscribed knowledge bases in the logic ALCO. We focus on the reasoning
task of concept satisfiability, which is motivated by an application of nonmono-
tonic reasoning in a Semantic Web setting, described in [7]. While typical exam-
ples in the circumscription literature deal with defeasible conclusions of circum-
scriptive abnormality theories, in this setting we use minimisation of concepts
to realise a local closed-world assumption for the matchmaking of semantically
annotated resources.

The reason for our choice of ALCO as the underlying DL is twofold. First,
we want to present the circumscriptive extensions for the simplest expressive DL
ALC for sake of a clear and concise description of the tableaux modifications.
Second, there is the necessity to deal with nominals within the calculus in order
to keep track of extensions of minimised concepts, so we include O.

The basic idea behind our calculus is to detect the non-minimality of candi-
date models, produced by a tableaux procedure for classical DLs, via the notion
of a preference clash, and based on the construction of a classical DL knowledge
base that has a model if and only if the original candidate model produced is not
minimal. This check can be realised by reasoning in classical DLs with nominals.
We formally prove this calculus to be sound and complete. A similar idea has
been applied in [13] for circumscriptive reasoning in first-order logic. However,
that calculus does not directly yield a decision procedure for reasoning with DLs
as it is only decidable if function symbols are disallowed, which correspond to
existential restrictions in DLs.

The paper is structured as follows. In Section 2 we recall circumscriptive DLs
from [2] for the case of ALCO. In Section 3, we present our tableaux calculus
and prove it to be a decision procedure for circumscriptive concept satisfiability.
We conclude in Section 4. Due to the page limit, we could not include all proofs
in full. They can be found in [6].

2 Description Logics and Circumscription

Description Logics (DLs) [8] are typically fragments of first-order predicate logic
that provide a well-studied formalisation for knowledge representation systems.
Circumscription [11], on the other hand, is an approach to nonmonotonic rea-
soning based on the explicit minimisation of selected predicates. In this section,
we present the description logic ALCO extended with circumscription according
to [2], which allows for nonmonotonic reasoning with DL knowledge bases.

2.1 Circumscriptive ALCO

The basic elements to represent knowledge in DLs are individuals that represent
objects in a domain of discourse, concepts that group together individuals with
common properties, and roles that put individuals in relation. The countably
infinite sets NI , NC and Nr of individual names, concept names and role names,
respectively, form the basis to construct the syntactic elements of ALCO accord-
ing to the following grammar, in which A ∈ NC denotes an atomic concept, C(i)

denote complex concepts, r ∈ Nr denotes a role and ai ∈ NI denote individuals.

C(i) −→ ⊥ | > | A | ¬C | C1 u C2 | C1 t C2 | ∃ r .C | ∀ r .C | {a1, . . . , an}

The negation normal form of a concept C, which we denote by ‖C‖, is obtained
from pushing negation symbols ¬ into concept expression to occur in front of
atomic concepts only, as described in [15].

The semantics of the syntactic elements of ALCO is defined in terms of
an interpretation I = (∆I , ·I) with a non-empty set ∆I as the domain and an
interpretation function ·I that maps each individual a ∈ NI to a distinct element
aI ∈ ∆I and that interprets (possibly) complex concepts and roles as follows.

>I = ∆I , ⊥I = ∅ , AI ⊆ ∆I , rI ⊆ ∆I ×∆I

(C1 u C2)I = CI
1 ∩ CI

2

(C1 t C2)I = CI
1 ∪ CI

2

(¬C)I = ∆I \ CI

(∀ r .C)I = {x ∈ ∆I | ∀y.(x, y) ∈ rI → y ∈ CI}
(∃ r .C)I = {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

({a1, . . . , an})I = {aI1 , . . . , aIn}

Notice that we assume unique names for individuals, i.e. aI1 6= aI2 for any inter-
pretation I and any pair a1, a2 ∈ NI .

An ALCO knowledge base KB is a finite set of axioms formed by concepts,
roles and individuals. A concept assertion is an axiom of the form C(a) that
assigns membership of an individual a to a concept C. A role assertion is an
axiom of the form r(a1, a2) that assigns a directed relation between two individ-
uals a1, a2 by the role r. A concept inclusion is an axiom of the form C1 v C2

that states the subsumption of the concept C1 by the concept C2, while a con-
cept equivalence axiom C1 ≡ C2 is a shortcut for two inclusions C1 v C2 and
C2 v C1. An interpretation I satisfies a concept assertion C(a) if aI ∈ CI , a
role assertion r(a1, a2) if (aI1 , aI2) ∈ rI , a concept inclusion C1 v C2 if CI

1 ⊆ CI
2

and a concept equivalence C1 ≡ C2 if CI
1 = CI

2 . An interpretation that satisfies
all axioms of a knowledge base KB is called a model of KB . A concept C is called
satisfiable with respect to KB if KB has a model in which CI 6= ∅ holds.

We now turn to the circumscription part of the formalism, that allows for
nonmonotonic reasoning by explicit minimisation of selected ALCO concepts.
We adopt a slightly simplified form of the circumscriptive DLs presented in
[2] by restricting our formalism to parallel concept circumscription (without
prioritisation among minimised concepts). For this purpose we define the notion
of a circumscription pattern as follows.

Definition 1 (circumscription pattern, <CP). A circumscription pattern3

CP is a tuple (M,F, V) of sets of atomic concepts called the minimised, fixed and
3 The notion of circumscription pattern introduced in [2] is more general and allows

the sets M , F and V to also contain roles. There, a circumscription pattern according
to Definition 1 is called a concept circumscription pattern. However, in the general
case role circumscription leads to undecidability, which was also shown in [2]. As
our calculus does not allow for role circumscription, we use the term circumscription
pattern to denote a concept circumscription pattern in the sense of [2].

varying concepts. Based on CP, a preference relation on interpretations is defined
by setting J <CP I if and only if the following conditions hold:

(i) ∆J = ∆I and aJ = aI for all aJ ∈ ∆J

(ii) ĀJ = ĀI for all Ā ∈ F
(iii) ÃJ ⊆ ÃI for all Ã ∈ M
(iv) there is an Ã ∈ M such that ÃJ ⊂ ÃI

For nonmonotonic reasoning, a classical ALCO knowledge base is circum-
scribed with a circumscription pattern and reasoning is performed by means of
the resulting circumscribed knowledge base, defined as follows.

Definition 2 (circumscribed knowledge base). A circumscribed knowledge
base circCP(KB) is a knowledge base KB together with a circumscription pattern
CP = (M,F, V), such that the sets M , F and V partition the atomic concepts
that occur in KB. An interpretation I is a model of circCP(KB) if I is a model
of KB and there exists no model J of KB with J <CP I.

The intuition behind the preference relation is to identify interpretations
that are “smaller” in the extensions of minimised concepts than others, to select
only the “smallest” ones as the preferred models. Fixed concepts can be used to
restrict this selection and to prevent certain models from being preferred.

2.2 Reasoning with Circumscribed Knowledge Bases

The typical DL reasoning tasks are defined as expected (see [2]) with respect
to the models of a circumscribed knowledge base circCP(KB), which are just the
preferred models of KB with respect to CP. For our calculus, we focus on concept
satisfiability, which we define next. Other reasoning tasks can be reduced to
concept satisfiability, as described in [2].

Definition 3 (circumscriptive concept satisfiability). A concept C is sat-
isfiable with respect to a circumscribed knowledge base circCP(KB) if some model
I of circCP(KB) satisfies CI 6= ∅.

Observe that in classical DLs an atomic concept A is satisfiable with respect
to a knowledge base KB “by default” if there is no evidence for its unsatisfiability
in KB , i.e. any A is satisfiable with respect to the empty knowledge base. Now
suppose that A is a minimised concept in a circumscription pattern CP by which
KB is circumscribed. Then, A is unsatisfiable with respect to circCP(KB) for
KB = ∅. Only if we explicitly assure that the extension of A is non-empty, e.g.
by setting KB = {A(a)}, A becomes satisfiable.

A known result in circumscription is that there is a close relation between
fixed and minimised predicates. Namely, fixed predicates can be simulated by
minimising them together with their complements. In case of concept circum-
scription this is achieved by introducing additional concept names and respective
equivalence axioms, as reflected by the following proposition (see [2, 3, 6]).

Proposition 1 (simulation of concept fixation). Let C be a concept, let
KB be a knowledge base and let CP = (M,F, V) be a circumscription pattern with
F = {Ā1, . . . , Ān}. Furthermore, let

KB ′ = KB ∪ {Ãi ≡ ¬Āi | 1 ≤ i ≤ n}
and let CP

′ = (M ∪ {Ã1, . . . , Ãn, Ā1, . . . , Ān}, ∅, V) ,

where Ã1, . . . , Ãn are atomic concepts that do not occur in KB, CP or C. Then, C
is satisfiable with respect to circCP(KB) if and only if it is satisfiable with respect
to circCP′(KB ′).

To illustrate the reasoning task of checking concept satisfiability with respect
to circumscribed knowledge bases we present the following example.

Example 1. The following knowledge base describes species of the arctic sea.

KB1 = { Bears(PolarBear), ¬Bears(BlueWhale), EndangeredSpecies(BlueWhale) }

According to KB1, the polar bear is a kind of bear, while the blue whale is not.
Moreover, the blue whale is explicitly listed to be an endangered species, while
the polar bear does not occur on this list. The following circumscription pattern
allows to “switch off” the open-world assumption for the list of endangered
species by minimising the extension of the concept EndangeredSpecies.

CP = (M = {EndangeredSpecies}, F = ∅, V = {Bears})

The concept Bears u EndangeredSpecies is unsatisfiable with respect to the
circumscribed knowledge base circCP(KB1), reflecting that there cannot be an
individual that is both an endangered species and a kind of bear. The only
endangered species in the preferred models of KB1 is the blue whale, which is
explicitly said to be no kind of bear.

Recently, however, the polar bear unfortunately had to be included in the
list of endangered species, which is reflected by the following update of KB1.

KB2 = KB1 ∪ { EndangeredSpecies(PolarBear) }

With respect to circCP(KB2), the concept BearsuEndangeredSpecies is satisfiable,
as the polar bear is a kind of bear and at the same time an endangered species
in the preferred models of KB2.

Instead of using a concept assertion for the explicitly mentioned individual
PolarBear, we could alternatively update KB1 by introducing an existentially
quantified object through an inclusion axiom stating that the arctic sea is a
habitat for an endangered bear species, as follows.

KB3 = KB1 ∪ { ∃ isHabitatFor .(Bears u EndangeredSpecies)(ArcticSea) }

The concept BearsuEndangeredSpecies is also satisfiable with respect to circCP(KB3).
Observe that in any preferred model of KB3 the extension of EndangeredSpecies

contains an unknown individual whose existence is propagated from the known
individual ArcticSea via the role isHabitatFor. Alternative approaches to non-
monotonic reasoning in DL, such as [5, 1], typically treat unknown objects dif-
ferently and do not allow for this kind of reasoning.

3 Tableaux Calculus for Circumscriptive ALCO

In this section, we introduce a preferential tableaux calculus that decides the
satisfiability of a concept with respect to a circumscribed knowledge base. We
build on the notion of constraint systems, which map to tableaux branches in
tableaux calculi, and we keep the presentation similar to that in [4].

3.1 Constraint Systems and their Solvability

In addition to the alphabet of individuals NI , we introduce a set NV of variable
symbols. We denote elements of NI by a, elements of NV by x and elements of
NI ∪ NV by o, all possibly with an index. A constraint is a syntactic entity of
one of the forms o : C or (o1, o2) : r or ∀x.x : C, where C is an ALCO concept,
r is a role and the o’s are objects in NI ∪ NV . A constraint system, denoted by
S, is a finite set of constraints. By NS

I we denote the individuals and by NS
V the

variables that occur in a constraint system S.
Given an interpretation I, we define an I-assignment as a function αI :

NI ∪ NV 7→ ∆I , that maps every variable of NV to an element of ∆I and every
individual a to aI , i.e. αI(a) = aI for all a ∈ NI .

A pair (I, αI) of an interpretation I and an I-assignment αI satisfies a
constraint o : C if αI(o) ∈ CI , a constraint (o1, o2) : r if (αI(o1), αI(o2)) ∈ rI

and a constraint ∀x.x : C if CI = ∆I . A solution for a constraint system S is
a pair (I, αI) of an interpretation I and an I-assignment αI that satisfies all
constraints in S.

We denote by S[o1/o2] the constraint system that is obtained by replacing
any occurrence of object o1 by object o2 in every constraint in S. Furthermore, we
define the constraint system SKB to be obtained from an ALCO knowledge base
KB by including one constraint of the form a : ‖C‖ for each concept assertion
C(a) ∈ KB , one constraint (a1, a2) : r for each role assertion r(a1, a1) ∈ KB and
one constraint ∀x.x : ‖¬C1 t C2‖ for each concept inclusion C1 v C2 ∈ KB , such
that SKB captures all the information in KB .

To ensure termination of our calculus in the presence of general inclusion ax-
ioms, we need to introduce the notion of blocking (see e.g. [9]). Given a constraint
system S and S∗ ⊆ S, we say that an object o1 is a direct predecessor of an object
o2, if S∗ contains a role constraint (o1, o2) : r for some role r. We denote by pre-
decessor the transitive closure in S∗ of the direct predecessor relation. Moreover,
we say that, in a constraint system S with S∗ ⊆ S, an object o2 is blocked by an
object o1 if o1 is a predecessor of o2 and if {C | o2 : C ∈ S} ⊆ {C | o1 : C ∈ S}
holds. The set S∗ is generated by the algorithm; it is used to control which role
constraints in S shall be taken into consideration for blocking.

Due to the analogy between a constraint system and a knowledge base the
following Lemma holds.

Lemma 1. Let KB be an ALCO knowledge base, S be a constraint system with
SKB ⊆ S and I be an interpretation. If I is a model of KB then, for any I-
assignment αI , (I, αI) is a solution for SKB . Furthermore, for any solution
(I, αI) for S, I is a model of KB.

Our calculus is based on finding a solution for constraint systems the inter-
pretation of which is a preferred model of an initial knowledge base with respect
to a circumscription pattern. For this purpose we define the notion of solvability.

Definition 4 (CP-solvability). A constraint system S is CP-solvable with re-
spect to KB if there is a model I of KB and an I-assignment αI such that
(I, αI) is a solution for S and there is no model J of KB with J <CP I.

By the next proposition, we reduce circumscriptive concept satisfiability to
checking a constraint system for its solvability.

Proposition 2 (satisfiability reduction). Let KB be a knowledge base, CP be
a circumscription pattern and C be a concept. C is satisfiable with respect to
circCP(KB) if and only if SKB ∪ {x : C} is CP-solvable with respect to KB.

Proof. ⇒: Since C is satisfiable with respect to circCP(KB), there is a model I
of circCP(KB) in which CI is nonempty. Let a be an individual with aI ∈ CI .
Since I is also a model of KB and due to Lemma 1, (I, αI) is a solution for
SKB for any I-assignment αI . Let αIx,a be an I-assignment with αIx,a(x) = aI .
Then, (I, αIx,a) satisfies, besides the constraints in SKB , also the constraint x : C,
because of αIx,a(x) ∈ CI , and is therefore a solution for SKB ∪ {x : C}. Since
there is no other model J of KB with J <CP I, SKB ∪ {x : C} is CP-solvable
with respect to KB .
⇐: Since SKB ∪ {x : C} is CP-solvable with respect to KB , there is a model I of
KB and an I-assignment αI such that (I, αI) is a solution for SKB ∪ {x : C}.
Moreover, there exists an element aI ∈ ∆I with αI(x) = aI ∈ CI because
(I, αI) satisfies the constraint x : C. By definition of CP-solvability, there is no
model J of KB with J <CP I, and thus, I is a model of circCP(KB) in which
CI is non-empty. Hence, C is satisfiable with respect to circCP(KB). ut

3.2 Tableaux Expansion Rules

Constraint systems are manipulated by tableaux expansion rules, which decom-
pose the structure of complex logical constructs or replace variables by concrete
individuals. By expanding a constraint system with the resulting constraints, our
calculus tries to build a model for the initial knowledge base that is represented
by the constraint system. To decide the satisfiability of a concept C with respect
to a circumscribed knowledge base circCP(KB) according to Proposition 2, we
initialise the calculus with the constraint system SKB ∪{x : C} and S∗ = S. The
algorithm exhaustively performs the tableau rules given in Table 1, however the
−→<CP

-rule must not be applied if any of the other rules is applicable, i.e. the
−→<CP

-rule has a lower precedence than the other rules. The notion of prede-
cessor is evaluated with respect to S∗. Without loss of generality, we assume all
fixed predicates to be simulated according to Proposition 1, and thus, the set F
in CP to be empty without loss of generality.

Observe that the rules are parametric with respect to KB and CP. The rules
−→∀x , −→u, −→∃ and −→∀ are deterministic and their application yields a

Table 1. Tableau Expansion Rules for Circumscriptive ALCO. The −→<CP
-rule must

not be executed if any of the other rules is applicable. Blocking is evaluated with respect
to S∗.

−→∀x : if ∀x.x : C ∈ S and o : C 6∈ S for some o ∈ NS
I ∪ NS

V

then S← S ∪ {o : C}
−→u : if o : C1 u C2 ∈ S and {o : C1, o : C2} 6⊆ S

then S← S ∪ {o : C1, o : C2}
−→t : if o : C1 t C2 ∈ S and {o : C1, o : C2} ∩ S = ∅

then S ← S ∪ {o : C1} or S ← {o : C2}
−→∃ : if o1 : ∃ r .C ∈ S and {(o1, o2) : r, o2 : C} 6⊆ S and o1 is not blocked

then S ← S ∪ {(o1, x) : r, x : C}, with x a new variable
and (o1, x) : r is added to S∗.

−→∀ : if o1 : ∀ r .C ∈ S and (o1, o2) : r ∈ S and o2 : C 6∈ S
then S ← S ∪ {o2 : C}

−→O : if x : {a1, . . . , ak} ∈ S
then S ← S[x/ai] for any i ∈ {1, . . . , k} ⊂ N

and all (o, x) : r are removed from S∗

−→<CP
: if x : Ã ∈ S and Ã ∈M

then S ← S[x/a] for some a ∈ NS
I ∪ {ι}, with ι a new individual

and S∗ ← S∗[x/ι] if a = ι

single constraint system. Contrarily, the rules −→t, −→O and −→<CP
are non-

deterministic, meaning that they can be applied in multiple ways that yield dif-
ferent constraint systems. Any such non-deterministic choice produces a branch-
ing point for backtracking. In the −→t-rule, the disjunction leads to the choice
of expanding on either of the disjuncts, while in the −→O- and −→<CP

-rules the
presence of several individuals leads to a choice of selecting one for replacement
of the variable x. Moreover, the −→<CP

-rule introduces new individuals into the
constraint system whenever ι is selected for replacement,4 while the −→∃-rule
introduces new variables whenever an object lacks a role filler.

Definition 5 (completion). A completion of a constraint system S with regard
to CP and KB is any constraint system that results from the application of the
algorithm to S, using CP and KB, and to which none of the rules is applicable.

The algorithm finally leads to a completion of the initial constraint system
that contains the exhaustive decomposition of complex constraints, which is
established by the following lemma.

Lemma 2 (termination). For any constraint system S, the algorithm always
terminates, and yields a completion of S.

4 The idea of including a new individual ι as a representative for the infinitely many
remaining objects in NI \ NS

I in the domain is taken from [4].

Proof (Sketch). Note that the top part of Table 1 (without the −→<CP
-rule)

and corresponding algorithm coincides with that of [9] for ALCO. In fact, the
termination proof from [9], can easily be adapted to our setting.

Moreover, we establish the result that the tableaux expansion rules of our
calculus preserve the solvability of constraint systems as follows.

Proposition 3 (solvability preservation). Let KB be a knowledge base, CP

be a circumscription pattern and S, S′ be two constraint systems.
1. If S′ results from S by application of a deterministic rule then S is CP-solvable

with respect to KB if and only if S′ is CP-solvable with respect to KB.
2. If S′ results from S by application of a non-deterministic rule then S is

CP-solvable with respect to KB if S′ is CP-solvable with respect to KB. Fur-
thermore, if S is CP-solvable with respect to KB and a non-deterministic rule
applies to S then it can be applied in such a way that the resulting constraint
system S′ is also CP-solvable with respect to KB.

Proof. The claim 1. for the rules −→u, −→∃, −→∀, −→t and −→O follows from
the results in [9]. (See also [6] for a full proof.) Therefore, we concentrate on the
claim 2. for the −→<CP

-rule.
⇐: Assume that S′ is obtained from S by application of the −→<CP

-rule and S′

is CP-solvable with respect to KB . Let (I, αI) be a solution for S′ such that I is a
model of KB and there is no model J of KB with J <CP I. As the −→<CP

-rule
has been applied, S′ = S[x/a] for some individual a ∈ NI . As a solution for S′,
(I, αI) satisfies all the constraints in S[x/a], in particular those in which x has
been replaced by a. Let αIx,a be the I-assignment that coincides with αI except
that αIx,a(x) = aI . Then, (I, αIx,a) satisfies all the constraints in S in which x
occurs, and since S and S′ differ only by these, also all remaining constraints in
S. Hence, (I, αIx,a) is a solution for S, and since there is no model J of KB with
J <CP I by assumption, S is CP-solvable with respect to KB .
⇒: Assume that S′ is obtained from S by application of the −→<CP

-rule and
that S is CP-solvable with respect to KB . Let (I, αI) be a solution for S such
that I is a model of KB and there is no model J of KB with J <CP I. As the
−→<CP

-rule has been applied, S contains a constraint of the form x : Ã with
Ã ∈ M . As a solution for S, (I, αI) satisfies this constraint and there is some
individual a ∈ NI with αI(x) = aI . We distinguish the two cases in which a) a
is in NS

I and b) a is a new individual not in NS
I :

– a) In case a ∈ NS
I , a can be picked for the application of the −→<CP-rule

and it directly follows that (I, αI) is a solution for the resulting constraint
system S′ = S[x/a].

– b) In case a ∈ NI \ NS
I , ι ∈ NI \ NS

I can be picked for the application of
the −→<CP-rule as a representative for any new individual. Then, S[x/a]
and S[x/ι] differ only by the naming of an individual new to S and are in
this sense isomorphic5. Hence, as (I, αI) is a solution for S[x/a] it is also a
solution for the resulting constraint system S[x/ι] = S′.

5 See also the analogous argument in [4, Lemma 3.6].

Algorithm 1 Construct a knowledge base KB ′.
Require: a constraint system S produced for an initial ALCO knowledge base KB

circumscribed with a circumscription pattern CP = (M, F, V)

KB ′ ← KB , D ← {⊥}
for all Ã ∈MKB do

EÃ := {a | a : Ã ∈ S}
if #EÃ > 0 then

KB ′ ← KB ′ ∪ {Ã v {a1, . . . , an}}, a1, . . . an ∈ EÃ

D ← D ∪ {{a1, . . . , an} u ¬Ã}, a1, . . . an ∈ EÃ

else
KB ′ ← KB ′ ∪ {Ã v ⊥}

end if
end for
KB ′ ← KB ′ ∪ {(

F
D

Ã
∈D DÃ)(ι)}, with ι a new individual

Finally, since (I, αI) is a solution for S′ and there is no model J of KB with
J <CP I by assumption, the −→<CP-rule can be applied to S in such a way that
S′ is CP-solvable with respect to KB . ut

3.3 Notions of Clash and Detection of Inconsistencies

Once a completion of an initial constraint system has been produced, its solv-
ability can be verified by using the notion of a clash. In addition to the clashes
defined in [4, 14], which represent obvious contradictions in a knowledge base,
we introduce the notion of a preference clash, which reflects non-minimality of
the respective model with regard to the preference relation <CP.

Definition 6 (Clashes). Let S be a constraint system.
S contains an inconsistency clash if at least one of the following holds:
(i) S contains a constraint of the form o : ⊥.
(ii) S contains two constraints of the form o : A, o : ¬A.
S contains an individual clash if at least one of the following holds:
(iii) S contains a constraint of the form a : {a1, . . . , ak}.

with a 6= ai for all i ∈ {1, . . . , k} ⊂ N.
(vi) S contains a constraint of the form a : ¬{a1, . . . , ak}.

with a = ai for some i ∈ {1, . . . , k} ⊂ N.
S contains a preference clash, parameterised with a circumscription pattern

CP and an ALCO knowledge base KB, if the following condition holds:
(v) the constraint system SKB ′ [ι/x] has a completion, with regard to

CP
′ = (∅, ∅, F ∪M ∪ V) and KB ′, that does neither contain an

inconsistency clash nor an individual clash, while the ALCO
knowledge base KB ′ is constructed according to Algorithm 1.

The idea behind the construction of KB ′ in Algorithm 1 is to freeze the
instance situation for minimised concepts as asserted in the current constraint
system perceived as reflecting some model I of the original knowledge base KB .

Then, KB ′ is constructed such that for any of its models J it holds that J <CP I,
and thus, checking KB ′ for unsatisfiability verifies minimality of I. By inclusion
axioms for minimised concepts Ã the conditions 2 and 3 of Definition 1 are
assured to hold for each model of KB ′. Moreover, by the disjunctive concept
assertion condition 4 of Definition 1 is assured to hold, such that any model of
KB ′ is actually “smaller” than I in some minimised concept, which is achieved
by mapping the not uniquely named individual ι to one that already occurs in
the extension of a minimised concept. Although in general we assume unique
names in the formalism, the replacement of the new individual ι by the variable
x within SKB ′ [ι/x] in condition (v) of Definition 6 allows ι to be (indirectly)
identified with some other individual.

We illustrate the detection of clashes in our calculus by means of an example.
Example 2. Consider the circumscribed knowledge base circCP(KB) with the fol-
lowing knowledge base KB and circumscription pattern CP.

KB = { ¬Bears(BlueWhale) , EndangeredSpecies(BlueWhale) }
CP = (M = {EndangeredSpecies}, F = ∅, V = {Bears})

We perform our calculus to check whether the concept BearsuEndangeredSpecies

is satisfiable with respect to circCP(KB).
We start with the constraint system initialised as follows.

SKB ∪ {x : Bears u EndangeredSpecies} = { BlueWhale : ¬Bears ,
BlueWhale : EndangeredSpecies , x : Bears u EndangeredSpecies }

From the application of the −→u-rule and subsequently of the −→<CP
-rule, the

following two resulting completions are produced.

S1 = { BlueWhale : ¬Bears , BlueWhale : EndangeredSpecies , BlueWhale : Bears }
S2 = { BlueWhale : ¬Bears , BlueWhale : EndangeredSpecies ,

ι0 : Bears , ι0 : EndangeredSpecies }
The completion S1 obviously contains an inconsistency clash, since it contains

both the constraints BlueWhale : Bears and BlueWhale : ¬Bears.
For the completion S2, we construct KB ′ according to Algorithm 1 as follows.

KB ′ = { ¬Bears(BlueWhale) , EndangeredSpecies(BlueWhale) ,
EndangeredSpecies v {BlueWhale , ι0} ,
¬EndangeredSpecies u {BlueWhale , ι0}(ι) }

It can be verified by classical reasoning techniques that KB ′ has a model
when the new individual ι is not uniquely named serving as a variable, and thus,
the completion S2 contains a preference clash.

Since both S1 and S2 contain some clash, the initial constraint system SKB ∪
{x : Bears u EndangeredSpecies} has no clash-free completion. Hence, the concept
Bears u EndangeredSpecies is unsatisfiable with respect to circCP(KB).

In the description logic literature, tableaux methods for sound and complete
reasoning have been proposed for various DL variants including ALCO. They
detect inconsistencies in DL knowledge bases by checking completions of con-
straint systems for the occurrence of a clash. We include this result adapted to
our setting in form of the following proposition.

Proposition 4 (ALCO correctness). Let KB be an ALCO knowledge base and
S be the completion of a constraint system containing at least the constraints of
SKB , with regard to any circumscription pattern and KB. Then S has a solution
if and only if it contains neither an inconsistency clash nor an individual clash.

Proof (Sketch). The top part of Table 1 (without the −→<CP
-rule) captures the

algorithm from [9], which is known to be correct. In fact, the proof from [9]
essentially carries over.

Based on this correspondence between clash-free completions and their solu-
tions, we can establish the correlation between solvability of constraint systems
and the absence of preference clashes in their completions as the main result of
this paper by the following proposition.

Proposition 5 (circumscriptive ALCO correctness). Let KB be an ALCO
knowledge base, CP be a circumscription pattern and S be the completion of a
constraint system containing at least the constraints of SKB , with regard to CP and
KB. S is CP-solvable with respect to KB if and only if it contains no inconsistency
clash, no individual clash and no preference clash with respect to CP and KB.

Proof.
⇒: Assume that S is CP-solvable with respect to KB . According to Definition 4
there is a solution (I, αI) for S, such that I is a model of KB and there is no
model J of KB with J <CP I. From Proposition 4, we know that S does neither
contain an inconsistency clash nor an individual clash. We show by contradiction
that S does also not contain a preference clash.

Assume that S contains a preference clash with respect to CP and KB . Then,
SKB ′ [ι/x] has a completion S′ with regard to CP = (∅, ∅,M ∪F ∪V) and KB ′ that
contains no inconsistency and no individual clash, where the knowledge base KB ′

is constructed based on CP and KB according to Algorithm 1. Observe that, by
construction, KB ⊂ KB ′ and that ι is a new individual in KB ′ that cannot occur
in KB . Hence, we have that SKB ⊂ SKB ′ [ι/x] ⊆ S′. Proposition 4(⇐) implies
that there is a solution (J , αJ) for S′, since S′ is clash-free. Due to Lemma 1,
and since SKB ⊆ S′, it follows that J is a model of both KB ′ and KB . It remains
to show that J <CP I, to contradict the containment of a preference clash in S.
Without loss of generality, we can assume that ∆I = ∆J and that aI = aJ for
all individuals a ∈ NI . Moreover, we assumed F = ∅ due to Proposition 1, such
that ĀJ = ĀI for all Ā ∈ F vacuously holds. We prove the following claims: a)
ÃJ ⊆ ÃI for all Ã ∈ M , and b) ÃJ ⊂ ÃI for some Ã ∈ M .

– a) Due to the inclusion axioms for minimised concepts inserted into KB ′

by Algorithm 1, and since J is a model of KB ′, J has the property ÃJ ⊆
{αJ (a) | a : Ã ∈ S} for each Ã ∈ MKB . For every Ã ∈ MKB , all the
constraints a : Ã ∈ S are satisfied by (I, αI), i.e. αI(a) ∈ ÃI , and therefore
we have that {αI(a) | a : Ã ∈ S} ⊆ ÃI . Since αI and αJ coincide on
individuals, it follows that ÃJ ⊆ ÃI for all Ã ∈ MKB .

– b) By construction of KB ′, SKB ′ [ι/x] contains a constraint x :
⊔

Ã DÃ, and for
one of the disjuncts DÃ its completion S′ contains a constraint of the form

x : {a1, . . . , an} u ¬Ã with ai : Ã ∈ S for i = 1 . . . n. Since S′ is a completion
to which none of the tableaux rules apply, the −→u- and the −→O-rule
have produced the constraints a : {a1, . . . , an} and a : ¬Ã in S′ in which the
variable x has been replaced by an individual a. As a solution for S′, (J , αJ)
satisfies these two constraints and we have that both αJ (a) ∈ (∆J \ ÃJ)
and αJ (a) ∈ {αJ (a) | a : Ã ∈ S} hold. This implies that αJ (a) 6∈ ÃJ and,
since (I, αI) satisfies the constraint a : Ã, that αJ (x) = αI(a) ∈ ÃI . From
the arguments under b) we already know that ÃJ ⊆ ÃI , and since we have
an element aI which is in ÃI but not in ÃJ , it follows that ÃJ ⊂ ÃI .

⇐: Let S contain no clash. From Proposition 4 we know that there is a solution
(I, αI) for S. We show by contradiction that there is no model J of KB such
that J <CP I.

Assume that there is a model J of KB with J <CP I. First we show that for
some J -assignment αJ , (J , αJ) is a solution for SKB ′ [ι/x], where the knowledge
base KB ′ is constructed according to Algorithm 1. Due to J <CP I we know
that ∆J = ∆I and aJ = aI for all individuals a ∈ ∆I , and that for some
Ã ∈ M there is an element ιJ ∈ ∆J which is in ÃI but not in ÃJ . Let αJx,ι

be a J -assignment with αJx,ι(x) = ιJ . Since J is a model of KB , (J , αJx,ι) is a
solution for SKB due to Lemma 1. Moreover, as the individual ι is new to KB ′ and
KB ⊂ KB ′ by construction of KB ′, the replacement of ι by x does not affect any
constraint in SKB and we have that SKB ⊂ SKB ′ [ι/x]. Hence, it suffices to show
that the constraints in SKB ′ [ι/x]\SKB are satisfied by (J , αJx,ι). For this purpose,
we consider the axioms in KB ′ \KB that are inserted into KB ′ by Algorithm 1,
and that can be a) concept inclusion axioms of the form Ã v {a1, . . . , an},
or b) the concept assertion axiom (

⊔
Ã DÃ)(ι) with disjuncts DÃ of the form

¬Ã u {a1, . . . , an}, for individuals {ai | ai : Ã ∈ S} with i ∈ {1, . . . , n}.

– a) For every Ã ∈ MKB , KB ′ contains an axiom Ã v {a1, . . . , an} with indi-
viduals ai that occur in concept constraints of the form ai : Ã within S. Since
S is a completion, in any constraint of the form x : Ã the variable x has been
replaced by an individual a ∈ NS

I in S due to the −→<CP
-rule, such that for

any constraint o : Ã ∈ S we have that o = ai for some i ∈ {1, . . . , n}. Since I
is a solution for S, we have that ÃI ⊆ {αI(a1), . . . , αI(an)} = {aI1 , . . . , aIn}.
Since ÃJ ⊆ ÃI holds by assumption, J satisfies ÃJ ⊆ {aI1 , . . . , aIn}, and
thus, the axiom Ã v {a1, . . . , an} for every Ã ∈ MKB . If there are no as-
sertions Ã(ai) in KB ′ then ÃI = ∅ and the respective axiom has the form
Ã v ⊥. Hence, (J , αJx,ι) satisfies all the constraints ∀x.x : C that result from
these inclusion axioms in SKB ′ [ι/x].

– b) Furthermore, due to the concept assertion (
⊔

Ã DÃ)(ι) in KB ′, SKB ′ [ι/x]
contains the constraint x :

⊔
Ã DÃ with disjuncts DÃ of the form ¬Ã u

{a1, . . . , an}. Since from b) we know that ÃI ⊆ {aI1 , . . . , aIn}, and since
aI = aJ for all individuals a, we get that ÃI = {aJ1 , . . . , aJn } ⊆ ∆J . As
for some Ã ∈ MKB the element ιJ is in ÃI but not in ÃJ , we have that
αJx,ι(x) ∈ ÃI \ ÃJ , and thus, αJx,ι(x) ∈ ({aJ1 , . . . , aJk } \ ÃJ) = (∆J \ ÃJ) ∩

{αJx,ι(a1), . . . , αJx,ι(ak)}. Hence, the pair (J , αJx,ι) satisfies the constraint x :⊔
Ã DÃ for some Ã ∈ M with ÃJ ⊂ ÃI , as one of its disjuncts is satisfied.

Having shown that (J , αJx,ι) is a solution for SKB ′ [ι/x], from Proposition 3(⇒)
and from Proposition 4(⇒) it follows that there is a clash-free completion of
SKB ′ [ι/x]. Hence, S must contain a preference clash, which contradicts the exis-
tence of J . ut

As a direct result of the propositions 2, 3, 5 and Lemma 2, we obtain that
the presented calculus provides an effective procedure for reasoning with circum-
scribed knowledge bases, reflected by the following theorem.

Theorem 1 (soundness/completeness). Let KB be an ALCO knowledge base,
CP be a circumscription pattern and C be an ALCO concept. C is satisfiable with
respect to circCP(KB) if and only if the algorithm based on Table 1 results in a
clash-free completion of the constraint system SKB ∪ {x : C}.

By Theorem 1, the proposed tableaux calculus is a decision procedure for
reasoning in ALCO with concept circumscription.

4 Conclusion

We have presented a tableaux calculus for concept satisfiability with respect to
circumscribed DL knowledge bases in the logic ALCO. Building on tableaux
procedures for classical DLs, the calculus checks a constraint system not only
for clashes due to inconsistent concept assertion and individual naming, but
also for preference clashes, which occur whenever the model associated with the
constraint system is not minimal with respect to the preference relation <CP.
This check is performed by testing a specifically constructed classical ALCO
knowledge base for satisfiability, which requires reasoning in classical DL with
nominals and equality between individuals.

We have proved that the presented calculus is sound and complete for ver-
ifying concept satisfiability in circumscriptive ALCO. By this we have devised
a first guided algorithmisation for description logic with circumscription that
integrates well with state of the art tableaux methods for DL reasoning. This
lays a basis for further investigations on optimisation of the calculus within the
framework of tableaux procedures as a guided way for model construction. We
have implemented a first prototype6 of the calculus in Java that works together
with ontology development tools, such as Protégé, via the DIG interface.

As future work we see the update of the calculus to support more expressive
features, such as prioritisation between minimised concepts or the remaining
constructs of the Web Ontology Language OWL [16]. Moreover, optimisation
issues need to be addressed to obtain a more efficient reasoning procedure. First
ideas for specific optimisations would be to employ model caching techniques for
the inner classical tableaux step as KB ′ might be identical in multiple cases, to

6 Available at http://www.fzi.de/downloads/wim/sgr/CircDL.zip .

postpone assertions of individuals to minimised predicates in order to avoid con-
structing non-minimal models, and to exploit early closing of tableaux branches
through preference clash detection. Besides these, it would be interesting to
see how well preferential tableaux performs when included in optimised state-
of-the-art DL reasoners. Furthermore, a methodology remains to be developed
for the formulation of appropriate circumscription patterns in various cases of
nonmonotonic reasoning, as pointed out in [2].

References

1. F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowledge
Representation Formalisms. Journal of Automated Reasoning, 14(1):149–180, 1995.

2. P. Bonatti, C. Lutz, and F. Wolter. Expressive Non-Monotonic Description Log-
ics Based on Circumscription. In Proc. of the Tenth Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’06), pages 400–410, 2006.

3. J. de Kleer and K. Konolige. Eliminating the Fixed Predicates from a Circum-
scription. Artif. Intell., 39(3):391–398, 1989.

4. F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An Epistemic
Operator for Description Logics. Artificial Intelligence, 100(1-2):225–274, 1998.

5. F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge
and Negation as Failure. ACM Trans. on Computational Logic, 3(2):177–225, 2002.

6. S. Grimm. Semantic Matchmaking with Nonmonotonic Description Logics. IOS
Press, 2007.

7. S. Grimm and P. Hitzler. Semantic Matchmaking of Resources with Local Closed-
World Reasoning. Int. Journal of eCommerce (IJEC), 12(2):89–126, 2008.

8. P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technolo-
gies. Chapman & Hall/CRC, 2009.

9. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proc. IJCAI-01, pages 199–204, 2001.

10. M. Knorr, J. J. Alferes, and P. Hitzler. A coherent well-founded model for hybrid
MKNF knowledge bases. In M. Ghallab et al., editors, Proceedings of the 18th Eu-
ropean Conference on Artificial Intelligence, ECAI2008, pages 99–103. IOS Press,
2008.

11. J. McCarthy. Circumscription – A Form of Non-Monotonic Reasoning. Artificial
Intelligence, 13(1–2):27–39, 1980.

12. B. Motik and R. Rosati. A faithful integration of description logics with logic
programming. In Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI-07), pages 477–482, Hyderabad, India, January 6–12
2007. AAAI Press.

13. I. Niemelä. Implementing Circumscription Using a Tableau Method. In Proc. of
the 12th Europ. Conf. on Artificial Intelligence (ECAI’96). J. Wiley & Sons, 1996.

14. A. Schaerf. Reasoning with Individuals in Concept Languages. Data Knowl. Eng.,
13(2):141–176, 1994.

15. M. Schmidt-Schauß; and G. Smolka. Attributive Concept Descriptions with Com-
plements. Artif. Intell., 48(1):1–26, 1991.

16. W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. http://www.w3.org/TR/owl2-overview/, 2009.

