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Abstract
A Nearest Neighbor Classifier (NNC) approaches the
problem of text classification by computing a similarity
metric between feature vector representations of an un-
known document and a set of known prototype documents.
The accuracy and speed of the NNC are dependent upon
the choices of features and prototypes. In this work we
consider the use of a genetic algorithm to optimize the
feature and prototype sets for an NNC. We also examine
whether simultaneously evolving the feature and prototype
sets produces better results than sequential optimization.

1. Introduction

Google claims to have indexed over 8 billion docu-
ments, including PowerPoint, Word, text, pdf, and Flash
as well as HTML files. With this amount of information
available, it is becoming increasingly difficult to find
specific data. As pointed out in [1], if web pages can be
reliably categorized without human intervention, keyword
searches and other techniques can then be applied to more
limited categories instead of the entire web.

The problem of text categorization can be framed as
a supervised learning task in which a classifier attempts
to learn a relationship between a training set of docu-
ments and their categories. The classifier then applies
that relationship to a test set of documents whose cat-
egories are not known. In this work, we have used a
nearest neighbor classifier (NNC). NNCs are based on
the appealingly simple notion that items which are close
together in the feature space belong to the same class.
In essence, a similarity measure is computed between an
item whose class is unknown and a set of prototypes of
known classification. The unknown item is assigned the
classification of the most similar prototype. The NNC has
been shown by many studies to perform as well or better

than alternative classification schemes on both synthetic
and real data sets ([2], [3]).

According to [4], the number of prototypes needed for
an NNC to achieve a given accuracy increases exponen-
tially with the number of irrelevant features. At the same
time, both the computation time and memory required for
the NNC increase with the number of prototypes and the
size of the feature vector. In general, the p prototypes,
each of length d (where d is the number of words in the
dictionary), must be stored in memory. O(pd) operations
are required to compute the distances between the input
and each prototype. Optimizing the feature and prototype
sets of an NNC can therefore potentially improve both
accuracy and efficiency.

There are many different approaches to optimizing the
feature and prototype sets ([5], [6]). Of these, no one
method dominates. Performance varies widely based on
the nature of the data involved. We explore the utility
of using a genetic algorithm (GA) to evolve the features
and prototypes. A genetic algorithm is a heuristic search
method that is an abstraction of Darwinian evolution. It
uses reproduction, mutation, competition, and selection of
a population of individuals to explore the search space.
Our goal in this research is to answer two questions: Is
a genetic algorithm an effective method for selecting the
features and prototypes used by an NNC for text clas-
sification? and Does simultaneously evolving the feature
and prototype sets produce better results than sequential
optimization?

2. Related Work

Some research has been devoted to using a GA to select
both the prototype and feature sets for an NNC. Kuncheva
and Jain compare the performance of a GA for prototype
and feature selection with established techniques such as
using the condensed nearest neighbor rule and Wilson’s



method for prototype selection and sequential forward
selection (SFS) for feature selection [3]. An individual in
the population consisted of a binary string of length p+f ,
where p is the number of potential prototypes and f is the
number of potential features. Their results indicate that the
GA is the best choice among the methods studied when
both accuracy and the number of features and prototypes
are considered; however, SFS and Wilson’s method used
in conjunction produced a comparable performance. Other
work has built upon this approach by attempting to add
“intelligence” to the GA [7]. This approach uses or-
thogonal experimental design (OED) within the crossover
operator to determine how much each gene is contributing
to the overall fitness and chooses the most useful genes
for propagation to the offspring. In this way, the algorithm
attempts to explore the (very large) search space more
efficiently than a tradition GA. The authors indicate that
this method does indeed produce better results when
accuracy and size are considered.

The method proposed here for simultaneously evolving
the features and prototypes differs from the above methods
in two ways. In the work above a single GA was used,
with a single chromosome containing genes specifying
both features and prototypes. In our approach, two nested
evolutionary processes are used. A prototype set is evolved
for each dictionary in the population. This allows a greater
interrelation between dictionary and prototype set at the
expense of increased computational complexity. In addi-
tion, the above research was done in domains that contain
20 or 30 potential features, while text classification is a
more complex problem that typically involves hundreds
or thousands of features.

3. Implementation

3.1. Preprocessing

The preprocessing phase consists of converting the
documents from HTML to text and generating the fea-
ture set that will be optimized by the GA. We used a
freeware tool called HTMLess, which can be downloaded
at http://www.oz.net/sorth/media/htmls3d32.exe to do the
conversion. The documents were then converted from free
form text to feature vectors to be classified by the NNC.
We have chosen binary feature vectors for our document
representation, where a 1 indicates that the document
contains a given word and a 0 that it does not. Other
research done using this dataset has found boolean feature
vectors to be amenable to classification [1].

There are two primary approaches to extracting a fea-
ture set for a given group of documents: using either the
term frequency or the distribution of a term over the docu-
ments. The approach used in this system is to consider an

averaged document frequency (DF). Specifically, the term
frequency for each word in each document in the training
set is computed and normalized with respect to the length
of the document. Then the average of the normalized term
frequency for each word over all documents is calculated.
This has the effect of considering how important a word
is in a particular document and how many documents
contain that word, which are both indicative of the term’s
classification value. The words with the top average DF
values were chosen as the initial features. In order to keep
very common words from being included, a stopwords file
consisting of the 1000 most commonly used words in the
English language was used as a filter.

3.2. Genetic Algorithm

Notice the nested loops in Figure 1 that implement two
cooperative genetic algorithms. The outer loop works to
evolve sets of features while the inner loop works to co-
evolve sets of prototypes. Both GA loops use random
initialization, two-point crossover of random parents, a
small mutation rate where the best individual is not subject
to mutation, and elite selection.

The evaluation step requires a more in-depth ex-
planation. The evaluation function tests each dictio-
nary/prototype set combination by using it in an NNC to
categorize a training set of documents. The fitness function
used is given by Equation 1, where ν is the accuracy, Fn

and Pn are the number of features and prototypes used,
and Fm and Pm are the maximum number of features
and prototypes available. The parameter α controls the
emphasis placed on accuracy versus size, and β deter-
mines which is more important to optimize—the number
of words in the dictionary or the number of prototypes.
Evaluation is by far the most expensive step in the GA.

αν + (1− α)
(
β

(
− Fn

Fm

)
+ (1− β)

(
− Pn

Pm

))
(1)

3.3. System Complexity

Both the dictionaries and prototype sets are represented
as bit strings, where a 1 indicates that the corresponding
item is included in this individual and a 0 that it is not.
This means that the search space for the dictionary is
2w, where w is the size of the full dictionary. Similarly,
the search space for the prototype sets contains 2p items
where p is the total number of potential prototypes pulled
from all of the classes being categorized. The size of
the combined search space is therefore 2w+p. This is
considerably larger than the 2w+2p that would be the size
if the features and prototypes were evolved sequentially.

Assuming the size of the dictionary and prototype pop-
ulations are equal, and that both are evolved for the same
number of generations, the complexity of evolving the



initialize the dictionary population with a random
distribution of ones and zeros

for (1:dictionary_epochs)
double the dictionary population by randomly
selecting parents and recombining using
two-point crossover

subject each gene in all but the best-performing
dictionary to mutation with probability
1/size(dictionary)

assign a fitness score based on size and accuracy
to each dictionary in conjunction with its best
prototype set by executing the following {

for (1:dictionary_population_size)
initialize the prototype population with a
random distribution of ones and zeros

for (1:prototype_epochs)
double the prototype population by randomly
selecting parents and recombining using
two-point crossover

subject each gene in all but the best-
performing prototype set to mutation
with probability 1/number(prototypes)

use the NNC with the current dictionary and
prototype set to classify the training set
and compute fitness based on accuracy

reduce the prototype population by half by
selecting the best-performing prototype sets

end

return the best-performing prototype set and
its fitness score up to the dictionary->evaluate
method

end
}

reduce the dictionary population by half by selecting
the best-performing dictionaries

end

Fig. 1. Algorithm for Simultaneous Evolution of
Features and Prototypes

feature and prototype sets simultaneously is of O(s2g2)
where s is the population size and g is the number of
generations. Clearly, evolving the features and prototypes
sequentially would be preferable. The complexity is then
O(2sg). It is possible, however, that the features and
prototypes are so intricately interdependent that they must
be evolved simultaneously. This is one of the questions
that we hope to answer.

4. Experimental Setup

The BankSearch web page dataset was chosen as
the document corpus. It is freely available online at
http://www.pedal.reading.ac.uk/banksearchdataset. There
are ten classes of documents, with 1000 documents per
class (Table I). These documents are web pages that have
been human-categorized as part of the Open Directory
Project and Yahoo! Categories. This dataset supports

TABLE I. Coarse and fine-grained classes within
the BankSearch web page dataset.

Class Specific Topic General Topic
1 Commercial Bank Banking and Finance
2 Building Societies Banking and Finance
3 Insurance Agencies Banking and Finance
4 Java Programming Languages
5 C / C++ Programming Languages
6 Visual Basic Programming Languages
7 Astronomy Science
8 Biology Science
9 Soccer Sport

10 Motor Sport Sport

classification tasks of varying levels of complexity. We
tested our system on two groups of dissimilar documents
(Commercial Banking and Soccer), two groups of similar
documents (Building Societies and Insurance Agencies),
and all ten groups.

The initial prototype set consists of 50 documents
from each class. Another 50 documents from each group
are used to generate the dictionary, which contains 200
potential features when two groups are being classified
and 500 when all ten groups are being considered. The
test set is comprised of a disjoint set of 100 documents
from each class. The fitness function parameters α and
β are both set to 0.5. A population size of 10 is used,
and the number of generations is set to 30 except when
both the feature and prototype sets were evolved. In that
case, the number of generations was reduced from 30
to 15 due to the computation time required, particularly
for the nested approach. Our results from evolving the
features and prototypes alone indicate that the GA is able
to produce good results within this time period however.

In order to effectively judge the contribution made by
the GA, the accuracy of the NNC without any refinement
of the dictionary and prototype set was first determined
as a baseline for comparison. Then the prototype set was
held fixed and the dictionary was evolved using the GA.
Next the dictionary was fixed and the prototype set was
evolved. It has been suggested by [8] that random search
can sometimes perform comparably to a GA in feature
selection. To determine if the genetic operators were help-
ful in generating good solutions, the crossover, mutation,
and selection operators were removed and the population
was randomly reinitialized every generation. The only
memory between generations was the retention of the
best-performing individual. This random method was used
to generate both feature and prototype sets. Finally both
features and prototypes were evolved. In the interest of
time, we did not attempt to categorize all ten groups for
this last experiment. Three different configurations were
tested. In the first, the dictionary was evolved using the
entire prototype set. Then the best dictionary was chosen
and held constant while the prototype set was evolved.



TABLE II. Summary of Results

Test Classes Accuracy Prototypes Features
Unoptimized NNC 1 and 9 87 100 200

2 and 3 81 100 200
All 55 500 500

Dictionary Evolution 1 and 9 93 100 81
2 and 3 81 100 81
All 59 500 236

Randomized Dictionary 1 and 9 90 100 87
2 and 3 82 100 88

Prototype Evolution 1 and 9 95 45 200
2 and 3 88 49 200
All 57 243 500

Randomized Prototypes 1 and 9 90 51 200
2 and 3 80 52 200

Dictionary then Prototypes 1 and 9 94 52 82
2 and 3 87 53 88

Prototypes then Dictionary 1 and 9 93 48 84
2 and 3 85 50 81

Simultaneous Evolution 1 and 9 94 46 86
2 and 3 86 49 82

The system was then modified to use the initial dictionary
to evolve the prototype set first, and then use the chosen
prototypes to optimize the dictionary. Finally, the system
was set up to evolve the dictionary in an outer evolutionary
process. For each generation in the dictionary evolution, a
prototype set is evolved for each member of the dictionary
population using another GA.

5. Results

Table II summarizes the results of the experiments. The
values in the table are averaged over three trials. The
accuracy is out of 100, the prototypes are out of 100 for
the two-class case and 500 for all ten classes, and the
features are out of 200 for the two-class case and 500 for
all ten classes.

5.1. Unoptimized NNC

On average, the NNC classified the diverse documents
with 87% accuracy and the similar documents with 81%
accuracy. The accuracy on the full category set averaged
55%. It is somewhat surprising that NNC performed as
well as it did in these tests. This is an indication that
the strategy used to create the initial dictionary is at least
marginally effective.

5.2. Feature Evolution

The results of this experiment are shown in the second
and third rows of Table II. In all cases, the size of the fea-
ture set was reduced significantly (60% for the two-class
cases and 47% for all ten classes). Accuracy improved by
7% over the unoptimized NNC for classes 1 and 9 and all
ten classes, but remained the same for classes 2 and 3. The
system was forced to make more accuracy/size tradeoffs
when categorizing the similar documents. Altering the α

TABLE III. Evolved Dictionary - Classes 1 and 9

Word Class 1 Class 9 Word Class 1 Class 9
100 25 12 fans 0 19

acorns 0 0 following 23 15
advice 19 1 goals 1 19
brazil 2 14 investments 26 0
clubs 2 28 limited 23 6
credit 48 1 match 1 33

dinamo 0 11 news 16 40
wednesday 0 11 stadium 0 16
payment 31 1 property 16 0

rights 8 20 subs 0 3
were 12 18 savings 47 1

security 43 0 uefa 0 26
germany 8 28 repayment 19 0

parameter of the fitness function was unable to mitigate
this problem. The accuracy of the randomly generated
feature sets were comparable to the GA. However, the
feature sets produced were larger on average. The fitness
function of the GA contains a size penalty that allows it to
focus the search on solutions that contain fewer redundant
features.

Table III is a subset of the initial dictionary considered
by the GA when attempting to categorize documents from
classes 1 and 9 (Commercial Banking and Soccer). The
numbers under the class headings indicate how many
documents from the test set contained each word. For
instance, 19 of the 100 documents on commercial banking
from the test set contained the word advice, while only
one page on soccer contained that word. These are meant
to give a coarse indication of the value of each word
as a classifier. The words in bold are those included
in the dictionary evolved by the GA. The majority of
the chosen words are obviously useful classifiers and
would likely have been selected by a human if they were
hand-generating a dictionary. These include soccer terms
and team locations such as brazil, germany, stadium and
match and banking vocabulary including credit, savings,
and repayment. A few words, such as wednesday appear
to be useful classifiers but are unlikely to have been
considered by a human because they are not strongly
associated with the subject in our minds, even though
they may appear frequently in documents on the subject.
Some words that survived the evolutionary process are
poor classifiers. Examples include acorns and were. It is
possible that running the GA for more generations or with
a larger population size could reduce the occurrence of
these marginal choices. Alternatively, the fitness function
parameters could be adjusted to introduce a larger penalty
for dictionary size.

5.3. Prototype Evolution

The results of this experiment are shown in the fourth
and fifth rows of Table II. In all cases the accuracy was



improved over the unoptimized NNC while the number of
prototypes was reduced by more than 50%. It should be
noted that in order to achieve this result for classes 2 and
3, the fitness function parameter α had to be increased
from 0.5 to 1. This removed the size penalty and thus
allowed the GA to consider solutions involving more
prototypes, which drove the accuracy higher even though
the final solution does not contain an excessive number of
prototypes.

The randomly generated prototype sets resulted in
higher accuracy and fewer prototypes than the unopti-
mized NNC. Compared to the GA, however, the accuracy
of the best randomly generated solution was significantly
lower (5% lower for classes 1 and 9 and 9% for classes 2
and 3). The number of prototypes chosen was about the
same in both cases. Unlike the feature selection case, the
document distribution in the feature space seems to limit
the combinations of prototypes that are capable of pro-
viding good results. The crossover operator is particularly
important in this case because it allows useful subsets of
prototypes to be combined in offspring.

Some characteristics of the evolved prototype sets are
interesting. Table IV shows which documents were chosen
as prototypes for each two-class trial. To keep the number
of prototypes small enough to analyze easily, the size
of the initial prototype set was limited to 15 documents
from each class for this experiment (instead of the 50
used previously), and the test set was restricted to 30
documents of each type. The documents are numbered
according to their class, so 1 through 1000 are class 1,
1001 through 2000 are class 2, and so on. In each case,
the prototype set contains a roughly equal number of
examples from each class being considered. The column
labeled utilized shows how many times a given prototype
was used to make a classification, and the accuracy
column indicates how often that classification was correct.
Ideally, the prototype set would contain a small number
of frequently used prototypes that are reasonably accurate.
If the feature space is such that there are several pockets
of outliers among the documents to be classified, several
prototypes may need to be included in the set in order to
properly categorize these outliers. These prototypes would
be utilized less often, but that would be acceptable if they
were highly accurate. For classes 1 and 9, which are very
dissimilar documents, the prototypes chosen display these
traits. Documents 758, 550, 8668, 8452, and 8391 are used
to make the majority of the classifications. Documents
550 and 8668 lead to some errors, but on the whole these
prototypes are doing more good than harm. Documents
86, 578, and 8665 are only used a handful of times, but
are perfectly accurate. In the other trial, which involves
classifying more similar documents, the evolved prototype
set is not as coherent. For instance, document 2347 is used

TABLE IV. Evolved Prototype Set

Classes 1 and 9 Classes 2 and 3
Document Utilized Accuracy Document Utilized Accuracy

86 1 1.0000 1901 5 1.0000
578 1 1.0000 1487 5 1.0000
758 19 1.0000 1455 2 .5000
550 8 .8750 1369 3 1.0000
8668 7 .7143 1038 2 1.0000
8452 6 1.0000 1540 3 .6667
8665 2 1.0000 2435 2 1.0000
8391 16 1.0000 2897 1 1.0000

2310 28 .6071
2141 6 1.0000
2309 0 0
2267 2 1.0000
2347 1 0

to make one classification, and it was incorrect. Document
2309 is included in the prototype set despite not being
used. It is clear that these prototypes cannot be helping the
NNC. The GA could be “encouraged” to remove them by
increasing the fitness penalty for the number of prototypes
used. Alternatively, it could be forced to remove them by
adding a specific check on the utilization versus accuracy
of the prototypes in the fitness function. This ability to
tailor solutions based on domain knowledge is one of the
important benefits of a GA.

5.4. Sequential vs Simultaneous Evolution

The results of this test are summarized in the last three
rows of Table II. In each configuration, the accuracy of
the evolved system was roughly the same as evolving the
features or prototypes alone and represents a significant
improvement over the unoptimized NNC. Furthermore,
evolving both the feature and prototype sets resulted
in about the same number of words and prototypes as
when either was optimized individually. Most importantly,
the nested genetic algorithm did not perform better than
classifiers evolved sequentially. This is encouraging as it
allows us to both improve the accuracy and decrease the
computation time and memory requirements of the NNC
using the much faster sequential algorithm. It is likely that
the extremely high dimensionality of the feature space
in text classification domains is the reason the feature
and prototype sets are not so interrelated that they must
be evolved simultaneously. The large number of features
greatly increases the likelihood that documents will be
nearly linearly separable, which simplifies the process
of choosing prototypes. Our results indicate that it does
not matter which is optimized first—the features or the
prototypes. More work needs to be done in order to
generalize these results beyond the particular document
corpus studied here, however.



6. Conclusion

More research needs to be done to analyze the per-
formance of other types of classifiers on this particular
document corpus and on other text classification problems
so that relative comparisons can be made. However, the
results presented in the previous section do indicate that
the NNC performs reasonably well in absolute terms in
this domain. While the level of accuracy achieved by the
NNC in this study was not high enough for applications
where the consequences of a misclassification may be
serious (e.g. spam filtering), there are potential uses. For
example, the system’s classification may be useful in
optimizing searches for some domains, particularly web
portals where the number of topics involved is naturally
limited. If a user is looking for documents similar to the
one they already have, this system can assist by directing
searches to a particular category first. The search of this
smaller space will be faster, and the documents are likely
to be more relevant. If the desired information is not found
by searching that group of documents, the search could
be widened to consider all documents. We are considering
this type of application as part of our future work in this
area.

We have found genetic algorithms to be a useful method
for optimizing the feature and prototype sets. Several
studies in this area (using GA and other techniques) have
reported that it was possible to reduce the feature set and
the number of prototypes while maintaining performance,
but that these optimizations did not increase accuracy ([9],
[3]). Our results contradict this observation. They indicate
that optimizing either the dictionary or the prototype set
can increase accuracy, particularly in the easiest case of
two very distinct subject areas. While random selection
of the dictionary and prototypes did produce reasonable
results, the ability of the GA to exploit useful subsets
of features via the crossover operator proved useful in
both cases. The option of using the fitness function to
tailor results is also valuable. It can not be said that
optimizing the dictionary is more important than reducing
the prototype set or vice versa—the GA reduced both by
about the same percentage, and the accuracy increased in
both cases. Prototype evolution was complicated more by
the similarity of the documents being considered than was
dictionary evolution, but this problem can be mitigated by
adjusting the fitness function parameters α and β, which
will cause the system to work to achieve more accurate
solutions at the expense of size and will penalize larger
dictionaries more than larger prototype sets.

The computation time and memory requirements of an
NNC scale with the product of the number of features
and prototypes. In the studies cited, the numbers of
features and prototypes were small so the potential savings

from optimizations were limited. However, in the area of
text classification the number of features can range from
hundreds to thousands so any reduction of the feature or
prototype sets translates into a significant improvement in
computation time. Although optimizing both sets at once
(sequentially or simultaneously) did not reduce the size
of either set beyond evolution of either one in isolation, it
did lead to better performance (because the sizes of both
sets were reduced). Furthermore, the sequential evolution
algorithm was shown to perform as well as the more
computationally-intensive simultaneous evolution.
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