1. Given a formula F: is F satisfiable?
 - Convert F into negation normal form (NNF)
 - if F is not yet in NNF
 - run the tableau algorithm on F
 - if not, find a complete open tableau branch
 - this output: F is satisfiable
 - otherwise (we cannot find a complete open branch)
 - all branches are closed.
 - thus output: F is not satisfiable.
 - (if F is unsatisfiable).

2. Given a formula F: is F unsatisfiable?
 - the same thing as above.

3. Given a formula F: is F valid?
 - this the same as asking: is $\neg F$ unsatisfiable?
 - convert $\neg F$ into negation normal form
 - run tableau alg. on $\neg F$ (after conversion)
 - if all branches are closed, then $\neg F$ is unsatisfiable
 - (i.e., F is valid)
 - otherwise, you find a complete open tableau branch for $\neg F$
 - thus output: F is satisfiable
 - hence, F is not valid.

4. Given two formulas F, G: $F \equiv G$?
 - is $F \rightarrow G$ valid?
 - answer the question as in 3 with input $F \rightarrow G$

5. Given a set of formulas $M = \{F_1, \ldots, F_n\}$ and another G, $M \equiv G$?
 - is $(F_1 \land \ldots \land F_n) \rightarrow G$ valid?
 - use 4

6. Given two formulas F, G: $F \Rightarrow G$?
 - is $(F \rightarrow G)$ valid?
 - (use 4)
 - $(F \rightarrow G) \land (G \rightarrow F)$