
MODL: A Modular Ontology Design
Library
Version 1.0

Contributors:
COGAN SHIMIZU — Wright State University
PASCAL HITZLER — Wright State University
QUINN HIRT — Wright State University

Document Date: April 10, 2019

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area Graduate Studies
Institute (DAGSI). This work was partially supported by the Air Force Office of Scientific Research
under award number FA9550-18-1-0386. Chapter 2 is adapted from [18].

Contents

Contents i

List of Figures ii

1 Introduction 1

2 Preliminaries 4

3 Patterns 7
3.1 Explicit Typing . 7
3.2 Property Reification . 8
3.3 Stubs . 10
3.4 Aggregation, Bag, Collection . 11
3.5 Sequence, List . 13
3.6 Tree . 15
3.7 Spatiotemporal Extent . 18
3.8 Spatial Extent . 20
3.9 Temporal Extent . 22
3.10 Trajectory . 24
3.11 Event . 26
3.12 AgentRole . 28
3.13 ParticipantRole . 30
3.14 Name Stub . 32
3.15 Quantities and Units . 33
3.16 Partonymy/Meronymy . 35
3.17 Provenance . 38
3.18 Identifier . 40

Bibliography 41

i

List of Figures

2.1 Generic node-edge-node schema diagram for explaining systematic axiomatization 4
2.2 Most common axioms which could be produced from a single edge R between nodes A and B

in a schema diagram: description logic notation. 5
2.3 Most common axioms which could be produced from a single edge R between nodes A and B

in a schema diagram: Manchester syntax. 6

3.1 Schema Diagram for the Explicit Typing Pattern. The visual notation is explained in Chapter 2. 7
3.2 Schema Diagram for Property Reification. The visual notation is explained in Chapter 2. Ad-

ditioanlly, we use the dotted line with solid arrow to indicate which property is being reified.
This relation has no bearing on the below axioms. 8

3.3 Schema Diagram for Stubs. The visual notation is explained in Chapter 2. 10
3.4 Schema Diagram for the Aggregation, Bag, Collection Pattern. The visual notation is explained

in Chapter 2. 11
3.5 Schema Diagram for the Sequence and List Pattern. The visual notation is explained in Chapter 2. 13
3.6 Schema Diagram for the Tree Pattern. The visual notation is explained in Chapter 2. 15
3.7 Schema Diagram for the Spatiotemporal Extent Pattern. The visual notation is explained in

Chapter 2. 18
3.8 Schema Diagram for Spatial Extent. The visual notation is explained in Chapter 2. 20
3.9 Schema Diagram for Temporal Extent. The visual notation is explained in Chapter 2. 22
3.10 Schema Diagram for the Trajectory Pattern. The visual notation is explained in Chapter 2. 24
3.11 Schema Diagram for the Event Pattern. The visual notation is explained in Chapter 2. 26
3.12 Schema Diagram for the AgentRole Pattern. The visual notation is explained in Chapter 2. . . . 28
3.13 Schema Diagram for the ParticipantRole Pattern. The visual notation is explained in Chapter 2. 30
3.14 Schema Diagram for Name Stub. The visual notation is explained in Chapter 2. 32
3.15 Schema Diagram for Quantities and Units. The visual notation is explained in Chapter 2. 33
3.16 Schema Diagram for Partonymy. 35
3.17 Schema Diagram for the Provenance Pattern. The visual notation is explained in Chapter 2. . . . 38
3.18 Schema Diagram for the Identifier Pattern. The visual notation is explained in Chapter 2. 40

ii

1 Introduction

Motivation

The Information Age is an apt description for these modern times; between the World Wide Web
and the Internet of Things an unfathomable amount of information is accessible to humans and
machines, but the sheer volume and heterogeneity of the data have their drawbacks. Humans
have difficulty drawing meaning from large amounts of data. Machines can parse the data, but do
not understand it. Thus, in order to bridge this gap, data would need to be organized in such a
way that some critical part of the human conceptualization is preserved. Ontologies are a natural
fit for this role, as they may act as a vehicle for the sharing of understanding [3].

Unfortunately, published ontologies have infrequently lived up to such a promise, hence the
recent emphasis on FAIR (Findable, Accessible, Interoperable, and Reusable) data practices [20].
More specifically, many ontologies are not interoperable or reusable. This is usually due to incom-
patible ontological commitments: strong—or very weak—ontological committments lead to an
ontology that is really only useful for a specific use-case, or to an ambiguous model that is almost
meaningless by itself.

To combat this, we have developed a methodology for developing so-called modular ontolo-
gies [10]. In particular, we are especially interested in pattern-based modules [6]. A modularized
ontology is an ontology that individual users can easily adapt to their own use-cases, while still
preserving relations with other versions of the ontology; that is, keeping it interoperable with other
ontologies. Such ontologies may be so adapted due to their “plug-and-play” nature; that is, one
module may be swapped out for another developed from the same pattern.

An ontology design pattern is, essentially, a small self-contained ontology that addresses a
general problem that has been observed to be invariant over different domains or applications [4].
By tailoring a pattern to a more specific use-case, an ontology engineer has developed a module.
This modelling paradigm moves much of the cost away from the formalization of a conceptualiza-
tion (i.e. the logical axiomatization). Instead, pattern-based modular ontolody design (PBMOD)
is predicated upon knowledge of available patterns, as well as being aware of the use-cases it
addresses and its ontological commitments.

Thus, in order to address the findability and accessibility aspects of PBMOD, we have devel-
oped MODL: a modular ontology design library, which is herein described.

Overview

MODL is a curated collection of well-documented ontology design patterns. Some of the patterns
are novel, but many more have been extracted from existing ontologies and streamlined for use
in a general manner. MODL, as an artefact, is distributed online as a collection of annotated OWL
files and this technical report.

There are two different ways to use MODL—for use in ontology modelling and for use in tools.
In both cases, MODL is distributed as a ZIP archive of the patterns’ OWL files and accompanying
documentation. In the case of the Ontology Engineer, it is simply used as a resource while building

1

2

an ontology, perhaps by using Modular Ontology Modelling or eXtreme Design methodologies.
For the tool developer, we also supply an ontology consisting of exactly the OPLa annotations
from each pattern that pertain to OntologicalCollection. As OPLa is fully specified in OWL, these
annotations make up an ontology of patterns and their relations. One particular use-case that
we foresee is a tool developer querying the ontology for which patterns are related to the current
pattern, or looking for a pattern based on keywords or similarity to competency questions.

Organization

Namespaces

For MODL we currently use the namespace https://archive.org/services/purl/purl/
modular_ontology_design_library/<VERSION>/<PATTERN>.

Current Patterns

1. Metapatterns
a) Explicit Typing
b) Property Reification
c) Stubs

2. Organization of Data
a) Aggregation, Bag, Collection
b) Sequence, List
c) Tree

3. Space, Time, and Movement
a) Spatiotemporal Extent
b) Spatial Extent
c) Temporal Extent
d) Trajectory
e) Event

4. Agents and Roles
a) AgentRole
b) ParticipantRole
c) Name Stub

5. Description and Details
a) Quantities and Units
b) Partonymy/Meronymy
c) Provenance
d) Identifier

https://archive.org/services/purl/purl/modular_ontology_design_library/<VERSION>/<PATTERN>
https://archive.org/services/purl/purl/modular_ontology_design_library/<VERSION>/<PATTERN>

3

Categories

Metapatterns This category contains patterns that can be considered to be “patterns for patterns.”
In other literature, notably [2], they may be called structural ontology design patterns, as they are in-
dependent of any specific context, i.e. they are content-independent. This is particularly true for
the metapattern for property reification, which, while a modelling strategy, is also a workaround
for the lack of n-ary relationships in OWL. The other metapatterns address structural design
choices frequently encountered when working with domain experts. They present a best prac-
tice to non-ontologists for addressing language specific limitations.
Organization of Data This category contains patterns that pertain to how data might be orga-
nized. These patterns are necessarily highly abstract, as they are ontological reflections of com-
mon data structures in computer science. The pattern for aggregation, bag, or collection is a
simple model for connecting many concepts to a single concept. Analogously, for the list and tree
pattterns, which aim to capture ordinality and acyclicity, as well. More so than other patterns
in this library, these patterns provide an axiomatization as a high-level framework that must be
specialized (or modularized) to be truly useful.
Space, Time, and Movement This category contains patterns that model the movement of a thing
through a space or spaces and a general event pattern. The semantic trajectory pattern is a more
general pattern for modelling the discrete movements along some dimensions. The spatiotempo-
ral extent pattern is a trajectory along the familiar dimensions of time and space. Both patterns
are included for convenience.
Agents and Roles This category contains patterns that pertain to agents interacting with things.
Here, we consider an agent to be anything that performs some action or role. This is important, as
it decouples the role of an agent from the agent itself. For example, a Person may be Husband and
Widower at some point, but should not be both simultaneously. These patterns enable the capture
of this data. In fact, the agent role and participante role patterns are convenient specializations of
property reification that have evolved into a modelling practice writ large. In this category, we
also include the name stub, which is a convenient instantiation of the stub metapattern; it allows
us to acknowledge that a name is a complicated thing, but sometimes we only really need the
string representation.
Description and Details This category contains patterns that model the description of things.
These patterns are relatively straightforward, models for capturing “how much?” and “what
kind?” for a particular thing; patterns that are derived from Winston’s part-whole taxonomy [19];
a pattern extracted from PROV-O [15], perhaps to be used to answer “where did this data come
from?”; and a pattern for associating an identifier with something.

2 Preliminaries

We list the individual patterns contained in MODL, together with their axioms and explanations
thereof. Schema diagrams are provided throughout, but the reader should keep in mind that
while schema diagrams are very useful for understanding an ontology [9], they are also inherently
ambiguous.

Primer on Ontology Axioms

Logical axioms are presented (mostly) in description logic notation, which can be directly trans-
lated into the Web Ontology Language OWL [7]. We use description logic notation because it is,
in the end, easier for humans to read than any of the other serializations.1

Logical axioms serve many purposes in ontology modeling and engineering [5]; in our context,
the primary reason why we choose a strong axiomatization is to disambiguate the ontology.

Almost all axioms which are part of the Enslaved Ontology are of the straightforward and
local types. We will now describe these types in more detail, as it will make it much easier to
understand the axiomatization of the Enslaved Ontology.

There is a systematic way to look at each node-edge-node triple in a schema diagram in order
to decide on some of the axioms which should be added: Given a node-edge-node triple with
nodes A and B and edge R from A to B, as depicted in Figure 2.1, we check all of the following
axioms whether they should be included.2 We list them in natural language, see Figure 2.2 for the
formal versions in description logic notation, and Figure 2.3 for the same in Manchester syntax,
where we also list our names for these axioms.

1. A is a subClass of B.
2. A and B are disjoint.
3. The domain of R is A.
4. For every B which has an inverse R-filler, this inverse R-filler is in A. In other words, the

domain of R, scoped by B, is A.
5. The range of R is B.

1Preliminary results supporting this claim can be found in [17].
2The OWLAx Protégé plug-in [16] provides a convenient interface for adding these axioms.

Figure 2.1: Generic node-edge-node schema diagram for explaining systematic axiomatization

4

5

1. A v B
2. A uB v ⊥
3. ∃R.> v A
4. ∃R.B v A
5. > v ∀R.B
6. A v ∀R.B

6. A v R.B
7. B v R−.A
8. > v ≤1R.>
9. > v ≤1R.B

10. A v ≤1R.>
11. A v ≤1R.B

11. > v ≤1R−.>
12. > v ≤1R−.A
13. B v ≤1R−.>
14. B v ≤1R−.A
15. A v ≥ 0R.B

Figure 2.2: Most common axioms which could be produced from a single edge R between nodes
A and B in a schema diagram: description logic notation.

6. For every A which has an R-filler, this R-filler is in B. In other words, the range of R, scoped
by A, is B.

7. For every A there has to be an R-filler in B.
8. For every B there has to be an inverse R-filler in A.
9. R is functional.

10. R has at most one filler in B.
11. For every A there is at most one R-filler.
12. For every A there is at most one R-filler in B.
13. R is inverse functional.
14. R has at most one inverse filler in A.
15. For every B there is at most one inverse R-filler.
16. For every B there is at most one inverse R-filler in A.
17. An A may have an R-filler in B.

Domain and range axoims are items 2–5 in this list. Items 6 and 7 are extistential axioms.
Items 8–15 are about variants of functionality and inverse functionality. All axiom types except
disjointness and those utilizing inverses also apply to datatype properties.

Structural tautologies are, indeed, tautologies, i.e., they do not carry any formal logical content.
However as argued in [5] they can help humans to understand the ontology, by indicating possible
relationships, i.e., relationships intended by the modeler which, however, cannot be cast into non-
tautological axioms.

Explanations Regarding Schema Diagrams

We utilize schema diagrams to visualize the ontology. In our experience, simple diagrams work
best for this purpose. The reader needs to bear in mind, though, that these diagrams are ambigu-
ous and incomplete visualizations of the ontology (or module), as the actual ontology (or module)
is constituted by the set of axioms provided.

We use the following visuals in our diagrams:

rectangular box with solid frame and orange fill: a class
rectangual box with dashed frame and blue fill: a module, which is described in more detail

elsewhere in the document
rectangular box with dashed frame and purple fill: a set of URIs constituting a controlled vocab-

ulary
oval with solid frame and yellow fill: a data type
arrow with white head and no label: a subClass relationship

6

1. A SubClassOf B (subClass)
2. A DisjointWith B (disjointness)
3. R some owl:Thing SubClassOf A (domain)
4. R some B SubClassOf A (scoped domain)
5. owl:Thing SubClassOf R only B (range)
6. A SubClassOf R only B (scoped range)
7. A SubClassOf R some B (existential)
8. B SubClassOf inverse R some A (inverse existential)
9. owl:Thing SubClassOf R max 1 owl:Thing (functionality)

10. owl:Thing SubClassOf R max 1 B (qualified functionality)
11. A SubClassOf R max 1 owl:Thing (scoped functionality)
12. A SubClassOf R max 1 B (qualified scoped functionality)
13. owl:Thing SubClassOf inverse R max 1 owl:Thing (inverse functionality)
14. owl:Thing SubClassOf inverse R max 1 A (inverse qualified functionality)
15. B SubClassOf inverse R max 1 owl:Thing (inverse scoped functionality)
16. B SubClassOf inverse R max 1 A (inverse qualified scoped functionality)
17. A SubClassOf R min 0 B (structural tautology)

Figure 2.3: Most common axioms which could be produced from a single edge R between nodes
A and B in a schema diagram: Manchester syntax.

arrow with solid tip and label: a relationship (or property) other than a subClass relationship

3 Patterns

3.1 Explicit Typing

Figure 3.1: Schema Diagram for the Explicit Typing Pattern. The visual notation is explained in
Chapter 2.

3.1.1 Summary

The pattern for explicit typing is very straightforward. Indeed, it is merely a representation of
what we consider to be a "best practice." This pattern is used when there is a finite, but mutable
number of types of a thing. We find this easier to maintain than a series of subclass relationships.

3.1.2 Axiomatization

> v ∀hasType.Type (1)

3.1.3 Explanations

1. Range: the range of hasType is Type.

3.1.4 Competency Questions

CQ1. What is the type of Event?
CQ2. Which type of apparatus is that?

7

8

3.2 Property Reification

Figure 3.2: Schema Diagram for Property Reification. The visual notation is explained in Chapter
2. Additioanlly, we use the dotted line with solid arrow to indicate which property is being reified.
This relation has no bearing on the below axioms.

3.2.1 Summary

In OWL, unfortunately, it is not possible to directly represent n-ary relationships. However, it is
still possible to capture that information. This notion is called reification. The Property Reifica-
tion pattern is essentially a metapattern; it could be better considered to be a modelling practice.
Here, though, we present a set of axioms that will allow a developer to quickly reify a concept by
specializing the framework.

Consider that we would like to relate two Things together via some propertyToBeReified given
some Context information that also needs to be captured. To do so, we create a ReifiedProperty
and attach the information to this concept. A more concrete example of this can be seen in the
AgentRole and ParticipantRole patterns (Sections 3.12 and 3.13).

The axioms below are minimalistic, because it is hard to make claims about the domain and
range at the most general case. It should be safe to say that there is certain some connection be-
tween the first object of interest and the reified property itself. But, perhaps, the second reified
property is reused from some other pattern or part of the ontology—we cannot make any state-
ments about it at this level. Furthermore, concept of “context” is loose and open to interpretation
by the developer. Could it be subclassed during specialization or use of this pattern, perhaps? Is
it necessary, perhaps not. It does, however, suffice to show how reification with context works.

3.2.2 Axiomatization

> v ∀reifiedProperty1.ReifiedProperty (1)

9

> v ∀hasContext.Context (2)

> v ∃hasContext.Context (3)

(4)

3.2.3 Explanations

1. Range: the range of reifiedProperty1 is ReifiedProperty.
2. Range: the range of hasContext is Context.
3. Existential: a ReifiedProperty should have at least some contextual information, otherwise,

it wouldn’t need to be reified.

3.2.4 Competency Questions

CQ1. What was the street named during the Great Depression?
CQ2. From what years was Al Gore Vice President?
CQ3. What is the unit of measurement was used to weigh the elephant?

10

3.3 Stubs

Figure 3.3: Schema Diagram for Stubs. The visual notation is explained in Chapter 2.

3.3.1 Summary

Stubs are a very minimal pattern that could also be described as a technique or best practice. Es-
sentially, during modelling, there are frequently times when developers recognize that a concept
is complex, but also out of the scope of an ontology or knowledge graph. However, the devel-
oper would like to keep the ontology extensible or allow others to build off of the ontology at that
point. One example of this is Name or Title. In many cases, there is no reason to store more than
a string for a name or title. However, names and titles are not necessarily inherent to a thing at
all times. Yet, delving into those details may be unnecessary for a use-case. To account for this,
a developer may want to use as stub. That is, acknowledge the complexity of a concept, but also
include the information that is useful. This metapattern is described in more detail in [11].

3.3.2 Axiomatization

> v ∀hasValue.xsd:AnyValue//Stub v ∃hasValue.xsd:AnyValue (1)

3.3.3 Explanations

1. Range: the range of hasValue is any xsd datatype. We use AnyValue in the above axiom to
indicate that any datatype will suffice.

2. Existential: the Stub must have a value.

3.3.4 Competency Questions

CQ1. Which street is that?
CQ2. What is the title of Alfred Tennyson?

11

3.4 Aggregation, Bag, Collection

Figure 3.4: Schema Diagram for the Aggregation, Bag, Collection Pattern. The visual notation is
explained in Chapter 2.

3.4.1 Summary

The pattern for an Aggregation, Bag, or Collection is relatively simple. The Bag is a type of un-
ordered collection. This pattern was included in this library for demonstrating a more approach-
able interface for the partonymy pattern, with respect to membership. For example, we may
use this pattern to represent a committee. In this case, the committee member is theBagItem,
the committee is the Bag, and the itemOf property is a sub-property to the po-member prop-
erty found in the Partonymy/Meronymy pattern (Section 3.16). This pattern was adapted from
the Bag ontology design pattern and be found at http://ontologydesignpatterns.org/
wiki/Submissions:Bag. Some language is borrowed from the description.

3.4.2 Axiomatization

Bag v Collection (1)

itemOf v po-member (2)

∃itemOf.BagItem v Bag (3)

Bag v ∀itemOf.BagItem (4)

(5)

http://ontologydesignpatterns.org/wiki/Submissions:Bag
http://ontologydesignpatterns.org/wiki/Submissions:Bag

12

3.4.3 Explanations

1. Subclass: a Bag is a Collection
2. Subproperty: itemOf is a subproperty to po-member from the Partonymy Pattern (Section

3.16).
3. Scoped Domain: the scoped domain of itemOf, scoped by BagItem, is Bag.
4. Scoped Range: the scoped range of itemOf, scoped by Bag, is BagItem.

3.4.4 Competency Questions

CQ1. What bag is this item an element of?
CQ2. What resource does this item refer to?
CQ3. What are the items contained in this bag?

13

3.5 Sequence, List

Figure 3.5: Schema Diagram for the Sequence and List Pattern. The visual notation is explained
in Chapter 2.

3.5.1 Summary

The Sequence Pattern is a way of imposing order upon items of interest; it follows the concep-
tualization of a Linked List from computer science. This pattern is a simplified view of the Tree
Pattern (as found in Section 3.6) and is adapted from [1]. While this pattern seems very abstract,
it is both easy to specialize and occurs very frequently. In this resource, the pattern occurs in the
Trajectory Pattern (a sequence of Fixes), the SpatiotemporalExtent Pattern (a sequence of Place,
Time pairs), and SpatialExtent (a sequence of PointsInSpace.

3.5.2 Axiomatization

FirstItem v ListItem (1)

LastItem v ListItem (2)

ListItem v ∀hasNext.ListItem (3)

ListItem v ∀hasNext−.ListItem (4)

ListItem u ¬LastItem ≡ ListItem u= 1hasNext.ListItem (5)

ListItem u ¬FirstItem ≡ ListItem u= 1hasNext−.ListItem (6)

FirstItem ≡ ListItem u ¬∃hasNext−.> (7)

LastItem ≡ ListItem u ¬∃hasNext.> (8)

hasNext v hasSuccessor (9)

14

hasNext ◦ hasSuccessor v hasSuccessor (10)

Irreflexive(hasSuccessor) (11)

3.5.3 Explanations

1. Subclass: the FirstItem is a ListItem.
2. Subclass: the LastItem is a ListItem.
3. Scoped Range: the range of hasNext, scoped by ListItem, is ListItem.
4. Scoped Range: the range of hasNext−, scoped by ListItem, is ListItem.
5. A ListItem that is not the LastItem has exactly one next ListItem.
6. A ListItem that is not the FirstItem has exactly one previous ListItem.
7. The FirstItem does not have have a predecessor.
8. The LastItem does not have a next ListItem.
9. Subproperty: hasNext is a subproperty to hasSuccessor.

10. Role Chain: the successor of a ListItem’s next ListItem is its successor.
11. Irreflexivity.

3.5.4 Competency Questions

CQ1. What is the first element of the list?
CQ2. What is the last element of the list?
CQ3. Is x a predecessor of y?

15

3.6 Tree

Figure 3.6: Schema Diagram for the Tree Pattern. The visual notation is explained in Chapter 2.

3.6.1 Summary

The Tree pattern allows a developer to organize data into a tree data structure. An ontological
tree, however, is subtly different from those that occur in other parts of computer science; these
trees should be viewed as static—something to be queried, not manipulated. For example, a
motivating use case is the organization of organisms into a phylogenetic tree. Such examples and
more information may be found in [1], from where this pattern is adapted.

3.6.2 Axiomatization

LeafNode v TreeNode (1)

RootNode v TreeNode (2)

TreeNode v ∀hasOutDegree.xsd:positiveInteger (3)

TreeNode v = 1hasOutDegree.xsd:positiveInteger (4)

LeafNode ≡ TreeNode u ∀hasOutDegree.{0ˆˆxsd:positiveInteger} (5)

TreeNode u ¬LeafNode ≡ TreeNode u ∀hasOutDegree.{xˆˆxsd:positiveInteger|1 ≤ x}
(6)

hasChild ≡ hasParent− (7)

hasDescendant ≡ hasAncestor− (8)

hasChild v hasDescendant (9)

hasDescendant ◦ hasDescendant v hasDescendant (10)

TreeNode v ∀hasChild.TreeNode (11)

TreeNode u ¬LeafNode ≡ TreeNode u ∃hasChild.TreeNode (12)

16

TreeNode v ∀hasDescendant.TreeNode (13)

TreeNode v ∀hasParent.TreeNode (14)

TreeNode v ∀hasSibling.TreeNode (15)

TreeNode u ¬RootNode ≡ TreeNode u= 1hasParent.> (16)

TreeNode v ∀hasAncestor.TreeNode (17)

RootNode ≡ TreeNode u ¬∃hasParent.> (18)

LeafNode ≡ TreeNode u ¬∃hasChild.> (19)

Irreflexive(hasChild) (20)

Irreflexive(hasParent) (21)

Irreflexive(hasDescendant) (22)

Irreflexive(hasAncestor) (23)

hasSibling ≡ hasSibling− (24)

Irreflexive(hasSibling) (25)

3.6.3 Explanations

1. Subclass: every LeafNode is a TreeNode.
2. Subclass: the RootNode is a TreeNode.
3. Scoped Range: the range of hasOutDegree, scoped by TreeNode, is xsd:positiveInteger.
4. Existential: a TreeNode has exactly one hasOutDegree.
5. A LeafNode is a TreeNode that has an out degree of 0.
6. A TreeNode that is not a LeafNode has at least out degree of 1.
7. Inverse Alias
8. Inverse Alias
9. Subproperty: hasChild is subproperty of hasDescendant.

10. Role Chain: hasDescendant is transitive.
11. Scoped Range: the range of hasChild, scoped by TreeNode, is TreeNode.
12. A TreeNode that is not a LeafNode has a child that is a TreeNode.
13. Scoped Range: the range of hasDescendant, scoped by TreeNode, is TreeNode.
14. Scoped Range: the range of hasParent, scoped by TreeNode, is TreeNode.
15. Scoped Range: the range of hasSibling, scoped by TreeNode, is TreeNode.
16. A TreeNode that is not the RootNode has a TreeNode that is its parent.
17. Scoped Range: the range of hasAncestor, scoped by TreeNode, is TreeNode.
18. RootNode does not have a TreeNode that is its parent.
19. LeafNodes do not have TreeNodes that are its children.
20. Irreflexivity
21. Irreflexivity
22. Irreflexivity
23. Irreflexivity
24. Inverse Alias
25. Irreflexivity

17

3.6.4 Competency Questions

We remark that these competency questions are as general as the pattern. See [1] for more infor-
mation.
CQ1. Determine the root.
CQ2. Determine all ancestors of a given node.
CQ3. Determine all leaves.
CQ4. Determine all descendants of a given node.
CQ5. Determine all descendants of a given node which are leaves.
CQ6. Given two nodes, determine whether one is a descendant of the other.
CQ7. given two nodes, determine all common ancestors.
CQ8. Given two nodes, determine the latest common ancestor.
CQ9. Given two nodes x and y, determine the earliest ancestor of x which not an ancestor of y.

18

3.7 Spatiotemporal Extent

Figure 3.7: Schema Diagram for the Spatiotemporal Extent Pattern. The visual notation is ex-
plained in Chapter 2.

3.7.1 Summary

The SpatiotemporalExtent pattern wraps the Trajectory Pattern (Section 3.10). Essentially, it uses
the Trajectory Pattern’s ability to capture discrete snapshots of something moving along some
dimension, but casts it into the familiar three physical dimensions, plus time. This is done by
adding the atPlace and atTime properties that hang off of Fix. This pattern is more fully described
in [13]. The SpatiotemporalExtent is primarily used when it is difficult to separate space and time
when talking about a concept.

3.7.2 Axiomatization

> v ∀hasSpatiotemporalExtent.SpatiotemporalExtent (1)

> v ∀hasTrajectory.Trajectory (2)

SpatiotemporalExtent v ∃hasTrajectory.Trajectory (3)

> v ∀atPlace.Place (4)

> v ∀atTime.Time (5)

Segment v = 1startsFrom.Fix (6)

Segment v = 1endsAt.Fix (7)

Segment v ∃hasSegment−.Trajectory (8)

19

startsFrom− ◦ endsAt v hasNext (9)

hasNext v hasSuccessor (10)

hasSuccessor ◦ hasSucessor v hasSucessor (11)

hasNext− ≡ hasPrevious (12)

hasSuccessor− ≡ hasPredecessor (13)

Fix u ¬∃endsAt−.Segment v StartingFix (14)

Fix u ¬∃startsFrom−.Segment v EndingFix (15)

Trajectory v ∃hasSegment.Segment (16)

hasSegment ◦ startsFrom v hasFix (17)

hasSegment ◦ endsAt v hasFix (18)

∃hasSegment.Segment v Trajectory (19)

∃hasSegment−.Trajectory v Segment (20)

∃hasFix.Segment v Trajectory (21)

∃hasFix−.Trajectory v Fix (22)

3.7.3 Explanations

1. Range: the range of hasSpatiotemporalExtent is SpatiotemporalExtent.
2. Range: the range of hasTrajectory is hasTrajectory.
3. Existential: a SpatiotemporalExtent has at least one Trajectory.
4. Range: the range of atPlace is Place.
5. Range: the range of atTime is Time.
6. Segment startFrom exactly one Fix.
7. Segment endsAt exactly one Fix.
8. Existential: A Segment belongs to at least one Trajectory.
9. Role Chain: the concatenation of startsFrom− and endsAt is hasNext.

10. Subproperty: hasNext is a subproperty to hasSuccessor.
11. Role Chain: hasSuccessor is transitive.
12. Inverse Alias.
13. Inverse Alias.
14. A Fix that is not where a segment ends is a StartingFix.
15. A Fix that is not where a segment starts is a EndingFix.
16. Existential: a Trajectory has at least one Segment.
17. Role Chain: the concatenation of hasSegment and startsFrom is hasFix.
18. Role Chain: the concatenation of hasSegment and endsAt is hasFix.
19. Scoped Domain: the domain of hasSegment, scoped by Segment, is Trajectory.
20. Scoped Domain: the domain of hasSegment−, scoped by Trajectory, is Segment.
21. Scoped Domain: the domain of hasFix, scoped by Segment, is Trajectory.
22. Scoped Domain: the domain of hasFix−, scoped by Trajectory, is Fix.

3.7.4 Competency Question

CQ1. Show which birds stop at x and y.
CQ2. Show the trajectories which cross national parks.
CQ3. Show the trajectories of birds which are less than one year old.

20

3.8 Spatial Extent

Figure 3.8: Schema Diagram for Spatial Extent. The visual notation is explained in Chapter 2.

3.8.1 Summary

The SpatialExtent pattern is characterized by a set of Interiors, which are in turn charac-
terized by a PointInSpace-Sequence. A PointInSpace-Sequence consists of PointInSpace-
SequenceElements, which are constituted by PointInSpace. A PointInSpace is described by a
value and a reference system. PIS-Sequence is a specialization of the Sequence Pattern (Section
3.5). We also further choose to use the Explicit Typing Pattern for PointInSpace and ReferenceSys-
tem.

3.8.2 Axiomatization

SpatialExtent v =ncontains.Interior (1)

Interior v =1isDefinedBy.PIS-Sequence (2)

PIS-Sequence v =1hasFirst.PIS-SequenceElement (3)

21

PIS-Sequence v =1hasLast.PIS-SequenceElement (4)

PIS-SequenceElement v =1hasNext.PIS-SequenceElement (5)

PIS-SequenceElement v =1constitutedBy.PointInSpace (6)

PointInSpace v =1hasReferenceSystem.ReferenceSystem (7)

PointInSpace v =1hasValue.Value (8)

3.8.3 Explanations

1. Numerical Restriction: a SpatialExtent contains exactly n Interiors. See the following section.
2. Numerical Restriction: a Interior isDefinedBy exactly 1 PIS-Sequence.
3. Numerical Restriction: a PIS-Sequence has exactly 1 first PIS-SequenceElement.
4. Numerical Restriction: a PIS-Sequence has exactly 1 last PIS-SequenceElement.
5. Numerical Restriction: a PIS-SequenceElement has exactly 1 next PIS-SequenceElement.
6. Numerical Restriction: a PIS-SequenceElement isConstitutedBy exactly 1 PointInSpace.
7. Numerical Restriction: a PointInSpace has exactly 1 ReferenceSystem.
8. Numerical Restriction: a PointInSpace has exactly 1 Value.

3.8.4 Remarks

We would also like the pattern to be able to express that a SpatialExtent consists of exactly some
Interiors and no others. This is done by equipping the pattern with an axiom that must be tailored
to the use-case and two rules for generating a set of assertions.

SpatialExtent v =ncontains.Interior (9)

where n is the number of expected Interiors. Next,

contains(spatialExtent, interiork) for k = 1, ..., n

and
interiori 6= interiorj for i 6= j

This allows us to express a SpatialExtent as a set of Interiors.

3.8.5 Competency Questions

CQ1. Where was the Battle of Manassas?
CQ2. What path did the moose take to Canada?
CQ3. Where is the largest prairie in the United States?

22

3.9 Temporal Extent

Figure 3.9: Schema Diagram for Temporal Extent. The visual notation is explained in Chapter 2.

3.9.1 Summary

A TemporalExtent is composed of a number of ComplexTimeIntervals, which may be intervals of
non-zero length (i.e. TimeIntervals) or intervals of length 0 (i.e. PointsInSpace).

3.9.2 Axiomatization

TemporalExtent @ =ncontains.ComplexTemporalExtent (1)

TimeInterval @ ComplexTemporalExtent (2)

TimeInterval @ =1startsFrom.PointInTime (3)

TimeInterval @ =1endsAt.PointInTime (4)

PointInTime @ ComplexTemporalExtent (5)

PointInTime @ =1hasReferenceSystem.ReferenceSystem (6)

PointInTime @ =1hasValue.Value (7)

3.9.3 Explanations

1. Numerical Restriction: a TemporalExtent contains exactly n ComplexTemporalExtents. See
below remarks.

23

2. Subclass: every TimeInterval is a ComplexTemporalExtent.
3. Numerical Restriction: a TimeInterval startsAt exactly 1 PointInTime.
4. Numerical Restriction: a TimeInterval endsAt exactly 1 PointInTime.
5. Subclass: every PointInTime is a ComplexTemporalExtent.
6. Numerical Restriction: a PointInTime has exactly 1 ReferenceSystem.
7. Numerical Restriction: a PointInTime has exactly 1 Value.

3.9.4 Remarks

We would also like the pattern to be able to express that a TemporalExtent consists of exactly some
TimeIntervals or PointsInTime and no other things. This is done by equipping the pattern with an
axiom that must be tailored to the use-case and two rules for generating a set of assertions.

TemporalExtent v =ncontains.Interior (8)

where n is the number of expected ComplextimeIntverals. Next,

contains(temporalExtent, complexTimeIntervalk) for k = 1, ..., n

and
complexTimeIntervali 6= complexTimeIntervalj for i 6= j

This allows us to express a TemporalExtent as a set of ComplexTimeIntervals.

3.9.5 Competency Questions

CQ1. Which dates did World War II span?
CQ2. What era was the ice age?

24

3.10 Trajectory

Figure 3.10: Schema Diagram for the Trajectory Pattern. The visual notation is explained in Chap-
ter 2.

3.10.1 Summary

The Trajectory Pattern allows a developer to track something moving through some space. This
is, of course, very abstract and is intended to be a starting point for capturing any movement that
occurs at discrete points in a space. Intuitively, there is the notion of moving through time and
space and those captured discrete points in space may be GPS position recordings. This sort of
data may be best captured with the SpatiotemporalExtent Pattern (Section 3.7), which extends the
Trajectory Pattern. This pattern may be also used as a starting point for modelling procedures
(i.e. steps are discrete points in procedure space) or chemical reactions (we can really only be sure
of what our sensors tell us, and they only tell us things at their polling rates). This pattern is an
abstraction of the Semantic Trajectory pattern found in [8].

3.10.2 Axiomatization

Segment v = 1startsFrom.Fix (1)

Segment v = 1endsAt.Fix (2)

Segment v ∃hasSegment−.Trajectory (3)

startsFrom− ◦ endsAt v hasNext (4)

hasNext v hasSuccessor (5)

hasSuccessor ◦ hasSucessor v hasSucessor (6)

hasNext− ≡ hasPrevious (7)

hasSuccessor− ≡ hasPredecessor (8)

25

Fix u ¬∃endsAt−.Segment v StartingFix (9)

Fix u ¬∃startsFrom−.Segment v EndingFix (10)

Trajectory v ∃hasSegment.Segment (11)

hasSegment ◦ startsFrom v hasFix (12)

hasSegment ◦ endsAt v hasFix (13)

∃hasSegment.Segment v Trajectory (14)

∃hasSegment−.Trajectory v Segment (15)

∃hasFix.Segment v Trajectory (16)

∃hasFix−.Trajectory v Fix (17)

3.10.3 Explanations

1. Segment startFrom exactly one Fix.
2. Segment endsAt exactly one Fix.
3. Existential: A Segment belongs to at least one Trajectory.
4. Role Chain: the concatenation of startsFrom− nad endsAt is hasNext.
5. Subproperty: hasNext is a subproperty to hasSuccessor.
6. Role Chain: hasSuccessor is transitive.
7. Inverse Alias.
8. Inverse Alias.
9. A Fix that is not where a segment ends is a StartingFix.

10. A Fix that is not where a segment starts is a EndingFix.
11. Existential: a Trajectory has at least one Segment.
12. Role Chain: the concatenation of hasSegment and startsFrom is hasFix.
13. Role Chain: the concatenation of hasSegment and endsAt is hasFix.
14. Scoped Domain: the domain of hasSegment, scoped by Segment, is Trajectory.
15. Scoped Domain: the domain of hasSegment−, scoped by Trajectory, is Segment.
16. Scoped Domain: the domain of hasFix, scoped by Segment, is Trajectory.
17. Scoped Domain: the domain of hasFix−, scoped by Trajectory, is Fix.

3.10.4 Competency Questions

CQ1. What is the first step of the procedure?
CQ2. What was the cruise’s final stop?

26

3.11 Event

Figure 3.11: Schema Diagram for the Event Pattern. The visual notation is explained in Chapter 2.

3.11.1 Summary

The purpose of this pattern is to provide a minimalistic model of an event where it is not always
possible to separate its spatial and the temporal aspects, thus can model events that move or
possess discontinuous temporal extent. Events, according to this model, have at least one partic-
ipant, attached via a ParticipantRole (Section 3.13). A more thorough examination of the pattern
and some additional (optional) axioms can be found in [12]. Some language is borrowed from
http://ontologydesignpatterns.org/wiki/Submissions:EventCore.

3.11.2 Axiomatization

subEventOf ◦ subEventOf v subEventOf (1)

Event v =1hasSpatiotemporalExtent.SpatiotemporalExtent (2)

Event v ∃providesParticipantRole.ParticipantRole (3)

> v ∀hasSpatiotemporalExtent.SpatiotemporalExtent (4)

> v ∀providesParticipantRole.ParticipantRole (5)

∃subEventOf.> v Event (6)

> v ∀subEventOf.Event (7)

3.11.3 Explanations

1. Role Chain: subEventOf is transitive.
2. Event has exactly one SpatiotemporalExtent.
3. Event provides at least one ParticipantRole.
4. Range: the range of hasSpatiotemporalExtent is SpatiotemporalExtent.
5. Range: the range of providesParticipantRole is ParticipantRole.
6. Domain: the domain of subEventOf is Event.
7. Range: the range of subEventOf is Event.

http://ontologydesignpatterns.org/wiki/Submissions:EventCore

27

3.11.4 Remarks

It is also possible to equip the pattern with the following rule.

Event(x)∧ providesParticipantRole(x, p)∧ subEventOf(x, y)→ providesParticipantRole(y, p) (8)

This rule can be converted into OWL DL through rolification [14].This results in the following
axioms.

Event ≡ ∃REvent.Self (9)

subEventOf− ◦REvent ◦ providesParticipantRole v providesParticipantRole (10)

3.11.5 Competency Questions

CQ1. Where and when did the 1990 World Chess Championship Match take place?
CQ2. Who were involved in the 1990 World Chess Championship Match?

28

3.12 AgentRole

Figure 3.12: Schema Diagram for the AgentRole Pattern. The visual notation is explained in Chap-
ter 2.

3.12.1 Summary

The AgentRole pattern is essentially a reification of association with something. That is, it’s very
unlikely that an Agent will be associated with something for all time. Thus, the association rela-
tion is not binary, perhaps associated(x, y, t), agent x is associated with thing y at time t. Thus, the
reification. The association becomes a concept in its own right and has a temporal extent, allowing
an Agent to be associated to a Thing (e.g. Event, Section 3.11) for some TemporalExtent.

3.12.2 Axiomatization

AgentRole v =1isPerformedBy.Agent (1)

AgentRole v =1hasTemporalExtent.TemporalExtent (2)

∃isPerformedBy.Agent v AgentRole (3)

AgentRole v ∀isPerformedBy.Agent (4)

∃hasTemporalExtent.TemporalExtent v AgentRole (5)

> v ∀hasTemporalExtent.TemporalExtent (6)

> v ∀providesAgentRole.AgentRole (7)

isPerformedBy ≡ performsAgentRole− (8)

isProvidedBy ≡ providesAgentRole− (9)

3.12.3 Explanations

1. Exactly one Agent performs an AgentRole.
2. An AgentRole has exactly one TemporalExtent.

29

3. Scoped Domain: the scoped domain of isPerformedBy, scoped by Agent, is AgentRole.
4. Scoped Range: the scoped range of isPerformedBy, scoped by AgentRole, is Agent.
5. Scoped Domain: the scoped domain of hasTemporalExtent, scoped by TemporalExtent, is

AgentRole.
6. Range: the range of hasTemporalExtent is TemporalExtent.
7. Range: the range of providesAgentRole is AgentRole.
8. Inverse Alias.
9. Inverse Alias.

3.12.4 Competency Questions

CQ1. When was Cogan Shimizu a student at Wright State University?
CQ2. Who was the lead actor for the movie, Sharknado?
CQ3. Who was on the World Cup winning team in 2017?

30

3.13 ParticipantRole

Figure 3.13: Schema Diagram for the ParticipantRole Pattern. The visual notation is explained in
Chapter 2.

3.13.1 Summary

The ParticipantRole Pattern is a specialization of the AgentRole Pattern, which can be found in
Section 3.12; many axioms are inherited due to this. We include it for convenience as it occurs
frequently in our modelling experiences. This pattern has additional synergies with the Event
Pattern [12, ?].

3.13.2 Axiomatization

ParticipantRole v AgentRole (1)

providesParticipantRole v providesAgentRole (2)

> v ∀providesParticipantRole.ParticipantRole (3)

AgentRole v =1isPerformedBy.Agent (4)

AgentRole v =1hasTemporalExtent.TemporalExtent (5)

∃isPerformedBy.Agent v AgentRole (6)

AgentRole v ∀isPerformedBy.Agent (7)

∃hasTemporalExtent.TemporalExtent v AgentRole (8)

> v ∀hasTemporalExtent.TemporalExtent (9)

> v ∀providesAgentRole.AgentRole (10)

isPerformedBy ≡ performsAgentRole− (11)

isProvidedBy ≡ providesAgentRole− (12)

31

3.13.3 Explanations

1. Subclass: every ParticipantRole is an AgentRole.
2. Subproperty: providesParticipantRole is a subproperty of providesAgentRole.
3. Range: the range of providesParticipantRole is ParticipantRole.
4. Exactly one Agent performs an AgentRole.
5. An AgentRole has exactly one TemporalExtent.
6. Scoped Domain: the scoped domain of isPerformedBy, scoped by Agent, is AgentRole.
7. Scoped Range: the scoped range of isPerformedBy, scoped by AgentRole, is Agent.
8. Scoped Domain: the scoped domain of hasTemporalExtent, scoped by TemporalExtent, is

AgentRole.
9. Range: the range of hasTemporalExtent is TemporalExtent.

10. Range: the range of providesAgentRole is AgentRole.
11. Inverse Alias.
12. Inverse Alias.

3.13.4 Competency Questions

CQ1. Who were the participants in this event?
CQ2. Which students attended the lecture?
CQ3. Who were the passengers on the cruise?

32

3.14 Name Stub

Figure 3.14: Schema Diagram for Name Stub. The visual notation is explained in Chapter 2.

3.14.1 Summary

The NameStub Pattern is a specialization of the Stub Pattern found in Section 3.3. It is included
here for convenience as it is has been frequently encountered in our modelling experiences.

3.14.2 Axiomatization

> v ∀nameAsString.xsd:string (1)

3.14.3 Explanations

1. Range: the range of nameAsString is xsd:string.

3.14.4 Competency Question

CQ1. What is the name of the lecturer?

33

3.15 Quantities and Units

Figure 3.15: Schema Diagram for Quantities and Units. The visual notation is explained in Chapter
2.

3.15.1 Summary

This pattern is heavily adapted from QUDT1 and [6]. This pattern allows a developer to express
a quantity of some stuff. The nature of quantities is rather complex, due to the fact that there
are a multitude of dimensions, unit types, and ways to measure quantities. The Quantity class
is used to express the nature of the quantity via its QuantityKind. This is intended to be a con-
trolled vocabulary. We direct the reader to QUDT’s documentation for further exploration. A
QuantityValue expresses the magnitude of the Quantity via an xsd:double and a Unit. Unit is also
recommended to be a controlled vocabulary. Both hasQuantityKind and hasUnit are instances of
the Explicit Typing Pattern (Section 3.1).

3.15.2 Axiomatization

> v ∀hasQuantityKind.QuantityKind (1)

> v ∀hasQuantityValue.QuantityValue (2)

> v ∀hasUnit.Unit (3)

> v ∀hasNumericalValue.xsd:double (4)

3.15.3 Explanations

1. Range: the range of hasQuantityKind is QuantityKind.
1http://www.qudt.org/release2/qudt-catalog.html

http://www.qudt.org/release2/qudt-catalog.html

34

2. Range: the range of hasQuantityValue is QuantityValue.
3. Range: the range of hasUnit is Unit.
4. Range: the range of hasNumericValue is xsd:double.

3.15.4 Competency Questions

CQ1. How much does an elephant weigh in kilograms?
CQ2. How long is Jupiter from the Sun, at its farthest, in furlongs?
CQ3. How long ago was the Mezazoic Era?

35

3.16 Partonymy/Meronymy

Figure 3.16: Schema Diagram for Partonymy.

3.16.1 Summary

Part-whole relations are of fundamental importance for how we organize concepts. This pattern
follows an approach laid out by Winston in his 1987 landmark paper on “A Taxonomy of Part-
Whole Relations” [?] which was based on linguistic considerations, but also provided for logical
characterizations and axiomatics, and, as such, inform the pattern.

Essentially, we distinguish between different, interacting partonomies. For example, a com-
ponent may be part of an engine, which is part of a plane, which belongs to a fleet. These are all
part-hood relationships, but they are not transitive.

3.16.2 Axiomatization

po-component ◦ po-component v po-component (1)

po-member ◦ po-member v po-member (2)

po-portion ◦ po-portion v po-portion (3)

po-stuff ◦ po-stuff v po-stuff (4)

po-feature ◦ po-feature v po-feature (5)

po-place ◦ po-place v po-place (6)

AsymmetricObjectProperty(po-component) (7)

AsymmetricObjectProperty(po-member) (8)

AsymmetricObjectProperty(po-portion) (9)

AsymmetricObjectProperty(po-stuff) (10)

AsymmetricObjectProperty(po-feature) (11)

AsymmetricObjectProperty(po-place) (12)

po-component v part-of (13)

po-member v part-of (14)

po-portion v part-of (15)

po-stuff v part-of (16)

po-feature v part-of (17)

36

po-place v part-of (18)

spatially-located-in ◦ spatially-located-in v spatially-located-in (19)

ReflexiveObjectProperty(spatially-located-in) (20)

po-component ◦ spatially-located-in v spatially-located-in (21)

spatially-located-in ◦ po-component v spatially-located-in (22)

po-member ◦ spatially-located-in v spatially-located-in (23)

spatially-located-in ◦ po-member v spatially-located-in (24)

po-portion ◦ spatially-located-in v spatially-located-in (25)

spatially-located-in ◦ po-portion v spatially-located-in (26)

po-stuff ◦ spatially-located-in v spatially-located-in (27)

spatially-located-in ◦ po-stuff v spatially-located-in (28)

po-feature ◦ spatially-located-in v spatially-located-in (29)

spatially-located-in ◦ po-feature v spatially-located-in (30)

po-place ◦ spatially-located-in v spatially-located-in (31)

spatially-located-in ◦ po-place v spatially-located-in (32)

Po-Component-Type v RelationInstance (33)

Po-Member-Type v RelationInstance (34)

Po-Portion-Type v RelationInstance (35)

Po-Stuff-Type v RelationInstance (36)

Po-Feature-Type v RelationInstance (37)

Po-Place-Type v RelationInstance (38)

Po-Part-Of-Type v RelationInstance (39)

Spatially-Located-In-Type v RelationInstance (40)

3.16.3 Explanations

1. Transitivity.
2. Transitivity.
3. Transitivity.
4. Transitivity.
5. Transitivity.
6. Transitivity.
7. Asymmetric Object Property.
8. Asymmetric Object Property.
9. Asymmetric Object Property.

10. Asymmetric Object Property.
11. Asymmetric Object Property.
12. Asymmetric Object Property.
13. Subclass.
14. Subclass.
15. Subclass.
16. Subclass.

37

17. Subclass.
18. Subclass.
19. Transitivity.
20. Reflexive Object Property.
21. Role Chain: the concatenation of po-component and spatially-located-in is spatially-located-

in.
22. Role Chain: the concatenation of spatially-located-in and po-component is spatially-located-

in.
23. Role Chain: the concatenation of po-member and spatially-located-in is spatially-located-in.
24. Role Chain: the concatenation of spatially-located-in and po-member is spatially-located-in.
25. Role Chain: the concatenation of po-portion and spatially-located-in is spatially-located-in.
26. Role Chain: the concatenation of spatially-located-in and po-portion is spatially-located-in.
27. Role Chain: the concatenation of po-stuff and spatially-located-in is spatially-located-in.
28. Role Chain: the concatenation of spatially-located-in and po-stuff is spatially-located-in.
29. Role Chain: the concatenation of po-feature and spatially-located-in is spatially-located-in.
30. Role Chain: the concatenation of spatially-located-in and po-feature is spatially-located-in.
31. Role Chain: the concatenation of po-place and spatially-located-in is spatially-located-in.
32. Role Chain: the concatenation of spatially-located-in and po-place is spatially-located-in.
33. Subclass.
34. Subclass.
35. Subclass.
36. Subclass.
37. Subclass.
38. Subclass.
39. Subclass.
40. Subclass.

3.16.4 Competency Question

CQ1. Is the Everglades part of Florida?
CQ2. Is the plane in the Warehouse?
CQ3. What are all engine components?
CQ4. Is he part of the family?

38

3.17 Provenance

Figure 3.17: Schema Diagram for the Provenance Pattern. The visual notation is explained in
Chapter 2.

3.17.1 Summary

The EntityWithProvenance Pattern is extracted from the PROV-O ontology. At the pattern level,
we do not want to make the ontological committment to a full-blown ontology. It suffices to align
a sub-pattern to the core of PROV-O [15].

The EntityWithProvenance class is any item of interest to which a developer would like to at-
tach provenance information. That is they are interested in capturing, who or what created that
item, what was used to derive it, and what method was used to do so. The “who or what” is
captured by using the Agent class. The property, wasDerivedFrom is eponymous—it denotes that
some set of resources was used during the ProvenanceActivity to generate the EntityWithProve-
nance.

3.17.2 Axiomatization

∃attributedTo.Agent v EntityWithProvenance (1)

EntityWithProvenance v ∀attributedTo.Agent (2)

∃generatedBy.ProvenanceActivity v EntityWithProvenance (3)

EntityWithProvenance v ∀generatedBy.ProvenanceActivity (4)

39

∃used.EntityWithProvenance v ProvenanceActivity (5)

ProvenanceActivity v ∀used.EntityWithProvenance (6)

∃performedBy.Agent v ProvenanceActivity (7)

ProvenanceActivity v ∀performedBy.Agent (8)

3.17.3 Explanations

1. Scoped Domain:The scoped domain of attributedTo, scoped by Agent, is EntityWithProve-
nance.

2. Scoped Range: The scoped range of attributedTo, scoped by EntityWithProvenance, is Agent.
3. Scoped Domain:The scoped domain of generatedBy, scoped by ProvenanceActivity, is Enti-

tyWithProvenance.
4. Scoped Range: The scoped range of generatedBy, scoped by EntityWithProvenance, is

ProvenanceActivity.
5. Scoped Domain:The scoped domain of used, scoped by EntityWithProvenance, is Prove-

nanceActivity
6. Scoped Range: The scoped range of used, scoped by ProvenananceActivity, is EntityWith-

Provenance.
7. Scoped Domain:The scoped domain of performedBy, scoped by Agent, is ProvenanceActiv-

ity.
8. Scoped Range: The scoped range of performedBy, scoped by ProvenanceActivity, is Agent.

3.17.4 Competency Questions

CQ1. Who are the contributors to this Wikidata page?
CQ2. From which database is this entry taken?
CQ3. Which method was used to generate this chart and from which spreadsheet did the data

originate?
CQ4. Who provided this research result?

40

3.18 Identifier

Figure 3.18: Schema Diagram for the Identifier Pattern. The visual notation is explained in Chapter
2.

3.18.1 Summary

This pattern is used for associating some sort of identifier and metadata with a thing. One could
view this pattern as a reification of the ExplicitType Pattern as found in Section 3.1. In this case, we
wish to associate additional information aside from its type with a thing, e.g. an identifier may
be a URL or a primary key value in a database. We believe that this pattern meshes well with the
EntityWithProvenance Pattern which may be found in Section 3.17.

3.18.2 Axiomatization

> v ∀hasIdentifier.Identifier (1)

∃hasIdentifierType.> v Identifier (2)

> v ∀hasIdentifierType.IDType (3)

> v ∀identifierAsText.xsd:string (4)

3.18.3 Explanations

1. Range: the range of hasIdentifier is Identifier.
2. Domain: the domain of hasIdentifierType is Identifier.
3. Range: the range of hasIdentifierType is IDType.
4. Range: the range of identifierAsText is xsd:string.

3.18.4 Competency Questions

CQ1. The merchant is assigned what identifier in this historical databse?
CQ2. Where can this information be validated/obtained?

Bibliography

[1] D. Carral, P. Hitzler, H. Lapp, and S. Rudolph. On the ontological modeling of trees. In
E. Blomqvist, Ó. Corcho, M. Horridge, D. Carral, and R. Hoekstra, editors, Proceedings of the
8th Workshop on Ontology Design and Patterns (WOP 2017) co-located with the 16th International
Semantic Web Conference (ISWC 2017), Vienna, Austria, October 21, 2017., volume 2043 of CEUR
Workshop Proceedings. CEUR-WS.org, 2017.

[2] A. Gangemi and V. Presutti. Ontology design patterns. In S. Staab and R. Studer, editors,
Handbook on Ontologies, International Handbooks on Information Systems, pages 221–243.
Springer, 2009.

[3] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge acquisi-
tion, 5(2):199–220, 1993.

[4] P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors. Ontology Engineer-
ing with Ontology Design Patterns – Foundations and Applications, volume 25 of Studies on the
Semantic Web. IOS Press, 2016.

[5] P. Hitzler and A. Krisnadhi. On the roles of logical axiomatizations for ontologies. In P. Hit-
zler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors, Ontology Engineering
with Ontology Design Patterns - Foundations and Applications, volume 25 of Studies on the Se-
mantic Web, pages 73–80. IOS Press, 2016.

[6] P. Hitzler and A. Krisnadhi. A tutorial on modular ontology modeling with ontology design
patterns: The cooking recipes ontology. CoRR, abs/1808.08433, 2018.

[7] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technologies. Chapman
& Hall/CRC, 2010.

[8] Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-Cross, P. Hitzler, M. Dean, and
D. Kolas. A geo-ontology design pattern for semantic trajectories. In T. Tenbrink, J. G. Stell,
A. Galton, and Z. Wood, editors, Spatial Information Theory - 11th International Conference,
COSIT 2013, Scarborough, UK, September 2-6, 2013. Proceedings, volume 8116 of Lecture Notes
in Computer Science, pages 438–456. Springer, 2013.

[9] N. Karima, K. Hammar, and P. Hitzler. How to document ontology design patterns. In
K. Hammar, P. Hitlzer, A. Lawrynowicz, A. Krisnadhi, A. Nuzzolese, and M. Solanki, editors,
Advances in Ontology Design and Patterns, volume 32 of Studies on the Semantic Web, pages 15–
28. IOS Press / AKA Verlag, 2017.

[10] A. Krisnadhi and P. Hitzler. Modeling with ontology design patterns: Chess games as a
worked example. In P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, ed-
itors, Ontology Engineering with Ontology Design Patterns – Foundations and Applications, vol-
ume 25 of Studies on the Semantic Web, pages 3–21. IOS Press, 2016.

[11] A. Krisnadhi and P. Hitzler. The stub metapattern. In K. Hammar, P. Hitzler, A. Krisnadhi,
A. Lawrynowicz, A. G. Nuzzolese, and M. Solanki, editors, Advances in Ontology Design and
Patterns [revised and extended versions of the papers presented at the 7th edition of the Workshop
on Ontology and Semantic Web Patterns, WOP@ISWC 2016, Kobe, Japan, 18th October 2016],
volume 32 of Studies on the Semantic Web, pages 39–45. IOS Press, 2016.

41

42

[12] A. Krisnadhi and P. Hitzler. A core pattern for events. In K. Hammar, P. Hitlzer,
A. Lawrynowicz, A. Krisnadhi, A. Nuzzolese, and M. Solanki, editors, Advances in Ontol-
ogy Design and Patterns, volume 32 of Studies on the Semantic Web, pages 29–38. IOS Press /
AKA Verlag, 2017.

[13] A. Krisnadhi, P. Hitzler, and K. Janowicz. A spatiotemporal extent pattern based on semantic
trajectories. In K. Hammar, P. Hitzler, A. Krisnadhi, A. Lawrynowicz, A. G. Nuzzolese, and
M. Solanki, editors, Advances in Ontology Design and Patterns [revised and extended versions of
the papers presented at the 7th edition of the Workshop on Ontology and Semantic Web Patterns,
WOP@ISWC 2016, Kobe, Japan, 18th October 2016], volume 32 of Studies on the Semantic Web,
pages 47–53. IOS Press, 2016.

[14] A. Krisnadhi, F. Maier, and P. Hitzler. OWL and rules. In A. Polleres, C. d’Amato, M. Are-
nas, S. Handschuh, P. Kroner, S. Ossowski, and P. F. Patel-Schneider, editors, Reasoning Web.
Semantic Technologies for the Web of Data - 7th International Summer School 2011, Galway, Ireland,
August 23-27, 2011, Tutorial Lectures, volume 6848 of Lecture Notes in Computer Science, pages
382–415. Springer, 2011.

[15] S. Sahoo, D. McGuinness, and T. Lebo. PROV-o: The PROV ontology. W3C recommendation,
W3C, Apr. 2013. http://www.w3.org/TR/2013/REC-prov-o-20130430/.

[16] M. K. Sarker, A. A. Krisnadhi, and P. Hitzler. OWLAx: A protégé plugin to support ontology
axiomatization through diagramming. In T. Kawamura and H. Paulheim, editors, Proceed-
ings of the ISWC 2016 Posters & Demonstrations Track co-located with 15th International Semantic
Web Conference (ISWC 2016), Kobe, Japan, October 19, 2016., volume 1690 of CEUR Workshop
Proceedings. CEUR-WS.org, 2016.

[17] C. Shimizu. Rendering OWL in LATEX for improved readability: Extensions to the OWLAPI.
Master’s thesis, Department of Computer Science and Engineering, Wright State University,
Dayton, Ohio, 2017.

[18] C. Shimizu, P. Hitzler, Q. Hirt, A. Shiell, S. Gonzalez, C. Foley, D. Rehberger, E. Watrall,
W. Hawthorne, D. Tarr, R. Carty, and J. Mixter. The enslaved ontology 1.0: People of the
historic slave trade. Technical report, Michigan State University, East Lansing, Michigan,
April 2019.

[19] C. Shimizu, P. Hitzler, and C. Paul. Ontology design patterns for winston’s taxonomy of
part-whole relations. In E. Demidova, A. Zaveri, and E. Simperl, editors, Emerging Topics in
Semantic Technologies – ISWC 2018 Satellite Events [best papers from 13 of the workshops co-located
with the ISWC 2018 conference], volume 36 of Studies on the Semantic Web, pages 119–129. IOS
Press, 2018.

[20] M. D. Wilkinson, M. Dumontier, et al. The fair guiding principles for scientific data manage-
ment and stewardship. Scientific Data, 3:160018 EP –, Mar 2016. Comment.

	Contents
	List of Figures
	Introduction
	Preliminaries
	Patterns
	Explicit Typing
	Property Reification
	Stubs
	Aggregation, Bag, Collection
	Sequence, List
	Tree
	Spatiotemporal Extent
	Spatial Extent
	Temporal Extent
	Trajectory
	Event
	AgentRole
	ParticipantRole
	Name Stub
	Quantities and Units
	Partonymy/Meronymy
	Provenance
	Identifier

	Bibliography

