Logic for Computer Scientists

Manuscript authored by: Pascal Hitzler Delivered by: Adila Krisnadhi

CS 2210 Lecture Manuscript, Fall Semester 2016 Wright State University, Dayton, OH, U.S.A. http://dase.cs.wright.edu/courses/cs-2210-logic-computer-scientists-fall-2016

[version: August 28, 2016]

Contents

1	Dat	alog	3
	1.1	Informal Examples	3
	1.2	Syntax and Formal Semantics	6
	1.3	Fixed-point Semantics	0
2	Pro	positional Logic 15	5
	2.1	Syntax	5
	2.2	Semantics	6
	2.3	Datalog Revisited: Semantics By Grounding 19	9
	2.4	Equivalence	1
	2.5	Normal Forms	2
	2.6	Tableaux Algorithm 24	4
	2.7	Theoretical Aspects	7
3	Firs	st-order Predicate Logic 30	0
	3.1	Syntax	0
	3.2	Semantics	1
	3.3	Datalog Revisited	5
	3.4	Equivalence	5
	3.5	Normal Forms	6
	3.6	Tableaux Algorithm 30	6
	3.7	Theoretical Aspects	9
4	App	blication: Knowledge Representation for the World Wide Web 40	0

References

[Ben-Ari, 1993] Ben-Ari, M. (1993). Mathematical Logic for Computer Science. Springer.

- [Cryan et al., 2004] Cryan, D., Shatil, S., and Mayblin, B. (2004). *Introducing Logic: A Graphic Guide*. Icon Books, 4th edition.
- [Hitzler et al., 2009] Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Foundations of Semantic Web Technologies. Chapman & Hall/CRC.

[Schöning, 1989] Schöning, U. (1989). Logic for Computer Scientists. Birkhäuser.

1 Datalog

[no textbook reference]

1.1 Informal Examples

1.1.1 Example

We want to formalize the following statements.

- Marian is the mother of Michelle.
- Craig is the brother of Michelle.
- Ann is the mother of Barack.
- Barack is the father of Malia.
- Michelle is the mother of Malia.
- Barack is the father of Natasha.
- Michelle is the mother of Natasha.
- Craig is male.
- Natasha is female.

We can write these as so-called *Datalog facts*:

- motherOf(marian, michelle) (1)
- brotherOf(craig, michelle) (2)
- motherOf(ann, barack) (3)
- fatherOf(barack, malia) (4)
- motherOf(michelle, malia) (5)
- $fatherOf(barack, natasha) \tag{6}$
- motherOf(michelle, natasha) (7)
 - male(craig) (8)
 - female(natasha) (9)

Say, we also want to formalize the following.

- Every father of a person is also a parent of that person.
- Every mother of a person is also a parent of that person.
- If somebody is the mother of another person, who in turn is the parent of a third person, then this first person is the grandmother of this third person.
- If a person is the brother of another person, and this other person is the parent of a third person, then this first person is the uncle of this third person.
- Every father is male.

We can write these as so-called *Datalog rules*:

 $fatherOf(x, y) \to parentOf(x, y)$ (10)

$$motherOf(x, y) \to parentOf(x, y)$$
 (11)

$$motherOf(x, y) \land parentOf(y, z) \rightarrow grandmotherOf(x, z)$$
 (12)

brotherOf
$$(x, y) \land \text{parentOf}(y, z) \to \text{uncleOf}(x, z)$$
 (13)

$$fatherOf(x, y) \to male(x) \tag{14}$$

If we take all statements (1) to (14) together, then we can derive new knowledge, which is *implicit* in these statements, e.g. the following.

from (4) and (10):
$$parentOf(barack, malia)$$
 (15)

,
$$(7)$$
, (11) and (13) : uncleOf(craig, natasha) (16)

from (3), (15) and (12): grandmotherOf(ann, malia) (17)

Note that we reused (15) to derive (17). Derived knowledge can be used to derive even further knowledge.

1.1.2 Example

Consider the following sentences.

from (2)

- Every human is mortal.
- Socrates is a human.

We can write these in Datalog as follows.

 $human(x) \to mortal(x)$ human(socrates)

From these two rules we can derive

mortal(socrates).

1.1.3 Example

Consider the following facts.

newsFrom(*Merkel is Chancellor*, berlin) newsFrom(*Obamacare is constitutional*, dc)

:

And furthermore assume there is a set of facts about locations of cities.

locatedIn(berlin, germany) locatedIn(dc, usa)

÷



We can also state the following Datalog rule.

$$\operatorname{newsFrom}(x,y) \wedge \operatorname{locatedIn}(y,z) \rightarrow \operatorname{newsFrom}(x,z)$$

Derived knowledge is then, e.g., the following.

newsFrom(Merkel is Chancellor, germany)
newsFrom(Obamacare is constitutional, usa)

1.1.4 Example

In Datalog, we can state, e.g., that locatedIn is *transitive*:

 $locatedIn(x, y) \land locatedIn(y, z) \rightarrow locatedIn(x, z)$

1.1.5 Example

We can write directed graphs as Datalog facts, e.g., as follows. If $V = \{a, b, c, d\}$ is the set of vertices of the graph, and $E = \{(a, b), (b, b), (b, c), (d, d), (d, a), (d, b)\}$ is the set of edges of the graph (see Figure 1), then we can write it as follows.

$$edge(a, b)$$

$$edge(b, b)$$

$$edge(b, c)$$

$$edge(d, d)$$

$$edge(d, a)$$

$$edge(d, b)$$

We can now formally define what it means that there is a path from a vertex to another:

$$\operatorname{edge}(x, y) \to \operatorname{path}(x, y)$$

 $\operatorname{path}(x, y) \land \operatorname{path}(y, z) \to \operatorname{path}(x, z)$

Then we can derive, e.g., the following.

```
path(a, b)
path(b, c)
path(a, c)
```

We can also specify that two vertices are connected if there is a path in either direction.

 $path(x, y) \rightarrow connected(x, y)$ connected(x, y) \rightarrow connected(y, x)

Then we can derive, e.g., the following.

connected(a, b)connected(b, a)connected(a, c)connected(c, a)

1.2 Syntax and Formal Semantics

1.2.1 Definition

A Datalog language L = (V, C, R) consists of the following.

- A finite set V of variables: x_1, x_2, \ldots, x_n (also y, z, \ldots).
- A finite non-empty set C of *constants*: a, b, c, \ldots
- A finite non-empty set R of predicate symbols: p_1, p_2, \ldots (also q, r, \ldots), each with an arity $(\in \mathbb{N})$ (number of parameters).

An *atom* (or *atomic formula*) is of the form

 $p(v_1,\ldots,v_n),$

where p is a predicate symbol of arity n and each of the v_i is either a constant or a variable. An atom is called a *ground atom* if all the v_i are constants.

1.2.2 Example

Let L consist of constants a, b, of variables x, y, and of predicate symbols p with arity 1 and q with arity 2.

Then the following are examples for atomic formulas over L.

$$p(a), p(y), q(a,b), q(b,b), q(b,x), q(y,y)$$

Of these, p(a), q(a, b) and q(b, b) are ground atoms. The following are *not* atomic formulas over L:

p(a,b), q(x), p(c), a(x)

1.2.3 Definition

A Datalog rule is a statement of the form

$$B_1 \wedge \cdots \wedge B_n \to A,$$

where the B_i and A are atoms. $B_1 \wedge \cdots \wedge B_n$ is called the *body* of the rule, each B_i is called a *body atom* of the rule, and A is called the *head* of the rule.

A rule with n = 0, i.e. with no body, is called a *fact*, and the arrow is omitted in this case. A *Datalog program* is a set of Datalog rules.

1.2.4 Example

The following are examples of Datalog rules.

newsFrom
$$(x, y) \land \text{locatedIn}(y, z) \rightarrow \text{newsFrom}(x, z)$$

 $p(a, x) \land q(x, y) \rightarrow r(a, x, y)$
 $p_2(a) \land p_3 \rightarrow q_2(a)$

Note that in this example, p_3 is a predicate symbol of arity 0.

1.2.5 Example

The statements (1) to (14) from Example 1.1.1 constitute a Datalog program. Statements (1) to (9) are facts.

1.2.6 Definition

Given a Datalog language L and a Datalog program P over L, a Herbrand interpretation for P is a set of ground atoms over L.

1.2.7 Example

Consider P to consist only of the following statements from Example 1.1.1 (with abbreviated notation, c, m, n are constants).

$$\begin{split} \mathrm{mOf}(x,y) &\to \mathrm{pOf}(x,y) \\ \mathrm{bOf}(x,y) \wedge \mathrm{pOf}(y,z) \to \mathrm{uOf}(x,z) \\ &\quad \mathrm{bOf}(c,m) \\ &\quad \mathrm{mOf}(m,n) \end{split}$$

Then the following are examples for Herbrand interpretations.

$$I_1 = \{bOf(c, m), mOf(m, n), pOf(m, n), uOf(c, n)\}$$
$$I_2 = \{bOf(m, c), mOf(c, n), pOf(m, n), uOf(n, c)\}$$

1.2.8 Example

Some examples for interpretations of the following Datalog program, where a, b, c, d are constants.

$$p(a, b)$$

$$p(b, c)$$

$$p(c, a)$$

$$p(d, d)$$

$$p(x, y) \rightarrow q(x, y)$$

$$q(x, y) \land q(y, z) \rightarrow q(x, z)$$

$$q(x, y) \rightarrow r(x, y)$$

$$r(x, y) \rightarrow r(y, x)$$

$$r(x, x) \rightarrow t(x)$$

are the following.

$$\begin{split} I_1 &= \{p(c,a), p(c,b), t(a)\}\\ I_2 &= \emptyset\\ I_3 &= \{p(a,b), p(b,c), p(c,a), p(d,d), q(a,b), r(a,b), r(b,a), t(a), t(b)\} \end{split}$$

1.2.9 Definition

A substitution $[x_1/c_1, \ldots, x_n/c_n]$, where the x_i are variables and the c_i are constants, is a mapping which maps each Datalog rule R to the rule $R[x_1/c_1, \ldots, x_n/c_n]$, which is obtained from R by replacing all occurrences of x_i by c_i , for all $i = 1, \ldots, n$.

1.2.10 Example

In the following, a, b, c, d are constants, while x, y, z are variables.

$$(p(x,y) \land q(y,z) \to r(x,z))[x/a,z/b] = p(a,y) \land q(y,b) \to r(a,b)$$

$$(18)$$

$$(q(x) \wedge r(x, y) \to p(y))[x/b, y/c] = q(b) \wedge r(b, c) \to p(c)$$

$$\tag{19}$$

$$q(x, z, y)[x/b, z/b, y/a] = q(b, b, a)$$
(20)

$$(p(x,y) \land q(y,z,z) \to r(x,y))[x/b][x/a][y/c] = (p(b,y) \land q(y,z,z) \to r(b,y))[x/a][y/c] = (p(b,y) \land q(y,z,z) \to r(b,y))[y/c] = (p(b,c) \land q(c,z,z) \to r(b,c))$$
(21)

1.2.11 Definition

A ground rule is a Datalog rule which contains no variables. A substitution φ for a Datalog rule R is called a ground substitution for R if $R\varphi$ is a ground rule.

1.2.12 Example

In Example 1.2.10, the substitutions in (19) and (20) are ground substitutions for these rules, while those in (18) and (21) are not.

1.2.13 Definition

Given a Datalog rule R, we define ground(R) to be the Datalog program which consists of all ground rules $R\varphi$ which can be obtained from R via a ground substitution φ for R. In other words,

ground(R) = { $R\varphi \mid \varphi$ is a ground substitution for R}.

Each $S \in \text{ground}(R)$ is called a *grounding* of R. Given a Datalog program P, we define the *grounding* of P as

$$\operatorname{ground}(P) = \bigcup_{R \in P} \operatorname{ground}(R).$$

1.2.14 Remark

ground(P) is always a finite set if P is finite, since the underlying language L by definition has only a finite number of constants.

If L is not explicitly given, then we assume that the set C of constants in L contains exactly the constants occurring in P.

1.2.15 Example

For the program P in Example 1.2.7, ground(P) consists of the following rules.

$$\begin{split} \mathrm{mOf}(c,c) &\to \mathrm{pOf}(c,c) \\ \mathrm{mOf}(c,m) &\to \mathrm{pOf}(c,m) \\ \mathrm{mOf}(c,n) &\to \mathrm{pOf}(c,n) \\ \mathrm{mOf}(m,c) &\to \mathrm{pOf}(m,c) \\ \mathrm{mOf}(m,m) &\to \mathrm{pOf}(m,m) \\ \mathrm{mOf}(m,n) &\to \mathrm{pOf}(m,m) \\ \mathrm{mOf}(n,c) &\to \mathrm{pOf}(m,n) \\ \mathrm{mOf}(n,c) &\to \mathrm{pOf}(n,c) \\ \mathrm{mOf}(n,m) &\to \mathrm{pOf}(n,c) \\ \mathrm{mOf}(n,m) &\to \mathrm{pOf}(n,m) \\ \mathrm{mOf}(n,n) &\to \mathrm{pOf}(n,m) \\ \mathrm{mOf}(c,c) &\wedge \mathrm{pOf}(c,c) &\to \mathrm{uOf}(c,c) \\ \mathrm{bOf}(c,m) &\wedge \mathrm{pOf}(m,m) \to \mathrm{uOf}(c,m) \\ \mathrm{bOf}(c,n) &\wedge \mathrm{pOf}(n,m) \to \mathrm{uOf}(c,n) \end{split}$$

: overall 27 groundings of this rule bOf(c, m)

1.2.16 Definition

A Herbrand interpretation I of P is called a *Herbrand model* of P if the following condition holds: For every rule

$$B_1 \wedge \cdots \wedge B_n \to A$$

in ground(P) with $\{B_1, \ldots, B_n\} \subseteq I$, we also have $A \in I$.

1.2.17 Example

In Example 1.2.7, I_1 is a Herbrand model of P, while I_2 is not a model of P.

1.2.18 Example

For the Datalog program P consisting of the rules

$$p(a)$$

$$q(a,b)$$

$$q(b,c)$$

$$p(x) \rightarrow r(x)$$

$$r(x) \land q(x,y) \rightarrow r(y)$$

$$r(x) \land q(y,x) \rightarrow q(x,y)$$

the following are Herbrand models:

$$\{ p(a), q(a, b), q(b, c), r(a), r(c), q(c, b), r(b), q(b, a) \}$$

$$\{ p(a), q(a, b), q(b, c), r(a), r(c), q(c, b), r(b), q(b, a), q(c, c) \}$$

However,

$$\{p(a), q(a, b), q(b, c), r(a), r(c), q(c, b), r(b), q(b, a), q(a, c)\}$$

is *not* a Herbrand model.

1.2.19 Example

The Datalog program P consisting of the rules

$$p(a)$$

$$q(b)$$

$$q(x) \to q(x)$$

has the following Herbrand models:

$$\{p(a), q(b)\} \\ \{p(a), q(b), q(a)\} \\ \{p(a), q(b), q(a), p(b)\}$$

1.3 Fixed-point Semantics

1.3.1 Example

Consider the program P from Example 1.2.18. There is a systematic way of obtaining a Herbrand model, as follows. In order to do this, consider ground(P). First, collect all facts from ground(P):

$$I_1 = \{ p(a), q(a, b), q(b, c) \}.$$

Next, collect all heads of rules in ground(P) for which all body atoms are in I_1 , and add them to I_1 :

$$I_2 = I_1 \cup \{r(a)\}.$$

Next, collect all heads of rules in ground(P) for which all body atoms are in I_2 , and add them to I_2 :

$$I_3 = I_2 \cup \{r(b)\}$$

Iteratively continue this process until nothing is added any more:

$$I_4 = I_3 \cup \{r(c), q(b, a)\} I_5 = I_4 \cup \{q(c, b)\} I_6 = I_5 \cup \emptyset = I_5$$

We have already seen in Example 1.2.18 that I_5 is indeed a Herbrand model.

We now develop this idea systematically.

1.3.2 Definition

Given a Datalog program P with underlying language L, let B_P be the set of all ground atoms over L, called the *Herbrand base* of P. Furthermore, let $I_P = 2^{B_P}$ be the power set of B_P , i.e., the set of all subsets of B_P .

1.3.3 Example

For P as in Example 1.2.18, we have

$$B_P = \{p(a), p(b), p(c), r(a), r(b), r(c), q(a, a), q(a, b), q(a, c), q(b, a), q(b, b), q(b, c), q(c, a), q(c, b), q(c, c)\}$$

which consists of 15 atoms. Correspondingly, I_P has $2^{15} = 32,768$ elements.

1.3.4 Remark

 I_P is in fact the set of all Herbrand interpretations for P.

1.3.5 Definition

Given a Datalog program P, define a function $T_P: I_P \to I_P$ by

$$T_P(I) = \{A \in B_P \mid (B_1 \land \dots \land B_n \to A) \in \operatorname{ground}(P) \text{ and } B_i \in I \text{ for all } i = 1, \dots, n\}.$$

This function is called the *single-step operator*, or *immediate consequence operator*, or simply the T_P -operator for P.

1.3.6 Example

Considering Example 1.3.1, we have

$$T_P(\emptyset) = I_1$$

$$T_P(I_1) = I_2$$

$$T_P(I_2) = I_3$$

$$T_P(I_3) = I_4$$

$$T_P(I_4) = I_5$$

$$T_P(I_5) = I_5$$

To give some further examples, we also have

$$T_P(\{r(c), q(c, c)\}) = \{p(a), q(a, b), q(b, c), r(c), q(c, c)\}$$
$$T_P(\{p(b)\}) = \{p(a), q(a, b), q(b, c), r(b)\}$$

1.3.7 Example

For P as in Example 1.2.19, we have

$$T_P(\{q(c)\}) = \{p(a), q(b), q(c)\}$$
$$T_P(\{p(a), q(b), q(c)\}) = \{p(a), q(b), q(c)\}$$

1.3.8 Definition

Given a Datalog program P and $I \in I_P$, we call I a *pre-fixed point* of T_P if $T_P(I) \subseteq I$. We call I a *fixed point* of T_P if $T_P(I) = I$.

1.3.9 Example

In Example 1.3.1, we have $T_P(I_5) = I_5$, hence I_5 is a fixed point of T_P .

1.3.10 Example

For P as in Example 1.2.19, we have

$$T_P(\{p(a), q(b)\}) = \{p(a), q(b)\},\$$

which therefore is a fixed point of T_P .

We also have

$$T_P(\{p(a), q(b), p(b)\}) = \{p(a), q(b)\} \subseteq \{p(a), q(b), p(b)\}$$

therefore $\{p(a), q(b), p(b)\}$ is a pre-fixed point of T_P .

1.3.11 Theorem

Given any Datalog program P, the pre-fixed points of T_P are exactly the Herbrand models of P.

Proof: Let I be a pre-fixed point of T_P , i.e., $T_P(I) \subseteq I$. Now let $B_1 \land \cdots \land B_n \to A$ be any rule in ground(P). If $\{B_1, \ldots, B_n\} \subseteq I$, then $A \in T_P(I)$ by definition of T_P , and hence $A \in I$ by the assumption that $T_P(I) \subseteq I$. This shows that I is a Herbrand model of P. Conversely, let I be a Herbrand model of P. Now for any $A \in T_P(I)$ there must be a rule

Conversely, let I be a Herbrand model of P. Now for any $A \in I_P(I)$ there must be a rule $B_1 \wedge \cdots \wedge B_n \to A$ in ground(P) with $\{B_1, \ldots, B_n\} \subseteq I$. Since I is a Herbrand model we obtain $A \in I$. This shows $T_P(I) \subseteq I$.

1.3.12 Lemma

Given any Datalog program P and $I_1 \subseteq I_2 \in I_P$, we have that

$$T_P(I_1) \subseteq T_P(I_2),$$

i.e., the T_P -operator is monotonic.

Proof: For any $A \in T_P(I_1)$ there must be a rule $B_1 \wedge \cdots \wedge B_n \to A$ in ground(P) with $\{B_1, \ldots, B_n\} \subseteq I_1$. Since $I_1 \subseteq I_2$ we obtain $\{B_1, \ldots, B_n\} \subseteq I_2$, and hence $A \in T_P(I_2)$ as required.

1.3.13 Definition

Given any Datalog program P, we iteratively define the following.

$$T_P \uparrow 0 = \emptyset$$
$$T_P \uparrow 1 = T_P(T_P \uparrow 0)$$
$$\vdots$$
$$T_P \uparrow (n+1) = T_P(T_P \uparrow n)$$

We furthermore define

$$T_P \uparrow \omega = \bigcup_{n \in \mathbb{N}} T_P \uparrow n.$$

The sets $T_P \uparrow n$ are called *iterates* of the T_P -operator.

1.3.14 Example

Returning to Example 1.3.1, we have $I_n = T_P \uparrow n$ for all $n = 1, \ldots, 6$ and $T_P \uparrow \omega = I_5$.

1.3.15 Theorem

For every Datalog program P, the following hold.

- (a) $T_P \uparrow \omega$ is a fixed point of T_P .
- (b) $T_P \uparrow \omega$ is a Herbrand model for P.
- (c) For every Herbrand model M for P we have that $T_P \uparrow \omega \subseteq M$.

Condition (c) states that $T_P \uparrow \omega$ is the *least* Herbrand model of P (with respect to the set inclusion ordering).

Proof: First note that

$$T_P \uparrow 0 = \emptyset \subseteq T_P(\emptyset) = T_P \uparrow 1,$$

and due to monotonicity of T_P , we obtain

$$T_P \uparrow n \subseteq T_P \uparrow (n+1)$$

for each $n \in \mathbb{N}$. Thus, the iterates of T_P form an increasing chain:

$$T_P \uparrow 0 \subseteq T_P \uparrow 1 \subseteq T_P \uparrow 2 \subseteq \ldots T_P \uparrow n \subseteq T_P \uparrow (n+1) \subseteq \cdots \subseteq T_P \uparrow \omega.$$

Since furthermore $T_P \uparrow \omega \subseteq B_P$, and B_P is a finite set, there must be an n_P such that $T_P \uparrow n_P = T_P \uparrow (n_P + 1) = T_P \uparrow \omega$, i.e., $T_P \uparrow n_P = T_P \uparrow \omega$ must be a fixed points of T_P . This shows (a).

Every fixed point of T_P is a pre-fixed point of T_P . Hence $T_P \uparrow \omega$ is a pre-fixed point of T_P and thus a Herbrand model for P by Theorem 1.3.11. This shows (b).

Now assume that M is another Herbrand model for P. Clearly, $\emptyset \subseteq M$, and thus $T_P \uparrow 1 = T_P(\emptyset) \subseteq T_P(M) \subseteq M$ by monotonicity of T_P and since M is a pre-fixed point of T_P . By iteratively repeating this argument we obtain $T_P \uparrow n \subseteq T_P(M) \subseteq M$ for all $n \in \mathbb{N}$, and thus $T_P \uparrow \omega \subseteq M$, which shows (c).

1.3.16 Definition

We say that a Datalog program P Herbrand-entails a ground atom A, written $P \models_H A$, if $A \in T_P \uparrow \omega$. In this case we also call A a logical consequence of P under the Herbrand semantics.

1.3.17 Theorem

Given a Datalog program P and a ground atom A, we have $P \models_H A$ if and only if $A \in M$ for all Herbrand models M of P.

Proof: If $P \models_H A$, then $A \in T_P \uparrow \omega$. For any Herbrand model M of P we know that $T_P \uparrow \omega \subseteq M$, and we obtain $A \in M$ as required.

If $A \in M$ for all Herbrand models M of P, then we obtain $A \in T_P \uparrow \omega$ because $T_P \uparrow \omega$ is a Herbrand model of P. Thus, $P \models_H A$.

1.3.18 Example

Consider Example 1.2.19, note that $\{p(a), q(b)\}$ is the intersection of all the Herbrand models, and thus contains exactly the logical consequences of P.

2 Propositional Logic

2.1 Syntax

[Schöning, 1989, Chapter 1.1]

Let $\{A_1, A_2, ...\}$ be an infinite set of *propositional variables*.

2.1.1 Definition

An *atomic formula* is a propositional variable. *Formulas* are defined by the following inductive process.

- 1. All atomic formulas are formulas.
- 2. For every formula F, $\neg F$ is a formula, called the *negation* of F.
- 3. For all formulas F and G, also $(F \lor G)$ and $(F \land G)$ are formulas, called the *disjunction* and the *conjunction* of F and G, respectively.

The symbols \neg , \lor , \land are called *connectives*. \neg is a *unary* connective, while \lor and \land are *binary* connectives.

If a formula F occurs in another formula G, then it is called a *subformula* of G. Note that every formula is a subformula of itself.

2.1.2 Notation

We use the following abbreviations: A, B, C, \ldots instead of A_1, A_2, \ldots and other obvious variants. [Be careful with the use of F and G!] We sometimes omit brackets if it can be done safely. [Be careful with this!] $(F \to G)$ instead of $(\neg F \lor G)$ $(F \leftrightarrow G)$ instead of $(F \to G) \land (G \to F)$ \rightarrow and \leftrightarrow are also called connectives. $(\bigvee_{i=1}^n F_i)$ instead of $(F_1 \lor F_2 \lor \cdots \lor F_n)$ $(\bigwedge_{i=1}^n F_i)$ instead of $(F_1 \land F_2 \land \cdots \land F_n)$

2.1.3 Example

 $(\neg B \rightarrow F)$ is $(\neg \neg B \lor F)$. Some Subformulas: $\neg \neg B$, $\neg B$.

2.1.4 Example

 $((I \lor \neg B) \to \neg F)$ is $(\neg (I \lor \neg B) \lor \neg F)$. Some Subformulas: $\neg (I \lor \neg B), I, \neg B$.

2.1.5 Remark

Formulas can be represented in a unique way as *trees*. [Example 2.1.4 on whiteboard.]

2.2 Semantics

[Schöning, 1989, Chapter 1.1 cont.]

2.2.1 Definition

 $\mathbb{T} = \{0, 1\}$ – the set of *truth values*: *false*, and *true*, respectively.

An assignment is a function $\mathcal{A} : \mathbf{D} \to \mathbb{T}$, where **D** is a set of atomic formulas. Given such an assignment \mathcal{A} , we extend it to $\mathcal{A}' : \mathbf{E} \to \mathbb{T}$, where **E** is the set of all formulas containing only elements from **D** as atomic subformulas:

1.
$$\mathcal{A}'(A_i) = \mathcal{A}(A_i)$$
 for each $A_i \in \mathbf{D}$

2.
$$\mathcal{A}'(F \wedge G) = \begin{cases} 1, \text{ if } \mathcal{A}'(F) = 1 \text{ and } \mathcal{A}'(G) = 1 \\ 0, \text{ otherwise} \end{cases}$$

3.
$$\mathcal{A}'(F \lor G) = \begin{cases} 1, \text{ if } \mathcal{A}'(F) = 1 \text{ or } \mathcal{A}'(G) = 1 \\ 0, \text{ otherwise} \end{cases}$$

4.
$$\mathcal{A}'(\neg F) = \begin{cases} 1, \text{ if } \mathcal{A}'(F) = 0\\ 0, \text{ otherwise} \end{cases}$$

[From now on, drop distinction between \mathcal{A} and \mathcal{A}' .]

2.2.2 Example

Let $\mathcal{A}(B) = \mathcal{A}(F) = 1$ and $\mathcal{A}(I) = 0$.

$$\mathcal{A}(\neg (B \land F) \lor \neg I) = \begin{cases} 1, \text{ if } \mathcal{A}(\neg (B \land F)) = 1 \text{ or } \mathcal{A}(\neg I) = 1 \\ 0, \text{ otherwise} \end{cases}$$
$$= \begin{cases} 1, \text{ if } \mathcal{A}(B \land F) = 0 \text{ or } \mathcal{A}(I) = 0 \\ 0, \text{ otherwise} \end{cases}$$
$$= \begin{cases} 1, \text{ if } \mathcal{A}(B) = 0 \text{ or } \mathcal{A}(F) = 0 \text{ or } \mathcal{A}(I) = 0 \\ 0, \text{ otherwise} \end{cases}$$
$$= 1$$

2.2.3 Remark

The same thing can be expressed via *truth tables*.

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \wedge G)$	$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \lor G)$	$\mathcal{A}(F)$	$\mathcal{A}(\neg F)$
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		I.
1	1	1	1	1	1		

2.2.4 Example

Determining the truth values of formulas using truth tables: [Use the tree structure of formulas.]

$\mathcal{A}(B)$	$\mathcal{A}(F)$	$\mathcal{A}(I)$	$\mathcal{A}(B \wedge F)$	$\mathcal{A}(\neg(B \wedge F))$	$\mathcal{A}(\neg I)$	$\mathcal{A}(\neg (B \land F) \lor \neg I)$		
0	0	0	0	1	1	1		
0	0	1	0	1	0	1		
0	1	0	0	1	1	1		
0	1	1	0	1	0	1		
1	0	0	0	1	1	1		
1	0	1	0	1	0	1		
1	1	0	1	0	1	1		
1	1	1	1	0	0	0		

2.2.5 Remark

The truth value of a formula is uniquely determined by the truth values of the propositional variables it contains as subformulas.

2.2.6 Remark

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \to G)$	$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}(F \leftrightarrow G)$
0	0	1	0	0	1
0	1	1	0	1	0
1	0	0	1	0	0
1	1	1	1	1	1

2.2.7 Definition

F, a formula, \mathcal{A} , an assignment.

 \mathcal{A} is *suitable* if it is defined for all atomic formulas occurring in F.

We write $\mathcal{A} \models F$ if \mathcal{A} is suitable for F and $\mathcal{A}(F) = 1$. We say F holds under \mathcal{A} or \mathcal{A} is a model for F. Otherwise, we write $\mathcal{A} \not\models F$.

F is satisfiable if F has at least one model. Otherwise, it is called *unsatisfiable* or *contradic*tory.

A set **M** of formulas is *satisfiable* if there is an assignment \mathcal{A} which is a model for each formula in **M**. In this case, \mathcal{A} is called a *model* of **M**, and we write $\mathcal{A} \models \mathbf{M}$. [Note the overloading of notation.]

F is called *valid* or a *tautology* if every suitable assignment for F is a model for F. In this case we write $\models F$, and otherwise $\not\models F$.

2.2.8 Example

Examples of models for $p \vee \neg q \vee \neg r$ are the following. \mathcal{A}_1 with $\mathcal{A}_1(p) = \mathcal{A}_1(q) = \mathcal{A}_1(r) = 1$; \mathcal{A}_2 with $\mathcal{A}_2(p) = 1$ and $\mathcal{A}_2(q) = \mathcal{A}_2(r) = 0$; \mathcal{A}_3 with $\mathcal{A}_3(p) = \mathcal{A}_3(q) = 0$ and $\mathcal{A}_3(r) = 1$. You can find models by making the truth table for the formula: the assignments for which the truth value is 1 are models.

2.2.9 Example

For the formula $(p \land \neg q) \lor \neg p$, the assignment \mathcal{A}_1 with $\mathcal{A}_1(p) = \mathcal{A}_1(q) = 0$ is a model, because $\mathcal{A}_1((p \land \neg q) \lor \neg p) = 1$. The assignment \mathcal{A}_2 with $\mathcal{A}_2(p) = 0$ and $\mathcal{A}_2(q) = 1$ is also a model,

because $\mathcal{A}_2((p \wedge \neg q) \vee \neg p) = 1$. This can also be seen from the truth table for $(p \wedge \neg q) \vee \neg p$. The assignment \mathcal{A}_3 which only assigns $\mathcal{A}_3(p) = 0$ is not a model for the formula because it is not suitable for the formula.

2.2.10 Example

 $A \lor \neg A$ is a tautology. [This is established by the following truth table:

$\mathcal{A}(A)$	$\mathcal{A}(\neg A)$	$\mathcal{A}(A \lor \neg A)$
0	1	1
1	0	1

]

2.2.11 Theorem

A formula F is a tautology if and only if $\neg F$ is unsatisfiable.

Proof: F is a tautology iff every suitable assignment for F is a model for Fiff every suitable assignment for F (hence also for $\neg F$) is not a model for $\neg F$ iff $\neg F$ does not have a model iff $\neg F$ is unsatisfiable

2.2.12 Definition

A formula G is a (logical) consequence of a set $M = \{F_1, \ldots, F_n\}$ of formulas if for every assignment \mathcal{A} which is suitable for G and for all elements of M, it follows that whenever $\mathcal{A} \models F_i$ for all $i = 1, \ldots, n$, then $\mathcal{A} \models G$.

If G is a logical consequence of M, we write $M \models G$ and say M entails G. [Note the overloading of notation!]

2.2.13 Theorem

The following assertions are equivalent.

- 1. G is a logical consequence of $\{F_1, \ldots, F_n\}$.
- 2. $((\bigwedge_{i=1}^{n} F_i) \to G)$ is a tautology.
- 3. $((\bigwedge_{i=1}^{n} F_i) \land \neg G)$ is unsatisfiable.

Proof: First note that an assignment is a model for $(\bigwedge_{i=1}^{n} F_i)$ if and only if it is a model for $\{F_1, \ldots, F_n\}$.

Now let G be a logical consequence of $\{F_1, \ldots, F_n\}$, and let M be any assignment. If $M \not\models ((\bigwedge_{i=1}^n F_i), \text{ then } M \models ((\bigwedge_{i=1}^n F_i) \to G)$. If $M \models ((\bigwedge_{i=1}^n F_i) \text{ then } M \text{ is a model for } \{F_1, \ldots, F_n\}$ and thus $M \models G$. Hence $M \models ((\bigwedge_{i=1}^n F_i) \to G)$. So $((\bigwedge_{i=1}^n F_i) \to G)$ is a tautology.

Conversely, let $((\bigwedge_{i=1}^{n} F_i) \to G)$ be a tautology and let M be a model for $\{F_1, \ldots, F_n\}$. Then $M \models ((\bigwedge_{i=1}^{n} F_i))$ and therefore $M \models G$ by the truth table for the implication connective.

We have just shown that 1 and 2 are equivalent. We now show that 2 and 3 are also equivalent. Indeed, $((\bigwedge_{i=1}^{n} F_i) \to G)$ is a tautology if and only if $\neg ((\bigwedge_{i=1}^{n} F_i) \to G)$ is unsatisfiable. The conclusion thus follows from

$$\neg \left(\left(\bigwedge_{i=1}^{n} F_{i} \right) \to G \right) \equiv \neg \left(\neg \left(\bigwedge_{i=1}^{n} F_{i} \right) \lor G \right) \equiv \left(\bigwedge_{i=1}^{n} F_{i} \right) \land \neg G.$$

2.2.14 Example

Modus ponens is one of the forms of valid (logical) argument in Aristotelian syllogistic logic. It takes the following form:

If P, then Q. P. Therefore, Q.

Modus ponens above is the same as saying that Q is a logical consequence of two formulas $P \to Q$ and P.

Using set notation as in Definition 2.2.12, this can be written as $\{P, P \to Q\} \models Q$.

Using Theorem 2.2.13, we can verify that indeed Q is a logical consequence of $\{P, P \to Q\}$. To do that, we have to show: $(P \land (P \to Q)) \to Q$ is a tautology. This is shown in the following truth table, in which $\mathcal{A}((P \land (P \to Q)) \to Q) = 1$ for every possible truth assignment.

$\mathcal{A}(P)$	$\mathcal{A}(Q)$	$\mathcal{A}(P \to Q)$	$\mathcal{A}(P \land (P \to Q))$	$\mathcal{A}((P \land (P \to Q)) \to Q)$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

2.3 Datalog Revisited: Semantics By Grounding

We can relate Datalog and propositional logic as follows.

2.3.1 Definition

Given a Datalog language L, we can define a set of propositional variables as follows. For every ground atom $p(v_1, \ldots, v_n)$ over L, let p_{v_1,\ldots,v_n} be a propositional variable. Furthermore, let v be the function from ground atoms to propositional variables defined as

$$v(p(v_1,\ldots,v_n))=p_{v_1,\ldots,v_n}.$$

Given a ground Datalog rule $B_1 \wedge \cdots \wedge B_k \rightarrow A$, furthermore define

$$v(B_1 \wedge \dots \wedge B_k \to A) = v(B_1) \wedge \dots \wedge v(B_k) \to v(A)$$

if $k \geq 1$, and

$$v(\to A) = v(A)$$

(for facts).

2.3.2 Example

For the ground Datalog rule

 $p(a,b) \land q(c) \to p(a,c)$

we have

$$v(p(a,b) \land q(c) \to p(a,c)) = v(p(a,b)) \land v(q(c)) \to v(p(a,c)) = p_{a,b} \land q_c \to p_{a,c}$$

For the ground fact p(b, c) we have $v(p(b, c)) = p_{b,c}$.

2.3.3 Definition

Given a Datalog program P, define the associated set v(P) of propositional formulas as

$$v(P) = \{v(r) \mid r \in \operatorname{ground}(P)\}.$$

2.3.4 Example

For the program P in Examples 1.2.7 and 1.2.15, v(P) consists of the following formulas.

$$\begin{split} & \text{mOf}_{c,c} \to \text{pOf}_{c,c} \\ & \text{mOf}_{c,m} \to \text{pOf}_{c,m} \\ & \text{mOf}_{c,n} \to \text{pOf}_{c,n} \\ & \text{mOf}_{m,c} \to \text{pOf}_{m,c} \\ & \text{mOf}_{m,m} \to \text{pOf}_{m,m} \\ & \text{mOf}_{m,n} \to \text{pOf}_{m,n} \\ & \text{mOf}_{n,c} \to \text{pOf}_{n,c} \\ & \text{mOf}_{n,m} \to \text{pOf}_{n,m} \\ & \text{mOf}_{n,m} \to \text{pOf}_{n,m} \\ & \text{mOf}_{c,c} \wedge \text{pOf}_{c,c} \to \text{uOf}_{c,c} \\ & \text{bOf}_{c,m} \wedge \text{pOf}_{m,m} \to \text{uOf}_{c,m} \\ & \text{bOf}_{c,n} \wedge \text{pOf}_{n,m} \to \text{uOf}_{c,n} \\ & \text{i} \quad \text{overall 27 groundings of this rule} \\ & \text{bOf}_{c,m} \\ & \text{mOf}_{m,n} \end{split}$$

2.3.5 Theorem

Let P be a Datalog program and $A \in B_P$. Then $P \models_H A$ if and only if $v(P) \models v(A)$.

Proof: For every Herbrand interpretation I define an assignment \mathcal{A}_I by setting, for every ground atom B,

$$\mathcal{A}_{I}(v(B)) = \begin{cases} 1 & \text{if } B \in I \\ 0 & \text{if } B \notin I. \end{cases}$$

Clearly, if I is a Herbrand model for P, then \mathcal{A}_I is a model for v(P).

Now assume $v(P) \models v(A)$, and let M be a Herbrand model of P. Then \mathcal{A}_M is a model of v(P) and hence $\mathcal{A}_M(v(A)) = 1$. By definition of \mathcal{A}_M we obtain $A \in M$ as required. Conversely, for every assignment \mathcal{A} , define a Herbrand interpretation $I_{\mathcal{A}}$ as

$$I_{\mathcal{A}} = \{ B \mid \mathcal{A}(v(B)) = 1 \}.$$

Clearly, if \mathcal{A} is a model for v(P) then $I_{\mathcal{A}}$ is a Herbrand model for P. Now assume $P \models_{H} A$, and let \mathcal{M} be model for v(P). Then $I_{\mathcal{M}}$ is a Herbrand model for P and hence $A \in I_{\mathcal{M}}$. By definition of $I_{\mathcal{M}}$ we obtain $\mathcal{M}(v(A)) = 1$ as required.

Remark:

Theorem 2.3.5 shows how the problem of determining logical consequences for Datalog can be *reduced* (transformed) to the problem of determining logical consequences for propositional logic.

However, the theorem does not work in the other direction. E.g., in propositional logic we have $\{\neg p, p \lor q\} \models q$ and $\{p \rightarrow q, q \rightarrow r\} \models p \rightarrow r$, and neither of these can be transformed into a Datalog problem based on the theorem.

2.4 Equivalence

[Schöning, 1989, Chapter 1.2]

2.4.1 Definition

Formulas F and G are (semantically) equivalent (written $F \equiv G$) if for every assignment \mathcal{A} that is suitable for F and G, $\mathcal{A}(F) = \mathcal{A}(G)$.

2.4.2 Example

$A \lor B \equiv B \lor A$. (commutativity of \lor)									
[
$\mathcal{A}(A)$	$\mathcal{A}(B)$	$\mathcal{A}(A \lor B)$	$\mathcal{A}(B \lor A)$						
0	0	0	0						
0	1	1	1						
1	0	1	1						
1	1	1	1						
] ' '									
$A \vee \neg A$	$A \lor \neg A \equiv B \lor \neg B$. [truth table]								

2.4.3 Example

 $F \equiv G$ iff $\models (F \leftrightarrow G)$. [truth table]

2.4.4 Theorem

The following hold for all formulas F, G, and H.

$$\begin{array}{ll} F \wedge F \equiv F & F \vee F \equiv F & \text{Idempotency} \\ F \wedge G \equiv G \wedge F & F \vee G \equiv G \vee F & \text{Commutativity} \\ (F \wedge G) \wedge H \equiv F \wedge (G \wedge H) & (F \vee G) \vee H \equiv F \vee (G \vee H) & \text{Associativity} \\ F \wedge (G \vee H) \equiv (F \wedge G) \vee (F \wedge H) & F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H) & \text{Distributivity} \\ \neg \neg F \equiv F & \text{Double Negation} & (\text{also Involution}) \\ \neg (F \wedge G) \equiv \neg F \vee \neg G & \neg (F \vee G) \equiv \neg F \wedge \neg G & \text{de Morgan's Laws} \end{array}$$

Proof: Straightforward using truth tables.

2.4.5 Remark

Disjunction is dispensable. $[F \lor G \equiv \neg(\neg F \land \neg G)]$ Alternatively, conjunction is dispensable. $[F \land G \equiv \neg(\neg F \lor \neg G)]$

2.4.6 Remark

Let $F \uparrow G = \neg (F \land G)$. $\neg F \equiv \neg (F \land F) \equiv F \uparrow F$. $F \lor G \equiv \neg (\neg F \land \neg G) \equiv \neg F \uparrow \neg G \equiv (F \uparrow F) \uparrow (G \uparrow G)$ $F \land G \equiv \neg \neg (F \land G) \equiv \neg (F \uparrow G) \equiv (F \uparrow G) \uparrow (F \uparrow G)$.

2.4.7 Remark (The contraposition principle)

 $\{F\} \models G \text{ iff } \{\neg G\} \models \neg F. \\ [\{F\} \models G \text{ iff } F \to G \text{ is a tautology (Theorem 2.2.13).} \\ F \to G \equiv \neg F \lor G \equiv \neg(\neg G) \lor (\neg F) \equiv (\neg G) \to (\neg F). \\ (\neg G) \to (\neg F) \text{ is a tautology iff } \{\neg G\} \models \neg F \text{ (Theorem 2.2.13)}]$

2.5 Normal Forms

[Schöning, 1989, Chapter 1.2 cont.]

2.5.1 Definition

A *literal* is an atomic formula (a *positive* literal) or the negation of an atomic formula (a *negative* literal).

A formula F is in *negation normal form* (NNF) if it is made up only of literals, \lor , and \land (and brackets).

2.5.2 Theorem

For every formula F, there is a formula $G \equiv F$ which is in NNF.

Proof: The proof of Theorem 2.5.5 below shows this as well.

2.5.3 Example

 $(\neg (I \lor \neg B) \lor \neg F) \equiv (\neg I \land B) \lor \neg F$

2.5.4 Definition

A formula F is in *conjunctive normal form* (CNF) if it is a conjunction of disjunctions of literals, i.e., if

$$F = \left(\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} L_{i,j}\right)\right),\,$$

where the $L_{i,j}$ are literals.

A formula F is in *disjunctive normal form* (DNF) if it is a disjunction of conjunctions of literals, i.e., if

$$F = \left(\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} L_{i,j}\right)\right),\,$$

where the $L_{i,j}$ are literals.

2.5.5 Theorem

For every formula F there is a formula $F_1 \equiv F$ in CNF and a formula $F_2 \equiv F$ in DNF.

Proof: Proof by structural induction.

Induction base: If F is atomic, then it is already in CNF and in DNF.

Induction hypothesis: G has CNF G_1 and DNF G_2 , H has CNF H_1 and DNF H_2 . Induction step: We have 3 cases.

Case 1: F has the form $F = \neg G$. Then

$$F \equiv \neg G_1 \equiv \neg \left(\bigwedge_{i=1}^n \left(\bigvee_{j=1}^{m_i} L_{i,j} \right) \right) \equiv \left(\bigvee_{i=1}^n \left(\bigwedge_{j=1}^{m_i} \neg L_{i,j} \right) \right) \equiv \left(\bigvee_{i=1}^n \left(\bigwedge_{j=1}^{m_i} \overline{L_{i,j}} \right) \right)$$

where

$$\overline{L_{i,j}} = \begin{cases} A & \text{if } L_{i,j} = \neg A \\ \neg A & \text{if } L_{i,j} = A \end{cases}$$

and the latter formula is in DNF as required. Analogously, we can obtain from G_2 a CNF formula equivalent to F.

Case 2: F has the form $F = G \vee H$. Then $F \equiv G_2 \vee H_2$, which is in DNF. Further,

$$F \equiv G_1 \lor H_1 \equiv \left(\bigwedge_{i=1}^n \left(\bigvee_{j=1}^{m_i} K_{i,j}\right)\right) \lor \left(\bigwedge_{k=1}^o \left(\bigvee_{l=1}^{p_k} L_{k,l}\right)\right) \equiv \left(\bigwedge_{i=1}^n \left(\bigwedge_{k=1}^o \left(\bigvee_{j=1}^{m_i} K_{i,j} \lor \bigvee_{l=1}^{p_k} L_{k,l}\right)\right)\right),$$

which is in CNF.

Case 3: F has the form $F = G \wedge H$. This case is analogous to Case 2.

2.5.6 Remark

Structural induction is a fundamental proof technique, comparable with natural induction.

2.5.7 Remark

DNF via truth table. If, e.g.,

	$\mathcal{A}(A)$	$\mathcal{A}(B)$	$\mathcal{A}(C)$	$\mathcal{A}(F)$
	0	0	0	1
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	0
	1	1	1	0
-1	$R \wedge \neg C$	$\vee (A \wedge$	$\neg R \land \neg$	C \vee $(A /$

then a DNF for F is $(\neg A \land \neg B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C).$

2.5.8 Definition

Two formulas F and G are *equisatisfiable* if the following holds: F has a model if and only if G has a model.

2.6 Tableaux Algorithm

[Ben-Ari, 1993, Chapter 2.6, strongly modified]

Translating truth tables directly into an algorithm is very expensive.

We take the following approach:

For showing $F_1, \ldots, F_n \models G$, if suffices to show that $F = F_1 \land \cdots \land F_n \land \neg G$ is unsatisfiable (Theorem 2.2.13).

We attempt to construct a model for F in such a way that, if and only if the construction fails, we know that F is unsatisfiable.

2.6.1 Definition

Let F be a formula in NNF. A *tableau branch* for F is a set of formulas, defined inductively as follows.

- $\{F\}$ is a tableau branch for F.
- If T is a tableau branch for F and $G \wedge H \in T$, then $T \cup \{G, H\}$ is a tableau branch for F.
- If T is a tableau branch for F and $G \lor H \in T$, then $T \cup \{G\}$ is a tableau branch for F and $T \cup \{H\}$ is a tableau branch for F.

A *tableau* for F is a set of tableau branches for F.

A tableau branch is *closed* if it contains an atomic formula A and the literal $\neg A$. Otherwise, it is *open*.

A tableau branch T is called *complete* if it satisfies the following conditions.

• T is open.

- If $G \wedge H \in T$, then $\{G, H\} \subseteq T$.
- If $G \lor H \in T$, then $G \in T$ or $H \in T$.

A tableau M for F is called *complete* if it satisfies the following conditions.

- If $G \lor H \in T \in M$, and T is open, then there are branches $S_1 \in M$ and $S_2 \in M$ with $\{G\} \cup T \subseteq S_1$ and $\{H\} \cup T \subseteq S_2$.
- All branches of M are complete or closed.

A tableau is *closed* if it is complete and all its branches are closed.

If F is not in NNF, then a tableau (resp., tableau branch) for F is a tableau (resp. tableau branch) for an NNF of F.

2.6.2 Example

Consider $(\neg I \land B) \lor \neg F$, for which a complete (but not closed) tableau is $\{\{(\neg I \land B) \lor \neg F, \neg I \land B, \neg I, B\}, \{(\neg I \land B) \lor \neg F, \neg F\}\}$.

2.6.3 Remark

Tableaux can be represented graphically (blackboard).

2.6.4 Example

A complete tableau for

$$(p \lor q) \land (p \lor r) \land \neg p \land \neg r$$

(on whiteboard).

2.6.5 Example

A complete tableau for

$$(p \lor (q \land \neg r)) \land (p \lor (r \land q)) \land \neg p \land \neg r$$

(on whiteboard).

2.6.6 Theorem (Soundness)

A formula F is satisfiable if there is a complete tableau branch for F.

2.6.7 Theorem (Completeness)

If a formula F is satisfiable, then there is a complete tableau branch for F.

2.6.8 Theorem

A formula F is

1. unsatisfiable if and only if there is a closed tableau for F,

2. a tautology if and only if there is a closed tableau for $\neg F$.

2.6.9 Example

Modus Ponens holds if $(P \land (P \rightarrow Q)) \rightarrow Q$ is a tautology. We construct a complete tableau (blackboard) for $\neg((P \land (P \rightarrow Q)) \rightarrow Q)$, which turns out to be closed.

2.6.10 Lemma

Let F be a formula, T be a complete tableau branch for F, and L_1, \ldots, L_n be all the literals contained in T. Then any assignment \mathcal{A} with $\mathcal{A}(L_1 \wedge \cdots \wedge L_n) = 1$ is a model for F.

Proof: We show by structural induction, that \mathcal{A} is a model for each formula F' in T. Induction Base: Let F' = L be a literal. Then by definition $\mathcal{A}(F') = 1$. Induction Hypothesis: $\mathcal{A}(G) = \mathcal{A}(H) = 1$ for $G, H \in T$.

Induction Step: (1) Let $F' = G \land H \in T$. Then $G \in T$ and $H \in T$. By IH, $\mathcal{A}(F') = \mathcal{A}(G \land H) = 1$. (2) Let $F' = G \lor H$. Then $G \in T$ or $H \in T$. By IH, $\mathcal{A}(G) = 1$ or $\mathcal{A}(H) = 1$, hence $\mathcal{A}(F') = 1$. (3) The case $F' = \neg G \in T$ cannot happen since all formulas are in NNF, and the literal case was dealt with in the induction base.

Proof of Theorem 2.6.6: By Lemma 2.6.10, we obtain that F has a model, hence it is satisfiable.

2.6.11 Example

Is the following formula valid? satisfiable? unsatisfiable?

$$(((A \to B) \to A) \to A)$$

(done on whiteboard)

2.6.12 Example

Is the following formula valid? satisfiable? unsatisfiable?

$$(A \to (B \to C)) \to ((A \land B) \to C)$$

(done on whiteboard)

Proof of Theorem 2.6.7: First note the following, for any assignment M and all formulas G and H:

- If $M \models G \land H$, then $M \models G$ and $M \models H$.
- if $M \models G \lor H$, then $M \models G$ or $M \models H$.

Since F is satisfiable, it has a model M. Construct a tableau branch T for F recursively as follows.

- If $G \wedge H \in T$, set $T := T \cup \{G, H\}$.
- If $G \lor H \in T$ with $M \models G$, set $T := T \cup \{G\}$, otherwise set $T := T \cup \{H\}$.

The recursion terminates since only subformulas of F are added and sets cannot contain duplicate elements. The resulting T is a complete tableau branch, and $M \models T$, by definition.

Proof of Theorem 2.6.8:

We prove Statement 1.

Let A be the statement "F is unsatisfiable", and let B be the statement "F has a closed tableau".

We need to show: $A \equiv B$, for which it suffices to show that $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$ is valid.

By the contraposition principle, it therefore suffices to show that $(\neg B \rightarrow \neg A) \land (\neg A \rightarrow \neg B) \equiv (\neg B \leftrightarrow \neg A)$ is valid, i.e., that $\neg A \equiv \neg B$.

 $\neg A$ is the statement "F is not unsatisfiable", i.e. "F is satisfiable".

 $\neg B$ is the statement "F does not have a closed tableau". Since, every formula has a complete tableau, this is equivalent to the statement "F has a complete tableau branch".

It thus remains to show: F is satisfiable if and only if F has a complete tableau branch. This was shown in Theorems 2.6.6 and 2.6.7.

2.6.13 Remark

In short, Statement 1 of Theorem 2.6.8 holds because it expresses the contrapositions of Theorem 2.6.6 and 2.6.7.

2.7 Theoretical Aspects

[Schöning, 1989, Part of Chapter 1.4 plus some more]

2.7.1 Theorem (monotonicity of propositional logic)

Let M, N be sets of formulas. If $M \subseteq N$ then $\{F \mid M \models F\} \subseteq \{F \mid N \models F\}$.

Proof: Let F be such that $M \models F$.

Let \mathcal{A} be a model for N. Then all formulas in N, and hence all formulas in M, are true under \mathcal{A} . Hence $\mathcal{A} \models F$. This holds for all models of N, and hence $N \models F$.

2.7.2 Definition

A problem with a yes/no answer (a *decision problem*) is *decidable* if there exists an algorithm which terminates on any allowed input of the problem and, upon termination, outputs the correct answer.

2.7.3 Example

```
"Is n an even number?" is decidable (allowed input: any n ∈ N).
[
1. If n=1, terminate with output 'No'.
2. If n=0, terminate with output 'Yes'.
3. Set n := n-2.
4. Go to 1.
]
```

2.7.4 Theorem (decidability of finite entailment)

The problem of deciding whether a finite set M of formulas entails some other formula F is decidable.

Proof: M contains only a finite number of propositional variables. Use truth tables to check whether all models of M are models of F.

2.7.5 Theorem (decidability of Datalog entailment)

The problem of deciding whether a finite Datalog program P Herbrand-entails some $A \in B_P$ is decidable.

Proof: The set of propositional formulas v(P) as defined in Definition 2.3.3 is finite. Theorems 2.3.5 and 2.7.4 then complete the proof.

2.7.6 Definition

A decision problem is *semi-decidable* if there exists an algorithm which, on any allowed input of the problem, terminates if the answer is 'yes' and outputs the correct answer.

2.7.7 Theorem (semi-decidability of infinite entailment)

The problem of deciding whether a countably infinite set M of formulas entails some other formula F is semi-decidable.

Proof: First note: $M \models F$ if and only if $M \cup \{\neg F\}$ is unsatisfiable. [Exercise 50] By the compactness theorem, $M \cup \{\neg F\}$ is unsatisfiable if and only if one of its finite subsets is unsatisfiable. Now use an enumeration M_1, M_2, \ldots of all these finite subsets and check satisfiability of each of them in turn, using truth tables. If one of the sets is unsatisfiable, terminate and output that $M \models F$.

2.7.8 Theorem (compactness of propositional logic)

A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

Proof:

 \Rightarrow : Every model for M is also a model for each finite subset of M.

 \Leftarrow : Assume every finite subset of M is satisfiable.

Let $\{A_1, A_2, \dots\}$ be all propositional variables.

Define M_n to be the set of all elements of M which contains only the propositional variables A_1, \ldots, A_n .

 M_n contains at most 2^{2^n} many formulas with different truth tables.

Thus, there is a set $\mathcal{F}_n = \{F_1, \ldots, F_k\} \subseteq M_n$ $(k \leq 2^{2^n})$, such that for every $F \in M$, $F \equiv F_i$ for some *i*.

Hence, every model for \mathcal{F}_n is a model for M_n .

By assumption, \mathcal{F}_n is satisfiable, say with model \mathcal{A}_n .

 \mathcal{A}_n is also a model for M_1, \ldots, M_{n-1} . $[M_i \subseteq M_{i+1}$ for all i]

For all
$$k \in \mathbb{N}$$
, define $\mathcal{A}(A_k) = \limsup_{n \to \infty} \mathcal{A}_n(A_k)$.

Note: For each $k \in \mathbb{N}$ there exists $n_k \in \mathbb{N}$ s.t. for all $n \ge n_k$ we have $\mathcal{A}_n(A_k) = \mathcal{A}_{n+1}(A_k)$. It remains to show: $\mathcal{A} \models M$:

Let $F \in M$. Then $F \in M_k$ for some k.

With $n' = \max\{n_1, \ldots, n_k\}$ we have that \mathcal{A} and all \mathcal{A}_n with $n \ge n'$ agree on all propositional variables in F.

We have $\mathcal{A}_m \models F$ for all $m \ge \max\{k, n'\}$.

Hence $\mathcal{A} \models F$ as required.

2.7.9 Theorem (complexity of finite satisfiability)

The problem of deciding whether a finite set of formulas is satisfiable, is NP-complete.

Proof: See any book or lecture on computational complexity theory.

2.7.10 Theorem (complexity of finite entailment)

The problem of deciding whether a finite set of formulas entails some other formula is NP-complete.

Proof: Because of Exercise 50, finite entailment and finite satisfiability can be reduced to each other, hence they have the same complexity.

3 First-order Predicate Logic

3.1 Syntax

[Schöning, 1989, Chapter 2.1]

3.1.1 Example

Difficult/impossible to model in propositional logic:

• For all $n \in \mathbb{N}$, $n! \ge n$.

3.1.2 Example

Difficult/impossible to model in propositional logic:

- 1. Healthy beings are not dead.
- 2. Every cat is alive or dead.
- 3. If somebody owns something, (s)he cares for it.
- 4. A happy cat owner owns a cat and all beings he cares for are healthy.
- 5. Schrödinger is a happy cat owner.

3.1.3 Definition

- Variables: x_1, x_2, \ldots (also y, z, \ldots).
- Function symbols: f_1, f_2, \ldots (also g, h, \ldots), each with an arity $(\in \mathbb{N})$ (number of parameters).

Constants are function symbols with arity 0.

• Predicate symbols: P_1, P_2, \ldots (also Q, R, \ldots), each with an arity $(\in \mathbb{N})$ (number of parameters).

Terms are inductively defined:

- Each variable is a term.
- If f is a function symbol of arity k, and if t_1, \ldots, t_k are terms, then $f(t_1, \ldots, t_k)$ is a term.

Formulas are inductively defined:

- If P is a predicate symbol of arity k, and if t_1, \ldots, t_k are terms, then $P(t_1, \ldots, t_k)$ is a formula (called *atomic*).
- For each formula F, $\neg F$ is a formula.
- For all formulas F and G, $(F \land G)$ and $(F \lor G)$ are formulas.
- If x is a variable and F is a formula, then $\exists xF$ and $\forall xF$ are formulas.

3.1.4 Definition

 $F \to G$ (respectively, $F \leftrightarrow G$) is shorthand for $\neg F \lor G$ (respectively, $(F \to G) \land (G \to F)$). We also use other notational variants from propositional logic freely.

3.1.5 Example

The following are formulas (s is a constant).

- 1. $\forall x(H(x) \rightarrow \neg D(x))$
- 2. $\forall x(C(x) \rightarrow (A(x) \lor D(x)))$
- 3. $\forall x \forall y (O(x, y) \rightarrow R(x, y))$

4. $\forall x (P(x) \to (\exists y (O(x, y) \land C(y)) \land (\forall y (R(x, y) \to H(y)))))$ 5. P(x)

5.
$$P(s)$$

In 1, predicate symbols are D and H, and x is a term.

3.1.6 Example

Example 3.1.1 could be written as

$$\forall n (n \in \mathbb{N} \to n! \ge n),$$

where (with abuse of our introduced formal notation), " $\in \mathbb{N}$ " is a unary predicate symbol, " \geq " is a binary predicate symbol, and "!" is a unary function symbol, written postfix.

3.1.7 Definition

If a formula F is part of a formula G, then it is called a *subformula* of G.

An occurrence of a variable x in a formula F is *bound* if it occurs within a subformula of F of the form $\exists xG$ or $\forall xG$. Otherwise it is *free*.

A formula without free variables is *closed*. A formula with free variables is *open*.

 $\exists, \forall \text{ are quantifiers}, \lor, \land, \neg, \rightarrow, \leftrightarrow \text{ are connectives}.$

3.1.8 Example

All subformulas of $\forall x(C(x) \to (A(x) \lor D(x))):$ $C(x), A(x), D(x), A(x) \lor D(x), C(x) \to (A(x) \lor D(x)), \forall x(C(x) \to (A(x) \lor D(x))).$

3.1.9 Example

In the formula $P(x) \land \forall x (P(x) \to Q(f(x)))$, the first occurrence of x is free, the others are bound.

3.2 Semantics

[Schöning, 1989, Chapter 2.1 cont.]

3.2.1 Definition

A structure is a pair $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$, with $U_{\mathcal{A}} \neq \emptyset$ a set (ground set or universe) and $I_{\mathcal{A}}$ a mapping which maps

- each k-ary predicate symbol P to a k-ary predicate (relation) on $U_{\mathcal{A}}$ (if $I_{\mathcal{A}}$ is defined for P)
- each k-ary function symbol f to a k-ary function on $U_{\mathcal{A}}$ (if $I_{\mathcal{A}}$ is defined for f)
- each variable x to an alement of $U_{\mathcal{A}}$ (if $I_{\mathcal{A}}$ is defined for x).

Write $P^{\mathcal{A}}$ for $I_{\mathcal{A}}(P)$ etc. \mathcal{A} is *suitable* for a formula F if $I_{\mathcal{A}}$ is defined for all predicate and function symbols in F and for all free variables in F.

3.2.2 Example

$$F = \forall x \forall y (P(a) \land (P(x) \to (P(s(x)) \land Q(x, x) \land ((P(y) \land Q(x, y)) \to Q(x, s(y)))))))$$

Structure $(U_{\mathcal{A}}, I_{\mathcal{A}})$:

$$U_{\mathcal{A}} = \mathbb{N}$$

$$a^{\mathcal{A}} = 0 (\in \mathbb{N})$$

$$s^{\mathcal{A}} : n \mapsto n + 1$$

$$P^{\mathcal{A}} = \mathbb{N} \quad (= U_{\mathcal{A}})$$

$$Q^{\mathcal{A}} = \{(n, k) \mid n \leq k\}$$

Another structure $(U_{\mathcal{B}}, I_{\mathcal{B}})$:

$$U_{\mathcal{B}} = \{ \textcircled{o}, \textcircled{o} \}$$
$$a^{\mathcal{B}} = \textcircled{o}$$
$$s^{\mathcal{B}} : \textcircled{o} \mapsto \textcircled{o}; \textcircled{o} \mapsto \textcircled{o}$$
$$P^{\mathcal{B}} = U_{\mathcal{B}}$$
$$Q^{\mathcal{B}} = \{ (\textcircled{o}, \textcircled{o}) \}$$

3.2.3 Definition

F a formula. $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$ a suitable structure for F. Define for each term t in F its value $t^{\mathcal{A}}$:

.

1. If t = x is a variable, $t^{\mathcal{A}} = x^{\mathcal{A}}$.

2. If $t = f(t_1, \ldots, t_k)$, then $t^{\mathcal{A}} = f^{\mathcal{A}}(t_1^{\mathcal{A}}, \ldots, t_k^{\mathcal{A}})$. Define for F its truth value $\mathcal{A}(F)$ as follows, where $\mathcal{A}_{[x/u]}$ is identical to \mathcal{A} except $x^{\mathcal{A}_{[x/u]}} = u$.

1.
$$\mathcal{A}(P(t_1, \dots, t_k)) = \begin{cases} 1, \text{ if } (\mathcal{A}(t_1), \dots, \mathcal{A}(t_k)) \in P^{\mathcal{A}} \\ 0, \text{ otherwise} \end{cases}$$

2. $\mathcal{A}(H \wedge G) = \begin{cases} 1, \text{ if } \mathcal{A}(H) = 1 \text{ and } \mathcal{A}(G) = 1 \\ 0, \text{ otherwise} \end{cases}$

3.
$$\mathcal{A}(H \lor G) = \begin{cases} 1, \text{ if } \mathcal{A}(H) = 1 \text{ or } \mathcal{A}(G) = 1 \\ 0, \text{ otherwise} \end{cases}$$

4.
$$\mathcal{A}(\neg G) = \begin{cases} 1, \text{ if } \mathcal{A}(G) = 0\\ 0, \text{ otherwise} \end{cases}$$

5. $\mathcal{A}(\forall xG) = \begin{cases} 1, \text{ if for all } u \in U_{\mathcal{A}}, \mathcal{A}_{[x/u]}(G) = 1\\ 0, \text{ otherwise} \end{cases}$

$\mathcal{U}_{\mathcal{A}}$	$\{j,h\}$	\mathbb{N}	N	$\{a\}$	$\{j,h\}$	$\{j,h\}$
$harrypotter^{\mathcal{A}}$	h	1	1	a	h	h
$jamespotter^{\mathcal{A}}$	j	2	2	a	j	j
$\operatorname{orphan}^{\mathcal{A}}$	$\{h\}$	$\{1, 3, 4\}$	$\{3, 4, 5\}$	$\{a\}$	$\{h\}$	$\{h\}$
$\operatorname{parentOf}^{\mathcal{A}}$	$\{(j,h)\}$	$\{(2,1)\}$	$\{(1,2),(3,1)\}$	$\{(a,a)\}$	$\{(h,j)\}$	$\{(j,h)\}$
$\mathrm{dead}^{\mathcal{A}}$	$\{j\}$	$\{1, 2\}$	$\{1, 3, 4\}$	$\{a\}$	Ø	$\{h\}$
	model	model	no model	model	no model	no model

Table 1: Signatures for Example 3.2.5.

6.
$$\mathcal{A}(\exists xG) = \begin{cases} \text{if there exists some } u \in U_{\mathcal{A}} \text{ s.t. } \mathcal{A}_{[x/u]}(G) = 1 \\ 0, \text{ otherwise} \end{cases}$$

If $\mathcal{A}(F) = 1$, we write $\mathcal{A} \models F$ and say F is true in \mathcal{A} or \mathcal{A} is a model for F. F is valid (or a tautology, written $\models F$) if $\mathcal{A} \models F$ for every suitable structure \mathcal{A} for F. F is satisfiable if there is \mathcal{A} with $\mathcal{A} \models F$, and otherwise it is unsatisfiable.

3.2.4 Remark

Many notions and results carry over directly from propositional logic: *logical consequence*, *equivalence of formulas*, Theorem 2.2.13, Theorem 2.4.4, etc. See Remark 3.2.10.

3.2.5 Example

Consider the sentences

James Potter is the parent of Harry Potter. Harry Potter is an orphan. Any parent of any orphan is dead.

They can be represented formally as follows.

parentOf(jamespotter, harrypotter) (22)

 $\wedge \operatorname{orphan}(\operatorname{harrypotter})$ (23)

 $\wedge \forall x \forall y (\operatorname{orphan}(x) \land \operatorname{parentOf}(y, x) \to \operatorname{dead}(y))$ (24)

This has

as logical consequence.

Proof sketch: From lines (22) and (23) we can conclude by the rule in (24) with x = harrypotter and y = jamespotter that dead(harrypotter).

Before we go for a formal proof, let's first give some examples for signatures—see Table 1.

Now for a formal proof: Let \mathcal{A} be any model for the formula in (22)-(24). From (22) we then obtain

 $(jamespotter^{\mathcal{A}}, harrypotter^{\mathcal{A}}) \in parentOf^{\mathcal{A}}.$

From (23) we obtain

harrypotter^{\mathcal{A}} \in orphan^{\mathcal{A}}.

From (24) we obtain that, whenever

 $u \in \operatorname{orphan}^{\mathcal{A}}$ and $(v, u) \in \operatorname{parentOf}^{\mathcal{A}}$,

then

 $v \in \text{dead}^{\mathcal{A}}.$

So consequently

jamespotter^{\mathcal{A}} \in dead^{\mathcal{A}}.

Since this argument holds for all models \mathcal{A} , we have that

dead(harrypotter)

is indeed a logical consequence.

3.2.6 Example

parentOf(fatherOf(harrypotter), harrypotter) \land orphan(harrypotter) $\land \forall x \forall y (\text{orphan}(x) \land \text{parentOf}(y, x) \rightarrow \text{dead}(y))$

has

dead(fatherOf(harrypotter))

as logical consequence.

3.2.7 Example

$$\begin{aligned} \text{human}(\text{harrypotter}) &\land \text{orphan}(\text{harrypotter}) \\ &\land \forall x(\text{human}(x) \rightarrow \text{parentOf}(\text{fatherOf}(x), x)) \\ &\land \forall x \forall y(\text{orphan}(x) \land \text{parentOf}(y, x) \rightarrow \text{dead}(y)) \end{aligned}$$

has

dead(fatherOf(harrypotter))

as logical consequence.

3.2.8 Example

$$\begin{aligned} \forall x (\operatorname{human}(x) &\to \operatorname{parentOf}(\operatorname{fatherOf}(x), x)) \\ &\wedge \forall x \forall y (\operatorname{orphan}(x) \land \operatorname{parentOf}(y, x) \to \operatorname{dead}(y)) \end{aligned}$$

has

$$\forall x(\operatorname{human}(x) \land \operatorname{orphan}(x) \rightarrow \operatorname{dead}(\operatorname{fatherOf}(x)))$$

as logical consequence.

3.2.9 Example

Consider the formula $F = \exists x \forall y Q(x, y)$ under the structure $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$ from Example 3.2.2. We show $\mathcal{A}(F) = 1$.

First note that $0 \leq n$ for all $n \in \mathbb{N}$, i.e. $\mathcal{A}_{[x/0][y/n]}(Q(x,y)) = 1$ for all $n \in \mathbb{N} = U_{\mathcal{A}}$. Thus, $\mathcal{A}_{[x/0]}(\forall yQ(x,y)) = 1$ and therefore $\mathcal{A}(\exists x \forall yQ(x,y)) = 1$ as desired.

3.2.10 Remark

Predicate logic "degenerates" to propositional logic if either all predicate symbols have arity 0, or if no variables are used. For the latter, a formula like $(Q(a) \land \neg R(f(b), c)) \land P(a, b)$ can be written as the propositional formula $(A \land \neg B) \land C$ with A for Q(a), B for R(f(b), c), and C for P(a, b).

3.2.11 Remark

We deal with *first-order* predicate logic. Second-order predicate logic also allows to quantify over predicate symbols.

3.3 Datalog Revisited

3.3.1 Definition

Given a Datalog rule $r = B_1 \wedge \cdots \wedge B_k \rightarrow A$, let $\pi(r)$ be the formula

$$\forall x_1 \dots \forall x_n (B_1 \land \dots \land B_k \to A)$$

where x_1, \ldots, x_n are (all) the variables ocurring in r. Given a Datalog program P, let $\pi(P) = \{\pi(r) \mid r \in P\}$.

3.3.2 Theorem

Let P be any Datalog program and let $A \in B_P$. Then $P \models_H A$ if and only if $\pi(P) \models A$.

3.4 Equivalence

[Schöning, 1989, Chapter 2.2]

3.4.1 Theorem

The following hold for arbitrary formulas F and G.

$$\neg \forall x F \equiv \exists x \neg F \qquad \qquad \neg \exists x F \equiv \forall x \neg F$$
$$\forall x F \land \forall x G \equiv \forall x (F \land G) \qquad \qquad \exists x F \lor \exists x G \equiv \exists x (F \lor G)$$
$$\forall x \forall y F \equiv \forall y \forall x F \qquad \qquad \exists x \exists y F \equiv \exists y \exists x F$$

If x does not occur free in G, then

$$\forall xF \land G \equiv \forall x(F \land G) \qquad \qquad \forall xF \lor G \equiv \forall x(F \lor G) \\ \exists xF \land G \equiv \exists x(F \land G) \qquad \qquad \exists xF \lor G \equiv \exists x(F \lor G)$$

Proof: We show only $\forall xF \land \forall xG \equiv \forall x(F \land G)$: $\mathcal{A}(\forall xF \land \forall xG) = 1$ iff $\mathcal{A}(\forall xF) = 1$ and $\mathcal{A}(\forall xG) = 1$ iff for all $u \in U_{\mathcal{A}}, \ \mathcal{A}_{[x/u]}(F) = 1$ and for all $v \in U_{\mathcal{A}}, \ \mathcal{A}_{[x/v]}(G) = 1$ iff for all $u \in U_{\mathcal{A}}, \ \mathcal{A}_{[x/u]}(F) = 1$ and $\mathcal{A}_{[x/u]}(G) = 1$ iff $\mathcal{A}(\forall x(F \land G)) = 1$

3.4.2 Definition

A substitution [x/t], where x is a variable and t a term, is a mapping which maps each formula G to the formula G[x/t], which is obtained from G by replacing all free occurrences of x by t.

3.4.3 Example

 $(P(x,y) \land \forall y Q(x,y))[x/a][y/f(x)] = P(a,f(x)) \land \forall y Q(a,y)$

3.5 Normal Forms

[Schöning, 1989, Chapter 2.2 cont.]

3.5.1 Definition

A *literal* is an atomic formula (a *positive* literal) or the negation of an atomic formula (a *negative* literal).

A formula F is in *negation normal form* (NNF) if the negation symbol \neg occurs only in literals (and \rightarrow , \leftrightarrow don't appear in it).

3.5.2 Theorem

For every formula F, there is a formula $G \equiv F$ which is in NNF.

Proof: Apply de Morgan, double negation, and $\neg \forall xF \equiv \exists x \neg F$ and $\neg \exists xF \equiv \forall x \neg F$ exhaustively.

3.5.3 Example

 $\neg (\exists x P(x, y) \lor \forall z Q(z)) \land \neg \exists w P(f(a, w)) \\ \equiv (\neg \exists x P(x, y) \land \neg \forall z Q(z)) \land \forall w \neg P(f(a, w)) \\ \equiv (\forall x \neg P(x, y) \land \exists z \neg Q(z)) \land \forall w \neg P(f(a, w))$

3.6 Tableaux Algorithm

[Ben-Ari, 1993, Chapter 5.5, strongly modified]

3.6.1 Definition

Let F be a formula in NNF. A *tableau branch* for F is a set of formulas, defined inductively as follows.

• $\{F\}$ is a tableau branch for F.

- If T is a tableau branch for F and $G \wedge H \in T$, then $T \cup \{G, H\}$ is a tableau branch for F.
- If T is a tableau branch for F and $G \vee H \in T$, then $T \cup \{G\}$ is a tableau branch for F and $T \cup \{H\}$ is a tableau branch for F.
- If T is a tableau branch for F and $\forall x G \in T$, then $T \cup \{G[x/t]\}$ is a tableau branch for F, where t is any term.
- If T is a tableau branch for F and $\exists x G \in T$, then $T \cup \{G[x/a]\}$ is a tableau branch for F, where a is a constant symbol which does not occur in T (or in the tableau curently constructed).

A tableau for F is a set of tableau branches for F.

A tableau branch is *closed* if it contains an atomic formula A and its negation $\neg A$. Otherwise, it is *open*.

A tableau M for F is called *closed* if for each $T \in M$ there is a closed $T' \in M$ with $T \subseteq T'$.

If F is not in NNF, then a tableau (resp., tableau branch) for F is a tableau (resp. tableau branch) for an NNF of F.

3.6.2 Theorem (Soundness)

If a closed formula F has a closed tableau, then F is unsatisfiable.

3.6.3 Theorem (Completeness)

If a closed formula F is unsatisfiable, then there is a closed tableau for F.

3.6.4 Example

We show $\exists u \forall v P(v, u) \models \forall x \exists y P(x, y)$. I.e. we make a tableau for

$$\exists u \forall v P(v,u) \land \exists x \forall y \neg P(x,y),$$

see Figure 2 (left).

3.6.5 Example

We show, that

$$\exists x \exists y (P(x) \lor Q(y)) \models \exists x (P(x) \lor Q(x)).$$

[done on whiteboard]

3.6.6 Example

We show, that

$$\forall x \exists y (P(x) \land Q(y)) \equiv \exists y \forall x (P(x) \land Q(y)).$$

[done on whiteboard]

3.6.7 Example We show, that

$$\forall x (P(x) \to (\exists y (O(x, y) \land C(y)) \land (\forall z (R(x, z) \to H(z)))))$$

Figure 2: Tableaux for Example 3.6.4 (left) and Remark 3.6.8 (right).

has

$$\forall z \forall x \exists y ((P(x) \to (O(x, y) \land C(y))) \land ((P(x) \land R(x, z)) \to H(z)))$$

as logical consequence. [done on whiteboard]

3.6.8 Remark

The (predicate logic) tableaux algorithm does *not* in general provide a means to find out if a formula is satisfiable or falsifiable.

Consider $\forall x \exists y P(x, y) \models \exists u \forall v P(v, u)$. If we attempt to make a tableau for

$$\forall x \exists y P(x, y) \land \forall u \exists v \neg P(v, u),$$

see for example Figure 2, then the search for closing the tableau does not stop. The reason for this is that the tableau cannot close, but the occurrence of the quantifiers in the formula prompts the algorithm to ever explore new terms for the bound variables.

3.6.9 Remark

While the propositional tableaux algorithm always terminates, this is not the case for the predicate logic tableaux algorithm.

3.7 Theoretical Aspects

[Schöning, 1989, Part of Chapter 2.3 plus additional material]

3.7.1 Theorem (monotonicity of predicate logic)

Let M, N be sets of formulas. If $M \subseteq N$ then $\{F \mid M \models F\} \subseteq \{F \mid N \models F\}$.

Proof: Similar as for propositional logic.

3.7.2 Theorem (compactness of predicate logic)

A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

3.7.3 Theorem (undecidability of predicate logic)

The problem "Given a formula F, is F valid?" is undecidable.

Proof: Out of scope for this lecture. Usually by reduction of the Halting Problem.

3.7.4 Theorem (semi-decidability of predicate logic)

The problem "Given a formula F, is F valid?" is semi-decidable.

Proof: We have, e.g., the tableaux calculus for this.

3.7.5 Remark

The formula

$$F = \forall x \forall y \forall u \forall v \forall w (P(x, f(x)) \land \neg P(y, y) \land ((P(u, v) \land P(v, w)) \to P(u, w))$$

is satisfiable but has no finite model (with $U_{\mathcal{A}}$ finite). $\mathcal{A} = (U_{\mathcal{A}}, I_{\mathcal{A}})$ is a model, where

$$U_{\mathcal{A}} = \mathbb{N}$$
$$P^{\mathcal{A}} = \{(m, n) \mid m < n\}$$
$$f^{\mathcal{A}}(n) = n + 1$$

Assume $B = (U_{\mathcal{B}}, I_{\mathcal{B}})$ is a finite model for F. Let $u_0 \in U_{\mathcal{B}}$ and consider the sequence $(u_i)_{i \in \mathbb{N}}$ with $u_{i+1} = f^{\mathcal{B}}(u_i)$. Since $U_{\mathcal{B}}$ is finite, there exist i < j with $u_i = u_j$. F enforces transitivity of F, hence $(u_i, u_j) \in P^{\mathcal{B}}$. But since $u_i = u_j$ this contradicts $\forall y \neg P(y, y)$.

3.7.6 Theorem (Löwenheim-Skolem)

If a (finite or) countable set of formulas is satisfiable, then it is satisfiable in a countable domain.

3.7.7 Remark

According to Theorem 3.7.6, it is impossible to axiomatize the real numbers in first-order predicate logic.