
Logic for Computer Scientists

Manuscript authored by: Pascal Hitzler

Delivered by: Adila Krisnadhi

CS 2210 Lecture Manuscript, Fall Semester 2016
Wright State University, Dayton, OH, U.S.A.

http://dase.cs.wright.edu/courses/cs-2210-logic-computer-scientists-fall-2016

[version: August 28, 2016]

Contents

1 Datalog 3
1.1 Informal Examples . 3
1.2 Syntax and Formal Semantics . 6
1.3 Fixed-point Semantics . 10

2 Propositional Logic 15
2.1 Syntax . 15
2.2 Semantics . 16
2.3 Datalog Revisited: Semantics By Grounding 19
2.4 Equivalence . 21
2.5 Normal Forms . 22
2.6 Tableaux Algorithm . 24
2.7 Theoretical Aspects . 27

3 First-order Predicate Logic 30
3.1 Syntax . 30
3.2 Semantics . 31
3.3 Datalog Revisited . 35
3.4 Equivalence . 35
3.5 Normal Forms . 36
3.6 Tableaux Algorithm . 36
3.7 Theoretical Aspects . 39

4 Application: Knowledge Representation for the World Wide Web 40

1

References

[Ben-Ari, 1993] Ben-Ari, M. (1993). Mathematical Logic for Computer Science. Springer.

[Cryan et al., 2004] Cryan, D., Shatil, S., and Mayblin, B. (2004). Introducing Logic: A
Graphic Guide. Icon Books, 4th edition.

[Hitzler et al., 2009] Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Foundations of
Semantic Web Technologies. Chapman & Hall/CRC.

[Schöning, 1989] Schöning, U. (1989). Logic for Computer Scientists. Birkhäuser.

2

1 Datalog

[no textbook reference]

1.1 Informal Examples

1.1.1 Example
We want to formalize the following statements.
• Marian is the mother of Michelle.
• Craig is the brother of Michelle.
• Ann is the mother of Barack.
• Barack is the father of Malia.
• Michelle is the mother of Malia.
• Barack is the father of Natasha.
• Michelle is the mother of Natasha.
• Craig is male.
• Natasha is female.

We can write these as so-called Datalog facts :

motherOf(marian,michelle) (1)

brotherOf(craig,michelle) (2)

motherOf(ann, barack) (3)

fatherOf(barack,malia) (4)

motherOf(michelle,malia) (5)

fatherOf(barack, natasha) (6)

motherOf(michelle, natasha) (7)

male(craig) (8)

female(natasha) (9)

Say, we also want to formalize the following.
• Every father of a person is also a parent of that person.
• Every mother of a person is also a parent of that person.
• If somebody is the mother of another person, who in turn is the parent of a third

person, then this first person is the grandmother of this third person.
• If a person is the brother of another person, and this other person is the parent of a

third person, then this first person is the uncle of this third person.
• Every father is male.

3

We can write these as so-called Datalog rules :

fatherOf(x, y)→ parentOf(x, y) (10)

motherOf(x, y)→ parentOf(x, y) (11)

motherOf(x, y) ∧ parentOf(y, z)→ grandmotherOf(x, z) (12)

brotherOf(x, y) ∧ parentOf(y, z)→ uncleOf(x, z) (13)

fatherOf(x, y)→ male(x) (14)

If we take all statements (1) to (14) together, then we can derive new knowledge, which is
implicit in these statements, e.g. the following.

from (4) and (10): parentOf(barack,malia) (15)

from (2), (7), (11) and (13): uncleOf(craig, natasha) (16)

from (3), (15) and (12): grandmotherOf(ann,malia) (17)

Note that we reused (15) to derive (17). Derived knowledge can be used to derive even
further knowledge.

1.1.2 Example
Consider the following sentences.

• Every human is mortal.

• Socrates is a human.

We can write these in Datalog as follows.

human(x)→ mortal(x)

human(socrates)

From these two rules we can derive

mortal(socrates).

1.1.3 Example
Consider the following facts.

newsFrom(Merkel is Chancellor, berlin)

newsFrom(Obamacare is constitutional, dc)

...

And furthermore assume there is a set of facts about locations of cities.

locatedIn(berlin, germany)

locatedIn(dc, usa)

...

4

a // b qq

��
d11

OO @@

c

Figure 1: Figure for Example 1.1.5.

We can also state the following Datalog rule.

newsFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

Derived knowledge is then, e.g., the following.

newsFrom(Merkel is Chancellor, germany)

newsFrom(Obamacare is constitutional, usa)

1.1.4 Example
In Datalog, we can state, e.g., that locatedIn is transitive:

locatedIn(x, y) ∧ locatedIn(y, z)→ locatedIn(x, z)

1.1.5 Example
We can write directed graphs as Datalog facts, e.g., as follows. If V = {a, b, c, d} is the set
of vertices of the graph, and E = {(a, b), (b, b), (b, c), (d, d), (d, a), (d, b)} is the set of edges of
the graph (see Figure 1), then we can write it as follows.

edge(a, b)

edge(b, b)

edge(b, c)

edge(d, d)

edge(d, a)

edge(d, b)

We can now formally define what it means that there is a path from a vertex to another:

edge(x, y)→ path(x, y)

path(x, y) ∧ path(y, z)→ path(x, z)

Then we can derive, e.g., the following.

path(a, b)

path(b, c)

path(a, c)

5

We can also specify that two vertices are connected if there is a path in either direction.

path(x, y)→ connected(x, y)

connected(x, y)→ connected(y, x)

Then we can derive, e.g., the following.

connected(a, b)

connected(b, a)

connected(a, c)

connected(c, a)

1.2 Syntax and Formal Semantics

1.2.1 Definition
A Datalog language L = (V,C,R) consists of the following.

• A finite set V of variables : x1, x2, . . . , xn (also y, z, . . .).

• A finite non-empty set C of constants : a, b, c, . . .

• A finite non-empty set R of predicate symbols : p1, p2, . . . (also q, r, . . .), each with an
arity (∈N) (number of parameters).

An atom (or atomic formula) is of the form

p(v1, . . . , vn),

where p is a predicate symbol of arity n and each of the vi is either a constant or a variable.
An atom is called a ground atom if all the vi are constants.

1.2.2 Example
Let L consist of constants a, b, of variables x, y, and of predicate symbols p with arity 1 and
q with arity 2.
Then the following are examples for atomic formulas over L.

p(a), p(y), q(a, b), q(b, b), q(b, x), q(y, y)

Of these, p(a), q(a, b) and q(b, b) are ground atoms.
The following are not atomic formulas over L:

p(a, b), q(x), p(c), a(x)

1.2.3 Definition
A Datalog rule is a statement of the form

B1 ∧ · · · ∧Bn → A,

where the Bi and A are atoms. B1 ∧ · · · ∧Bn is called the body of the rule, each Bi is called
a body atom of the rule, and A is called the head of the rule.
A rule with n = 0, i.e. with no body, is called a fact, and the arrow is omitted in this case.
A Datalog program is a set of Datalog rules.

6

1.2.4 Example
The following are examples of Datalog rules.

newsFrom(x, y) ∧ locatedIn(y, z)→ newsFrom(x, z)

p(a, x) ∧ q(x, y)→ r(a, x, y)

p2(a) ∧ p3 → q2(a)

Note that in this example, p3 is a predicate symbol of arity 0.

1.2.5 Example
The statements (1) to (14) from Example 1.1.1 constitute a Datalog program. Statements
(1) to (9) are facts.

1.2.6 Definition
Given a Datalog language L and a Datalog program P over L, a Herbrand interpretation for
P is a set of ground atoms over L.

1.2.7 Example
Consider P to consist only of the following statements from Example 1.1.1 (with abbreviated
notation, c,m, n are constants).

mOf(x, y)→ pOf(x, y)

bOf(x, y) ∧ pOf(y, z)→ uOf(x, z)

bOf(c,m)

mOf(m,n)

Then the following are examples for Herbrand interpretations.

I1 = {bOf(c,m),mOf(m,n), pOf(m,n), uOf(c, n)}
I2 = {bOf(m, c),mOf(c, n), pOf(m,n), uOf(n, c)}

1.2.8 Example
Some examples for interpretations of the following Datalog program, where a, b, c, d are
constants.

p(a, b)

p(b, c)

p(c, a)

p(d, d)

p(x, y)→ q(x, y)

q(x, y) ∧ q(y, z)→ q(x, z)

q(x, y)→ r(x, y)

r(x, y)→ r(y, x)

r(x, x)→ t(x)

7

are the following.

I1 = {p(c, a), p(c, b), t(a)}
I2 = ∅
I3 = {p(a, b), p(b, c), p(c, a), p(d, d), q(a, b), r(a, b), r(b, a), t(a), t(b)}

1.2.9 Definition
A substitution [x1/c1, . . . , xn/cn], where the xi are variables and the ci are constants, is a
mapping which maps each Datalog rule R to the rule R[x1/c1, . . . , xn/cn], which is obtained
from R by replacing all occurrences of xi by ci, for all i = 1, . . . , n.

1.2.10 Example
In the following, a, b, c, d are constants, while x, y, z are variables.

(p(x, y) ∧ q(y, z)→ r(x, z))[x/a, z/b] = p(a, y) ∧ q(y, b)→ r(a, b) (18)

(q(x) ∧ r(x, y)→ p(y))[x/b, y/c] = q(b) ∧ r(b, c)→ p(c) (19)

q(x, z, y)[x/b, z/b, y/a] = q(b, b, a) (20)

(p(x, y) ∧ q(y, z, z)→ r(x, y))[x/b][x/a][y/c] = (p(b, y) ∧ q(y, z, z)→ r(b, y))[x/a][y/c]

= (p(b, y) ∧ q(y, z, z)→ r(b, y))[y/c]

= (p(b, c) ∧ q(c, z, z)→ r(b, c)) (21)

1.2.11 Definition
A ground rule is a Datalog rule which contains no variables. A substitution ϕ for a Datalog
rule R is called a ground substitution for R if Rϕ is a ground rule.

1.2.12 Example
In Example 1.2.10, the substitutions in (19) and (20) are ground substitutions for these rules,
while those in (18) and (21) are not.

1.2.13 Definition
Given a Datalog rule R, we define ground(R) to be the Datalog program which consists of
all ground rules Rϕ which can be obtained from R via a ground substitution ϕ for R. In
other words,

ground(R) = {Rϕ | ϕ is a ground substitution for R}.
Each S ∈ ground(R) is called a grounding of R.
Given a Datalog program P , we define the grounding of P as

ground(P) =
⋃
R∈P

ground(R).

1.2.14 Remark
ground(P) is always a finite set if P is finite, since the underlying language L by definition
has only a finite number of constants.
If L is not explicitly given, then we assume that the set C of constants in L contains exactly
the constants occurring in P .

8

1.2.15 Example
For the program P in Example 1.2.7, ground(P) consists of the following rules.

mOf(c, c)→ pOf(c, c)

mOf(c,m)→ pOf(c,m)

mOf(c, n)→ pOf(c, n)

mOf(m, c)→ pOf(m, c)

mOf(m,m)→ pOf(m,m)

mOf(m,n)→ pOf(m,n)

mOf(n, c)→ pOf(n, c)

mOf(n,m)→ pOf(n,m)

mOf(n, n)→ pOf(n, n)

bOf(c, c) ∧ pOf(c, c)→ uOf(c, c)

bOf(c,m) ∧ pOf(m,n)→ uOf(c,m)

bOf(c, n) ∧ pOf(n,m)→ uOf(c, n)

... overall 27 groundings of this rule

bOf(c,m)

mOf(m,n)

1.2.16 Definition
A Herbrand interpretation I of P is called a Herbrand model of P if the following condition
holds: For every rule

B1 ∧ · · · ∧Bn → A

in ground(P) with {B1, . . . Bn} ⊆ I, we also have A ∈ I.

1.2.17 Example
In Example 1.2.7, I1 is a Herbrand model of P , while I2 is not a model of P .

1.2.18 Example
For the Datalog program P consisting of the rules

p(a)

q(a, b)

q(b, c)

p(x)→ r(x)

r(x) ∧ q(x, y)→ r(y)

r(x) ∧ q(y, x)→ q(x, y)

the following are Herbrand models:

{p(a), q(a, b), q(b, c), r(a), r(c), q(c, b), r(b), q(b, a)}
{p(a), q(a, b), q(b, c), r(a), r(c), q(c, b), r(b), q(b, a), q(c, c)}

9

However,
{p(a), q(a, b), q(b, c), r(a), r(c), q(c, b), r(b), q(b, a), q(a, c)}

is not a Herbrand model.

1.2.19 Example
The Datalog program P consisting of the rules

p(a)

q(b)

q(x)→ q(x)

has the following Herbrand models:

{p(a), q(b)}
{p(a), q(b), q(a)}
{p(a), q(b), q(a), p(b)}

1.3 Fixed-point Semantics

1.3.1 Example
Consider the program P from Example 1.2.18. There is a systematic way of obtaining a
Herbrand model, as follows. In order to do this, consider ground(P).
First, collect all facts from ground(P):

I1 = {p(a), q(a, b), q(b, c)}.

Next, collect all heads of rules in ground(P) for which all body atoms are in I1, and add
them to I1:

I2 = I1 ∪ {r(a)}.

Next, collect all heads of rules in ground(P) for which all body atoms are in I2, and add
them to I2:

I3 = I2 ∪ {r(b)}.

Iteratively continue this process until nothing is added any more:

I4 = I3 ∪ {r(c), q(b, a)}
I5 = I4 ∪ {q(c, b)}
I6 = I5 ∪ ∅ = I5

We have already seen in Example 1.2.18 that I5 is indeed a Herbrand model.

We now develop this idea systematically.

10

1.3.2 Definition
Given a Datalog program P with underlying language L, let BP be the set of all ground
atoms over L, called the Herbrand base of P . Furthermore, let IP = 2BP be the power set of
BP , i.e., the set of all subsets of BP .

1.3.3 Example
For P as in Example 1.2.18, we have

BP = {p(a), p(b), p(c), r(a), r(b), r(c),

q(a, a), q(a, b), q(a, c), q(b, a), q(b, b), q(b, c), q(c, a), q(c, b), q(c, c)}

which consists of 15 atoms. Correspondingly, IP has 215 = 32, 768 elements.

1.3.4 Remark
IP is in fact the set of all Herbrand interpretations for P .

1.3.5 Definition
Given a Datalog program P , define a function TP : IP → IP by

TP (I) = {A ∈ BP | (B1 ∧ · · · ∧Bn → A) ∈ ground(P) and Bi ∈ I for all i = 1, . . . , n}.

This function is called the single-step operator, or immediate consequence operator, or simply
the TP -operator for P .

1.3.6 Example
Considering Example 1.3.1, we have

TP (∅) = I1

TP (I1) = I2

TP (I2) = I3

TP (I3) = I4

TP (I4) = I5

TP (I5) = I5

To give some further examples, we also have

TP ({r(c), q(c, c)}) = {p(a), q(a, b), q(b, c), r(c), q(c, c)}
TP ({p(b)}) = {p(a), q(a, b), q(b, c), r(b)}

1.3.7 Example
For P as in Example 1.2.19, we have

TP ({q(c)}) = {p(a), q(b), q(c)}
TP ({p(a), q(b), q(c)}) = {p(a), q(b), q(c)}

11

1.3.8 Definition
Given a Datalog program P and I ∈ IP , we call I a pre-fixed point of TP if TP (I) ⊆ I. We
call I a fixed point of TP if TP (I) = I.

1.3.9 Example
In Example 1.3.1, we have TP (I5) = I5, hence I5 is a fixed point of TP .

1.3.10 Example
For P as in Example 1.2.19, we have

TP ({p(a), q(b)}) = {p(a), q(b)},

which therefore is a fixed point of TP .
We also have

TP ({p(a), q(b), p(b)}) = {p(a), q(b)} ⊆ {p(a), q(b), p(b)},
therefore {p(a), q(b), p(b)} is a pre-fixed point of TP .

1.3.11 Theorem
Given any Datalog program P , the pre-fixed points of TP are exactly the Herbrand models
of P .

Proof: Let I be a pre-fixed point of TP , i.e., TP (I) ⊆ I. Now let B1 ∧ · · · ∧ Bn → A be
any rule in ground(P). If {B1, . . . , Bn} ⊆ I, then A ∈ TP (I) by definition of TP , and hence
A ∈ I by the assumption that TP (I) ⊆ I. This shows that I is a Herbrand model of P .
Conversely, let I be a Herbrand model of P . Now for any A ∈ TP (I) there must be a rule
B1 ∧ · · · ∧ Bn → A in ground(P) with {B1, . . . , Bn} ⊆ I. Since I is a Herbrand model we
obtain A ∈ I. This shows TP (I) ⊆ I. �

1.3.12 Lemma
Given any Datalog program P and I1 ⊆ I2 ∈ IP , we have that

TP (I1) ⊆ TP (I2),

i.e., the TP -operator is monotonic.

Proof: For any A ∈ TP (I1) there must be a rule B1 ∧ · · · ∧ Bn → A in ground(P) with
{B1, . . . , Bn} ⊆ I1. Since I1 ⊆ I2 we obtain {B1, . . . , Bn} ⊆ I2, and hence A ∈ TP (I2) as
required. �

1.3.13 Definition
Given any Datalog program P , we iteratively define the following.

TP ↑0 = ∅
TP ↑1 = TP (TP ↑0)

...

TP ↑(n+ 1) = TP (TP ↑n)

12

We furthermore define
TP ↑ω =

⋃
n∈N

TP ↑n.

The sets TP ↑n are called iterates of the TP -operator.

1.3.14 Example
Returning to Example 1.3.1, we have In = TP ↑n for all n = 1, . . . , 6 and TP ↑ω = I5.

1.3.15 Theorem
For every Datalog program P , the following hold.

(a) TP ↑ω is a fixed point of TP .

(b) TP ↑ω is a Herbrand model for P .

(c) For every Herbrand model M for P we have that TP ↑ω ⊆M .

Condition (c) states that TP ↑ω is the least Herbrand model of P (with respect to the set
inclusion ordering).

Proof: First note that
TP ↑0 = ∅ ⊆ TP (∅) = TP ↑1,

and due to monotonicity of TP , we obtain

TP ↑n ⊆ TP ↑(n+ 1)

for each n ∈ N. Thus, the iterates of TP form an increasing chain:

TP ↑0 ⊆ TP ↑1 ⊆ TP ↑2 ⊆ . . . TP ↑n ⊆ TP ↑(n+ 1) ⊆ · · · ⊆ TP ↑ω.

Since furthermore TP ↑ ω ⊆ BP , and BP is a finite set, there must be an nP such that
TP ↑nP = TP ↑ (nP + 1) = TP ↑ω, i.e., TP ↑nP = TP ↑ω must be a fixed points of TP . This
shows (a).
Every fixed point of TP is a pre-fixed point of TP . Hence TP ↑ω is a pre-fixed point of TP
and thus a Herbrand model for P by Theorem 1.3.11. This shows (b).
Now assume that M is another Herbrand model for P . Clearly, ∅ ⊆ M , and thus TP ↑ 1 =
TP (∅) ⊆ TP (M) ⊆ M by monotonicity of TP and since M is a pre-fixed point of TP . By
iteratively repeating this argument we obtain TP ↑n ⊆ TP (M) ⊆ M for all n ∈ N, and thus
TP ↑ω ⊆M , which shows (c). �

1.3.16 Definition
We say that a Datalog program P Herbrand-entails a ground atom A, written P |=H A,
if A ∈ TP ↑ ω. In this case we also call A a logical consequence of P under the Herbrand
semantics.

13

1.3.17 Theorem
Given a Datalog program P and a ground atom A, we have P |=H A if and only if A ∈ M
for all Herbrand models M of P .

Proof: If P |=H A, then A ∈ TP ↑ ω. For any Herbrand model M of P we know that
TP ↑ ω ⊆M , and we obtain A ∈M as required.
If A ∈ M for all Herbrand models M of P , then we obtain A ∈ TP ↑ ω because TP ↑ ω is a
Herbrand model of P . Thus, P |=H A. �

1.3.18 Example
Consider Example 1.2.19, note that {p(a), q(b)} is the intersection of all the Herbrand models,
and thus contains exactly the logical consequences of P .

14

2 Propositional Logic

2.1 Syntax

[Schöning, 1989, Chapter 1.1]

Let {A1, A2, . . . } be an infinite set of propositional variables.

2.1.1 Definition
An atomic formula is a propositional variable.
Formulas are defined by the following inductive process.

1. All atomic formulas are formulas.

2. For every formula F , ¬F is a formula, called the negation of F .

3. For all formulas F and G, also (F ∨G) and (F ∧G) are formulas, called the disjunction
and the conjunction of F and G, respectively.

The symbols ¬, ∨, ∧ are called connectives. ¬ is a unary connective, while ∨ and ∧ are
binary connectives.
If a formula F occurs in another formula G, then it is called a subformula of G. Note that
every formula is a subformula of itself.

2.1.2 Notation
We use the following abbreviations:
A,B,C, . . . instead of A1, A2, . . . and other obvious variants.
[Be careful with the use of F and G!]
We sometimes omit brackets if it can be done safely. [Be careful with this!]
(F → G) instead of (¬F ∨G)
(F ↔ G) instead of (F → G) ∧ (G→ F)
→ and ↔ are also called connectives.
(
∨n

i=1 Fi) instead of (F1 ∨ F2 ∨ · · · ∨ Fn)
(
∧n

i=1 Fi) instead of (F1 ∧ F2 ∧ · · · ∧ Fn)

2.1.3 Example
(¬B → F) is (¬¬B ∨ F).
Some Subformulas: ¬¬B, ¬B.

2.1.4 Example
((I ∨ ¬B)→ ¬F) is (¬(I ∨ ¬B) ∨ ¬F).
Some Subformulas: ¬(I ∨ ¬B), I, ¬B.

2.1.5 Remark
Formulas can be represented in a unique way as trees. [Example 2.1.4 on whiteboard.]

15

2.2 Semantics

[Schöning, 1989, Chapter 1.1 cont.]

2.2.1 Definition
T = {0, 1} – the set of truth values : false, and true, respectively.
An assignment is a function A : D→ T, where D is a set of atomic formulas.
Given such an assignment A, we extend it to A′ : E→ T, where E is the set of all formulas
containing only elements from D as atomic subformulas:

1. A′(Ai) = A(Ai) for each Ai ∈ D

2. A′(F ∧G) =

{
1, if A′(F) = 1 and A′(G) = 1

0, otherwise

3. A′(F ∨G) =

{
1, if A′(F) = 1 or A′(G) = 1

0, otherwise

4. A′(¬F) =

{
1, if A′(F) = 0

0, otherwise

[From now on, drop distinction between A and A′.]

2.2.2 Example
Let A(B) = A(F) = 1 and A(I) = 0.

A(¬(B ∧ F) ∨ ¬I) =

{
1, if A(¬(B ∧ F)) = 1 or A(¬I) = 1

0, otherwise

=

{
1, if A(B ∧ F) = 0 or A(I) = 0

0, otherwise

=

{
1, if A(B) = 0 or A(F) = 0 or A(I) = 0

0, otherwise

= 1

2.2.3 Remark
The same thing can be expressed via truth tables.
A(F) A(G) A(F ∧G)

0 0 0
0 1 0
1 0 0
1 1 1

A(F) A(G) A(F ∨G)
0 0 0
0 1 1
1 0 1
1 1 1

A(F) A(¬F)
0 1
1 0

16

2.2.4 Example
Determining the truth values of formulas using truth tables:
[Use the tree structure of formulas.]
A(B) A(F) A(I) A(B ∧ F) A(¬(B ∧ F)) A(¬I) A(¬(B ∧ F) ∨ ¬I)

0 0 0 0 1 1 1
0 0 1 0 1 0 1
0 1 0 0 1 1 1
0 1 1 0 1 0 1
1 0 0 0 1 1 1
1 0 1 0 1 0 1
1 1 0 1 0 1 1
1 1 1 1 0 0 0

2.2.5 Remark
The truth value of a formula is uniquely determined by the truth values of the propositional
variables it contains as subformulas.

2.2.6 Remark
A(F) A(G) A(F → G)

0 0 1
0 1 1
1 0 0
1 1 1

A(F) A(G) A(F ↔ G)
0 0 1
0 1 0
1 0 0
1 1 1

2.2.7 Definition
F , a formula, A, an assignment.
A is suitable if it is defined for all atomic formulas occurring in F .
We write A |= F if A is suitable for F and A(F) = 1. We say F holds under A or A is a
model for F . Otherwise, we write A 6|= F .
F is satisfiable if F has at least one model. Otherwise, it is called unsatisfiable or contradic-
tory.
A set M of formulas is satisfiable if there is an assignment A which is a model for each
formula in M. In this case, A is called a model of M, and we write A |= M. [Note the
overloading of notation.]
F is called valid or a tautology if every suitable assignment for F is a model for F . In this
case we write |= F , and otherwise 6|= F .

2.2.8 Example
Examples of models for p ∨ ¬q ∨ ¬r are the following. A1 with A1(p) = A1(q) = A1(r) = 1;
A2 with A2(p) = 1 and A2(q) = A2(r) = 0; A3 with A3(p) = A3(q) = 0 and A3(r) = 1. You
can find models by making the truth table for the formula: the assignments for which the
truth value is 1 are models.

2.2.9 Example
For the formula (p∧¬q)∨¬p, the assignment A1 with A1(p) = A1(q) = 0 is a model, because
A1((p ∧ ¬q) ∨ ¬p) = 1. The assignment A2 with A2(p) = 0 and A2(q) = 1 is also a model,

17

because A2((p∧¬q)∨¬p) = 1. This can also be seen from the truth table for (p∧¬q)∨¬p.
The assignment A3 which only assigns A3(p) = 0 is not a model for the formula because it
is not suitable for the formula.

2.2.10 Example
A ∨ ¬A is a tautology.
[This is established by the following truth table:

A(A) A(¬A) A(A ∨ ¬A)
0 1 1
1 0 1

]

2.2.11 Theorem
A formula F is a tautology if and only if ¬F is unsatisfiable.

Proof: F is a tautology
iff every suitable assignment for F is a model for F
iff every suitable assignment for F (hence also for ¬F) is not a model for ¬F
iff ¬F does not have a model
iff ¬F is unsatisfiable �

2.2.12 Definition
A formula G is a (logical) consequence of a set M = {F1, . . . , Fn} of formulas if for every
assignment A which is suitable for G and for all elements of M , it follows that whenever
A |= Fi for all i = 1, . . . , n, then A |= G.
If G is a logical consequence of M , we write M |= G and say M entails G. [Note the
overloading of notation!]

2.2.13 Theorem
The following assertions are equivalent.

1. G is a logical consequence of {F1, . . . , Fn}.

2. ((
∧n

i=1 Fi)→ G) is a tautology.

3. ((
∧n

i=1 Fi) ∧ ¬G) is unsatisfiable.

Proof: First note that an assignment is a model for (
∧n

i=1 Fi) if and only if it is a model for
{F1, . . . , Fn}.
Now let G be a logical consequence of {F1, . . . , Fn}, and let M be any assignment. If
M 6|= ((

∧n
i=1 Fi), then M |= ((

∧n
i=1 Fi)→ G). If M |= ((

∧n
i=1 Fi) then M is a model for

{F1, . . . , Fn} and thus M |= G. Hence M |= ((
∧n

i=1 Fi)→ G). So ((
∧n

i=1 Fi)→ G) is a
tautology.
Conversely, let ((

∧n
i=1 Fi)→ G) be a tautology and let M be a model for {F1, . . . , Fn}. Then

M |= ((
∧n

i=1 Fi) and therefore M |= G by the truth table for the implication connective.

18

We have just shown that 1 and 2 are equivalent. We now show that 2 and 3 are also equiva-
lent. Indeed, ((

∧n
i=1 Fi)→ G) is a tautology if and only if ¬ ((

∧n
i=1 Fi)→ G) is unsatisfiable.

The conclusion thus follows from

¬

((
n∧

i=1

Fi

)
→ G

)
≡ ¬

(
¬

(
n∧

i=1

Fi

)
∨G

)
≡

(
n∧

i=1

Fi

)
∧ ¬G.

�

2.2.14 Example
Modus ponens is one of the forms of valid (logical) argument in Aristotelian syllogistic logic.
It takes the following form:

If P , then Q.
P .
Therefore, Q.

Modus ponens above is the same as saying that Q is a logical consequence of two formulas
P → Q and P .
Using set notation as in Definition 2.2.12, this can be written as {P, P → Q} |= Q.
Using Theorem 2.2.13, we can verify that indeed Q is a logical consequence of {P, P → Q}.
To do that, we have to show: (P ∧ (P → Q)) → Q is a tautology. This is shown in
the following truth table, in which A((P ∧ (P → Q)) → Q) = 1 for every possible truth
assignment.

A(P) A(Q) A(P → Q) A(P ∧ (P → Q)) A((P ∧ (P → Q))→ Q)
0 0 1 0 1
0 1 1 0 1
1 0 0 0 1
1 1 1 1 1

2.3 Datalog Revisited: Semantics By Grounding

We can relate Datalog and propositional logic as follows.

2.3.1 Definition
Given a Datalog language L, we can define a set of propositional variables as follows. For
every ground atom p(v1, . . . , vn) over L, let pv1,...,vn be a propositional variable. Furthermore,
let v be the function from ground atoms to propositional variables defined as

v(p(v1, . . . , vn)) = pv1,...,vn .

Given a ground Datalog rule B1 ∧ · · · ∧Bk → A, furthermore define

v(B1 ∧ · · · ∧Bk → A) = v(B1) ∧ · · · ∧ v(Bk)→ v(A)

if k ≥ 1, and
v(→ A) = v(A)

(for facts).

19

2.3.2 Example
For the ground Datalog rule

p(a, b) ∧ q(c)→ p(a, c)

we have

v(p(a, b) ∧ q(c)→ p(a, c)) = v(p(a, b)) ∧ v(q(c))→ v(p(a, c)) = pa,b ∧ qc → pa,c.

For the ground fact p(b, c) we have v(p(b, c)) = pb,c.

2.3.3 Definition
Given a Datalog program P , define the associated set v(P) of propositional formulas as

v(P) = {v(r) | r ∈ ground(P)}.

2.3.4 Example
For the program P in Examples 1.2.7 and 1.2.15, v(P) consists of the following formulas.

mOfc,c → pOfc,c

mOfc,m → pOfc,m

mOfc,n → pOfc,n

mOfm,c → pOfm,c

mOfm,m → pOfm,m

mOfm,n → pOfm,n

mOfn,c → pOfn,c

mOfn,m → pOfn,m

mOfn,n → pOfn,n

bOfc,c ∧ pOfc,c → uOfc,c

bOfc,m ∧ pOfm,n → uOfc,m

bOfc,n ∧ pOfn,m → uOfc,n
... overall 27 groundings of this rule

bOfc,m

mOfm,n

2.3.5 Theorem
Let P be a Datalog program and A ∈ BP . Then P |=H A if and only if v(P) |= v(A).

Proof: For every Herbrand interpretation I define an assignment AI by setting, for every
ground atom B,

AI(v(B)) =

{
1 if B ∈ I
0 if B 6∈ I.

Clearly, if I is a Herbrand model for P , then AI is a model for v(P).

20

Now assume v(P) |= v(A), and let M be a Herbrand model of P . Then AM is a model of
v(P) and hence AM(v(A)) = 1. By definition of AM we obtain A ∈M as required.
Conversely, for every assignment A, define a Herbrand interpretation IA as

IA = {B | A(v(B)) = 1}.

Clearly, if A is a model for v(P) then IA is a Herbrand model for P .
Now assume P |=H A, and let M be model for v(P). Then IM is a Herbrand model for P
and hence A ∈ IM. By definition of IM we obtain M(v(A)) = 1 as required. �

Remark:
Theorem 2.3.5 shows how the problem of determining logical consequences for Datalog can be
reduced (transformed) to the problem of determining logical consequences for propositional
logic.
However, the theorem does not work in the other direction. E.g., in propositional logic we
have {¬p, p ∨ q} |= q and {p→ q, q → r} |= p→ r, and neither of these can be transformed
into a Datalog problem based on the theorem.

2.4 Equivalence

[Schöning, 1989, Chapter 1.2]

2.4.1 Definition
Formulas F and G are (semantically) equivalent (written F ≡ G) if for every assignment A
that is suitable for F and G, A(F) = A(G).

2.4.2 Example
A ∨B ≡ B ∨ A. (commutativity of ∨)
[
A(A) A(B) A(A ∨B) A(B ∨ A)

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

]
A ∨ ¬A ≡ B ∨ ¬B. [truth table]

2.4.3 Example
F ≡ G iff |= (F ↔ G). [truth table]

21

2.4.4 Theorem
The following hold for all formulas F , G, and H.

F ∧ F ≡ F F ∨ F ≡ F Idempotency

F ∧G ≡ G ∧ F F ∨G ≡ G ∨ F Commutativity

(F ∧G) ∧H ≡ F ∧ (G ∧H) (F ∨G) ∨H ≡ F ∨ (G ∨H) Associativity

F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) Distributivity

¬¬F ≡ F Double Negation (also Involution)

¬(F ∧G) ≡ ¬F ∨ ¬G ¬(F ∨G) ≡ ¬F ∧ ¬G de Morgan’s Laws

Proof: Straightforward using truth tables. �

2.4.5 Remark
Disjunction is dispensable. [F ∨G ≡ ¬(¬F ∧ ¬G)]
Alternatively, conjunction is dispensable. [F ∧G ≡ ¬(¬F ∨ ¬G)]

2.4.6 Remark
Let F ↑ G = ¬(F ∧G).
¬F ≡ ¬(F ∧ F) ≡ F ↑ F .
F ∨G ≡ ¬(¬F ∧ ¬G) ≡ ¬F ↑ ¬G ≡ (F ↑ F) ↑ (G ↑ G)
F ∧G ≡ ¬¬(F ∧G) ≡ ¬(F ↑ G) ≡ (F ↑ G) ↑ (F ↑ G).

2.4.7 Remark (The contraposition principle)
{F} |= G iff {¬G} |= ¬F .
[{F} |= G iff F → G is a tautology (Theorem 2.2.13).
F → G ≡ ¬F ∨G ≡ ¬(¬G) ∨ (¬F) ≡ (¬G)→ (¬F).
(¬G)→ (¬F) is a tautology iff {¬G} |= ¬F (Theorem 2.2.13)]

2.5 Normal Forms

[Schöning, 1989, Chapter 1.2 cont.]

2.5.1 Definition
A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a
negative literal).
A formula F is in negation normal form (NNF) if it is made up only of literals, ∨, and ∧
(and brackets).

2.5.2 Theorem
For every formula F , there is a formula G ≡ F which is in NNF.

Proof: The proof of Theorem 2.5.5 below shows this as well. �

22

2.5.3 Example
(¬(I ∨ ¬B) ∨ ¬F) ≡ (¬I ∧B) ∨ ¬F

2.5.4 Definition
A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions of
literals, i.e., if

F =

(
n∧

i=1

(
mi∨
j=1

Li,j

))
,

where the Li,j are literals.
A formula F is in disjunctive normal form (DNF) if it is a disjunction of conjunctions of
literals, i.e., if

F =

(
n∨

i=1

(
mi∧
j=1

Li,j

))
,

where the Li,j are literals.

2.5.5 Theorem
For every formula F there is a formula F1 ≡ F in CNF and a formula F2 ≡ F in DNF.

Proof: Proof by structural induction.
Induction base: If F is atomic, then it is already in CNF and in DNF.
Induction hypothesis : G has CNF G1 and DNF G2, H has CNF H1 and DNF H2. Induction
step: We have 3 cases.
Case 1: F has the form F = ¬G.
Then

F ≡ ¬G1 ≡ ¬

(
n∧

i=1

(
mi∨
j=1

Li,j

))
≡

(
n∨

i=1

(
mi∧
j=1

¬Li,j

))
≡

(
n∨

i=1

(
mi∧
j=1

Li,j

))
,

where

Li,j =

{
A if Li,j = ¬A
¬A if Li,j = A

and the latter formula is in DNF as required. Analogously, we can obtain from G2 a CNF
formula equivalent to F .
Case 2: F has the form F = G ∨H.
Then F ≡ G2 ∨H2, which is in DNF.
Further,

F ≡ G1 ∨H1 ≡

(
n∧

i=1

(
mi∨
j=1

Ki,j

))
∨

(
o∧

k=1

(
pk∨
l=1

Lk,l

))
≡

(
n∧

i=1

(
o∧

k=1

(
mi∨
j=1

Ki,j ∨
pk∨
l=1

Lk,l

)))
,

which is in CNF.
Case 3: F has the form F = G ∧H.
This case is analogous to Case 2. �

23

2.5.6 Remark
Structural induction is a fundamental proof technique, comparable with natural induction.

2.5.7 Remark
DNF via truth table.
If, e.g.,

A(A) A(B) A(C) A(F)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

then a DNF for F is (¬A ∧ ¬B ∧ ¬C) ∨ (A ∧ ¬B ∧ ¬C) ∨ (A ∧ ¬B ∧ C).

2.5.8 Definition
Two formulas F and G are equisatisfiable if the following holds: F has a model if and only
if G has a model.

2.6 Tableaux Algorithm

[Ben-Ari, 1993, Chapter 2.6, strongly modified]

Translating truth tables directly into an algorithm is very expensive.
We take the following approach:
For showing F1, . . . , Fn |= G, if suffices to show that F = F1 ∧ · · · ∧ Fn ∧ ¬G is unsatisfiable
(Theorem 2.2.13).
We attempt to construct a model for F in such a way that, if and only if the construction
fails, we know that F is unsatisfiable.

2.6.1 Definition
Let F be a formula in NNF. A tableau branch for F is a set of formulas, defined inductively
as follows.
• {F} is a tableau branch for F .
• If T is a tableau branch for F and G ∧ H ∈ T , then T ∪ {G,H} is a tableau branch

for F .
• If T is a tableau branch for F and G ∨H ∈ T , then T ∪ {G} is a tableau branch for
F and T ∪ {H} is a tableau branch for F .

A tableau for F is a set of tableau branches for F .
A tableau branch is closed if it contains an atomic formula A and the literal ¬A. Otherwise,
it is open.
A tableau branch T is called complete if it satisfies the following conditions.
• T is open.

24

• If G ∧H ∈ T , then {G,H} ⊆ T .
• If G ∨H ∈ T , then G ∈ T or H ∈ T .

A tableau M for F is called complete if it satisfies the following conditions.
• If G ∨H ∈ T ∈ M , and T is open, then there are branches S1 ∈ M and S2 ∈ M with
{G} ∪ T ⊆ S1 and {H} ∪ T ⊆ S2.
• All branches of M are complete or closed.

A tableau is closed if it is complete and all its branches are closed.

If F is not in NNF, then a tableau (resp., tableau branch) for F is a tableau (resp. tableau
branch) for an NNF of F .

2.6.2 Example
Consider (¬I ∧ B) ∨ ¬F , for which a complete (but not closed) tableau is {{(¬I ∧ B) ∨
¬F,¬I ∧B,¬I, B}, {(¬I ∧B) ∨ ¬F,¬F}}.

2.6.3 Remark
Tableaux can be represented graphically (blackboard).

2.6.4 Example
A complete tableau for

(p ∨ q) ∧ (p ∨ r) ∧ ¬p ∧ ¬r
(on whiteboard).

2.6.5 Example
A complete tableau for

(p ∨ (q ∧ ¬r)) ∧ (p ∨ (r ∧ q)) ∧ ¬p ∧ ¬r

(on whiteboard).

2.6.6 Theorem (Soundness)
A formula F is satisfiable if there is a complete tableau branch for F .

2.6.7 Theorem (Completeness)
If a formula F is satisfiable, then there is a complete tableau branch for F .

2.6.8 Theorem
A formula F is

1. unsatisfiable if and only if there is a closed tableau for F ,
2. a tautology if and only if there is a closed tableau for ¬F .

2.6.9 Example
Modus Ponens holds if (P ∧ (P → Q))→ Q is a tautology. We construct a complete tableau
(blackboard) for ¬((P ∧ (P → Q))→ Q), which turns out to be closed.

2.6.10 Lemma
Let F be a formula, T be a complete tableau branch for F , and L1, . . . , Ln be all the literals
contained in T . Then any assignment A with A(L1 ∧ · · · ∧ Ln) = 1 is a model for F .

25

Proof: We show by structural induction, that A is a model for each formula F ′ in T .
Induction Base: Let F ′ = L be a literal. Then by definition A(F ′) = 1.
Induction Hypothesis: A(G) = A(H) = 1 for G,H ∈ T .
Induction Step: (1) Let F ′ = G ∧ H ∈ T . Then G ∈ T and H ∈ T . By IH, A(F ′) =
A(G∧H) = 1. (2) Let F ′ = G∨H. Then G ∈ T or H ∈ T . By IH, A(G) = 1 or A(H) = 1,
hence A(F ′) = 1. (3) The case F ′ = ¬G ∈ T cannot happen since all formulas are in NNF,
and the literal case was dealt with in the induction base. �

Proof of Theorem 2.6.6: By Lemma 2.6.10, we obtain that F has a model, hence it is
satisfiable. �

2.6.11 Example
Is the following formula valid? satisfiable? unsatisfiable?

(((A→ B)→ A)→ A)

(done on whiteboard)

2.6.12 Example
Is the following formula valid? satisfiable? unsatisfiable?

(A→ (B → C))→ ((A ∧B)→ C)

(done on whiteboard)

Proof of Theorem 2.6.7: First note the following, for any assignment M and all formulas
G and H:
• If M |= G ∧H, then M |= G and M |= H.
• if M |= G ∨H, then M |= G or M |= H.

Since F is satisfiable, it has a model M . Construct a tableau branch T for F recursively as
follows.
• If G ∧H ∈ T , set T := T ∪ {G,H}.
• If G ∨H ∈ T with M |= G, set T := T ∪ {G}, otherwise set T := T ∪ {H}.

The recursion terminates since only subformulas of F are added and sets cannot contain
duplicate elements. The resulting T is a complete tableau branch, and M |= T , by definition.

�

Proof of Theorem 2.6.8:
We prove Statement 1.
Let A be the statement “F is unsatisfiable”, and let B be the statement “F has a closed
tableau”.
We need to show: A ≡ B, for which it suffices to show that A↔ B ≡ (A→ B) ∧ (B → A)
is valid.
By the contraposition principle, it therefore suffices to show that (¬B → ¬A) ∧ (¬A →
¬B) ≡ (¬B ↔ ¬A) is valid, i.e., that ¬A ≡ ¬B.

26

¬A is the statement “F is not unsatisfiable”, i.e. “F is satisfiable”.
¬B is the statment “F does not have a closed tableau”. Since, every formula has a complete
tableau, this is equivalent to the statement “F has a complete tableau branch”.
It thus remains to show: F is satisfiable if and only if F has a complete tableau branch. This
was shown in Theorems 2.6.6 and 2.6.7. �

2.6.13 Remark
In short, Statement 1 of Theorem 2.6.8 holds because it expresses the contrapositions of
Theorem 2.6.6 and 2.6.7.

2.7 Theoretical Aspects

[Schöning, 1989, Part of Chapter 1.4 plus some more]

2.7.1 Theorem (monotonicity of propositional logic)
Let M,N be sets of formulas. If M ⊆ N then {F |M |= F} ⊆ {F | N |= F}.

Proof: Let F be such that M |= F .
Let A be a model for N . Then all formulas in N , and hence all formulas in M , are true
under A. Hence A |= F . This holds for all models of N , and hence N |= F . �

2.7.2 Definition
A problem with a yes/no answer (a decision problem) is decidable if there exists an algorithm
which terminates on any allowed input of the problem and, upon termination, outputs the
correct answer.

2.7.3 Example
“Is n an even number?” is decidable (allowed input: any n ∈ N).
[

1. If n=1, terminate with output ’No’.

2. If n=0, terminate with output ’Yes’.

3. Set n := n-2.

4. Go to 1.

]

2.7.4 Theorem (decidability of finite entailment)
The problem of deciding whether a finite set M of formulas entails some other formula F is
decidable.

Proof: M contains only a finite number of propositional variables. Use truth tables to check
whether all models of M are models of F . �

27

2.7.5 Theorem (decidability of Datalog entailment)
The problem of deciding whether a finite Datalog program P Herbrand-entails some A ∈ BP

is decidable.

Proof: The set of propositional formulas v(P) as defined in Definition 2.3.3 is finite. Theo-
rems 2.3.5 and 2.7.4 then complete the proof. �

2.7.6 Definition
A decision problem is semi-decidable if there exists an algorithm which, on any allowed input
of the problem, terminates if the answer is ’yes’ and outputs the correct answer.

2.7.7 Theorem (semi-decidability of infinite entailment)
The problem of deciding whether a countably infinite set M of formulas entails some other
formula F is semi-decidable.

Proof: First note: M |= F if and only if M ∪ {¬F} is unsatisfiable. [Exercise 50]
By the compactness theorem, M ∪{¬F} is unsatisfiable if and only if one of its finite subsets
is unsatisfiable. Now use an enumeration M1,M2, . . . of all these finite subsets and check
satisfiability of each of them in turn, using truth tables. If one of the sets is unsatisfiable,
terminate and output that M |= F . �

2.7.8 Theorem (compactness of propositional logic)
A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

Proof:
⇒: Every model for M is also a model for each finite subset of M .
⇐: Assume every finite subset of M is satisfiable.
Let {A1, A2, . . . } be all propositional variables.
Define Mn to be the set of all elements of M which contains only the propositional variables
A1, . . . , An.
Mn contains at most 22n many formulas with different truth tables.
Thus, there is a set Fn = {F1, . . . , Fk} ⊆Mn (k ≤ 22n), such that for every F ∈M , F ≡ Fi

for some i.
Hence, every model for Fn is a model for Mn.
By assumption, Fn is satisfiable, say with model An.
An is also a model for M1, . . . ,Mn−1. [Mi ⊆Mi+1for all i]
For all k ∈ N, define A(Ak) = lim supn→∞An(Ak).
Note: For each k ∈ N there exists nk ∈ N s.t. for all n ≥ nk we have An(Ak) = An+1(Ak).
It remains to show: A |= M :
Let F ∈M . Then F ∈Mk for some k.
With n′ = max{n1, . . . , nk} we have that A and all An with n ≥ n′ agree on all propositional
variables in F .
We have Am |= F for all m ≥ max{k, n′}.
Hence A |= F as required. �

28

2.7.9 Theorem (complexity of finite satisfiability)
The problem of deciding whether a finite set of formulas is satisfiable, is NP-complete.

Proof: See any book or lecture on computational complexity theory. �

2.7.10 Theorem (complexity of finite entailment)
The problem of deciding whether a finite set of formulas entails some other formula is NP-
complete.

Proof: Because of Exercise 50, finite entailment and finite satisfiability can be reduced to
each other, hence they have the same complexity. �

29

3 First-order Predicate Logic

3.1 Syntax

[Schöning, 1989, Chapter 2.1]

3.1.1 Example
Difficult/impossible to model in propositional logic:
• For all n ∈ N, n! ≥ n.

3.1.2 Example
Difficult/impossible to model in propositional logic:

1. Healthy beings are not dead.
2. Every cat is alive or dead.
3. If somebody owns something, (s)he cares for it.
4. A happy cat owner owns a cat and all beings he cares for are healthy.
5. Schrödinger is a happy cat owner.

3.1.3 Definition
• Variables : x1, x2, . . . (also y, z, . . .).
• Function symbols : f1, f2, . . . (also g, h, . . .), each with an arity (∈N) (number of

parameters).
Constants are function symbols with arity 0.
• Predicate symbols : P1, P2, . . . (also Q, R, . . .), each with an arity (∈N) (number of

parameters).
Terms are inductively defined:
• Each variable is a term.
• If f is a function symbol of arity k, and if t1, . . . , tk are terms, then f(t1, . . . , tk) is a

term.
Formulas are inductively defined:
• If P is a predicate symbol of arity k, and if t1, . . . , tk are terms, then P (t1, . . . , tk) is a

formula (called atomic).
• For each formula F , ¬F is a formula.
• For all formulas F and G, (F ∧G) and (F ∨G) are formulas.
• If x is a variable and F is a formula, then ∃xF and ∀xF are formulas.

3.1.4 Definition
F → G (respectively, F ↔ G) is shorthand for ¬F ∨G (respectively, (F → G) ∧ (G→ F)).
We also use other notational variants from propositional logic freely.

3.1.5 Example
The following are formulas (s is a constant).

1. ∀x(H(x)→ ¬D(x))
2. ∀x(C(x)→ (A(x) ∨D(x)))
3. ∀x∀y(O(x, y)→ R(x, y))

30

4. ∀x(P (x)→ (∃y(O(x, y) ∧ C(y)) ∧ (∀y(R(x, y)→ H(y)))))
5. P (s)

In 1, predicate symbols are D and H, and x is a term.

3.1.6 Example
Example 3.1.1 could be written as

∀n(n ∈ N→ n! ≥ n),

where (with abuse of our introduced formal notation), “∈ N” is a unary predicate symbol,
“≥” is a binary predicate symbol, and “!” is a unary function symbol, written postfix.

3.1.7 Definition
If a formula F is part of a formula G, then it is called a subformula of G.
An occurrence of a variable x in a formula F is bound if it occurs within a subformula of F
of the form ∃xG or ∀xG. Otherwise it is free.
A formula without free variables is closed. A formula with free variables is open.
∃, ∀ are quantifiers, ∨, ∧, ¬, →, ↔ are connectives.

3.1.8 Example
All subformulas of ∀x(C(x)→ (A(x) ∨D(x))):
C(x), A(x), D(x), A(x) ∨D(x), C(x)→ (A(x) ∨D(x)), ∀x(C(x)→ (A(x) ∨D(x))).

3.1.9 Example
In the formula P (x) ∧ ∀x(P (x) → Q(f(x))), the first occurrence of x is free, the others are
bound.

3.2 Semantics

[Schöning, 1989, Chapter 2.1 cont.]

3.2.1 Definition
A structure is a pair A = (UA, IA), with UA 6= ∅ a set (ground set or universe) and IA a
mapping which maps
• each k-ary predicate symbol P to a k-ary predicate (relation) on UA (if IA is defined

for P)
• each k-ary function symbol f to a k-ary function on UA (if IA is defined for f)
• each variable x to an alement of UA (if IA is defined for x).

Write PA for IA(P) etc. A is suitable for a formula F if IA is defined for all predicate and
function symbols in F and for all free variables in F .

31

3.2.2 Example

F = ∀x∀y(P (a) ∧ (P (x)→ (P (s(x)) ∧Q(x, x) ∧ ((P (y) ∧Q(x, y))→ Q(x, s(y))))))

Structure (UA, IA):

UA = N
aA = 0(∈ N)

sA : n 7→ n+ 1

PA = N (= UA)

QA = {(n, k) | n ≤ k}

Another structure (UB, IB):

UB = {,,/}
aB = ,

sB : , 7→ /; / 7→ /

PB = UB

QB = {(/,/)}

3.2.3 Definition
F a formula. A = (UA, IA) a suitable structure for F .
Define for each term t in F its value tA:

1. If t = x is a variable, tA = xA.
2. If t = f(t1, . . . , tk), then tA = fA(tA1 , . . . , t

A
k).

Define for F its truth value A(F) as follows, where A[x/u] is identical to A except xA[x/u] = u.

1. A(P (t1, . . . , tk)) =

{
1, if (A(t1), . . . ,A(tk)) ∈ PA

0, otherwise

2. A(H ∧G) =

{
1, if A(H) = 1 and A(G) = 1

0, otherwise

3. A(H ∨G) =

{
1, if A(H) = 1 or A(G) = 1

0, otherwise

4. A(¬G) =

{
1, if A(G) = 0

0, otherwise

5. A(∀xG) =

{
1, if for all u ∈ UA,A[x/u](G) = 1

0, otherwise

32

UA {j, h} N N {a} {j, h} {j, h}
harrypotterA h 1 1 a h h
jamespotterA j 2 2 a j j
orphanA {h} {1, 3, 4} {3, 4, 5} {a} {h} {h}
parentOfA {(j, h)} {(2, 1)} {(1, 2), (3, 1)} {(a, a)} {(h, j)} {(j, h)}
deadA {j} {1, 2} {1, 3, 4} {a} ∅ {h}

model model no model model no model no model

Table 1: Signatures for Example 3.2.5.

6. A(∃xG) =

{
if there exists some u ∈ UA s.t. A[x/u](G) = 1

0, otherwise

If A(F) = 1, we write A |= F and say F is true in A or A is a model for F .
F is valid (or a tautology, written |= F) if A |= F for every suitable structure A for F . F is
satisfiable if there is A with A |= F , and otherwise it is unsatisfiable.

3.2.4 Remark
Many notions and results carry over directly from propositional logic: logical consequence,
equivalence of formulas, Theorem 2.2.13, Theorem 2.4.4, etc. See Remark 3.2.10.

3.2.5 Example
Consider the sentences

James Potter is the parent of Harry Potter.
Harry Potter is an orphan.

Any parent of any orphan is dead.

They can be represented formally as follows.

parentOf(jamespotter, harrypotter) (22)

∧ orphan(harrypotter) (23)

∧ ∀x∀y(orphan(x) ∧ parentOf(y, x)→ dead(y)) (24)

This has
dead(jamespotter)

as logical consequence.
Proof sketch: From lines (22) and (23) we can conclude by the rule in (24) with x =
harrypotter and y = jamespotter that dead(harrypotter).
Before we go for a formal proof, let’s first give some examples for signatures—see Table 1.
Now for a formal proof: Let A be any model for the formula in (22)-(24). From (22) we then
obtain

(jamespotterA, harrypotterA) ∈ parentOfA.

33

From (23) we obtain
harrypotterA ∈ orphanA.

From (24) we obtain that, whenever

u ∈ orphanA and (v, u) ∈ parentOfA,

then
v ∈ deadA.

So consequently
jamespotterA ∈ deadA.

Since this argument holds for all models A, we have that

dead(harrypotter)

is indeed a logical consequence.

3.2.6 Example

parentOf(fatherOf(harrypotter), harrypotter)

∧ orphan(harrypotter)

∧ ∀x∀y(orphan(x) ∧ parentOf(y, x)→ dead(y))

has
dead(fatherOf(harrypotter))

as logical consequence.

3.2.7 Example

human(harrypotter) ∧ orphan(harrypotter)

∧ ∀x(human(x)→ parentOf(fatherOf(x), x))

∧ ∀x∀y(orphan(x) ∧ parentOf(y, x)→ dead(y))

has
dead(fatherOf(harrypotter))

as logical consequence.

3.2.8 Example

∀x(human(x)→ parentOf(fatherOf(x), x))

∧ ∀x∀y(orphan(x) ∧ parentOf(y, x)→ dead(y))

has
∀x(human(x) ∧ orphan(x)→ dead(fatherOf(x)))

as logical consequence.

34

3.2.9 Example
Consider the formula F = ∃x∀yQ(x, y) under the structure A = (UA, IA) from Example
3.2.2. We show A(F) = 1.
First note that 0 ≤ n for all n ∈ N, i.e. A[x/0][y/n](Q(x, y)) = 1 for all n ∈ N = UA. Thus,
A[x/0](∀yQ(x, y)) = 1 and therefore A(∃x∀yQ(x, y)) = 1 as desired.

3.2.10 Remark
Predicate logic “degenerates” to propositional logic if either all predicate symbols have arity
0, or if no variables are used. For the latter, a formula like (Q(a) ∧ ¬R(f(b), c)) ∧ P (a, b)
can be written as the propositional formula (A∧¬B)∧C with A for Q(a), B for R(f(b), c),
and C for P (a, b).

3.2.11 Remark
We deal with first-order predicate logic. Second-order predicate logic also allows to quantify
over predicate symbols.

3.3 Datalog Revisited

3.3.1 Definition
Given a Datalog rule r = B1 ∧ · · · ∧Bk → A, let π(r) be the formula

∀x1 . . . ∀xn(B1 ∧ · · · ∧Bk → A)

where x1, . . . , xn are (all) the variables ocurring in r.
Given a Datalog program P , let π(P) = {π(r) | r ∈ P}.

3.3.2 Theorem
Let P be any Datalog program and let A ∈ BP . Then P |=H A if and only if π(P) |= A.

3.4 Equivalence

[Schöning, 1989, Chapter 2.2]

3.4.1 Theorem
The following hold for arbitrary formulas F and G.

¬∀xF ≡ ∃x¬F ¬∃xF ≡ ∀x¬F
∀xF ∧ ∀xG ≡ ∀x(F ∧G) ∃xF ∨ ∃xG ≡ ∃x(F ∨G)

∀x∀yF ≡ ∀y∀xF ∃x∃yF ≡ ∃y∃xF

If x does not occur free in G, then

∀xF ∧G ≡ ∀x(F ∧G) ∀xF ∨G ≡ ∀x(F ∨G)

∃xF ∧G ≡ ∃x(F ∧G) ∃xF ∨G ≡ ∃x(F ∨G)

35

Proof: We show only ∀xF ∧ ∀xG ≡ ∀x(F ∧G):
A(∀xF ∧ ∀xG) = 1
iff A(∀xF) = 1 and A(∀xG) = 1
iff for all u ∈ UA, A[x/u](F) = 1 and for all v ∈ UA, A[x/v](G) = 1
iff for all u ∈ UA, A[x/u](F) = 1 and A[x/u](G) = 1
iff A(∀x(F ∧G)) = 1 �

3.4.2 Definition
A substitution [x/t], where x is a variable and t a term, is a mapping which maps each
formula G to the formula G[x/t], which is obtained from G by replacing all free occurrences
of x by t.

3.4.3 Example
(P (x, y) ∧ ∀yQ(x, y))[x/a][y/f(x)] = P (a, f(x)) ∧ ∀yQ(a, y)

3.5 Normal Forms

[Schöning, 1989, Chapter 2.2 cont.]

3.5.1 Definition
A literal is an atomic formula (a positive literal) or the negation of an atomic formula (a
negative literal).
A formula F is in negation normal form (NNF) if the negation symbol ¬ occurs only in
literals (and →, ↔ don’t appear in it).

3.5.2 Theorem
For every formula F , there is a formula G ≡ F which is in NNF.

Proof: Apply de Morgan, double negation, and ¬∀xF ≡ ∃x¬F and ¬∃xF ≡ ∀x¬F exhaus-
tively. �

3.5.3 Example
¬(∃xP (x, y) ∨ ∀zQ(z)) ∧ ¬∃wP (f(a, w))

≡ (¬∃xP (x, y) ∧ ¬∀zQ(z)) ∧ ∀w¬P (f(a, w))
≡ (∀x¬P (x, y) ∧ ∃z¬Q(z)) ∧ ∀w¬P (f(a, w))

3.6 Tableaux Algorithm

[Ben-Ari, 1993, Chapter 5.5, strongly modified]

3.6.1 Definition
Let F be a formula in NNF. A tableau branch for F is a set of formulas, defined inductively
as follows.
• {F} is a tableau branch for F .

36

• If T is a tableau branch for F and G ∧ H ∈ T , then T ∪ {G,H} is a tableau branch
for F .
• If T is a tableau branch for F and G ∨H ∈ T , then T ∪ {G} is a tableau branch for
F and T ∪ {H} is a tableau branch for F .
• If T is a tableau branch for F and ∀xG ∈ T , then T ∪{G[x/t]} is a tableau branch for
F , where t is any term.
• If T is a tableau branch for F and ∃xG ∈ T , then T ∪{G[x/a]} is a tableau branch for
F , where a is a constant symbol which does not occur in T (or in the tableau curently
constructed).

A tableau for F is a set of tableau branches for F .
A tableau branch is closed if it contains an atomic formula A and its negation ¬A. Otherwise,
it is open.
A tableau M for F is called closed if for each T ∈M there is a closed T ′ ∈M with T ⊆ T ′.

If F is not in NNF, then a tableau (resp., tableau branch) for F is a tableau (resp. tableau
branch) for an NNF of F .

3.6.2 Theorem (Soundness)
If a closed formula F has a closed tableau, then F is unsatisfiable.

3.6.3 Theorem (Completeness)
If a closed formula F is unsatisfiable, then there is a closed tableau for F .

3.6.4 Example
We show ∃u∀vP (v, u) |= ∀x∃yP (x, y). I.e. we make a tableau for

∃u∀vP (v, u) ∧ ∃x∀y¬P (x, y),

see Figure 2 (left).

3.6.5 Example
We show, that

∃x∃y(P (x) ∨Q(y)) |= ∃x(P (x) ∨Q(x)).

[done on whiteboard]

3.6.6 Example
We show, that

∀x∃y(P (x) ∧Q(y)) ≡ ∃y∀x(P (x) ∧Q(y)).

[done on whiteboard]

3.6.7 Example
We show, that

∀x(P (x)→ (∃y(O(x, y) ∧ C(y)) ∧ (∀z(R(x, z)→ H(z)))))

37

Figure 2: Tableaux for Example 3.6.4 (left) and Remark 3.6.8 (right).

has
∀z∀x∃y((P (x)→ (O(x, y) ∧ C(y))) ∧ ((P (x) ∧R(x, z))→ H(z)))

as logical consequence.
[done on whiteboard]

3.6.8 Remark
The (predicate logic) tableaux algorithm does not in general provide a means to find out if
a formula is satisfiable or falsifiable.

Consider ∀x∃yP (x, y)
?

|= ∃u∀vP (v, u). If we attempt to make a tableau for

∀x∃yP (x, y) ∧ ∀u∃v¬P (v, u),

see for example Figure 2, then the search for closing the tableau does not stop. The reason
for this is that the tableau cannot close, but the occurrence of the quantifiers in the formula
prompts the algorithm to ever explore new terms for the bound variables.

3.6.9 Remark
While the propositional tableaux algorithm always terminates, this is not the case for the
predicate logic tableaux algorithm.

38

3.7 Theoretical Aspects

[Schöning, 1989, Part of Chapter 2.3 plus additional material]

3.7.1 Theorem (monotonicity of predicate logic)
Let M,N be sets of formulas. If M ⊆ N then {F |M |= F} ⊆ {F | N |= F}.

Proof: Similar as for propositional logic. �

3.7.2 Theorem (compactness of predicate logic)
A set M of formulas is satisfiable if and only if every finite subset of it is satisfiable.

3.7.3 Theorem (undecidability of predicate logic)
The problem “Given a formula F , is F valid?” is undecidable.

Proof: Out of scope for this lecture. Usually by reduction of the Halting Problem. �

3.7.4 Theorem (semi-decidability of predicate logic)
The problem “Given a formula F , is F valid?” is semi-decidable.

Proof: We have, e.g., the tableaux calculus for this. �

3.7.5 Remark
The formula

F = ∀x∀y∀u∀v∀w(P (x, f(x)) ∧ ¬P (y, y) ∧ ((P (u, v) ∧ P (v, w))→ P (u,w)

is satisfiable but has no finite model (with UA finite).
A = (UA, IA) is a model, where

UA = N
PA = {(m,n) | m < n}

fA(n) = n+ 1

Assume B = (UB, IB) is a finite model for F . Let u0 ∈ UB and consider the sequence (ui)i∈N
with ui+1 = fB(ui). Since UB is finite, there exist i < j with ui = uj. F enforces transitivity
of F , hence (ui, uj) ∈ PB. But since ui = uj this contradicts ∀y¬P (y, y).

3.7.6 Theorem (Löwenheim-Skolem)
If a (finite or) countable set of formulas is satisfiable, then it is satisfiable in a countable
domain.

3.7.7 Remark
According to Theorem 3.7.6, it is impossible to axiomatize the real numbers in first-order
predicate logic.

39

