Exercise Sheet 3 CS 2210 Logic for Computer Scientists - Spring 2017 Solutions due: March 13, 2017 - 12:20 pm

Exercise 11 For each of the following propositional logic formulas, list all of its subformulas.

(a) $\neg (A \lor B) \to \neg C$ (b) $A \leftrightarrow \neg (B \land C)$ (c) $\neg (P \lor \neg Q) \to \neg R$

Exercise 12 Let \mathcal{A} be a truth assignment such that $\mathcal{A}(P) = 0$ and $\mathcal{A}(Q) = \mathcal{A}(R) = 1$. Compute $\mathcal{A}(\neg(P \lor \neg Q) \to \neg R)$, i.e., the truth value of $\neg(P \lor \neg Q) \to \neg R$.

Exercise 13 Using truth table, determine which of the following formulas is satisfiable. If so, give one of its models.

(a) $(p \lor \neg (q \land r)) \land \neg p$ (b) $(A \land B) \land (A \to \neg B)$ (c) $((B \lor C) \lor A) \land (\neg A \land \neg B)$

Exercise 14 Show that the following equivalences hold using any of the equivalence laws from the manuscript (Theorem 2.4.4).

 $\begin{array}{l} \text{(a)} & \neg P \rightarrow \neg Q \equiv \neg (\neg P \wedge Q) \\ \text{(b)} & \neg (\neg P \vee \neg Q) \rightarrow (\neg R \rightarrow S) \equiv (P \wedge \neg R) \rightarrow (Q \rightarrow S) \end{array}$

Exercise 15 Determine if the following statements are true or false. Explain your answer.

(a) $A \wedge B$ is a logical consequence of $A \vee B$

(b) B is a logical consequence of $A \wedge \neg A$

(c) B is a logical consequence of $A \vee \neg A$

Exercise 16 Convert the following formulas into a negation normal form (NNF), a conjunctive normal form (CNF) and a disjuntive normal form (DNF).

(a)
$$(P \to (P \land \neg Q)) \to (P \lor \neg Q)$$

(b) $(P \leftrightarrow \neg Q) \to \neg (P \lor \neg Q)$
(c) $\neg ((A \land (B \land D)) \lor (A \lor F)).$

Exercise 17 Constructive dilemma is a rule of inference in propositional logic defined as follows:

If P, then Q. If R, then S. P or R. Therefore, Q or S.

Express constructive dilemma in the form of logical entailment of a formula from a set of formulas, i.e., something like $\{F_1, \ldots, F_n\} \models G$.

Exercise 18 Show that constructive dilemma from Exercise 17 is a valid rule of inference using tableau algorithm.

Exercise 19 "What is the secret of your long life?" a centenarian was asked. "I strictly follow my diet: If I dont drink coffee for dinner, then I always have fish. Any time I have both coffee and fish for dinner, then I do without ice cream. If I have ice cream or dont have coffee, then I never eat fish."

Translate the "secrets" of the centenarian into propositional logic formulas, where C stands for *coffee for dinner*, F for *fish for dinner* and I for *ice cream for dinner*.

Exercise 20 Use the tableau algorithm to show that the centenarian in Exercise 19 always has coffee for dinner. [Hint: rephrase the question into a logical entailment problem].

Exercise 21 Determine if the formula $(\neg p \land \neg q \land \neg r) \lor (p \land \neg q \land \neg r)$ satisfiable or unsatisfiable using tableau algorithm.

Exercise 22 Determine if $((p \land q) \lor (p \land \neg q)) \land \neg(\neg r \land p)$ valid, satisfiable, or unsatisfiable using tableau algorithm.

Exercise 23 Show $\{A \to (B \to C)\} \models (A \to B) \to (A \to C)$ using the tableaux algorithm.

Exercise 24 Use the tableaux algorithm to determine if $\{P \leftrightarrow (Q \rightarrow R))\} \models \neg (P \lor \neg (Q \lor R)).$