Exercise Sheet 3 CS 2210 Logic for Computer Scientists - Fall 2016 Solutions due: September 22 2016 - 3:30 pm

Exercise 11 A Datalog program P consists of the following rules where a, b, and c are constants.

$$r(b)$$

$$p(a,b)$$

$$q(b,c)$$

$$p(x,y) \rightarrow r(x)$$

$$q(x,y) \rightarrow r(y)$$

$$p(x,y) \wedge r(y) \wedge q(y,z) \rightarrow p(x,z)$$

$$r(x) \wedge r(y) \rightarrow q(y,x)$$

Give the Herbrand base B_P for P above. How many elements does I_P have? (Note that I_P is the set of all Herbrand interpretations of P).

Exercise 12 For the program P given in Exercise 11, compute the following:

(a) T_P({r(a), r(b), p(a, b), p(b, a), q(a, b), q(b, c)})
(b) T_P(B_P)

Exercise 13 Determine if the following is true or false: for any Datalog program P, the Herbrand base B_P is always a pre-fixed point of T_P . Justify your answer.

Exercise 14 For the Datalog program P defined in Exercise 11,

- (a) Compute $T_P \uparrow n$ for all $n \in \mathbb{N}$ and $T_P \uparrow \omega$.
- (b) Determine whether $P \models_H q(c, c)$. Justify your answer.

Exercise 15 Let P be the Datalog program below where a, b are constants.

$$q(a)$$

$$p(b)$$

$$q(x) \to p(x)$$

$$q(y) \land p(y) \to r(b)$$

(a) Compute the two different Herbrand models of P. Justify your answer using the T_P operator.

(b) Determine whether $P \models_H r(a)$. Justify your answer.