
Semantic Compression with Region Calculi in

Nested Hierarchical Grids (Technical Report)

Joseph Zalewski
Kansas State University

Pascal Hitzler
Kansas State University

Krzysztof Janowicz
University of California Santa Barbara

August 28, 2021

Abstract

We propose the combining of region connection calculi with nested
hierarchical grids for representing spatial region data in the context of
knowledge graphs, thereby avoiding reliance on vector representations.
We present a resulting region calculus, and provide qualitative and formal
evidence that this representation can be favorable with large data volumes
in the context of knowledge graphs; in particular we study means of ef-
ficiently choosing which triples to store to minimize space requirements
when data is represented this way, and we provide an algorithm for finding
the smallest possible set of triples for this purpose including an asymp-
totic measure of the size of this set for a special case. We prove that a
known constraint calculus is adequate for the reconstruction of all triples
describing a region from such a pruned representation, but problematic
for reasoning with hierarchical grids in general.

1 Introduction

In traditional geographic information systems (GIS), geographic data, such as
the locations of region boundaries, are stored using one of a variety of techniques
based on coordinate geometry. Vertices of polygons, etc. are points in a con-
tinuous space, represented by their real-number coordinates in some coordinate
system. An alternative to this is the use of so-called hierarchical grids, where
”space” is subdivided into hierarchically-nested ”cells”, whose exact geometries
can be easily computed due to their regular nature. Hierarchical grids are al-
ready long in use in GIS, being used as index structures to speed up lookup of
points and objects, stored as coordinates [13]. Recently hierarchical grid sys-
tems have been employed very successfully by companies such as Google [3] and
Uber [4] to structure large quantities of their internal data. While in these ap-
plications there is a strong emphasis on indexing and efficient look-up using the

1

index, we see another advantage to hierarchical grids that has not yet been sys-
tematically explored, namely that they lend themselves naturally to a context
in which knowledge graphs are used for data integration and management.

Knowledge graphs are an approach to structuring data (or metadata1) in
form of a labeled and typed graph, together with a type logic that is often
referred to as a knowledge graph schema or an ontology [6]. Knowledge graphs
have recently seen significant uptake by industry, with visible success [10]. The
World Wide Web Consortium (W3C) has developed standards for knowledge
graphs and their schemas – the Web Ontology Language OWL and the Resource
Description Framework RDF – as well as the SPARQL querying language and
other relevant standards, that are widely used [7]. The schema, if expressed
in OWL, consists of a set of logical formulas that can be used for deductive
inference if desired.

We argue that hierarchical grids are a natural choice for representing infor-
mation about spatial regions, for many contexts: Each grid cell thus becomes
a node in the knowledge graph, with relations between the cells (or relations
between cells and features or information of interest) represented naturally by
labelled graph edges. Collections of cells can be used to approximate regions
of interest (e.g., by representing them with a suitable cover), thus trading some
representational precision for increased querying and data processing speed. In
a data integration context – in which knowledge graphs are prominently used –
a chosen hierarchical grid can serve as the central integration anchor for spatial
data originating from different formats, thus providing a uniform representation
that can be tapped into, e.g. by visualization tools and geographical information
systems.

Furthermore, type logics that provide schema information for knowledge
graphs can naturally be used to capture logic-based calculi about spatial re-
lations between regions, such as variants of the Region Connection Calculus
RCC [11]. The formal logic of the region calculus and the formal logic of the
knowledge graph schema then naturally combine and can be utilized for joint
logical inferencing, i.e., for deducing knowledge that arises as necessary logical
consequences from the data and type logic of the knowledge graph, and can for
example be used for querying for logically implied, but not explicitly encoded,
information.

Another interesting aspect of the combined region and type logic is that it
can be utilized for what has been called semantic compression in the context of
(RDF) knowledge graphs [8]. It refers to the idea of using logical deduction rules
to compress a knowledge graph without loss of information. In some situations,
for example, addition of a single suitable logical formula to the type logic can
make a very large number of node-edge-node graph triples redundant in the
sense that they can now be removed, while at the same time the new logical
formula makes it possible to re-generate the removed triples as needed. We will
return to this point later in the paper.

1In a knowledge graph context, the boundary between metadata and data is – deliberately
– not crisp. But what is referred to as ”data” in a knowledge graph context would often be
called ”metadata” in different contexts.

2

The rest of this paper is organised as follows. In Section 2 we will provide
a mathematical and very general formalization of a region connection calculus
on hierarchical grids. In Section 3 we provide formal and qualitative arguments
why our approach aids with semantic compression. In Section 4 we provide
results on the reasoning necessary to take advantage of this compression. In
Section 5 we conclude the paper and discuss future work.

2 Region Connection Calculus on the Grid

We will approach region calculi and hierarchical grids from an abstract but
mathematically precise vantage point. We assume that the reader is familiary
with basic set-theoretic topology, see e.g. [9] and also with the basics of formal
logic, see e.g. [15].

We will first define a specific grid, the square grid, before giving a more
general definition. The square grid Sq is the pair ([0, 1] × [0, 1], cellsSq) where
cellsSq is a tree with root [0, 1]× [0, 1] and in which every node [a, b]× [c, d] has
the four children

[a, (a+ b)/2]× [c, (c+ d)/2], [a, (a+ b)/2]× [(c+ d)/2, d],

[(a+ b)/2, b]× [c, (c+ d)/2], [(a+ b)/2, b]× [(c+ d)/2, d].

Let the depth-m square grid Sqm be Sq with the tree cellsSq restricted to
those nodes of distance ≤ m from root. Let the symbol ch denote the relation
“a is a child of b in the tree cellsSqn .” Use ch∗ for “descendant” and ch+ for
“proper descendant.” Call a cell d minimal if it has no children. In general, we
will often refer in this paper to nodes of a tree as ordered objects; the ordering
is the relation ch∗, which is a partial order.

This basic notion of a square grid is very similar to the Google S2 grid [3],
and our results about it will carry over to the case of more “realistic” grids
like S2 which are patched together from several square grids. We now provide
a general definition of nested hierarchical grids of which the square grid is a
special case.

Let a nested hierarchical grid be a pair (A, cellsA) where A is a topological
space, and cellsA is a tree with root A and in which every node N is a nonempty
topological space, and if it has children, it has finitely many, but at least two,
and the children Ni of N are regular closed subspaces of N such that

⋃
iNi =

N and no two Ni share an open subset. Additionally, for this paper we will
require A to be a Baire space, i.e., such that countable unions of degenerate
subspaces are degenerate, which is a very mild condition given usual application
scenarios for grids. In fact we really only need the condition that a finite union
of degenerate sets is degenerate, but so many common spaces are Baire spaces
that the distinction is not too important. For a tree T , we will use |T | to denote
the set of all nodes of T .

For the region calculus, we will focus on RCC5 (background in e.g. [14])
which is a formal logic defined as follows: an RCC5 signature is just a set of

3

Formula Type Satisfaction Condition
EQ(a, b) aI = bI

PP(a, b) aI (bI

PP−1(a, b) bI (aI

PO(a, b) aI \ bI , bI \ aI , aI ∩ bI each contain some open set
DR(a, b) aI ∩ bI has empty interior

Table 1: Satisfaction of RCC5 formulas

constants C, and the formulas are the expressions P (a, b) for a, b ∈ C where
P is one of the five predicate symbols EQ,PP,PP−1,DR,PO. The semantics of
RCC5 with respect to a “universe” topological space A are as follows: an RCC5
interpretation is a mapping ·I : C → P(A), such that for all a ∈ C, aI is a
nonempty regular closed set. (Recall that a regular closed set is a closed set
S such that int(S) = S, where int(S) is the interior of S and X is the closure
of the set X.) Often the universe chosen is the plane R2. Regular closed sets
in the plane capture the concept of regions that have some nonzero thickness
everywhere, no degenerate one- or zero-dimensional parts. A formula P (a, b) is
said to be satisfied by I (I |= P (a, b)) if the condition in Table 1 holds. A set
of formulas Π is said to be satisfied by I (written I |= Π) if all its members are
satisfied by I. Logical implication is defined as usual for sets of formulas Π,Γ
by Π |= Γ if for all interpretations I such that I |= Π, we have I |= Γ.

It can be shown that these predicates are jointly exhaustive and pairwise
disjoint (JEPD), that is, for any a, b ∈ C and interpretation I, I |= P (a, b) for
exactly one of the predicates P from Table 1. RCC5 is a popular “constraint
calculus” used in GIS database systems [14]. However, in what follows we will
provide a slightly stronger variant of RCC5, which takes into account a priori
all information about the structure of a hierarchical grid, not just the part of
that information which is expressible in RCC5.

Definition 1. Define the logic “RCC5-G” as follows: an RCC5-G signature
with respect to a nested hierarchical grid (A, cellsA) is a set of constants C,
which we assume to be disjoint from |cellsA|. The formulas are the expres-
sions P (a, b) for a, b ∈ C ∪ |cellsA|, and P one of the five predicate symbols
EQ,PP,PP−1,DR,PO, as before. Semantics is defined relative to a topological
space B such that A is a subspace of B, as follows:. An RCC5-G interpretation
is a mapping ·I : C ∪ |cellsA| → P(B), such that for all a ∈ C, aI is a nonempty
regular closed set, but particularly dI = d for d ∈ cellsA, as for RCC5. A formula
P (a, b) is satisfied by I if the condition given in Table 1 holds.

It is usual in many geodatabase systems to use not RCC5 but the more
powerful calculus RCC8. Both arise from the system RCC introduced in the
paper [11], however there are many interpretations of the semantics of these
calculi, and in the original paper a topological semantics is eschewed in favor of
a more a-priori one. The topological semantics given here for RCC5 is merely
the common-sense one, for regular closed regions. A discussion of topological

4

◦ PP PP−1 DR PO EQ

PP {PP} {PP,PP−1,DR,PO,EQ} {DR} {DR,PO,PP} {PP}
PP−1 {PP,PP−1,EQ,PO} {PP−1} {DR,PO,PP−1} {PO,PP−1} {PP−1}

DR {DR,PO,PP} {DR} {PP,PP−1,DR,PO,EQ} {DR,PO,PP} {DR}
PO {PO,PP} {DR,PO,PP−1} {DR,PO,PP−1} {PP,PP−1,DR,PO,EQ} {PO}
EQ {PP} {PP−1} {DR} {PO} {EQ}

Table 2: RCC5 Composition Table.

semantics for RCC8 can be found in [12]. We use RCC5 here not just to sim-
plify presentation, but because we believe that for our present purposes, RCC8
is actually unnecessary. Recall the approach to geometries which motivates this
paper: geometries are to be considered only insofar as they can be captured
by relationships to a fixed grid. The principal difference between the two RCC
constraint formalisms is RCC8’s concern with boundaries- it differentiates, for
example, between the true disconnectedness relation and the “external con-
nection” relation, in which two regions overlap, but in a degenerate set (with
empty interior). RCC5 considers these situations to be indistinguishable (they
can both provide the semantics for the predicate DR). While in traditional
geometry representation schemes, the additional information about boundary
relationships can be useful, our position is that for grid representation it is not.
For, real-world data (locations of boundaries) should be thought of as sampled
from a continuous distribution, and so it is vanishingly unlikely that a real-world
boundary will ever exactly coincide with the finitely many artificial boundaries
of our grid cells. Whenever this seems to happen in real data, it should by
default be attributed to insufficient decimal precision, rather than assumed to
have real meaning. This assumption is convenient for us, as RCC8 is not nearly
as compatible with a hierarchical organization of space as RCC5, and obtaining
results for it like those in the following sections is much harder.

2.1 The RCC5 Composition Table and Constraint Solving

The RCC5 composition table can be found in, e.g., [14], and for convenience
we reproduce it in Table 2. It gives, for each two RCC5 relations P,Q, the
largest set P ◦Q of RCC5 relations R such that RI intersects P I ◦QI in some
interpretation I.

Note that the semantics used in [14] is set-based rather than topological;
however this does not make a difference in terms of the composition table, for
any reasonable kind of grid - as will be evident from the discussion in Section
4.1 below. Composition tables like this are commonly used with RCC5, RCC8
and similar systems, typically in the context of constraint networks (see [5]). An
RCC5 constraint network C is a directed graph in which each edge is labeled
by a set of RCC5 relations. A network is atomic if all edges are labeled by
a singleton. A network is path-consistent if, whenever R ∈ C(x, z), there are
P ∈ C(x, y) and Q ∈ C(y, z) such that R is in the composition set for P and Q;
and furthermore no edge is labeled by an empty set. (This is a formal notion
of path consistency; there are also semantic notions.) In most applications of

5

binary constraint calculi and composition tables, reasoning tasks are focused
on finding path-consistent, often atomic, networks C ′ that are consistent with
a given network C, in the sense that C ′(x, y) ⊆ C(x, y) everywhere. A path-
consistent network is usually used as a proxy for a network that is satisfiable
with respect to some semantics. In the case of RCC5, the semantics is given by
interpretations mapping nodes of C to regular closed sets, where I satisfies C
if for every two nodes x, y, if I |= P (x, y) according to the condition in 1, then
P ∈ C(x, y). For RCC5-G similarly, when nodes of C come from an RCC5-G
signature, but interpretations must satisfy dI = d for grid cells d.

2.2 Inheritance

While in this paper we will concentrate on the use of RCC5-G to reduce sets of
relations between the grid and a single region, we will briefly mention a more
standard use of such calculi - to store information about properties of regions
that are “upward-inherited” or “downward-inherited.” By downward-inherited
we mean a property which, if possessed by a region R, also characterizes all
regions containing R. Such a property can be represented by the collection of
all maximal regions having it, and checked by checking whether a region R is
EQ or PP to one of these- that is, whether a satisfiable constraint network exists
in which an edge from R to one such region is labeled {EQ,PP}. Often there
will only be one maximal region needed, as for the property “completely covered
by water.” Common types of upward-inherited properties involve “containing
a feature”, such as a particular city, or containing some part of a distributed
entity, such as “water”. These can be represented by a {PP−1,EQ} (in the first
case) or {PO,PP−1,EQ} (in the second) relation to a region, i.e. the region
occupied by the city, or the region covered by water.

3 Semantic Compression

We have already argued in the introduction that the use of hierarchical grids
together with knowledge graphs, as described herein, provides some advantages
in some circumstances. It is important to note, however, that that there are
always trade-offs, and that a particular representational form (such as using
a hierarchical grid) is advantageous in some use cases, and not so in others.
Our approach provides additional flexibility in making a choice for representing
spatial information in the context of knowledge graphs.

Using a hierarchical grid as described is an approximation for spatial repre-
sentation that is constrained by the pre-defined grid cells. As such, it comes at
the loss of some precision. However it also comes with some advantages. One of
them is representational simplicity. Rather than representing each region with,
say, a polygon in the graph, the spatial representation of the regions becomes
normalized as a selection of cells that have some specified region-connection rela-
tionship to the region. By taking the hierarchical structure (and corresponding
logical axiomatization) into account, it is in fact not necessary to flag all such

6

cells, as covering a region inherits upwards and containment within a region
inherits downwards. We can thus arrive at a semantically compressed represen-
tation utilizing the logic detailed in Section 2 - and we will discuss a theorem
for the square grid below, Theorem 2, that gives some formal weight to the
argument that this compressed set is in fact somewhat small.

In a similar vein, not only region representation can be understood as se-
mantically compressed, but relevant features of such a region can likewise be
represented in compressed from by making use of the logic from Section 2, in
particular upward and downward inheritance as discussed. E.g., if a cell is
known to fully fall within a region with arid climate, then we know that arid
climate also applies for all its sub-cells. In particular in the context of knowledge
graphs, where information pertaining to many different regions may be abun-
dant, this type of reasoning over the grid may result in a cleaner representation
of content.

Another possible advantage of using hierarchical grids for knowledge graphs
with spatial content is for the information integration process itself; indeed
knowledge graphs excel as a tool for information integration from heteroge-
neous sources. Using a hierarchical grid, spatial information from a data source
can be normalized by expressing it approximately using cells, thus providing
a convenient format for the integrated representation, while at the same time
providing a simplified logic for reasoning about spatial relations and inheritance
of features as just discussed. Once cast into this form, it is no longer necessary
to compute region intersections etc. from, say, vector representations, or to deal
with the complexities of a region calculus on arbitrarily shaped regions: Instead
we have arrived at a compressed representation with a much simpler logic.

In the spirit of compression of representation, in Theorem 1 below, we will
prove correctness of an algorithm – also defined below – for computing minimal
region representations in terms of cells.

The formal proofs of the theorems below are somewhat involved, but they
are provided for the interested reader. We first need some preparations.

For the already mentioned Theorem 1, we consider how to arrive at a com-
pressed representation, in terms of cells, of a single region, about which we know
as much as our grid-based representation of geometry can tell us, in a vacuum,
so to speak- our only option to record information about it is by RCC5 rela-
tions directly with cells, not with other regions. See the Further Work section
for other similar problems we may want to solve. Given an RCC5-G signature
(A, cellsA), C, R ∈ CR, and interpretation I, let the full description desc(R, I)
of R, I be the set {φ | I |= φ, φ = P (R, d) or P (d,R)} for d a cell. The full-
knowledge single region compression problem is to find a smaller set of formulas
B of the types P (R, d) and P (d,R), such that desc(R, I) is logically equivalent
to B. Now in general the effectiveness of compression is hard to neatly quantify
in a provable way, but in this case we can get a very nice fact - that there
is an optimal solution, up to a constant discrepancy. This optimal solution is
intuitively, not to say trivially, obvious to anyone who can visualize a square
grid: cells which are fully inside or fully outside the region R ought to be con-

7

glomerated together as much as possible in B, since decomposing them into
smaller cells adds no further information about where R is. Hierarchical grid
libraries often contain functions to perform this kind of compression (see e.g.
“compact” in H3). Note that without loss of generality we can consider only
formulas of the type P (d,R), since every formula P (R, d) is equivalent to one
of this form. Indeed, thinking and writing about the correctness of the optimal
solution is very cumbersome if we keep using this predicate notation, with all
its superscripts and arbitrary ordering of arguments. We introduce a different
formalism, which sheds more light on the idea behind the correctness proof,
and will be seen to easily generalize to certain other logics with more expressive
power than RCC5-G.

3.1 The Tree-Labeling Formalism

For a tree T , let a tree label logic defined on T be a set of “labels” L and a set
Ad ⊆ |T | → L of “admissible” maps assigning labels to nodes. In particular,
given an RCC5-G signature, let T be the tree of cell identifiers, defined by
the ch relation, and the labels be EQ,PP,PP−1,DR,PO. Let an admissible
labeling p be one for which there is a constant R, interpretation I such that if
d ∈ |T |, p(d) = P , then I |= P (d,R). The JEPD property implies that there is a
unique such p induced by each R, I. We will call this a tree label logic induced
by RCC5-G. Let a waterfall n with respect to an admissible labeling p be a node
such that if an admissible labeling p′ agrees with p at n, then p = p′ also on all
children of n, and furthermore all children of n are waterfalls with respect to p.
Clearly PP,EQ,DR have this property. Let W ⊂ L denote the set of waterfall
labels. Let a fountain with respect to p, similarly, be a node n such that if p′

is an admissible labeling and p(n) = p′(n), then p, p′ agree on the siblings and
parent of n, if any, and the siblings of n are waterfalls and the parent of n a
fountain with respect to p. Let F denote the set of fountain labels. Say that
a subset of the labels D is a set of local labels if, for any admissible labelings
p, p′, node n having at least one child, if p(n) = l ∈ D and p′, p agree on the
children of n, and p′(n) ∈ D, then p′(n) = l (Uniqueness); and also for any node
n, if some admissible pi assigns each child ni of n a label in D, then there is
an admissible p agreeing with pi on all the descendants of ni which assigns n a
label in D (Existence); and also for any node n, if p, p′ are admissible labelings
that assign n the same label in D, there is an admissible p′′ agreeing with p on
nodes ch∗ n and with p′ on nodes not ch∗ n (Locality). In the case of RCC5,
the set {PP,DR,PO} has this property. In passing we point out that the first
two parts of this definition will seem more natural if you consider the labelings
whose values are drawn from a set of local labels as a sheaf. Now we will prove
the correctness of a minimal generating set algorithm in this context, and apply
it to the RCC5 case. Let a generating set for labeling p in T be a set G ⊆ |T |
such that, if p′ is another admissible labeling which is equal to p everywhere on
G, then p, p′ agree everywhere on T . More generally, for a set of labels D and
subset S ⊆ |T |, a D-generating set G on S for a labeling p, whose values on S
are all in D, is a set of nodes such that if p′ is another admissible labeling whose

8

values on S are in D, which agrees with p everywhere on G, then p = p′ on all
nodes of T . Denote the subtree of all descendants of a node n by tr(n). Finding
a small generating set for the labeling associated with a region constant R and
interpretation I is clearly tantamount to finding a well-compressed subset of
formulas logically equivalent to desc(R, I).

Proposition 1. If G is a generating set for the labeling p induced by R, I, the
formulas P (d,R) where p(d) = P are logically equivalent to desc(R, I).

Proof. By definition, all these formulas are in desc(R, I). It remains to show
that they imply desc(R, I). Let J be an interpretation and P (dJ , RJ) hold for
all d ∈ G, P = p(d). Then there is a labeling p′ induced by J , which agrees
with p on G. Since G is a generating set, p = p′ on all cells d. Then since p′

is induced by J , and p by I, it follows P (dI , RI) iff P (dJ , RJ). By the earlier
remarks about order of arguments, P (RI , dI) iff P (RJ , dJ). So J |= desc(RI),
and since J was arbitrary, the set of formulas derived from G logically implies
desc(R, I).

Of course, this set of formulas is the same size as the set G.

Proposition 2. The set of labels D = {PP,DR,PO} is a set of local labels, if the
RCC5-G semantics is given by (A, cellsA), B such that B contains a nonempty
regular closed set disjoint from A.

Proof. (Uniqueness) Let p, p′ be admissible labelings of cellsA. Let p(n), p′(n) ∈
D, and p = p′ on the children of n. There are 3 cases: (I): p(n) = PP. So
p(ni) = p′(ni) = PP for all children ni of n. Recall there is an interpretation I
such that p′(ni) = P iff P (nIi , R

I) holds. So all the nIi are subsets of RI , so so
is nI =

⋃
nIi . Thus p′(n) = PP or EQ, but by hypothesis p′(n) ∈ D, so it must

be PP. (II) p(n) = DR. Same as case (I) substantially. All p(ni) = p′(ni) = DR,
and all nIi intersect RI only in degenerate sets, and so nI also does, by the Baire
property. and p′(n) = DR. (III): If p(n) = PO, then at least one child ni of n
has p(ni) = p′(ni) not PP, and at least one is not DR. So some nIi contains an
open set in RI and some nIi contains an open set not in RI . Thus p′(n) = PO
or PP−1, but only PO ∈ D.

(Existence) Let n be a node, with children ni, and for each i an admissible
labeling pi assigning a label in D to ni. There are 3 cases: (I): All pi(ni) = PP.
So all descendants of ni also have pi = PP. Then let p be the labeling induced
by the interpretation RI = B, where B is the universe of interpretation for
RCC5-G (see above). So p(n) = PP ∈ D. (II): All pi(ni) = DR. So all
descendants of ni also have pi = DR. Then let p be the labeling induced by
the interpretation RI = C for C some nonempty regular closed set disjoint
from A. So p(n) = DR ∈ D. (III): Some child ni has pi(ni) 6= PP and some
child has pi(ni) 6= DR. Let Ii be the interpretation inducing pi. Define I by
RI =

⋃
i[R

Ii ∩nIii]∪C, for C as in case (II), and define p as the labeling induced
by I. Now p must agree with pi on descendants of ni, and p(n) = PO.

(Locality) We note three facts: the RCC5 relation between two regular closed
sets is completely determined by the set of their positive Venn regions which

9

contain an open set, a positive Venn region of sets Si being a set of the form⋂
i Vi, where each Vi is either Si or ¬Si, and not all Vi are ¬Si. Second, if an open

set intersects a regular closed set S (or its complement), it must intersect an
open subset of S (resp. its complement). Third, for any set S, int(S) is regular
closed, and contains exactly the open sets contained in S. Now let p, p′ agree
at n, and R, I, I ′ be a region constant and interpretations inducing p, p′. The
argument that p” exists as per the locality property is now straightforward but
long. Define a new interpretation I ′′ with RI

′′
= cl(int((n∩RI)∪ (¬n∩RI′))),

and let p′′ be induced by this interpretation, which indeed sendsR to a nonempty
regular closed set. We need to prove for all cells n′ that p′′(n′) agrees with p(n′)
or p′(n′), as the case may be. Case (I): n′ ch∗ n. So n′ ⊆ n. Now the open
sets contained in n′ \ RI and n′ ∩ RI are exactly those contained in n′ \ RI′′

and n′ ∩ RI′′ respectively. Further, if there is an open set V ⊆ RI \ n′, either
V intersects n, thus intersects it in an open set, so RI

′′
contains this open set;

or V intersects ¬n, in which case there must be an open set in RI
′ \ n as well,

because RI , RI
′

by hypothesis must have the same RCC5 relation to n. So
then RI

′′ \ n′ contains an open set. Whereas if RI \ n′ does not contain an
open set, neither can the smaller RI \n, so RI

′ \n contains no open set, and so
RI

′′ \n′ contains no open set. So altogether we’ve argued that the positive Venn
regions formed by n′, RI

′′
contain open sets iff the corresponding ones formed

by n′, RI do; so the RCC5 relation between n′, RI
′′

is the same as for n′, RI ,
thus p′′(n′) = p(n′). The remaining two cases (n′ disconnected from n, n ch∗ n′)
recycle the same arguments.

It is worth commenting on the awkward condition in the statement of this
proposition. It amounts to saying that we cannot know what level of the hier-
archy we are actually looking at, topologically, whether it is really the global
level, encompassing all of space, or just a local area. This makes many argu-
ments simpler because the case for the top of the hierarchy tree is not special.

Now let p be a D-labeling of a down-set T ′ of T , where D is a set of local
labels. Let S (or S(T ′)) be the set of all maximal waterfalls in T ′ with respect
to p.

Proposition 3. S is a D-generating set for p on T ′.

Proof. Every leaf node l of T ′ is a waterfall node, and so there exists a maximal
waterfall node above l, in S. By definition of waterfall node, any two admissible
labelings agreeing on S agree on l, and thus on all leaves. Now by the Uniqueness
property of D, if p, p′ agree on all leaves in T ′, they agree everywhere, by the
obvious induction on the height of a node above the leaves.

In the context of the tree label logic induced by RCC5-G on a grid:

Lemma 1. If D = {PO,PP,DR}, and G is a D-generating set for p on a subtree
T , for every path from the root of T to a leaf l, either l ∈ G or some point x on
the path is in G and p(x) 6= PO.

10

Proof. Note that PO has the following property: if n is a node with m > 0
children, p(n) = PO, for any m− 1 children of n, there is p′ agreeing with p on
n and those children, and differing on the remaining child. For trees of height 1
this is trivial. For others, a stronger claim will be proven by induction: if G is a
subset of |T |, of height ≥ 2, and there is a path contradicting the conditions of
the proposition (an “uncovered” path), there is an admissible labeling p′ distinct
from p on T , but equal on G and on the root. Base case: height = 2. If there
is an uncovered path, the root must be labeled PO, and some child not in G.
The existence of p′ follows from the property of PO mentioned above. Inductive
case: height > 2. First, suppose the root of T is labeled PO. (If it is not, there
are no uncovered paths, and the claim is vacuously true.) Now an uncovered
path in T , minus the root, is an uncovered path in some subtree tr(ni) of T .
So by induction we obtain p′′ matching p on the portion of G in tr(ni), and
on ni itself, but different from p. Using the Locality property on ni we “paste
together” p and p′′ to obtain p′ matching p on all of G and the root of T but
different from p, as required.

Note that the property of PO-nodes used in this lemma is not very special to
PO-nodes; in general it is the definition one should make for an “anti-waterfall”,
which provides sufficiently little information on nodes below itself that it might
as well provide no information.

In the context of the tree label logic induced by RCC5-G on a grid, in which
each non-leaf cell has at least 2 children:

Proposition 4. For T ′ be a subtree of T , p an admissible labeling which takes
D-values on T ′, S(T ′) is of minimal size among D-generating sets for T ′.

Proof. Let G be any D-generating set for p on T ′. Let w be a maximal waterfall
in T ′. If w is a leaf, since no non-PO label can exist on the path from w up to
the root, or it would not be maximal, the above lemma implies w ∈ G. If w is
not a leaf, there are at least two paths a, b from the root to leaves through w,
and both must have points xa, xb of G below w, by the above lemma. However,
clearly G\{xa, xb}∪{w} is still a generating set, since w is a waterfall, and this
set is smaller than G. So we can assume all minimal generating sets contain all
maximal waterfalls, that is, are supersets of S. It follows that S is of minimal
size, and in fact is the unique generating set of minimal size.

Proposition 5. Let (T, L) be a tree label logic. If p is an admissible labeling
of T and there is some fountain node with respect to p, then either there is a
waterfall fountain node or there is a least fountain node in T .

Proof. Let f be a fountain node. All nodes must be descendants of f , ancestors
of f or waterfalls: let n be another node. We will prove the claim by induction
on the shortest distance d from f, n to their least common ancestor a. If d = 0,
either a = f or a = n, and so either n is a descendant of f or an ancestor of f , as
required. Let d > 0, and assume the claim is true for smaller distances. First let
f be closer to a than n. Call f ’s parent f ′. Then we can assume n is an ancestor
or descendant of f ′ or a waterfall. If an ancestor, then it is an ancestor of f ; if a

11

waterfall, the claim is also proven. If a descendant of f ′, then it is a descendant
of a sibling of f , but those are waterfalls, so n is a waterfall. Second, let n be
closer to a than f . Call n’s parent n′. Then we can assume n′ is an ancestor or
descendant of f or a waterfall. If a descendant, then n is a descendant of f ; if
a waterfall, so is n; if an ancestor, then n′ must be a fountain, and have some
child of which f is a descendant, but since d > 0, this child isn’t n. So n is a
sibling of a fountain and therefore is a waterfall. It follows from this claim that
if f, f ′ are two fountain nodes that are not comparable in the tree, both must
be waterfalls. So all non-waterfall fountain nodes must be comparable, i.e. exist
along a single path in the tree, and so there is a least such node.

Let (T, L,Ad) be a tree label logic in which no node of T has more than k
children, and in which L is partitioned into a set of fountain labels and a set of
local labels D. The following proposition and algorithm concern this situation,
of which RCC5-G is a special case.

Proposition 6. Let p be an admissible labeling of T , and f a minimal fountain
node of p. A minimal generating set for p cannot be smaller than a minimal
D-generating set for the nodes strictly below f , except by a constant discrepancy
≤ k.

Proof. Clearly all nodes strictly under f are labeled by p with D-labels, since
otherwise they would be fountains, contradicting the minimality of f . Without
loss of generality, if G is a minimal generating set, we can assume that the only
node inG that is not strictly below f is f itself: if there are some others, they can
be replaced with f , not increasing the size of G, and the generating set property
is not lost, since {f} generates the values of p on all nodes not strictly below
f . Now let G′ be the portion of G that is strictly below f . G′ ∪ {n | n ch f} is
a D-generating set for p on the set of nodes strictly below f : for contradiction,
let p′ be an admissible labeling that takes D-values below f , equal to p on
G′ ∪ {n | n ch f}, but unequal somewhere below f . Using the locality property
repeatedly on the children of f , get an admissible labeling p′′ which agrees with
p everywhere not below f , and in particular on f itself, but with p′ strictly below
f . But now p′′ agrees with p on G, and not everywhere, which contradicts that
G is a generating set. Now let H be a minimal D-generating set for p on the
nodes below f . |H| ≤ |G′ ∪ {n | n ch f}| ≤ |G′|+ k ≤ |G|+ k, so |G| ≥ |H| − k,
as required.

Theorem 1. The algorithm in Figure 1 correctly computes a minimal generat-
ing set up to a discrepancy bounded by the maximum branching factor of T .

Proof. First, in case the “if” in line 1 is taken, {f} is a generating set, and it is
certainly no more than 1 larger than the smallest such set. Now, if the “if” is
not taken, in line 3 S is assigned a set of proper descendants of b; whenever S
has this property, so does refine(S). We will prove that refineω(S) is the minimal
D-generating set for the nodes below f .

12

The following abstract algorithm computes the set S. It is an abstract
algorithm because it relies on being able to check whether a node is a waterfall
or is a fountain. This is not hard to do for the case of RCC5-G and similar
systems.
Input: Tree T, admissible labeling p
1 if there is a waterfall fountain node f in T return {f}
2 f := the least fountain node in T
3 S := {n | n ch f}
4 while S != refine(S): S := refine(S)
5 return S ∪{b}
where
refine(S) = [

⋃
s∈S\W

{c | c ch s}] ∪ [W ∩ S]

Figure 1: An Abstract Algorithm to Compute a Small Generating Set

Next, that refineω(S) is well-defined: let the height of a node x be defined
as the maximum distance in T from x to a descendant of x that is in W . Let
the height of a set of nodes S be the maximum height among its members. We
claim that if S has height n, refinen+1(S) = refinen(S). By induction on n: if
n = 0, then all nodes in S are in W . It is then plain to see that refine(S) = S =
refine0(S). Inductive step: Suppose the height of S is n > 0. Let x ∈ refine(S).
Either x ∈ W , so its height is 0, or x ch y ∈ S with positive height m ≤ n,
but then x must have height no more than m − 1, so the height of refine(S)
is bounded by n − 1, thus refinen(refine(S)) = refinen−1(refine(S)), as needed.
Thus the loop in line 4 terminates, and in steps bounded by the depth of T .

Let T ′ denote the down-set {n ∈ |T | | n ch+ f}. Now we need to prove that
refineω(S) is indeed the set S(T ′). Let w be a maximal waterfall in T ′. Since S
contains all children of f , it surely contains an ancestor of w, at a distance m
from w. Let S′ be any set with this property. Then refineω(S′) contains S(T ′):
Let M be the greatest distance to an ancestor in S′, for all maximal waterfalls
w. In case M = 0, S(T ′) ⊆ S′. Otherwise, by definition of refine, if w has a
distance of m to its nearest ancestor a in S′, this ancestor cannot be ∈ W , so
refine(S′) contains a child of a that is an ancestor of w, thus at a distance only
m − 1. It follows that the maximal distance for refine(S′) is M − 1. Further,
refine(S′) still has the property that it contains an ancestor of w; for a child of a
proper ancestor is an ancestor, and if no proper ancestor of w is in S′, w is, and
thus w ∈ refine(S′). By induction, S(T ′) ⊆ refineω(refine(S′)) = refineω(S′).
It remains to show that refineω(S) ⊆ S(T ′). Note that the initial set S has
the property that every node is above a maximal waterfall (recall a leaf is
automatically a waterfall). We show that for any such set S′, refineω(S) ⊆ S(T ′).
Let M(S′) be the greatest distance from a node of S′ to a maximal waterfall
under it. If M = 0, clearly S′ ⊆ S(T ′). For the inductive case: refine(S′) still
has the property of S′: for if x ∈ refine(S′), and is a waterfall, either x ∈ S′, so
is maximal, or x’s parent is in S′, and is not a waterfall nor is any ancestor of
it in T ′, so x is maximal. Whereas if x is not a waterfall, its parent is in S′ and

13

so no waterfall exists in T ′ above x (but there must be one below, trivially), so
there is a maximal waterfall below x. Further, M(refine(S′)) = M(S′)− 1. For
if there is a non-zero-length path from x to a maximal waterfall w below x, x is
not a waterfall, and so its parent is in S′ and has a path one longer to w. Now
by inductive hypothesis refineω(S′) = refineω(refine(S′)) ⊆ S(T ′).

Proposition 7. It is possible to check whether a node is a waterfall or fountain
in an RCC5-G-labeling.

Proof. A node n is a waterfall iff it is a leaf or p(n) ∈ {EQ,PP,DR}. For a
nonleaf labeled PO or PP−1, clearly there are at least two distinct labelings of
its descendants. Likewise, n is a fountain iff it is the root or p(n) ∈ {EQ,PP−1}.
Otherwise, clearly there are at least two admissible labelings distinct on its
parent.

3.2 Size of Compressed Sets

It is of interest to us to know, even though this compression is optimal, how
much the size of the region description is actually reduced by using it. There is
a clean answer to this question for rectangular regions that fit neatly into the
square grid. Let a regular rectangle in the grid Sqn be a region R = [a, b]×[c, d] ⊆
[0, 1]×[0, 1] such that R can be covered exactly by cells of Sqn. Let the perimeter
n of R be defined as the number of minimal cells that contact the boundary of
R. A generic regular rectangle of perimeter n obviously contains Θ(n2) minimal
cells, and so Θ(n2) total cells, since there are more minimal subcells in any given

cell than there are other subcells (because 4n >
∑n−1

0 4i). (A function is said
to be in Θ(n) if it is in O(n) and Ω(n); see a standard reference such as [1]).

Theorem 2. A regular rectangle of perimeter n can be covered exactly with
Θ(n) cells in the square grid.

Proof. First, we will prove a related fact. Define the one-dimensional square
grid Lq as the interval [0, 1] with the tree cellsLq containing root [0, 1] and for
each node [a, b], children [a, (a + b)/2], [(a + b)/2, b]. Define Lqn analogously
to Sqn. Let a regular interval in Lqn be [a, b] ⊆ [0, 1] which can be covered
exactly by cells of Lqn. Let the length of a regular interval be the number of
minimal cells contained in it. In this proof we will abuse the notation I \ J for
I \ J , since matters of topology are irrelevant to the argument. Claim: a regular
interval I of length n can be divided into two intervals each exactly covered by
a set of cells in which no more than one cell of a given depth in cellsLq occurs
(“binary covering”). First note that a cell of depth n−m in cellsLqn , henceforth
“m-cell”, is a regular interval of length 2m. Choose a maximal m such that I
contains an m-cell, and distinguish 2 cases - I contains exactly one such m-cell,
or two m-cells. Three or more is impossible - it is easily seen that an interval
containing three m-cells contains an m + 1-cell, contradicting the maximality
of m. Case 1 (one m-cell c): let I1, I2 be the two intervals (possibly empty)
comprising I \ c. Since they are adjacent to an m-cell, each contains an m-cell

14

iff it has length ≥ 2m, therefore both |Ii| < 2m. Case 2 (two m-cells c1, c2):
c1, c2 are adjacent, for otherwise a third m-cell would exist between them. So
I \ c1 \ c2 is again a union of two intervals Ii, and by the same arguments above
they each have length < 2m and share an endpoint with an m-cell, that is, a cell
at least as long as Ii itself (“endpoint property”). It now suffices to prove that
these intervals have binary coverings, and a binary covering of two divisions of I
is obtainable by using c (resp. c1, c2) together with the coverings of Ii to cover
the subintervals I1 ∪ c, I2 (resp. I1 ∪ c1, I2 ∪ c2; assume Ii, ci appear “left to
right”). These will be binary coverings because Ii do not contain any cells of
the same order as c(i) for reasons of sheer size. Now, let I have the endpoint
property. Assume as inductive hypothesis that all interval of length ≤ 2n with
the endpoint property have binary coverings. The base case n = 0 clearly holds.
Observe that I contains an m-cell iff I contains an m-cell adjacent to the large
cell witnessing the endpoint property iff |I| ≥ 2m. So choose maximal m such
that I contains an m-cell c, and |I \ c| < |I|/2, else m would not be maximal.
By hypothesis, a binary covering exists for I \ c, and it contains no m-cell, so
this covering together with c is a binary covering of I.

Returning to two dimensions, note that any regular rectangle R = [a, b] ×
[c, d] of perimeter p in Sqn induces two regular intervals [a, b], [c, d] in Lqn, with
length O(p), p the perimeter of R. Now dividing these into binary-covered
intervals as above yields a partition of R into four smaller rectangles, each
of perimeter ≤ p. Choose one of these, R′ = [x, y] × [z, w], and let C,D be
binary coverings of [x, y], [z, w]. Define a covering of R′ by smaller rectangles
{[a′, b′]× [c′, d′] | [a′, b′] ∈ C, [c′, d′] ∈ D}. Each such rectangle is the product of
an m-cell and an m+ i-cell, so can itself be covered by 2i two-dimensional cells.
Dividing each rectangle in this way, we obtain a covering of R′ by cells. How
many are there? We need to count the number of 1 : 2n rectangles for each n.
Let k be the largest order of cell appearing in C or D. k ≤ log(O(p)). There
cannot be more than 2∗ (k−n+ 1) rectangles of ratio 1 : 2n, since each requires
either an m-cell in C and an m + n-cell in D or vice versa, and only 1 of each
can exist, by hypothesis. So the total number of cells in our covering of R is
bounded by a multiple of

∑k
0 2n(k − n+ 1). We obtain

∆

k∑
0

2n(k − n+ 1) =

k+1∑
0

2n(k − n+ 2)−
k∑
0

2n(k − n+ 1)

= 2k+1(k − (k + 1) + 2) +

k∑
0

2n(k − n+ 2)−
k∑
0

2n(k − n+ 1)

= 2k+1 +

k∑
0

2n(1) = 2k+2 − 1 ≤ 2k+2,

whereas ∆(8 ∗ 2k) = 2k+2, so it follows that our quantity is in O(2k), and thus
O(2(logO(p))) = O(p). Since each of the 4 parts into which we split R can be
covered by O(p) cells, so can R.

For the lower bound, let R in Sqn be [0, 1]×[0, 1/2n]. This set cannot contain

15

a cell larger than a 0-cell, but is 2n times longer than a 0-cell; clearly it requires
2n cells to cover, which is proportional to its perimeter.

It should be noted that this theorem does not imply that there is for every
regular rectangle RI of perimeter p a set of Θ(p) RCC5-G formulas equivalent
to desc(R, I), because depending on its position, many formulas (with predicate
DR) may be needed to describe the place where R is not. However, as long as
R is contained in a cell not too much larger than itself, such a set will exist.

4 Semantic Decompression

In this section, we discuss how reasoning over the RCC5-G calculus can be
accomplished, first developing technical background in a more general setting
and then applying the RCC5 composition table to the problem of recovering a
region’s full description from its compressed representation.

4.1 First-Order Reasoning with RCC5-G

In order to facilitate reasoning with RCC5-G, we present a translation to first-
order logic preserving consequences, for sufficiently well-structured grids.

RCC5-G can be considered an application of a topological propositional
logic. Say that two subsets in a topological space are equivalent up to degeneracy
if their symmetric difference is degenerate. This is obviously a reflexive and
symmetric relation. In a Baire space, it is also transitive. Thus we will write it∼=.
For a set V of propositional variables, and a topological space A, let a topological
assignment t be a mapping from FV (the set of formulas in {∧,∨} over V) to
PA, such that for all formulas φ, ψ, t(¬φ) ∼= A\ t(φ), and t(φ∧ψ) ∼= t(φ)∩ t(ψ).
Say that a topological assignment t satisfies a formula φ if t(φ) is nondegenerate.
Let a Venn formula η over V be a formula of the form

∧
v sv where for each

v ∈ V , sv is either v or ¬v. (Assume
∧

is defined so as to make this an
unambiguous specification of a formula.)

Proposition 8. If two formulas φ, ψ are classically equivalent, and t is a topo-
logical assignment into a Baire space, then t(φ) ∼= t(ψ).

Proof. For any formula φ(~x) of n variables, perhaps not using all of them, set S,
let Bφ be the operator : S~x → S induced by φ in the obvious way - Bφ(~x)∧ψ(~x) =
Bφ ∩ Bψ, etc. Two formulas φ, ψ are classically equivalent iff Bφ, Bψ are the
same function. We prove by induction that for any topological assignment t,
t(φ(~x)) ∼= Bφ(t[~x]). Base case: φ(~x) is a single variable in ~x. So Bφ picks out
the set indexed by v. Now t(φ(~x)) = t(v) = Bφ(t[~x]). Inductive case: φ = ¬ψ:
t(¬ψ) ∼= A \ t(ψ) ∼= A \Bψ(t[~x]) = Bφ(t[~x]), where the first ∼= is by definition of
topological assigment and the second by inductive hypothesis. Inductive case:
φ = φ1 ∧ φ2. t((φ1 ∧ φ2)(~x)) ∼= t(φ1) ∩ t(φ2) ∼= Bφ1

(t[~x]) ∩Bφ2
(t[~x]) = Bφ(t[~x]).

Now if φ, ψ are classically equivalent, choosing some ~x that includes both their
variables, t(φ) ∼= Bφ(t[~x]) = Bψ(t[~x]) ∼= t(φ), and the proposition is finished.

16

Proposition 9. Let V be a finite set of propositional variables and t : FV →
PA be a topological assignment, for A a Baire space. Then there is a set S and
classical propositional assignment t′ : FV → PS such that for all φ ∈ FV , t′

classically satisfies φ iff t satisfies φ in the topological sense.

Proof. Let S =
⋃
η int(t(η)), where η ranges over Venn formulas. It is easy to

show that all the distinct t(η) have degenerate intersection. Therefore their
interiors cannot overlap, so all the int(t(η)) are disjoint. Now define t′(φ) =⋃
η int(t(η)), η ranging over all Venn formulas such that η → φ is a classical

tautology. t′ is a classical assignment: η → φ is a tautology iff η → ¬φ is not a
tautology, so t′(φ) and t′(¬φ) are true complements in S. Likewise η → φ ∧ ψ
is a tautology iff η → φ and η → ψ are. So t′(φ ∧ ψ) is the intersection of t′(φ)
and t′(ψ). It remains to show t′(φ) is nonempty iff t(φ) is nondegenerate. By 8,
t(φ) ∼= t(DNF(φ)), which is a disjunction of all the η that tautologically imply φ.
So t(φ) is degenerate iff t(DNF(φ)) is, iff all η implying φ have t(η) degenerate,
because of the Baire property. In this event, t′(φ) is a union of empty interiors,
and is empty. But if some η is not degenerate, its interior is nonempty, so t′(φ)
is nonempty, as needed.

Proposition 10. Let G,V be distinct finite sets of propositional variables, and
t : FG → PA a topological assignment into a Baire space A, such that t(g)
is regular closed for all g ∈ G. Let t′ : F (G ∪ V) → PS for some set S be a
classical assignment, such that for formulas φ ∈ FG, t′ |= φ iff t |= φ. Further
suppose that for every G-Venn formula η and natural number n the closure of
t(η) is equal to a union of n nondegenerate regular closed sets with degenerate
overlaps. Then there is a topological assignment q : F (G ∪ V)→ PA such that
q(g) = t(g) for g ∈ G, all q(x) for x ∈ (G ∪ V) are regular closed, and for all
formulas φ over G ∪ V , q |= φ iff t′ |= φ.

Proof. Note that for any G-Venn formula η, there are 2|V | (G∪V)-Venn formulas
η′ whose disjunction is tautologically equal to η. For each nondegenerate t(η),
let n be the number of η′ → η such that t′(η′) is not empty, choose a covering of
t(η) by n regular closed sets, and assign each nonempty η′ implying η a unique
block r(η′) of the covering of η. When t(η) is degenerate, let r(η′) = ∅. Let
q(φ) = ∪η′r(η′) ranging over all η′ → φ. Now let t′ |= φ. So t′ |= DNF(φ), and
so t′ |= η′ for some η′ → φ. Thus η′’s G-restriction η is also nonempty in t′, so
t |= η, and since t(η) is nondegenerate, it is partitioned into regular closed sets
and r(η′) is nondegenerate. Thus q(φ) is nondegenerate. Now suppose t′ 6|= φ.
So t′ 6|= η for all η → φ, so all the t(η) are degenerate, and for all η′ → φ,
q(η′) = ∅. Now we must show that q is a topological assignment. Note that
every two q(η′) for nonequivalent η′ have degenerate overlap. So by the Baire
property,

⋃
η′ r(η

′) | η′ → φ and
⋃
η′ r(η

′) | η′ → ¬φ have degenerate overlap.
Their union covers the union of all the r(η′), which covers all but degenerately
much of A, as can be perceived using 8, for example. So the first axiom of a
topological assignment is satisfied. Likewise

⋃
η′ r(η

′) | η′ → φ∧ψ =
⋃
η′ r(η

′) |
η′ → φ ∩

⋃
η′ r(η

′) | η′ → ψ. Finally, for g ∈ G, observe that for all the

17

RCC5 Relation Satisfied Not Satisfied
EQ(a, b) a ∧ b a ∧ ¬b, b ∧ ¬a
PP(a, b) a ∧ b, b ∧ ¬a a ∧ ¬b

PP−1(a, b) a ∧ b, a ∧ ¬b b ∧ ¬a
DR(a, b) b ∧ ¬a, a ∧ ¬b a ∧ b
PO(a, b) a ∧ b, a ∧ ¬b, b ∧ ¬a

Table 3: Propositional translation of RCC5-G.

nondegenerate t(η) with η → g, t(η) is a union of finitely many regular closed
sets and thus is regular closed, as is t(g) by hypothesis, and

⋃
t(η) ∼= t(g),

so if any point x ∈ t(g) and x is in an open neighborhood V , V intersects
the interior of t(g), thus intersects some t(η), because V ∩ int(t(g)) cannot be
contained in a degenerate set. Thus x is a cluster point of

⋃
t(η), and it follows

t(g) =
⋃
t(η) =

⋃
r(η′) over the η′ → g, = q(g).

Note that the covering property required by this proposition is intuitively
true when G consists of square grid cells or similar and t(g) = g.

The above two propositions allow RCC5-G to be reduced to first-order logic.
First note that the RCC5 relations can be defined by simultaneous satisfiability
of certain formulas by a topological assignment (in which all variables are sent
to regular closed sets.) For example, PO(a, b) can be expressed by the existence
of an assignment satisfying a∧¬b, a∧ b, b∧¬a simultaneously. So a finite set F
of RCC5-G relation axioms can be transformed to a finite set F ′ of propositional
formulas, and iff F was RCC5-G satisfiable, F ′ is satisfiable by a topological
assignment sending grid cell variables to grid cells exactly. Call the subassign-
ment which acts on the grid cell variables the grid structure assignment. Now
consider the same set F ′ in light of the classical semantics. If F ′ is satisfiable in
the way just described, by 9, it is classically satisfiable. But if F ′ is classically
satisfiable and consistent with the set of formulas concerning grid cells that are
true in the grid structure assignment, then by proposition 10 F ′ is satisfiable by
a topological assignment which respects the grid structure. So if we can enumer-
ate a set of axioms for a given grid which determine all formulas about the grid
cells themselves, we can solve the RCC5-G satisfiability problem by solving a
classical satisfiability problem. This simultaneous satisfiability of propositional
formulas can be further reduced to ordinary satisfiability in first-order logic, by
replacing each propositional formula φ with a single-variable predicate formula
Φ(x) (using uppercase letters), each φ ∧ ψ by Φ(x) ∧ Ψ(x), and each ¬φ by
¬Φ(x), recursively. Now to express satisfaction of each of several φi and non-
satisfaction of each of several ψj simultaneously one can use satisfiability of the
predicate formula

∧
i ∃xΦi(x) ∧

∧
j ∀x¬Ψj(x).

The translation of RCC5-G into propositional logic proceeds indicated in
Table 3. We trust these relations will be sufficiently obvious, in light of the JEPD
property. Note that a nested hierarchical grid can be completely described by
formulas of the form c =

∨
i ci for cells c and child cells ci. The only variation

possible is in how many children each cell has.

18

4.2 Decompression by Constraint Solving

The use of the RCC5 composition table for reasoning with grids is not in general
very powerful. It is not complete with respect to the RCC5-G semantics, in the
following sense:

Theorem 3. Given an RCC5-G signature (A, cellsA), C, there may be an atomic
RCC5(-G) constraint network with nodes the constants of C which is path-
consistent but not satisfiable.

Proof. For instance, consider a grid with one parent cell c and two children c1, c2,
and a single region constant R. The following network C is path-consistent but
not satisfiable in the RCC5-G sense (assume whenever P ∈ C(x, y), P−1 ∈
C(y, x), see table 4) :

C(c1, c) = {PP} (1)

C(c2, c) = {PP} (2)

C(c1, c2) = {DR} (3)

C(c1, R) = {PP} (4)

C(c2, R) = {PP} (5)

C(c,R) = {PO} (6)

That this network is path-consistent can be readily seen by the fact that it has an
RCC5 model (which is not an RCC5-G model). In an RCC5-G interpretation,
since cI1, c

I
2 ⊆ RI , so is cI ⊆ RI , not partially overlapping RI .

The essential problem is that binary relations alone cannot readily capture
the idea that the children of c cover c, together but not individually. This
“problem” cannot be easily avoided. However, the RCC5 composition table is in
a certain way complete for the specific purpose we would put it to in this paper,
that is, to decompress a representation of a region which has been compressed.
Just as we can alternatively represent sets of RCC5 formulas describing a single
region constant R as labelings of a subset of a tree, we can also represent them
as a constraint network. Assume the RCC5-G signature satisfies the covering
condition from Proposition 10, to ensure that the composition table is correct.
Let F be a set of RCC5-G formulas containing a single region constant R. Let
the nodes of the network N be the cell constants of the RCC5-G signature and
R, and let there be an edge between every two nodes, in both directions. Let
the edge from c to d be labeled {PP} (and the reverse {PP−1}) when c is a child
cell of d, and {DR} when c is a sibling cell of d. Let the edge d→ R be labeled
{P} whenever P (d,R) ∈ F , and likewise for R → d. Also, let the reverse edge
be labeled {P−1}, as defined in table 4. These labelings are obviously logical
consequences of F as well. Let all other edges be labeled with all the RCC5
relations.

Theorem 4. If F is the set of formulas obtained from the minimal generating
set of Theorem 1, there is exactly one path-consistent atomic network N ′ such
that for all x, y, N ′(x, y) ⊆ N(x, y).

19

Predicate P Inverse P−1

PP PP−1

PP−1 PP
EQ EQ
DR DR
PO PO

Table 4: Inverse RCC5 relations.

Computing this network can be accomplished using well-developed standard
tools.

Proof. First, note that there must be some path-consistent atomic labeling, since
F is a satisfiable set, being equivalent to some desc(R, I) for interpretation I,
so I can be considered an interpretation of N as well, and induces a path-
consistent N ′ by letting N ′(x, y) be the RCC5 relation which holds between
xI , yI , according to table 1.

It remains to establish uniqueness. Let N ′ be a path-consistent atomic
network on the same nodes as N such that N ′(x, y) ⊆ N(x, y) for all x, y. So
whenever N(x, y) is a singleton, N ′(x, y) = N(x, y). First for the cells: if c, d
are two distinct cells, either one is a descendant of the other, or they have a
common ancestor. Wlog assume c ch∗ d. If c ch d, then by hypothesis N ′(c, d) =
{PP}. Otherwise, by induction, if e is the parent of d, N ′(c, e) = {PP}, and
N ′(e, d) = {PP} by hypothesis, so if N ′ is path consistent, N ′(c, d) ⊆ {PP},
because PP ◦ PP = {PP} in the RCC5 composition table, and because N ′

is path-consistent, N ′(c, d) ⊆ PP ◦ PP and N ′(c, d) must not be empty. So
N ′(c, d) = {PP}. We trust that these kind of arguments are obvious and will
not say them in such detail from now on. If c, d are incomparable, let e be their
least common ancestor; if c, d ch e, N ′(c, d) = {DR} by hypothesis, and now
using the fact PP ◦ DR = {DR} and induction in the length of the path from c
to d, N ′(c, d) = {DR}.

Now for the edges involving R: let p be the tree labeling induced by I, as
in section 3.1. There is a generating set G for P which contains exactly the
cells c which occur in formulas of F . Now, if any cell d has N ′(d,R) = {PP}
or {DR} or {EQ}, then there is a unique singleton N ′(d′, R) and N ′(R, d′)
for all d′ ≤ d, by arguments like the above, and the element of N ′(R, d′) is
the inverse of that in N ′(d′, R). Similarly for N ′(f,R) = {EQ} or {PP−1},
there are unique inverse singletons N ′(d′, R) and N ′(R, d′) for all d′ 6< f . In
case G contains a node labeled EQ, this is enough to establish unique atomic
N ′. Otherwise, there is a least fountain node f , N ′(f,R) = {PP−1} or f is
the root of cellsA, and uniqueness is established for all nodes 6< f . Now for
nodes that are < f , recall the properties of the set G: every leaf node l < f
is ≤ some maximal waterfall node; that is, w such that N ′(w,R) = {DR} or
{PP}, and in this case p(l) = DR (resp. PP), or else l itself is in G, and
N ′(l, R) = {p(l)}. Therefore N ′ is uniquely determined as N ′(l, R) = {p(l)} on
all leaf nodes. It is not hard to see that also N ′(R, l) = {p(l)−1}. Now let d

20

be a node < f of distance n > 1 from the furthest leaf l ≤ d. If all children d′

of d have p(d′) = PP or all have p(d′) = DR, then appealing to I we see that
p(d) = PP (resp. DR), so no maximal waterfall can be < d, because d itself is a
waterfall in p. Thus some maximal waterfall w (with label PP or DR) is ≥ d, so
N(w,R) = {p(w)}, and by the above, N ′(d′, R) = {p(w)} = {p(d′)} for d′ ch d,
and since d ch∗ w as well, N ′(d,R) = {p(w)} = {p(d′)} = {p(d)}, and N ′(R, d)
contains the inverse. The next inductive case: some child d′ of d has p(d′) = PO.
By induction N ′(R, d′) = {PO}, and PO ◦ PP = {PO}, so N ′(R, d) = {PO}.
Likewise PP−1 ◦PO = {PO}, so N ′(d,R) = {PO}. Again p(d) is necessarily PO
since p(d′) is PO. The final, most interesting inductive case: d has one child d′

with p(d′) = PP and one child d′′ with p(d′′) = DR. Now N ′(d, d′) = {PP−1}
and N ′(d′, R) = {PP}. N ′(d,R) ⊆ PP−1 ◦ PP = {PP,PP−1,EQ,PO}. Likewise
from d′′ we get N ′(d,R) ⊆ PP−1 ◦ DR = {DR,PO,PP−1}. In total, we now
know that N ′(d,R) is either {PO} or {PP−1}. In fact p(d) = PO, because
d < f and so cannot be a fountain node. So we want to prove that N ′(d,R) =
{PP−1} leads to a contradiction. It clearly leads to N ′(e,R) = PP−1 for all
ancestors e of d, one of which is a child of f - call it f ′. For any other child
f ′′ of f , N ′(f ′′, f ′) = {DR}, so N ′(f ′′, R) ⊆ DR ◦ PP−1 = {DR}, and thus all
leaves l ≤ f ′′ must have N ′(l, R) = DR, and thus p(l) = DR, so that in fact,
appealing to the interpretation I again, RI is a subset of f ′I and p(f ′) = PP−1

or EQ, contradicting the fact that f is a minimal fountain. Similarly we get a
contradiction from N ′(R, d) = {PP}, so N ′(d,R) and N ′(R, d) are {PO} and
thus are inverses and N ′(d,R) = {p(d)}, completing the inductive step.

In other words, what this theorem says is the following: when cell represen-
tations of regions are compressed in a certain naive way, which way we have
shown to be (near) optimal in Theorem 1, all information about the region
in terms of relations to cells can be recovered using a well-established existing
technology (path-consistency based constraint solving).

5 Conclusions and Future Work

Some of the results laid out herein may not be entirely surprising. However
they lay some of the groundwork for Region Connection Calculi in the context
of hierarchical grids and knowledge graphs. We have shown that the naive way
of choosing a small number of RCC5 relations to cells so as to represent a region
is indeed (close to) optimal, and that this fact is true in a very general setting,
regardless of dimensionality, shape, etc. of the hierarchical cells (although it
does not apply to some grid systems now in use, such as H3, in which child
cells need not be contained in their parents). The methods used to prove this,
while not especially deep, are quite general. We established the sufficiency of
usual RCC5 constraint reasoning to undo this compression, and its insufficiency
for reasoning with grids in general, and provided an alternative method for
accomplishing such reasoning.

In addition to compressing the full cell descriptions of single regions in a

21

vacuum, we may consider some more general types of compression problems:
1. Partial Knowledge. Instead of compressing desc(R, I) for some variable R
and interpretation I, we may have a set of formulas about R that are satisfied
by many interpretations J with different desc(R, J). Can a similar minimal
generating set be obtained in this case?
2. Multiple Regions. We may have several region variables Ri and know RCC5
relations between them, not just between the Ri and the cell variables. It may
be possible to compress this set of formulas more thoroughly than can be done
when we must disregard the relations between regions.
3. More Expressive Logic. While we advocate against using RCC8, there are
other more expressive logics that could be worthwhile to reason about spatial
data stored by cell representation. For example, replace the qualitative RCC8
relations with quantitative ones, like “dI is 60% covered by RI”. (This kind of
relation was popularized in [2].)

In addition, there is of course also more empirical work to be done to sub-
stantiate the added value of our approach in application settings.

Acknowledgement This work was supported by the National Science Foun-
dation (NSF) under award OIA-2033521 ”KnowWhereGraph: Enriching and
Linking Cross-Domain Knowledge Graphs using Spatially-Explicit AI Technolo-
gies.”

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, third edition, 2009.

[2] M. J. Egenhofer and M. P. Dube. Topological relations from metric refine-
ments. In Proc. of the 17th ACM SIGSPATIAL International Symposium
on Advances in Geographic Information Systems. 2009.

[3] J. R. et al. S2 geometry library.

[4] Z. K. et al. H3: A hexagonal hierarchical geospatial indexing system.

[5] Z. Gantner, M. Westphal, and S. Woelfl. Gqr – a fast reasoner for binary
qualitative constraint calculi. 2008.

[6] P. Hitzler. A review of the semantic web field. Commun. ACM, 64(2):76–83,
Jan. 2021.

[7] P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web
Technologies. Chapman and Hall/CRC, 2010.

[8] A. K. Joshi, P. Hitzler, and G. Dong. Logical linked data compression.
In P. Cimiano, Ó. Corcho, V. Presutti, L. Hollink, and S. Rudolph, ed-
itors, The Semantic Web: Semantics and Big Data, 10th International

22

Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceed-
ings, volume 7882 of Lecture Notes in Computer Science, pages 170–184.
Springer, 2013.

[9] J. R. Munkres. Topology: A First Course. Prentice-Hall Inc., 1975.

[10] N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor.
Industry-scale knowledge graphs: lessons and challenges. Commun. ACM,
62(8):36–43, 2019.

[11] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions
and connection. In Proc. of the 3rd Int. Conf. on Knowledge Representation
and Reasoning. 1992.

[12] J. Renz. A canonical model of the region connection calculus. Journal of
Applied Non-Classical Logics, 12(3-4):469–494, 2002.

[13] H. Samet. Foundations of Multidimensional and Metric Data Structures.
The Morgan Kaufmann Series in Computer Graphics and Geometric Mod-
eling. Morgan Kaufmann, 2005.

[14] S. Schockaert and S. Li. Combining rcc5 relations with betweenness infor-
mation. In Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence. 2013.

[15] U. Schöning. Logic for Computer Scientists. Birkhäuser Boston, 2008.

23

