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Abstract

Many current methods to interpret convolutional neural networks (CNNs) use1

visualization techniques and words to highlight concepts of the input seemingly2

relevant to a CNN’s decision. The methods hypothesize that the recognition of3

these concepts are instrumental in the decision a CNN reaches, but the nature4

of this relationship has not been well explored. To address this gap, this paper5

examines the quality of a concept’s recognition by a CNN and the degree to6

which the recognitions are associated with CNN decisions. The study considers7

a CNN trained for scene recognition over the ADE20k dataset. It uses a novel8

approach to find and score the strength of minimally distributed representations9

of input concepts (defined by objects in scene images) across late stage feature10

maps. Subsequent analysis finds evidence that concept recognition impacts decision11

making. Strong recognition of concepts frequently-occurring in few scenes are12

indicative of correct decisions, but recognizing concepts common to many scenes13

may mislead the network.14

1 Introduction15

CNNs are a mainstay model for classification in computer vision (LeCun et al., 1998; Girshick et al.,16

2014; Ren et al., 2015; Simonyan and Zisserman, 2014; Sun et al., 2014). While their performance17

is impressive, CNNs are opaque or “black box” in nature, and there is a growing concern that the18

inability to interpret their internal actions will hinder human confidence and trust of these systems in19

practice (Lipton, 2016; Doran et al., 2017). A number of current efforts to make CNNs interpretable20

relates internal node activations to aspects of the input image. An aspect may be a particular color or21

texture pattern, like those processed in early stage CNN feature maps. Aspects may also be broad22

patterns that define objects (or object parts) depicted in an image. Semantically meaningful image23

aspects like pointy ears, paws and whiskers may lead a human to decide that an image is of a cat,24

while observing sand, water, blue sky, and shells in an image may determine that the image depicts a25

beach. We define a semantically meaningful image aspect to be an input concept.26

Most current research relates node activations to input concepts by visualization techniques. For27

example, Zeiler et al. (2010) developed the idea of a deconvolution where activations across feature28

maps can be related to patterns in an input image. More recently, Selvaraju et al. (2016) developed29

coarse localization maps based on a broad pattern of the input image and the gradient in a CNN30

model to highlight the associated network regions. Dosovitskiy and Brox (2016) and Mahendran and31

Vedaldi (2015), on the other hand, find ‘hidden’ features used by a CNN via an inversion process32

with up-convolutional neural networks. Zhou et al. (2014) discovered that concept detectors emerge33

in a scene classifying CNN, and can associate a semantic meaning to the detectors at different layers34

of the network (Bau et al., 2017).35
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While the aforementioned techniques provide nice viewpoints into how internal activations may36

be related to qualities of an input, there has been little research into whether the input concepts37

recognized are associated with the decisions made by a CNN. The activations of nodes recognizing38

some concepts of the input may actually have little effect on a CNN’s decision, if for example39

downstream input weights in the network mitigate the influence of these nodes, or if the activations of40

a separate set of nodes more strongly influence the network’s output. The closest work investigating41

this problem is by Zintgraf et al. (2017), who developed a way to measure how every input pixel42

supports a CNN’s classification result by a conditional multivariate model. However, like past work,43

it remains unclear if groups of pixels representing an input concept highlighted in the resulting44

visualizations have an impact on CNN decisions.45

In this paper, we investigate the relationship between how well a CNN recognizes input concepts46

from an image and the decisions it makes. We specifically consider input concepts and decisions47

under a scene recognition task over the ADE20k dataset (Zhou et al., 2017). The study is powered48

by a novel algorithm to compute how well any concept is recognized across the feature maps of a49

convolutional layer. Analysis along concept types, including those that appear often within a scene,50

often across multiple scenes, and those unique to a scene reveal a weak relationship between correct51

decision making and concept recognition. This relationship is dampened by the recognition of ‘sparse’52

concepts that seldom appear in the images of a scene and by ‘misleading’ concepts that appear often53

across the images of many different scenes. However, the recognition of concepts that are unique to54

the images of specific scenes promote correct CNN decisions.55

2 Concept recognition56

Studying the relationship between input concepts and CNN decisions requires a measure of how57

well such concepts are recognized by a CNN. We define a concept as being ‘recognized’ if there58

are a set of late stage convolutional layer nodes that only activate over the the input because of the59

concept’s presence. Whereas much of the research assumes that these nodes must lie within the60

same CNN feature map (Bau et al., 2017; Zintgraf et al., 2017), we assert that concept recognition61

could occur in a distributed way, across many feature maps at a convolutional layer. Past studies62

have suggested and demonstrated that neural networks learn a representation of input features in a63

distributed fashion (Carpenter and Grossberg, 1988; Bengio et al., 2003; Hinton, 1986); thus, we do64

not consider the possibility that input concepts can only be recognized within a single feature map.65

In the context of scene classification, the recognition of a concept (e.g. an annotated object) would be66

manifested by a set of (distributed) nodes (across multiple feature maps) that collectively respond67

to the input pixels representing the concept. If the set of nodes is a “good” recognizer of the68

concept, they should collectively respond to all pixels representing the concept, and over no pixels69

not representing the concept. We call a node activated if it takes on a non-zero value under a sigmoid70

or tanh non-linearity, or is > 0 under a ReLU non-linearity.71

The deconvolution of a feature map recovers the pixels of an input image causing its nodes to72

activate (Zeiler and Fergus, 2014; Zeiler et al., 2011; Yosinski et al., 2015). Deconvolutions thus73

seem like a natural way to identify if input concepts in scenes are represented by a feature map: if the74

deconvolution of the feature map covers most pixels of a concept, we may consider it as ‘recognized’75

by the feature map. However, patterns activating nodes in a feature map are not always consistent76

from image to image. We illustrate this point in Figure 1 where a feature map, taken from the last77

convolutional layer of AlexNet trained for object recognition, has its deconvolution computed for78

different input images. The deconvolution over the first cat image suggests that the feature map79

recognizes the facial features of a cat, or the texture of a cat’s fur. The deconvolution over the second80

image, however, recognizes nothing about the cat, and it is unclear if any concept in the third image81

is recognized by the feature map. Recent approaches for concept recognition find that only a limited82

number of feature maps consistently recognize a specific concept (Bau et al., 2017).83

Instead of focusing on concept recognitions localized to a single feature map, Figure 2 summarizes84

our approach to find and evaluate concepts recognized across multiple feature maps in a convolutional85

layer. Given a binary segmentation mask of the concept and the deconvolutions of feature maps in the86

latest stage convolutional layer, a greedy algorithm selects the subset of feature maps that collectively87

“best" recognize the given concept according to a scoring function. The selected feature maps and a88
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Figure 1: Deconvolutions of different cat
images over the same feature map

Figure 2: Concept recognition across feature maps

Table 1: Scene classes considered

Label Class Name Num. images Label Class Name Num. images
0 bathroom 671 8 mountain snowy 132
1 street 2038 9 conference room 168
2 office 112 10 skyscraper 320
3 building facade 228 11 corridor 110
4 airport terminal 107 12 bedroom 1389
5 game room 99 13 dining room 412
6 living room 697 14 highway 295
7 hotel room 160 15 kitchen 652

recognition quality score is then returned to the user. The specifics of the recognition scoring and the89

greedy algorithm are discussed next.90

2.1 Recognition scoring91

Ideally, the pixel area for a given concept should be covered by the deconvolutions of the selected92

feature maps as precisely as possible. The score should thus consider the combined coverage of the93

deconvolutions of the chosen feature maps over and not over the pixels of a concept. Based on this94

idea, we evaluate how well a set of feature maps Gc recognizes a concept c in an image ξ using a95

binary segmentation mask Mc(ξ) that denotes the pixel positions of c in ξ. We assume that Mc(ξ)96

is available in a dataset or can be generated via object segmentation methods (Chen et al., 2016).97

From the set of deconvolutions Dc(ξ) = {Di(ξ)} of Gc with respect to ξ and their combined sum98

Dsum
c (ξ) =

∑
Dc(ξ), we defineDc(ξ) as the set of the positions of the pixels ofDsum

c (ξ) representing99

node activations across Gc. Then a concept recognition score Sc(Gc, ξ) is defined with a Jaccard like100

similarity measure similar to Bau et al. (2017):101

Sc(Gc, ξ) =
|Mc(ξ) ∩ Dc(ξ)|
|Mc(ξ) ∪ Dc(ξ)|

2.2 Recognition algorithm102

We devise a greedy algorithm to identify the Gc that best recognizes c listed as Algorithm 1. The103

intuition behind the greedy approach is to find a set of feature maps that recognizes c well, is as small104
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as possible, and is composed of feature maps that minimally ‘overlap’, e.g. recognizes the same parts105

or qualities of a concept. The latter two criteria capture the idea that a good distributed representation106

is one where the nodes of each feature map in the set activate over different and significant parts of the107

concept. Thus, in each greedy iteration, the algorithm searches for the feature map whose addition to108

Gc would yield the largest improvement in recognition score Sc(Gc, ξ). Large improvements would109

only be possible if the newly added feature map activates over pixels representing c that no other110

feature map in Gc activates over. Moreover, this feature map cannot have significant activations over111

pixels that do not represent c without reducing Sc. Greedy iterations continue until there is no feature112

map whose inclusion would yield an improvement in score greater than ∆. ∆ = 0.01 is used in the113

experiments below.114

Algorithm 1 Concept Localization
1: procedure GREEDY_SELECTION(G, D, Mc(ξ), ∆)
2: Sc ← 0 . Score of the selected set of feature maps
3: Gc ← {} . Set of selected feature maps
4: while True do
5: tmps ← 0
6: g ← null
7: for k = 1 to |G| do
8: K = Gc ∪Gk . Add candidate feature map Gk ∈ G to the selected set
9: DK(ξ) =

∑
k∈K D

k(ξ) . Sum the deconvolutions Dk of the feature maps in K

10: Sc(K, ξ) = |Mc(ξ)∩DK(ξ)|
|Mc(ξ)∪DK(ξ)| . Find the new recognition score after adding Gk

11: if Sc(K, ξ) > tmps then . Is Gk better than the best candidate found so far?
12: tmps ← Sc(K, ξ)
13: g ← Gk

14: G.remove(g) . Remove the selected feature map from G
15: if tmps − Sc > ∆ then . Does adding g improve the score by more than ∆?
16: Sc ← tmps
17: Gc.append(g) . Add g to the feature map set and repeat
18: else
19: return Sc, Gc

3 Recognition analysis115

We use Algorithm 1 to recognize each concept in each given input image, and study the relation-116

ship between its recognition quality and a CNN’s scene classification accuracy. We consider an117

AlexNet (Krizhevsky et al., 2012) CNN model trained over the Places365 (Zhou et al., 2016) scene118

dataset and fine tune network weights using ADE20k (Zhou et al., 2017). We only consider the119

subset of scenes in ADE20k having at least 99 example images. We choose this subset to ensure a120

sufficient number of examples are available for CNN training and to be able to take representative121

measurements of the CNN’s ability to classifying a scene correctly. The 16 (out of the 1000+) scenes122

in ADE20k having at least 99 example images and are listed in Table 11. 60% of the images from each123

class are randomly sampled as training data during fine tuning and 40% for testing. The fine-tuned124

CNN achieves a 74.9% top-1 classification accuracy over the testing images after 30 training epochs,125

which is higher than the performance of other CNN scene classifiers (Zhou et al., 2016), but we note126

that we only test over scenes that have an abundance of images in the ADE20K’s training data.127

We then randomly choose 50 images from each class and compute how well their concepts are128

recognized by the 256 feature maps in the last convolutional layer of the CNN. This sample of129

50× 16 = 800 images feature 370 distinct concepts. To get a sense of whether a recognition score is130

relatively “low" or “high", we plot the score distribution across all concepts in the sampled images in131

Figure 4. We note that the mean recognition score is 0.315 with median 0.284, and the lower and132

upper quartiles are 0.174 and 0.429 respectively. Figure 3 illustrates the output of Algorithm 1 in a133

sampled bedroom scene. For the eight concepts annotated in this image, the binary segmentation134

1We also omit the ‘misc’ class of ADE20k as it is a catch-all for hard to describe scenes, even though it has
over 99 images.
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Figure 3: Concept recognition results for a given image
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Figure 4: Recognition score distribution
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Figure 5: Recognition quality vs CNN’s accu-
racy

mask, its label, a visualization of the sum of deconvolutions chosen by our greedy algorithm, and135

the recognition score are presented. The highest quality recognition is of the bed concept, with a136

score (0.802) well above the upper quartile of the recognition score distribution across all concepts, a137

summed deconvolution that captures texture information about the bed and the shape and patterning138

of the bed frame, and activates over few pixels that does not represent the bed concept. The chair139

concept has a lower recognition score (0.287) that happens to be close to the median of the concept140

recognition score distribution. In this case, the selected feature maps are able to recognize most parts141

of the chair, including its legs and back, but also happens to activate over some of the straight line142

and texture patterns of the wall and floor surrounding the chair. The stairs concept has the lowest143

score (0.225), caused by the feature maps’ inability to activate over all pixels of the concept and also144

activate across pixels representing the nearby concepts (wall and door).145

3.1 Recognition versus performance146

We now explore the relationship between concept recognition and CNN performance. For each scene147

and its sampled images, we compare the average recognition score of concepts within a scene’s148

images against the CNN’s average classification accuracy of the scene. Figure 5 shows only a weak149

linear relationship (Pearson’s correlation ρ = 0.187), although there are interesting observations for150
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some scenes. The two scenes with the best classification and recognition scores are skyscraper151

and mountain_snowy, which are scenes whose images include concepts that are especially em-152

blematic. For example, the mountain concept is captured well across mountain_snowy scenes153

(S̄mountain_snowy
mountain = 0.562 where S̄s

c denotes the average recognition of concept c across the sampled154

scenes of s) and concepts like skyscraper, sky, and building are identified well in skyscraper155

scenes (S̄skyscraper
sky = 0.532, S̄skyscraper

building = 0.362, S̄skyscraper
skyscraper = 0.407). airport_terminal is a156

challenging scene for the CNN to identify despite achieving high average concept recognition. This157

may be due to strong recognitions for concepts like floor and ceiling (S̄airport_terminal
floor = 0.585,158

S̄airport_terminal
ceiling = 0.559) that appear in at least 45 of the 50 sampled airport_terminal images,159

but these concepts are generic and could apply to any kind of indoor scene. Concepts better capturing160

the notion of an airport terminal are also recognized, e.g., armchair (S̄airport_terminal
armchair = 0.555) and161

shops (S̄airport_terminal
shops = 0.548), but they emerge in only one of the sampled images.162

3.2 Sparse concepts163

The airport_terminal example suggests that there may be particular types of concepts that have164

stronger or weaker relationships to a CNN’s decisions. We first consider ‘sparse’ concepts, which165

are concepts appearing in a small number of images within a scene (we quantify this notion with166

a popularity score in the sequel). Sparse concepts may not appear often enough during training167

for a CNN to learn to recognize well or to relate with a particular scene. For example, while the168

CNN is able to recognize the armchair and shops concepts in an airport_terminal well, their169

infrequency could mean the CNN does not have enough observations to establish a relationship170

between these concepts and the scene label.171

Figure 6 explores the prevalence of concepts and how well they are recognized across each of the172

16 scene classes. It illustrates that, for every class, there are a majority of concepts that emerge in173

less than 10 of the 50 images sampled from each scene. Scenes that are relatively uniform in the174

way they look, for instance skyscraper, mountain_snowy, and street scene, have fewer sparse175

concepts. Moreover, such scenes tend to have their non-sparse concepts recognized strongly by176

the CNN (reflected by the steeper slopes of the linear fits in their scatter plots). Scenes that are177

non-uniform in what they could look like, for example bedroom, hotel_room, and dining_room178

images that depict different styles and design, tend to exhibit a larger number of sparse concepts. But179

some of these sparse concepts have high recognition scores (resulting in shallower slopes of the linear180

fits in their scatter plots), suggesting that the CNN learns to recognize them. This may be because a181

sparse concept could be observed across a large number of different scenes. For example, although182

not every bedroom has a chair, one can imagine a chair to appear across a variety of different183

scenes, giving a CNN enough examples to learn to recognize this concept.184
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Figure 6: Average concept recognition (x-axis) vs. number of concept occurrences (y-axis) per scene

The figure and discussion suggest the following hypothesis: the fewer the number of sparse concepts185

present and the greater the number of well recognized non-sparse concepts appear across the images186

of a scene, the higher the chance is that the CNN can correctly identify the scene. Moreover, scenes187

whose images are dominated by a variety of sparse concepts should prove to be more challenging for188

the CNN to classify. To test this, we plot the slope of the linear fit of each scatter plot from Figure 6189

against the CNN’s accuracy for each scene in Figure 7. The moderate linear relationship (Pearson’s190

ρ = 0.444) suggests that many non-sparse, well recognized concepts are associated with correct191

CNN decisions, lending support for the hypothesis.192

6



5 10 15 20 25 30 35 40 45 50
Slope of Concept Recognition vs Popularity

0.0

0.2

0.4

0.6

0.8

1.0

S
ce

n
e
 C

la
ss

if
ic

a
ti

o
n
 A

cc
u
ra

cy

Figure 7: Slope of sparse concept recognition
(Figure 6) vs CNN’s accuracy
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Figure 8: Uniqueness score distribution

3.3 Unique and misleading concepts193

We now investigate non-sparse concepts further. Intuitively, non-sparse concepts may have greater194

benefit to correct CNN decisions if they appear across a smaller number of different types of scenes.195

For example, concepts like sand and shell may be present in many beach scenes, are closely196

associated with the notion of beach, and are unlikely to appear in other types of scenes. Thus,197

high quality recognition of sand and shell concepts would help a CNN to classify beach scenes198

correctly. On the other hand, non-sparse concepts emerging across a variety of scenes may be less199

helpful. For example, since we expect most images of indoor scenes to include concepts like wall,200

floor, or ceiling, their recognition may not help a CNN differentiate between different indoor201

scenes. In fact, these recognitions may be of limited help in the best case and could confuse or202

mislead a CNN to make a wrong classification in the worst case.203

To explore these ideas, we compute a uniqueness score of a concept that reflects the variety of scenes204

it appears in. The uniqueness U(c) of a concept c is calculated as:205

U(c) = 1− # of scene classes c appears
# of scene classes

Figure 8 gives the distribution of the uniqueness scores of each concept. It is skewed, with its average206

uniqueness score at 0.845. 210 of the 370 concepts appear in only one scene class, although many of207

these concepts are likely to be sparse. Following the fact that many of the scenes used in our analysis208

(listed in Table 1) are indoors, concepts with the least unique scores pertain to generic aspects of a209

room. For example, the concepts having the three lowest uniqueness scores are U(wall) = 0.063,210

U(floor) = 0.25, and U(door) = U(plant) = U(window) = U(ceiling) = U(picture) =211

0.3125.212

We hypothesize that the recognition of unique concepts helps a CNN make correct classifications,213

and that concepts with low uniqueness scores may ‘mislead’ a CNN. We evaluate this hypothesis by214

comparing the CNN’s classification accuracy to the average recognition score calculated on “unique"215

concepts and “misleading” concepts respectively. A concept c is labeled as “unique" if its uniqueness216

score U(c) > α for a uniqueness threshold α. However, we recall from Figure 6 that a number of217

unique concepts are likely to be ‘sparse’, thus hindering classification accuracy (Figure 7). We thus218

filter away sparse concepts by defining a popularity score P (c) with respect to some scene by:219

P (c) =
# of images c appears in a scene class

# of images sampled from a scene class

and only consider concepts whose P (c) > β for a popularity threshold β.220

We then compute Pearson’s correlation coefficient ρ between the CNN’s accuracy over each scene221

class against the average recognition score on “unique” and “misleading” concepts respectively for222
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Figure 9: Heatmap for PCC calculated upon “unique” concept, “misleading” concept, and “synthe-
sized” of unique and misleading concepts using different thresholds.

various values of α and β. Figure 9 presents ρ over a grid of the two thresholds, varying their values223

in increments of 0.05 between 0 and 1. The left heatmap shows ρ when only unique concepts are224

considered. Most of the area shows a positive relationship between the unique concepts recognition225

quality and CNN accuracy. Larger uniqueness and popularity thresholds α and β, making the set of226

unique concepts even smaller, lead to an even stronger relationship. Note that there is no concept227

having U(c) ≥ 0.95, causing empty cells in the right most two columns. The middle heatmap only228

considers misleading concepts. The shaded blue areas indicate a negative relationship between the229

misleading concepts recognition quality and the model performance. For most valid settings of β,230

when U(c) < 0.7, there exists a moderate strong negative correlation. This provides some evidence231

that the recognition of misleading concepts, e.g. those concepts appearing across many different232

scene types, may be hindering a CNN’s ability to classify scenes correctly. The right heatmap reports233

ρ using a “synthesized” average concept recognition score, which is defined for each scene class by234

Ssyn = (Sunique+1.0−Smislead)/2 where Sunique is the average concept recognition score over the unique235

concepts and Smislead is the same but over misleading concepts. This synthetic score unifies the results236

from the unique and misleading heatmaps together in search of threshold settings that maximize ρ over237

unique concepts and minimize ρ over misleading concepts. We find the highest positive correlation238

of ρ = 0.521 using the synthetic scores when β = 0.4 and α = 0.55. At these thresholds, we find239

ρ = 0.454; (p = 0.078) over the unique concepts and ρ = −0.528; (p = 0.036) on the misleading240

concepts. The p-values for these correlation scores, computed over n = 16 classes, indicate a241

significant negative correlation between misleading concept recognition and CNN’s accuracy, and a242

moderate positive correlation between unique concept recognition and CNN’s accuracy.243

4 Conclusions and future work244

This paper investigated the relationship between a CNN’s recognition of input concepts and clas-245

sification accuracy. A novel approach was developed to quantify how well a concept (specifically,246

an object in an image) is recognized across the latest convolutional layer of a CNN. Analysis using247

image object annotations in the ADE20k scene dataset revealed a weak relationship between the248

average recognition of image concepts in a scene and classification accuracy. We found evidence249

to suggest that the relationship is hindered by recognized concepts that are “sparse”, or appear in a250

small number of images of a scene and by “misleading” concepts that appear in many images across251

many different scenes. Recognizing “unique” concepts, which appear often but in a limited set of252

scenes, is moderately positively correlated with the CNN’s classification accuracy.253

Future work will study the effects of “unique”, “misleading”, and “sparse” concepts in more detail.254

In particular, we will investigate common misclassifications for a scene and seek explanations by the255

recognized concepts that are (not) common between them. For example, there may be many common256

“misleading” concepts between a scene’s labeled class and predicted class, or it could be the case257

that “sparse” concepts that are semantically similar are present. We will study the effect of “sparse”258

concepts on CNN classification via their occlusion in an image. We will also explore the mechanics259

of how concept recognitions impact downstream network activations leading to a decision and devise260

a measure of the importance of concept recognition to CNN decision making.261
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