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Abstract. Ontology alignment, a critical process in the Semantic Web
for detecting relationships between different ontologies, has traditionally
focused on identifying so-called “simple” 1-to-1 relationships through
class labels and properties comparison. The more practically useful ex-
ploration of more complex alignments remains a hard problem to auto-
mate, and as such is largely underexplored, i.e. in application practice
it is usually done manually by ontology and domain experts. Recently,
the surge in Natural Language Processing (NLP) capabilities, driven by
advancements in Large Language Models (LLMs), presents new oppor-
tunities for enhancing ontology engineering practices, including ontology
alignment tasks. This paper investigates the application of LLM tech-
nologies to tackle the complex ontology alignment challenge. Leverag-
ing a prompt-based approach and integrating rich ontology content –
so-called modules – our work constitutes a significant advance towards
automating the complex alignment task.
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1 Introduction

Ontology alignment (sometimes called ontology matching) [8] is the task of es-
tablishing mappings between different ontologies, and as a research field it is
concerned with ways to automate or at least semi-automate this task. For those
not familiar with the field: Ontologies, which are usually knowledge bases ex-
pressed using Description Logics [12] (including the W3C Web Ontology Lan-
guage – OWL – standard [22]) in this case act as a type of data schema for data
expressed as knowledge graphs [11], i.e. the establishing of mappings between
ontologies is central for schema-based data integration purposes.

Ontology alignment has been studied for over two decades, resulting in the
development of many alignment approaches and systems. The majority of these
systems are designed to detect only so-called “simple” 1-to-1 mappings between
ontologies, primarily by establishing equivalence relationships between classes
(unary predicates), or between properties (binary relationships); for example,
one ontology may have a class called “Person” while another may have a class
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called “Human”, and an ontology alignment mapping may state that these two
classes are in fact equivalent. It has long been recognized in the Semantic Web
and Ontologies community that such simple mappings are helpful but ultimately
insufficient for data integration task, for which mappings would need to be in the
form of complex mapping rules3, that can be expressed, e.g., as Datalog rules.
However, detecting complex alignments between ontologies remains a very chal-
lenging and thus largely unexplored area with only few contributions that made
progress in restricted settings (see Section 2). In current practice, establishing
complex alignments between two or more ontologies requires domain experts to
collaborate and manually generate the alignments, and this is usually a very
work-intensive and thus expensive task. Any automation or semi-automation
would have significant added value.

The Ontology Alignment Evaluation Initiative (OAEI)4 is a long-standing
coordinated international effort aimed at improving and evaluating ontology
alignment and coreference resolution technologies.5 It organizes annual evalua-
tion campaigns [20] that provide a controlled environment where participants
can test their ontology alignment systems using various benchmark tests. The
benchmarks cover a range of complexity levels and real-world scenarios, aiming
to simulate different aspects of the ontology alignment process.

With significant advancements in the natural language processing (NLP) and
natural language understanding (NLU) fields, spurred by Large Language Mod-
els (LLMs), it has become possible to extract meanings from text and reason
about it more effectively. OpenAI6 has been at the forefront of this research, de-
veloping the Generative Pre-trained Transformer (GPT) series of models, which
have attracted considerable attention from researchers, developers, and users.
One of the most notable models, introduced in March 2022, was GPT-4 [1]. This
transformer-based model is designed to predict the next token in generating text
and has shown improvements in producing results that more closely align with
user intent compared to its predecessor, GPT-3.5, on 70.2% of the prompts.7

Recent advancements in applying Large Language Models (LLMs) to Se-
mantic Web and ontology engineering tasks have shown promising results, due
to the importance of NLP for such tasks. A notable study [10] demonstrated the
effectiveness of zero-shot and few-shot prompting with LLMs on various tasks
within the Ontology Alignment Evaluation Initiative (OAEI), highlighting their
potential in this area. The study was restricted to simple alignments. Indeed,
as we will see later, a straightforward tasking of LLMs with the production of
complex alignments does not quite work.

3 See Section 4 for an example.
4 http://oaei.ontologymatching.org/
5 Co-reference resolution is about establishing equivalence and non-equivalence map-
pings between individuals, or constants, a related but different task of similar prac-
tical importance.

6 https://openai.com
7 See OpenAI: Introducing ChatGPT, 2022, https://openai.com/blog/chatgpt
and Greg Brockman, Peter Welinder, Mira Murati, and OpenAI, 2020,
https://openai.com/blog/openai-api.
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One of the difficulties with ontology alignment is that ontologies often tend
to be underspecified and with little internal structure that may add some self-
explainability. This can be seen for example by the considerable disagreement
between humans as to “correct” alignments, even for the simple alignment task
[6]. It has been posited that additional internal structure, e.g. in the form of
conceptual ”ontology modules” should aid with ontology engineering tasks that
are hard to automate [23]. Following this hitherto merely conceptual argument,
we made use of ontology modules in our approach to generate complex align-
ments, and as we will report below, our prompt-based approach for discovering
complex alignments between ontologies yields significantly better results when
richer content in the form of ontology modules is available.

Since ontologies are knowledge bases expressed using formal logic, and map-
ping rules are also expressed using formal logic and processed as such, ontology
alignment is a key symbolic task that we are here addressing usine ”neural”
means (i.e. LLMs as artificial neural networks), as such contributing to the body
of approaches and methods for neural-symbolic learning and reasoning [13].

The structure of this paper is as follows: Section 2 reviews past research and
the current state-of-the-art methods in complex alignment. Section 3 outlines
the methodologies and approaches we utilized to experiment with an effective
prompt-based method for discovering complex alignments. The evaluation of our
approach and the specifics of prompt tailoring are discussed in Sections 4 and 5,
respectively.

2 Related Work

In the semantic web domain, ontology alignment is crucial to discerning corre-
spondences between concepts and properties across various ontologies. It involves
two primary types of matching: simple and complex alignment [24]. Simple align-
ment focuses on identifying 1-to-1 equivalence relationships between concepts in
two different ontologies. Complex alignment aims to match 1-to-n, n-to-1, or
m-to-n equivalence or subsumption relationships between complex expressions
in two ontologies (see e.g. [28]); the alignments are usually expressed in form
of (first-order logic) rules, description logic axioms, or similar logical or quasi-
logical notation.

Most of the work on ontology alignment is evaluated by the OAEI, an an-
nual event focusing on ontology-matching systems’ performance, starting in 2004,
with focus mostly on simple alignment. A complex alignment track was started
in 2018 because simple matching is often not sufficient to capture the rich seman-
tics needed for advanced applications using realistic ontologies. In the context
of this track, the datasets utilized throughout these years encompass Complex
Conference, Populated Complex Conference, Hydrography, GeoLink, Populated
GeoLink, Populated Enslaved, and Taxon. It should be noted, however, that
some datasets have ceased to be evaluated in recent years [2,28,20] as each track
depends on volunteers to run it.
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The GeoLink complex alignment benchmark stands out as a real-world data-
set for testing complex ontology alignment; using real-world datasets like Ge-
oLink for testing tasks such as ontology alignment is crucial as it reflects the
complexities of practical applications, helps validate the robustness and versa-
tility of ontology alignment algorithms, and ensures their effectiveness beyond
synthetic ones. It contains two ontologies, the GeoLink Base Ontology (GBO)
and the GeoLink Modular Ontology (GMO). These are paired with a reference
alignment created with help from domain specialists [28,4]. During these years,
only two or three systems registered for evaluation in this track. Evaluation
results show [3,19,18] that the systems that make use of instance data that is
shared between the two ontologies perform relatively well, with high precision
but low recall, i.e. many matches are missed. Furthermore, the availability of
shared instance data, as for this benchmarking competition, while helpful for
advancing the state of the art, is unrealistic for most practical application sce-
narios for ontology alignment: Usually, such shared data would not be availble.
The new results which we present in this paper have been obtained without tak-
ing shared instance data into consideration, which, in our opinion, constitutes a
major advance over the state of the art.

Currently, there is a plethora of reserach on applications of LLMs in a wide
variety of fields, often with significant success. In the field of ontology alignment,
[17] presents a zero-shot evaluation of ChatGPT-4 using the OAEI conference
track ontologies (consisting of small and medium sized ontologies), showing a
high recall and F1 of 0.52. Also, [9] provides a zero-shot evaluation of GPT 3.5
and Flan-T5-XXL on the OAEI Bio-ML track, and they also achieved low preci-
sion and high recall. [10] employs a comparable approach implemented in MELT,
and the candidate generation and matching processes work in collaboration with
Sentence-BERT, their evaluation has been done on some OAEI track datasets
which almost achieve high F1 scores. In [21], they present a methodology utiliz-
ing LLM-based agents for retrieval and matching processes, which they enhance
by incorporating Retrieval Augmented Generation (RAG) within their agents.
The assessment was conducted on several tracks of OAEI. The results from the
conference track indicate a high recall but low precision. The performance of the
proposed method on other tracks is relatively good. However all these results
do not go beyond simple alignment. In particular, no good results for complex
alignment benchmarks have been reported yet.

3 Complex Alignment by Large Language Model

3.1 Ontology Modules

Ontologies that are conceptually clear are inherently more reusable, primarily
because they are straightforward to comprehend from the outset. Consequently,
a primary objective in the field of ontology research is to develop ontology mod-
eling methodologies for creating ontologies with high conceptual clarity. It is a
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Fig. 1. A diagram for a Person module

fundamental assumption that adhering to well-established modeling principles
enhances the understandability and reusability of an ontology [23].

It is known that repurposing or adjusting of ontologies for new applications
often presents challenges. These challenges stem from various factors, including:
(i) mismatches in the level of detail between ontologies and the intended use-
cases, (ii) unclear concepts within the ontologies intended for reuse, (iii) the
absence and the complexity of ontology alignment practices, and (iv) the scarcity
of tools designed to facilitate ontology reuse and support the process. To tackle
these issues, the Modular Ontology Modeling (MOMo) approach was proposed
[23]. In the MOMo framework, a key feature is the creation and connection of
compact, independent modules, which offers numerous advantages. For instance,
it streamlines maintenance because changes to a single module have little to no
effect on the entire ontology. Additionally, tracking the origin of every ontology
segment back to the initial requirements becomes straightforward through the
use of module documentation or metadata.

In the Semantic Web community, the term “module” can mean many
things. In our case, it refers to a specific part of an ontology that encapsulates
a principal concept and its main features, such as a Person module capturing
details about “BirthEvent”, “PersonalInfoItem”, and “Credential” as depicted
in Figure 1. Modules serve dual roles: they are technical constructs that, on the
one hand, demarcate parts of ontologies that group related classes and their in-
teractions and, on the other hand, they do this in a way that aligns with domain
experts’ understanding. Despite potential overlaps and hierarchical structures
within them, modules organize the ontology into a network of interrelated pieces,
each mirroring the domain’s conceptual framework as understood by experts.

Modules enable a strategic approach to ontology modeling by allowing the
work to be broken down into manageable segments; initially focusing on individ-
ual modules before linking them together. This approach provides a clear way
to manage the complexities of large, cohesive ontologies by breaking down the
process into understanding individual modules and their interconnections. This
modular approach also aligns with the way domain experts conceptualize their
fields, making both the ontology and its documentation more accessible and com-
prehensible. Since each module can be easily swapped out for another—perhaps
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one that offers a different level of detail—modifications are localized, making the
entire system more adaptable [15].

In the research we present herein, we explore the impact of integrating mod-
ule information on the effectiveness of identifying complex alignments. Specifi-
cally, we include descriptions, Core Axioms (where applicable), and Alignment
information as outlined in the GeoLink Core Ontology Design Patterns [14] that
constitute the GeoLink Modular Ontology (GMO), that had been developed
as an integrated schema for combining several large-scale ocean science data
repositories [7]. As we will see further below, the utilization of additional mod-
ule information is of core importance in order to solve the complex alignment
problem, in our setting.

3.2 Design of the Prompting Process

Tailoring an LLM for specific tasks can be achieved either by fine-tuning the
model with select data or by using prompts for in-context learning. Fine-tuning
requires significant computational resources and expertise, which may not be
feasible for all users or organizations. Moreover, it risks over-fitting the model
to the training data, potentially diminishing its ability to generalize to other
tasks. In contrast, employing various prompting techniques on a fixed LLM is
more resource-efficient, requiring less computational power, time, and expertise.
Additionally, prompts allow for the flexible and on-the-fly adaptation of the
model to a wide range of tasks by applying different prompting techniques [16].

Prompt engineering is increasingly vital for enhancing the performance of
large language models (LLMs) across a wide range of tasks. These models have
shown impressive capabilities using zero-shot prompts, where they generate re-
sponses without prior specific training examples. However, for more complex
tasks requiring deeper reasoning, advanced prompting techniques are necessary.
Incorporating context into prompts significantly improves model performance.
Techniques such as few-shot prompting, where the model is given a few examples
to learn from, or chain-of-thought prompting, which guides the model through
a series of reasoning steps, are particularly effective in enhancing the model’s
understanding and response accuracy [26].

There is a range of task-agnostic prompting techniques available for use with
large language models.8 These include:

– Zero-shot prompting: This technique involves providing a single, natural lan-
guage description of the task at inference time, without any prior examples.

– Few-shot prompting: This approach includes giving the model a few exam-
ples of the task, complete with context and successful outcomes, to guide its
understanding and responses [5].

– Chain-of-thought prompting: This method involves supplying the model with
a series of thought process examples, helping it to navigate through reasoning
steps to arrive at a conclusion [25].

8 https://www.promptingguide.ai/techniques
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These techniques enable large language models to adapt and respond to a
wide variety of tasks with varying levels of guidance and specificity.

Fig. 2. Prompting work-
flow

Figure 2 illustrates our workflow, which begins by
uploading the entire GMO file as an initial prompt.
Subsequently, we include specific entities from the sec-
ond ontology, the GBO, to inquire about their align-
ment with the GMO. If the initial prompt success-
fully provides the relevant segments, further prompts
in the chain-of-thought process are unnecessary. Oth-
erwise, we can provide a list of all GMO module names
and ask GPT to identify the most related modules for
the GBO entities. Then, in a subsequent prompt, we
supplement the inquiry with module information and
request the related segments again.

In the following section, we examine the perfor-
mance of GPT-4 in response to various entities, modules, and prompts it pro-
cesses.

4 Evaluation

For the evaluation of our methodology, we employ the GeoLink Complex Align-
ment dataset previously detailed in Zhou et al., 2018 [27]. This dataset comprises
109 complex alignment rules between GMO and GBO, each of which has been
thoroughly analyzed to test our hypothesis. Detailed findings from this study,
including both the prompts used and the responses obtained, are available on-
line.9

4.1 Prompting and Detailed Example

OpenAI’s functionality includes the ability to load a prompt from a file, trigger-
ing backend processing to parse the uploaded data. We uploaded the entire GMO
ontology RDF file in turtle (.ttl) format. OpenAI GPT-4 parsed the data, albeit
with some latency, prompting a request for more specific tasks to be directed to
it (Figure 3).

The complex alignment rule we are targeting in this example is

Award(x) ∧ hasCoPrincipalInvestigator(x, z) ↔
FundingAward(x) ∧ providesAgentRole(x, y) (1)

∧ CoPrincipalInvestigatorRole(y) ∧ performedBy(y, z)

where GBO entities hasCoPrincipalInvestigator (a relation or binary
predicate or so-called object property) and Award (a class or unary predicate)

9 https://daselab.cs.ksu.edu/publications/alignment-rules-gbo-gmo
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Fig. 3. Uploading GMO.ttl file as prompt.

can be found on the left-hand side, and the GMO entities on the right-hand side.
This is an example of a complex alignment rule expressed in first-order predi-
cate logic and our objective is to assess the effectiveness of detecting complex
alignments by prompting GPT-4.

After uploading the GMO, we extract the GBO entities found on the left-
hand side of the complex alignment rule (i.e., “Award” and “hasCoPrincipal-
Investigator”) from the GBO RDF file in its original format. For our example,
this looks as follows.

### http://gbo#Award

main:Award rdf:type owl:Class ;

rdfs:comment "Funding provided by an Organization

enabling Participation.";

rdfs:label "Award" .

### http://gbo#hasCoPrincipalInvestigator

main:hasCoPrincipalInvestigator rdf:type owl:ObjectProperty ;

owl:inverseOf main:isCoPrincipalInvestigatorOf ;

rdfs:domain [ rdf:type owl:Class ;

owl:unionOf ( main:Award

main:Program

)

] ;

rdfs:range main:Person ;

rdfs:label "hasCoPrincipalInvestigator" .

Next, our prompt instructs GPT-4 to examine the components in GMO that
are associated with these elements in GBO, as depicted in Figure 4.

What we observed from GPT-4’s responses in this step is often not a com-
prehensive answer. Many times, it explicitly states that It appears there were
no results found in the ontology file “gmo.ttl” directly related to the terms you
mentioned from the ”GBO” ontology, such as “Award”, “hasCoPrincipalInves-
tigator”, “Person”, “Program”, or “isCoPrincipalInvestigatorOf”. GPT-4 typ-
ically continues its response with further inquiries such as To proceed, I can
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Fig. 4. GBO-related instruction and question in prompt

manually examine the “gmo.ttl” file to identify any related concepts or proper-
ties that might align with those in the “GBO” ontology. This process involves
looking for classes or properties that serve similar purposes or are conceptually
related, even if they are not directly named the same. Would you like me to per-
form this manual examination, or is there another way I can assist you with
these ontologies?

Our consistent response to this question has always been “Yes”, and the
typical output we received from GPT is illustrated in Fig 5. As depicted, the
LLM successfully identifies a similar entity to gbo#Award, which in GMO
is gmo#AwardAmount (highlighted in green). However, it struggles to con-
duct further analysis to identify alignments in GMO related to the relation-
ship between “Award” and “hasCoPrincipalInvestigator” in GBO. Rather, it
attempts to generate random information about recently detected entities such
as “FundingAward”, which hypothetically arises from its next-word-prediction
logic (highlighted in yellow). However, the remaining generated information, such
as “gmo#Program” (highlighted in red), is not relevant to this component in
GBO. Ultimately, it states that There were no direct matches found for hasCo-
PrincipalInvestigator or isCoPrincipalInvestigatorOf in the GMO ontology.

We also attempted zero-shot prompting at this stage, combining both the
GMO file and the second prompt into a single input to GPT-4. This approach
resulted in increased latency and a confused response.

Our conclusion from this analysis is that GPT-4 failed to detect the com-
plex alignment between the two ontologies. Instead, it provided partially related
objects, including random information about different unrelated entity classes.
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Fig. 5. GPT-4 response to our initial question

Fig. 6. Prompt for module name suggestion
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To proceed, let us revisit the GMO modules discussed in Section 3.1. The
documentation [14] contains an informal description of the modules (in the doc-
umentation called patterns) in the GMO ontology, accompanied by visual depic-
tions of these patterns. In the ongoing chain-of-thoughts prompting processes,
we included the module names and asked for the most relevant module names
related to the GBO pieces, as shown in Figure 6. The result of this prompt is
usually a single module or a list of suggested modules based on the information
that the GPT has processed through the chain of prompts. In the next prompt,
we included the descriptions of the suggested modules along with the question,
as illustrated in the prompt below.

you couldn’t give me all the pieces I need in GMO. here is more info that

can help: The Funding Award pattern describes the funding awards that

fund all kinds of ocean science research activities. We use the

isFundedBy property to connect anything to a funding award if the funding

award funds it. Each funding award has exactly one starting and ending

date (aligned with time:Instant). It provides at most one award amount,

which is described via a pair of decimal value and currency code. The

currency code is not specified here, but existing standards can be used,

e.g., ISO 4217. There may be people or organizations that have a role

in a funding award. This is modeled by re-using (and aligning with) the

Agent Role pattern. In this version, we include the following types of

agent-roles, represented as classes: SponsorRole,

AgencyProgramManagerRole, PrincipalInvestigatorRole, and

CoPrincipalInvestigatorRole. Additional roles are possible in the future

versions. Each funding award is described by an InformationObject,

which when aligned to the Information Object pattern, allows one to

represent additional information such as identifier, description, etc.

ObjectProperty: isFundedBy

ObjectProperty: startsOnDate

ObjectProperty: endsOnDate

ObjectProperty: isDescribedBy

ObjectProperty: providesAgentRole

ObjectProperty: isPerformedBy

ObjectProperty: hasAwardAmount

ObjectProperty: hasCurrencyCode

DataProperty: hasCurrencyValue

Class: FundingAward

Class: Agent

Class: TimeInstant

Class: AgentRole

Class: SponsorRole

Class: PrincipalInvestigatorRole

Class: CoPrincipalInvestigatorRole

Class: AgencyProgramManagerRole

Class: InformationObject

Class: AwardAmount

Class: CurrencyCode
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Fig. 7. GPT-4 response to our question with Module information included

By evaluating the outcome (see Fig. 7) of the prompt, it is evident that
GPT-4 has a more informed and precise approach to conducting investigations
and identifying semantically related components if it has the module information
available. GPT-4 identifies all components related to the GMO as outlined in
the alignment rule mentioned above. It further elaborates on each component
and explains their interconnections. The full evaluation data of our study over
all complex alignment rules is available online.10

Impact of few-shot vs chain-of-thought: Comparing few-shot and chain-
of-thought approaches, we noted the differences between providing information
in a single zero-shot prompt versus delivering it in a series of prompts. GPT
tends to become confused about the question and the relevant information it
needs to process in a zero-shot scenario. In contrast, introducing the prompt

10 https://github.com/reddraa/complex_ontology_alignment

https://github.com/reddraa/complex_ontology_alignment
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as part of a sequential chain of information clarifies the data pieces and their
meanings for the model.

Impact of adding modules to the prompt: We observed that while
GPT-4 nearly grasps the query regarding the relevant components needed to
fulfill the rule, it typically identifies only 10-20% of the required elements if
no module information is given. However, if details about the module in the
GMO are presented in a single prompt before posing the question again, GPT-4
is significantly more effective, clearly identifying the majority of the targeted
components.

4.2 Quantitative Evaluation

To assess the effectiveness of our approach, we identified key entities within our
complex alignment rules to serve as the basis for our metrics. As illustrated in
Figure 7, the entities detected as relevant by GPT-4 include FundingAwards(z),
providesAgentRole(x,y), CoPrinciplaInvestigatorRole(y), isPerformedBy(y,z). It
is important to note that response formats may vary, hence each response might
be unique. We employed two key performance metrics: recall and precision. Re-
call, defined as the ratio of detected GMO-related instances to the total number
of expected instances, evaluates our study’s ability to identify all relevant GMO
pieces comprehensively. Precision, on the other hand, measures the accuracy of
our detection process by calculating the proportion of correctly identified GMO
pieces out of all the instances flagged in our findings. Together, these metrics
provide a holistic view of our study’s identification capability, striking a balance
between thoroughness and accuracy in detecting GMO-related instances of a
complex alignment rule. The well-known definitions are as follows.

Recall =
Number of Correctly Detected Pieces

Total Number of GMO Pieces in Complex Alignment

Precision =
Number of Correctly Detected Pieces

Total Number of Detected Pieces

According to Table 1, in the study presented in the paper, an analysis of 109
complex alignment rules was conducted. The findings revealed that in only 4.5%
of these alignments, GMO components were identified solely through the use
of GBO entities (i.e., not using module information). Both identified complex
alignment pieces, without the module, are actually simple 1 : 1 mappings, e.g.,
Program(x) ↔ Program(x), where ’Program’ is an existing class in both the
GMO and GBO ontology. However, in over 95% of the cases, the identification
of GMO components was achieved through the application of information from
the GMO module information, highlighting its significant role in the detection
process.

In assessing GPT-4’s performance on entity detection in the complex align-
ment, we analyzed the example alignment mentioned earlier in this paper. We
compared the alignment pieces returned by GPT-4, shown in Figure 7 for our
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Table 1. Distribution of successful approaches for detecting complex alignment rules

detected pieces without module Information 5

detected pieces with module Information 104

total number of complex alignment rules 109

running example based on rule (1), with four corresponding entities defined
in the GMO ontology’s alignment rule, i.e., FundingAward(x), providesAgent-
Role(x,y), CoPrincipalInvestigatorRole(y), performedBy(y,z). Note that we did
not assess the actual return of alignment rules, but rather whether the relevant
pieces (predicates) were detected. While the detection (without actual compo-
sition of the pieces into a rule) constitutes a simpler task than producing the
rules, it nevertheless captures the core difficulty for complex ontology alignment.
In fact, if the pieces are correct, the actual rule can easily be assembled by a
human (or, in many cases, by a symbolic algorithm based on the ontology and
example data).

In evaluating recall (coverage) in this setting, we found that all four expected
GMO entities were accurately identified by GPT-4 for our running example,
yielding a recall of 1.0 in this case. Additionally, for precision, we examined the
entities returned by GPT-4 and found that aside from the four correct GMO
entities, no irrelevant entities were detected, also resulting in a precision of 1.0.
This indicates perfect alignment detection by GPT-4 in this instance. To further
clarify the evaluation of recall, consider that if the prompt response from GPT-4
had included additional entities such as “Event” or “Place” which were not part
of the expected entities, it would have negatively impacted the precision. These
extraneous entities, not being included in the set of expected results, would
reduce the precision as they represent incorrect identifications according to the
specified alignment rule. In practical terms, the return of (in particular, many)
superfluous entities by the system would make assembly of the actual rule by a
human more difficult.

In Table 2 we see that for 73.3% of the complex alignment rules evaluated,
the recall value exceeded 0.5. This indicates that more than half of the GMO
entities involved in a complex alignment rule were successfully detected for this
ratio in our population. Furthermore, the recall value surpasses 0.75 for approx-
imately 62.3% of these rules, signifying a higher accuracy in detection. It’s also
noteworthy that for 45% of the alignment rules recall is a perfect 1.0, and for
45.8% precision is also 1.0, because of the integration of module information in
the analysis process.

The precision metric indicates the accuracy of the responses in directing us
toward expected entities within the GMO ontology. Our analysis found that re-
sponses achieved a precision higher than 0.75 for 59.6% of the evaluated records.
Additionally, when the precision threshold is lowered to 0.5—implying that half
of the entities suggested by the language model are the expected ones, while the
other half may include relevant or irrelevant entities—the coverage of alignment
rules increases to 69.7%.
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Table 2. Recall and Precision for detected GMO entities using module information

Recall Precision
≥ 0.5 ≥ 0.75 = 1 ≥ 0.5 ≥ 0.75 = 1

with Module Information 73.3% 62.3% 45.0% 69.7% 59.6% 45.8%

mean 0.67 0.67

median 0.75 0.80

standard deviation 0.37 0.37

Note that detection (recall) of half or more of the correct body predicates,
paired with high precision, is already very helpful for human assembly of a rule.

The recall data exhibits a mean of 0.67 and a median of 0.75, indicating that
half of the recall values exceed 0.75, while the other half fall below this threshold.
This distribution highlights that the majority of our data points demonstrate
recall values above 0.75, offering insight into the central tendency of our dataset.
Similarly, for precision, both the median and mean values suggest promising
results, with at least 50% of the records achieving a precision greater than 0.8.
This underscores a generally reliable level of accuracy in the data.

We close the discussion with a number of additional more detailed observa-
tions.

– Type and Class Type alignments: An intriguing insight from the analysis
of complex alignment rules is the difficulty encountered with Type or Class
alignment. This process frequently falls short in identifying pertinent align-
ments. A case in point is the alignment where GeoFeatureType(x) in GBO
transitions to rdfs:subClassOf(x, Place) in GMO. In such instances, the GMO
ontology attempts to consolidate individual classes into types or subclasses.
Nonetheless, the absence of this specific information in the GMO’s module
data impedes the language model’s (LLM) ability to accurately discern these
sophisticated alignments, resulting in the provision of erroneous information.

– Rich Modules, Improved Discovery: Another observation is that modules en-
riched with detailed descriptions, core axioms or alignments, as discussed in
the referenced paper [15], depict significantly higher accuracy in discovery.
Specifically, modules that offer comprehensive information facilitate better
recall and precision rates. For example, the Cruise() entity, which involves
approximately 18 complex alignment rules, demonstrates an impressive aver-
age recall rate of 0.93. This indicates that the depth of information provided
directly influences the effectiveness of discovery processes.

5 Discussion and Future Work

The quantitative results we have just presented indicate that our setting—i.e.,
under inclusion of module information—produces high precision and recall values
in many cases. Our results demonstrate a significant improvement compared
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to this baseline. While, absolutely speaking, the quantitative results are still
moderate, we are in fact presenting the very first reasonably working approach
for generating complex alignments that does not require shared individuals; as
noted, shared individuals are far from a realistic setting in practice. In the latest
evaluation of the participating systems in the OAEI complex alignment track,
which was in 2021, most systems failed to detect any m:n complex alignments.11

Only two systems procuded complex alignments,12 but they required instance
data. As such our contribution shows a path forward towards complex alignment
in realistic settings, a challenge that had so far eluded researchers.

For our approach to work, we provided the LLM with module information,
following the previously presented arguments that (1) ontologies without addi-
tional internal structure or meaningful additional information are often too am-
biguous for automated complex alignment tasks, (2) module identification during
the ontology design process can easily be provided by the ontology modelers at
least as part of the documentation (while doing so post-hoc, by others, requires
major efforts), and (3) providing such module information as part of ontologies
(and/or their documentations) would likely significantly decrease the effort and
cost of many ontology engineering tasks, including complex alignment [23]. As
such, this is also a (repeated) call for improving ontology modeling methods to
additionally provide module structure.

While our results, as presented, are very encouraging, substantial future in-
vestigations will be required to cast them into an ontology alignment system that
can work autonomously at high precision. Intermediate steps could constitute
human-in-the-loop approaches where a human ontology engineer receives sugges-
tions from an LLM, e.g., as to the relevant modules for a question, post-processes
the LLM responses by manually checking the small number of suggestions, and
feeding the correct suggestions back to the LLM for obtaining more complete
responses. This is in line with the idea of an assisting system that limits the
number of checks for the human, as opposed to the vast number of potential
checks that would have to be done manually without such a limiting system.

In the future, we also intend to extend out approach to additional datasets
featuring complex alignments for both evaluation and analytical objectives. Fur-
thermore, we aim to explore alternative representations of modules to LLMs
and evaluate the model’s performance with these variations. Fine-tuning exist-
ing LLMs, but also the integration of additional symbolic data or algorithms,
e.g. pertaining to logical axioms that come with well-designed ontologies, and
also the integration of traditional simple alignment algorithms to further assist
with the complex alignment task are all on our path forward.

6 Conclusion

We have presented the very first approach that is able to achieve good accuracy
for complex ontology alignment without relying on shared individuals. The sys-

11 https://oaei.ontologymatching.org/2021/results/complex/geolink/index.html
12 https://oaei.ontologymatching.org/2021/results/complex/popgeolink/index.html



Towards Complex Ontology Alignment using Large Language Models 17

tem is neural-symbolic in its nature as it addresses a symbolic task (complex
ontology alignment), the output of which are alignment rules expressed in some
logic, it furthermore makes decisive use of additional symbolic input in the form
of ontology modules, and it uses an LLM as core processing engine. Our results
suggest that further work bear the promise to result in strong complex ontology
alignment systems, for ontologies that carry sufficient internal structure.
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Oktie Hassanzadeh, and Cássia Trojahn, editors, Proceedings of the 14th Interna-
tional Workshop on Ontology Matching co-located with the 18th International Se-
mantic Web Conference (ISWC 2019), Auckland, New Zealand, October 26, 2019,
volume 2536 of CEUR Workshop Proceedings, pages 46–85. CEUR-WS.org, 2019.

4. Reihaneh Amini, Lu Zhou, and Pascal Hitzler. Geolink cruises: A non-synthetic
benchmark for co-reference resolution on knowledge graphs. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management,
pages 2959–2966, 2020.

5. Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information pro-
cessing systems, 33:1877–1901, 2020.

6. Michelle Cheatham and Pascal Hitzler. Conference v2. 0: An uncertain version of
the oaei conference benchmark. In The Semantic Web–ISWC 2014: 13th Inter-
national Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.
Proceedings, Part II 13, pages 33–48. Springer, 2014.

7. Michelle Cheatham, Adila Krisnadhi, Reihaneh Amini, Pascal Hitzler, Krzysztof
Janowicz, Adam Shepherd, Tom Narock, Matt Jones, and Peng Ji. The geolink
knowledge graph. Big Earth Data, 2(2):131–143, 2018.
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