
Pseudo-Random ALC Syntax Generation

Aaron Eberhart, Michelle Cheatham, and Pascal Hitzler

DaSe Lab, Wright State University, Dayton OH 45435, USA,
aaron.eberhart@gmail.com,{michelle.cheatham, pascal.hitzler}@wright.edu

Abstract. We discuss a tool capable of rapidly generating pseudo-random
syntactically valid ALC expression trees [1]. The program is meant to al-
low a researcher to create large sets of independently valid expressions
with a minimum of personal bias for experimentation.

Manually providing sufficient unique expressions for testing in the devel-
opment of a semantic reasoning application is both very time-consuming and
potentially unscientific. For this reason, we have developed an integrated gener-
ator for creating syntactically correct ALC expressions. The random nature of
this process precludes the possibility of generating any meaningful semantic in-
formation. However, expressions obtained from our tool are more than sufficient
to serve as test cases necessary to validate the basic functionality of a reasoning
application. In this paper we will describe the problem that the application is
designed to solve, briefly touching on some of the logics. Next we discuss some
of the features unique to our implementation and the design trade-offs involved.
Finally, we will contextualize our work within current and possible future devel-
opments, then close with relevant technical information.

Problem Usually the end goal of a reasoning application is to produce a system
with semantic capabilities. The testing required to validate such a system is,
however, mostly a response to purely syntactical questions. Does the application
recognize and handle correct and incorrect forms of input? How do we define
a valid input? Is there any significant potential for human-error affecting the
results? These are problems that this project address. Devised as a solution to
the first question, the expression generator is a way to bypass potential pitfalls
in an intricate reasoning process by artificially creating only correct inputs. By
restricting our domain to ALC we are able to explicitly define the sorts of expres-
sions that will be allowed in our application. This also provides us with the basic
logical framework for how the generator should run and the types of expressions
it produces. If the application works properly, it should always only generate
valid ALC expressions to feed into the reasoner. It is similarly important that,
in addition to soundness, the generator be functionally complete over the set of
all valid ALC expressions. In an empirical setting this is often the more difficult
test, so we have endeavored to allow an output range as broad or specific as
an experiment requires. Though there is always some degree of human-error in
any study, it would be insufficiently rigorous for a researcher to enter in their
own formulas. The tool we present should rapidly generate many random correct
expressions and help reduce the researcher’s own bias when making test cases.



2 Eberhart, Cheatham, Hitzler

Logic The expression generator for this project is capable of building two dis-
tinct types of expression trees: one type for the TBox and one type for the
ABox. Any TBox expression tree is created by first making an atom and then
randomly choosing to expand the expression or end it. Expanding the expression
tree involves either conjunction, disjunction, negation, or quantification. Ending
a TBox expression creates either a subset or an equivalence with an unused
Concept to avoid generation of expressions that directly reference themselves.

TBox Expressions
Operation Result

New Expression C, ∃R.C, or ∀R.C
Negation ¬ {Original}

Conjunction {Original} u {New Sub-Expression}
Disjunction {Original} t {New Sub-Expression}

For All ∀R.{Original}
Exists ∃R.{Original}

Subclass C(new) v {Original}
Equivalent C(new) ≡ {Original}

For an ABox expression, either a ground atom is produced and the generator
finishes, or a TBox style expression is created and then eventually ground so
that it becomes an ABox expression. The ABox generator will not return an
expression that is not ground.

ABox Expressions
Operation Result

New Expression C(a), R(a, b), or {New TBox Expression}
Negation ¬ {Original}

Conjunction {Original} u {New Sub-Expression}
Disjunction {Original} t {New Sub-Expression}

For All ∀R.{Original}
Exists ∃R.{Original}

For All Ground ∀R.{Original} : a
Exists Ground ∃R.{Original} : a

All predicate and constant variable names are randomly assigned except for the
TBox finalizations; a, b, C, and R are only used here for convenience.

Solution A unique specialization of our program is that it separates the ex-
pression generation from any normalization concerns. This allows for extremely
rapid expression generation as well as the creation of more natural statements.
We have included methods that normalize ALC expression trees into NNF so
that a normalized copy can be obtained by someone using the program. A new
random number generator was also integrated into the program due to the Java
Random class’ tendency to create very uniform expressions. Another feature of
our program is that it contains constants that limit the types of expressions that
can be created and can be tuned for a specific experiment. These control, for



Pseudo-Random ALC Syntax Generation 3

each expression created, the number of times the generator is allowed to make
a sub-expression, the maximum quantification depth, and the maximum expres-
sion size. If their values are set very high or removed there is a possibility that
the generator will get lost in subtree creation and take much longer than desired
while building massive expressions. Some fine-tuning may be necessary to obtain
the types of expressions needed for a given experiment. Additionally we have in-
cluded a parameter that sets an upper bound on the number of arbitrary names
the generator can use for individuals, and another for Roles and Concepts. This
parameter has no effect on the overall structure of the expressions generated,
though certain ranges may be valuable for comparison to semantically gener-
ated ontologies. Methods are provided that render expressions and complete
knowledge bases into OWL functional syntax and description logic style strings
for external evaluation.

Context Our generator is similar to other methods [2][3] that create expressions
of greater expressivity. However, these strategies require much stronger require-
ments on the types of formulas produced through artificial structural limitations
that produce CNF expressions. By restricting our generator to ALC we are able
create a wider range of expressions that we feel is more appropriate for reasoner
experimentation, while still operating at high efficiency. Our program has no
specific known obstacles to expansion so that it can generate more expressive
statements, if that became necessary in the future.

Technical Information This project was written in Java 1.8 with Eclipse Oxy-
gen.1 4.7.1 build 20170914-1200. Testing was primarily performed on an Acer
Aspire R5-471T computer with Windows 10 x64 and an Intel Core i5-6200U
CPU running at 2.3GHz and 8GB of RAM. Current source code can be found
at https://github.com/aaronEberhart/Reason.er.

The generator we describe can be useful in the development and testing of
semantic reasoner experiments because it:

• Allows for relatively unbiased expression generation.
• Is optimized for the generation of ALC expressions.
• Enables quick creation of large numbers of formulas in an experiment.
• Creates only valid expressions, ensuring that tests run without problems.
• Produces syntactically diverse statements that enable thorough testing.

References

1. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: Introduction to Description Logic.
Cambridge University Press (2017)

2. Hladik, J.: A generator for description logic formulas. In: Horrocks, I., Sattler,
U., Wolter, F. (eds.) Proceedings of DL 2005. CEUR-WS (2005), available from
ceur-ws.org

3. Patel-Schneider, P.F., Sebastiani, R.: A new general method to generate random
modal formulae for testing decision procedures. CoRR abs/1106.5261 (2011), http:
//arxiv.org/abs/1106.5261

http://arxiv.org/abs/1106.5261
http://arxiv.org/abs/1106.5261

	Pseudo-Random ALC Syntax Generation

