
Efficient Reasoning Algorithms for
Fragments of Horn Description

Logics

By

DAVID CARRAL
Master’s, Wright State University, 2012

B.S., Universidad Pontificia de Salamanca, 2011

2016
Wright State University

WRIGHT STATE UNIVERSITY
SCHOOL OF GRADUATE STUDIES

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY
David Carral ENTITLED Efficient Reasoning Algorithms for Fragments of Horn Description

Logics BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF Ph.D. in Computer Science and Engineering.

Pascal Hitzler, Ph.D.
Thesis Director

Mateen Rizki, Ph.D.
Department Chair

Committee on
Final Examination

Bernardo Cuenca Grau, Ph.D.

Pascal Hitzler, Ph.D.

Krishnaprasad Thirunarayan, Ph.D.

Michael L. Raymer, Ph.D.

Robert E.W. Fyffe, Ph.D.
Dean, School of Graduate Studies

ABSTRACT

Carral, David.
Efficient Reasoning Algorithms for Fragments of Horn Description Logics.

We characterize two fragments of Horn Description Logics and we define two specialized reasoning

algorithms that effectively solve the standard reasoning tasks over each of such fragments. We believe

our work to be of general interest since (1) a rather large proportion of real-world Horn ontologies

belong to some of these two fragments and (2) the implementations based on our reasoning approach

significantly outperform state-of-the-art reasoners. Claims (1) and (2) are extensively proven via

empirically evaluation.

iii

Contents

1 Introduction 1

1.1 Broader Impact . 2

1.2 Problem Statement . 3

1.3 Structure . 3

2 An Intuitive Introduction to Description Logics 5

2.1 An Informal Introduction to DL . 6

2.1.1 Entities . 6

2.1.2 Logical Constructors . 6

2.1.3 Axioms . 8

2.1.3.1 ABox axioms . 8

2.1.3.2 TBox axioms . 9

2.1.4 Ontologies . 9

2.1.5 Reasoning Tasks . 9

3 Formal Preliminaries 11

3.1 Existential Rules . 11

3.2 Horn Description Logics . 12

3.3 The Relation between DLs and Existential Rules . 15

3.4 Axiomatizations of the Equality Predicate . 15

3.4.1 The Standard Equality Axiomatization . 16

3.4.2 Singularization . 16

3.5 The Chase Algorithm . 17

4 The RCAn Fragment of Horn DL 21

4.1 Model Faithful Acyclicity . 22

4.2 Restricted Chase Acyclicity . 23

iv

4.3 Evaluation . 27

4.3.1 An Empirical Comparison of RCAn and MFA∪ 27

4.3.2 A Materialization Based Reasoner . 28

4.4 Proofs . 31

4.4.1 Overchase and Termination . 31

4.4.2 Restricted Terms . 32

4.4.3 VT is an Overchase of T . 37

4.4.4 Complexity Results . 39

4.4.5 RCAn vs MFA∪ . 41

4.4.5.1 Claim (a): . 42

4.4.5.2 Claim (b): A term t occurs in VT only if it occurs in WT 44

5 The RSA Fragment of Horn DL 47

5.1 The Notion of Role Safety . 47

5.2 Role Safety Acyclicity . 49

5.3 Reasoning Over Acyclic Ontologies . 52

5.4 Stronger Notions of Acyclicity . 54

5.5 Related Work . 56

5.6 Proof of Concept . 57

5.7 Proofs . 58

6 Conclusions and Future Work 65

v

List of Figures

3.1 Syntax and Semantics of Axioms. In the above, A(i), B ∈ NC, R,S, V ∈ NR and

a, b ∈ NI. 14

3.2 Function π Mapping DL Axioms to Rules. In the above, A(i), B ∈ NC, R,S, V ∈ NR,

a ∈ NI ∩C and x, y, z ∈ V. 16

3.3 Rules Employed in the Axiomatization of Equality. 17

3.4 Ontology O = 〈T ,A〉, Program P(O) and the (Restricted and Oblivious) Chase of

P(O). 20

4.1 Expansion rules for the construction of VT . 26

4.2 Queries for Reactome, Uniprot, LUBM and UOBM. 45

4.3 Expansion rules for the construction of WT . 46

5.1 Example ontology O . 49

5.2 Checking acyclicity of our example ontology O. 51

5.3 Running Example: Reasoning. 52

vi

List of Tables

4.1 Results for the ORE and ODP Repositories. 29

4.2 Results for Reactome, Uniprot, LUBM and UOBM (sorted from top to bottom in the

above table). 30

5.1 Acyclicity evaluation results for ontologies outside the OWL 2 profiles. 57

vii

ACKNOWLEDGEMENTS

Amongst the many people I have had the pleasure to work with throughout these past years,

there are three without whom I would not have been able to successfully finish this doctorate degree.

The first of them is Dr. Bernardo Cuenca Grau, who has on many occasions attempted to teach me

how to clearly structure and organize ideas, an instrumental skill I still hope to pick up some day.

The second person I would like to recognize is Dr. Cristina Feier, my closest and most esteemed

collaborator thus far! Many-a-deadlines I would have missed, had you not been there to help me

out! And, last but not least, I would like to dearly thank my advisor Dr. Pascal Hitzler, who was

unfortunate enough to have to mentor me during these most melodramatic early years of my adult

life and, nevertheless, made an outstanding job out of it.

Finally, I would like to mention the other members of my dissertation committee, Dr. Krish-

naprasad Thirunarayan and Dr. Michael L. Raymer. Thank you seeing me through these last steps

of my PhD.

On the more formal side, this work was partially supported by the National Science Foundation

under award 1017225 “III: Small: TROn – Tractable Reasoning with Ontologies.” Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation. Furthermore, the author

was also partially funded by the “La Caixa” foundation fellowship for postgraduate studies.

viii

1

Introduction

On many applications, machines are primarily used to store, transmit and display information

for human consumption, but often this content is “incomprehensible” to the machines themselves.

Amongst other reasons, this is because the machines lack the necessary (and basic) necessary back-

ground to “understand” such content.

For example, if you ask the server hosting the Wikipedia page of King Hamlet “What is the

name of the uncle of Prince Hamlet?,” even if it could somehow correctly interpret the question, it

still could not produce the correct answer. This is because, such an answer is not explicitly included

in the webpage. Nevertheless, the webpage does contain (at the time of this write-up) the following

relevant pieces of information: (a) “Prince Hamlet is the son of King Hamlet” and (b) “Claudius

the brother of King Hamlet.” Upon reading (a) and (b), any human would readily ascertain the

answer of the previously poised question; namely, that (c) “Claudius is the uncle of Prince Hamlet.”

The server, lacking an “understanding” of the entities uncle, brother and father and their relation,

is unable to come up with such a conclusion.

The previous issue can be addressed making use of Description Logics (DL); a knowledge repre-

sentation family of languages which may be employed to encode information about the relationships

between a set of entities within a given domain. Using DL languages, we can encode knowledge about

a particular domain into axioms which, in turn, can be grouped into larger structures, referred to as

ontologies. After crafting such ontologies, we can employ automated reasoning algorithms to derive

implicit knowledge that follows from the explicitly stated assertions.

For example, we may use DL axioms (1.1) and (1.2) to convey facts (a) and (b), respectively.

HasFather(princeHamlet, kingHamlet) (1.1)

HasBrother(kingHamlet, claudius) (1.2)

Furthermore, to provide the machine with some kind of “understanding” of the relation between

1

1.1. BROADER IMPACT 2

the entities uncle, brother and father, we may employ the following axiom.

HasFather ◦ HasBrother v HasUncle (1.3)

Intuitively the previous axiom indicates that, if somebody has a father who has a brother, then this

brother is the uncle of that “somebody” (many more such examples will be presented in Section 2).

Axiom (4) HasUncle(princeHamlet, claudius), which can be regarded as an answer to the previously

poised query, is a conclusion of the ontology containing axioms (1.1-1.3) and can be automatically

by a machine by employing a reasoner ; i.e., an implementation of the aforementioned reasoning

algorithms.

1.1 Broader Impact

With the example provided in the previous section, we intend to instruct the reader about the

potential of knowledge representation languages. Nevertheless, this is only a toy example which

does not accurately showcase the usefulness of these technologies. We proceed thus, to elaborate

more broadly about the use of these languages in different domain applications.

The use of DL ontologies has been steadily gaining in popularity and is used in countless appli-

cation areas, such as social network analysis [Fan 2012], city data processing [Lécué et al. 2014] and

network traffic analysis [Barrett et al. 2000]. Perphaps, the most relevant and widespread application

of DL takes place within the context of the Semantic Web [Hitzler et al. 2009], an extension of the

World Wide Web where structure and meaning are provided in the hopes of making the information

in web pages understandable.

The Semantic Web is an extension of the Web through standards by the World Wide Web

Consortium which promote common data formats and exchange protocols on the Web. One of such

standards is the Web Ontology Language (OWL) which provides a computer based syntax for DL

languages. Using OWL, ontologies can be encoded in a way and manner that the information such

as the one presented in the previous section can be encoded in the content of webpages. Alas, the

use of OWL would allow use to solve the issue presented in the previous example!

As with DLs, the use of OWL allows for the automated inference of implicit information from

explicit statements. It is thus, of the utmost importance to develop efficient reasoning algorithms

which are scalable over large ontologies. In this thesis we propose the use of two of such reason-

ing algorithms which have the potential of improving the performance of many existing real-world

applications.

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

Hopefully by now, the reader is somewhat convinced of the usefulness of knowledge representa-

tion languages and automated reasoning techniques. We proceed in this section to argue why the

development of reasoning algorithms is non-trivial and challenging endeavor.

First of, note that, reasoning is over many expressive DL languages theoretically hard. In fact,

for all DL languages which which cannot be characterized within the tractable fragments; namely,

EL++[Baader et al. 2005b], DL-LiteR [Calvanese et al. 2007] and DLP [Grosof et al. 2003]; reasoning

is at least ExpTime-hard.

On this thesis, we focus on the theoretical definition and implementation of very efficient reason-

ing algorithms for customized fragments of Horn-SROIQ, a DL language with 2-ExpTimecomplexity.

Horn-SROIQ may be intuitively understood as the DL language which does not allow for the use of

non-deterministic logic constructors such as disjunction or certain forms of negation (this language

will be intuitively introduced and formally defined in Sections 2 and 3, respectively). Further-

more, our reasoning algorithms may not only be employed to solve standard reasoning tasks, such

as satisfiability or classification, but may also the more complicated problem of conjunctive query

answering.

Moreover, we would like to remark that the problem tackled in this thesis is not simply the-

oretically hard. Despite the fact that many algorithms have been formally defined in the past to

solve conjunctive query answering over DL ontologies [Stefanoni et al. 2014; Rudolph and Glimm

2014; Ortiz et al. 2011], we are not aware of any practical implementations of such procedures for

expressive fragments DL. As part of the output of this thesis, we implement two different reasoning

algorithms that are quite efficient and outperform existing state-of-the-art implementations.

As briefly mentioned in the previous paragraph, our reasoning algorithms may not be applied to

all Horn-SROIQ ontologies. Therefore, we empirically verify that many ontologies can be defined

within our newly defined fragments, which in turn validates the usefulness of our approach (more

results to that effect may be found in Sections 4 and 5).

1.3 Structure

We proceed to briefly describe the structure of this thesis which includes five more further sections.

• Section 2: In this section we informally introduce DL languages in an attempt to convey an

intuitive understanding of this standards aimed at the unexperienced reader.

• Section 3: In this section we formally define DL languages and introduce several notions used

1.3. STRUCTURE 4

in the subsequent sections of the thesis.

• Sections 4: This section formally presents the RCA fragment of Horn-SROIQ and an algorithm

to reason over RCA ontologies. Furthermore, this section includes an extensive evaluation of

the RCA fragment plus a comparison of the implementation of the reasoning algorithm agains

other reasoners.

• Section 5: This section is similar in quite similar to the previous one in terms of content, but it

considers the RSA fragment of Horn-SROIQ instead of RCA.

• Section 6 This section lists the conclusions of this thesis and elaborates about possible further

work.

2

An Intuitive Introduction to

Description Logics

Description logics (DL) is a family of knowledge representation formalisms widely used in ontological

modeling. All DL languages are fragments of first-order logic and as such, they are equipped with

a formal semantics. Thus, the use of DL enables a precise specification of the understanding of DL

logical formulas (also referred as axioms) which, apart from allowing the exchange of knowledge

without, ambiguity also enable formal deduction. Given a set of DL formulas (also referred to as an

ontology), we can employ logical deduction to infer additional information from the facts explicitly

included in such ontology. The derivation of implicitly entailed formulas from a given set of explicitly

stated axioms is often referred to as reasoning, which is a challenging and relevant task employed in

many real-world applications.

The main contribution of this thesis is the definition of two fragments of Horn DL (i.e., the

subset of DL which does not allow for the use of non-deterministic logical constructors such as

disjunction) and the presentation of two corresponding algorithms to solve reasoning tasks over

such fragments. As our main research hypothesis, we aim to empirically verify that our algorithms

significantly outperform state-of-the-art systems and that our newly defined fragments characterize

a large proportion of real-world Horn DL ontologies.

The remainder of the thesis is structured as follows. In the rest of this chapter we present

an informal introduction to DL. In the subsequent chapter we present a formal definition of DL

which also includes the definition of many preliminary notions that will be used in further sections.

Chapters 4 and 5 describe the two aforementioned fragments of Horn DL and the algorithms to

reason over each of such fragments, respectively. On the last chapter of this thesis we list our

conclusions and elaborate about possible further work.

5

2.1. AN INFORMAL INTRODUCTION TO DL 6

2.1 An Informal Introduction to DL

Along this section, we provide an informal and intuitive introduction to DL. See the following

section for a formal and precise definition of the syntax and semantics of this family of knowledge

representation languages.

2.1.1 Entities

DL languages provide means to model the relations between entities in a domain of interest. In

DL there are three kinds of entities: concepts, roles and individual names. Concepts represent sets

of individuals, roles represent binary relations between individuals and individual names represent

single individuals in the domain. Readers familiar with first-order logic will recognize these entitites

as unary predicates, binary predicates and constants.

For example, if we decide to model the domain of their family relationships, we may use concepts

such as Female to represent the set of all female individuals, respectively. Furthermore, we may use

roles such as IsParentOf to represent the (binary) relationship between parents and their children.

Finally, we may use individual names such as joe to represent the domain individual Joe (note the

distinction between “individual names;” i.e., DL entities which represent objects in the domain of

interest; and “domain individuals;” i.e., the objects in the domain of interest which these DL entities

represent).

2.1.2 Logical Constructors

Combining the use of entities with the available DL logical constructors we can create more involved

(and more useful) sets of individuals, which are referred as concept expressions. For example, we can

employ the intersection (also called conjunction) constructor to define a concept expressions such

as the following.

Female u Parent (2.1)

The previous concept expression subsumes all the domain individuals that are in the intersection

of the concepts Female and Parent; i.e., concept expression (2.1) includes a named individual if and

only if it belongs to both the Female and Parent concepts. Intuitively, concept expression (2.1)

coincides with our understanding of the idea motherhood.

Another way of constructing concept expressions is the use of role restrictions, which link concepts

and roles together. For example, making use of role restrictions we can declare concept expressions

2.1. AN INFORMAL INTRODUCTION TO DL 7

such as the following.

∃hasChild.Person (2.2)

The previous concept expression, referred to as an existential restriction, characterizes every

domain individual related to another domain individual in the class Person via the property hasChild.

Intuitively, this expression coincides with the idea of parenthood.

To represent the set of individuals all of whose children are female, we may employ universal

restrictions such as the following.

∀IsParentOf.Female (2.3)

The previous concept expression characterizes every individual in domain such that, if this indi-

vidual is connected to some other individual via role IsParentOf, then the latter is subsumed by the

class Female. Note that, such a concept also subsumes those individuals that have no children at

all. If this meaning is not intended, one can describe the individuals with some children and with

all their children being female with the following concept.

∃IsParentOf.> u ∀IsParentOf.Female (2.4)

The first operand in the conjunction indicates that this concept expression may only subsume

individuals with at least some children. Furthermore, the second operand indicates that concept

expression only subsumes individuals who only have daughters.

Functional restrictions allow us to restrict the number of individuals that be reached via a given

role.

≤ 1 IsParentOf.> (2.5)

The previous concept expression, referred to as an at-least restriction, is employed to characterize

domain individuals with at most one children.

Finally, nominals may be employed to denote classes containing a single individual.

{joe} (2.6)

The previous class expression denotes the set only containing the domain individual Joe (repre-

sented by the name individual joe).

Apart from boolean constructors, role restrictions and nominals, which are used to build concept

expressions, we can also make use role constructors to construct role expressions. For example, we

can make use of the role inverse constructor to define a role expression such as the following.

IsParentOf− (2.7)

2.1. AN INFORMAL INTRODUCTION TO DL 8

The previous role expression comprehends the inverse of the relation subsumed by the role

IsParentOf; i.e., if some individual is connected to another via IsParentOf, then the latter is connected

to the former via the role expression IsParentOf−.

Finally, we may use role chains to define relations that result from the composition of two or

more existing roles.

hasParent ◦ hasBrother (2.8)

The previous role expression subsumes pairs of individuals for which the first individual in the

pair is connected to a third individual via role hasParent which, in turn, is connected to the second

individual via role hasBrother.

2.1.3 Axioms

Concept and role expressions may be employed in the construction of axioms, which are formulas

that capture partial knowledge about the domain of interest. As customary, we separate DL axioms

into two groups: assertional or ABox axioms, and terminological or TBox axioms.

2.1.3.1 ABox axioms

Some ABox axioms, such as the following, capture knowledge the concepts to which named individ-

uals belong to.

Mother(mary) (2.9)

Male(joe) (2.10)

The previous axioms indicate that Mary –the domain individual represented by the named indi-

vidual mary– is a mother and joe –the domain individual represented by the named individual joe–

is male, respectively. ABox axioms such as (2.9) and (2.10) are referred to as concept assertions.

ABox axioms may also be used to describe relations between named individuals.

IsParentOf(mary, joe) (2.11)

SisterOf(mary,mike) (2.12)

The previous ABox axioms are referred to role assertions.

Although common sense may indicate that Mary and Joe are different individuals, this fact

does not logically follow from the previous axioms. Note that, DLs do not make the unique name

assumption (UNA), and so different named individuals may refer to the same domain individual.

2.1. AN INFORMAL INTRODUCTION TO DL 9

2.1.3.2 TBox axioms

TBox (terminological box) axioms allow us to define relations at a terminological level; i.e., rela-

tionships between concept and role expressions. For example, we may use TBox axioms such as the

following to indicate that Mother is a subclass of Parent.

Mother v Parent (2.13)

Axioms such as (2.13) are often referred to as subclass axioms.

In a similar manner, we may also use TBox axioms to enforce subclass and equivalence relations

over role expressions.

hasParent ◦ hasBrother v hasUncle (2.14)

IsMotherOf v IsParentOf (2.15)

Axioms (2.14) and (2.15) intuitively indicate the following: the composition relation resulting

from concatenating the roles hasParent and hasBrother is a subrelation of hasUncle and the role

IsMotherOf is a subrelation of the rule IsParentOf.

2.1.4 Ontologies

An ontology is a set of axioms which often satisfies some additional syntactic restrictions. Such

restrictions are dependent on the particular DL language employed and will be described at length

in the following section.

2.1.5 Reasoning Tasks

Given some ontology, the task of computing the axioms and/or answers to queries entailed by such

ontology is referred to as reasoning. There exist several different types of reasoning tasks which are

grouped as follows.

1. The standard reasoning tasks: Amongst others, these include ontology satisfiability, i.e., checking

whether an ontology entails a logical inconsistency; classification, i.e., computing all axioms of

the form A v B, where A and B are concepts, entailed by an ontology; and ABox retrieval, i.e.,

computing all ABox assertions entailed by an ontology.

2. Conjunctive query answering : This is the task of determining whether a sequence of individuals

is an answer of a conjunctive query with respect to a given ontology. A CQ is a formula such

as ∃x, z : attendsCourse(x, y) ∧ Course(y) ∧ taughtBy(y, z) ∧ supervisedBy(x, z) (intuitively, the

2.1. AN INFORMAL INTRODUCTION TO DL 10

answer of the previous query would include all pairs of students and supervisors such that the

student attends a course taught by the supervisor).

3

Formal Preliminaries

3.1 Existential Rules

Even though reasoning over programs with existential rules is not the main topic of this thesis, some

of the reasoning algorithms presented in later sections are based on this paradigm and thus, we

formally introduce it in this chapter.

Let C, F, V and P be pairwise disjoint and infinite countable sets of constants, function symbols,

variables and predicates, respectively, where every function symbol and predicate s is associated

with some arity ar(s) ≥ 1. Furthermore, >,⊥,≈ ∈ P with ar(>) = ar(⊥) = 1 and ar(≈) = 2. As

customary, we often refer to the special predicate ≈ as the equality predicate.

The set of terms T ⊇ C ∪ V is the minimal set such that, for every function symbol f with

ar(f) = n and every sequence of terms t1, . . . , tn, f(t1, . . . , tn) ∈ T. The depth dep(t) of a term t is

defined as 0 if t ∈ C ∪V, and dep(t) = t+ maxni=1dep(ti) if t is of the form f(t1, . . . , tn). We often

abbreviate a sequence of terms t1, . . . , tn as ~t and identify such a sequence with the set {~t}. A term

t′ is a subterm of another term t if and only if t′ = t, or t = f(~t) and t′ is a subterm of some s ∈ ~t; if

additionally t′ 6= t, then t′ is a proper subterm of t. A term t is n-cyclic if and only if there exists a

sequence of terms of the form f(~s1), . . . , f(~sn+1) such that f(~sn+1) is a subterm of t and, for every

i = 1, . . . , n, f(~si) is a proper subterm of f(~si+1). We simply refer to 1-cyclic terms as cyclic.

An atom is a formula of the form p(~t) where p is some predicate with ar(p) = |~t|. A fact is a

ground atom; i.e., an atom without occurrences of variables.

A substitution is a function mapping terms to terms. Given a substitution σ and an atom

α = p(t1, . . . , tn), the application of σ on α is the atom ασ = p(σ(t1), . . . , σ(tn)). The result of the

application of a substitution on a sequence of variables, a conjunction of atoms or a rule is defined

in the obvious manner. Given a sequence of terms ~t, we define σ~t ⊆ σ as the maximal substitution

only defined for the terms in ~t. As customary, we represent the substitution mapping ti to ui for all

11

3.2. HORN DESCRIPTION LOGICS 12

i = 1, . . . , n with the expression [t1/u1, . . . , tn/un].

Let t be some ground term and c some constant. Let tc be the term obtained from t by replacing

every occurrence of a constant by c, i.e., f(d, g(e))c = f(c, g(c)). The notation is analogously

extended to facts and sets of facts.

With φ(~x) we stress that ~x = x1, . . . , xn are the free variables occurring in the formula φ.

Furthermore, we often identify a conjunction of atoms φ1 ∧ . . . ∧ φn with the set {φ1, . . . , φn}.

A rule is a first-order logic (FOL) formula of one of the following forms.

∀~x∀~z(β(~x, ~z)→ ∃~yη(~x, ~y)) (3.1)

∀~x(β(~x)→ t ≈ u) (3.2)

In the above, β and η are non-empty conjunctions of atoms which do not contain occurrences of

function symbols or equality; ~x, ~y and ~z are pairwise disjoint; ~x is non-empty; and t, u ∈ ~x ∪ C.

To simplify the notation, we frequently omit the universal quantifiers from rules. As customary,

we refer to rules of the forms (3.1) and (3.2) as tuple generating dependencies (TGDs) and equality

generating dependencies (EGDs), respectively.

Given a set of rules R, we define R∃ and R∀ as the sets of all the TGDs in R which do and do

not contain existentially quantified variables, respectively. Moreover, let R≈ be the set of all EGDs

in R. A program is a tuple 〈R, I〉 where R is a set of rules and I is an instance; i.e., a finite set of

equality and function free facts. Given a program 〈R, I〉, we assume that, without loss of generality,

every predicate in R occurs in I and every constant in R occurs in I. Often, we abuse notation and

identify the set of rules and facts R∪ I with the program 〈R, I〉.

For the remainder of the paper, we assume that > and ⊥ are treated as ordinary unary predicates

when dealing with programs and that the semantics of > is captured explicitly in any program

P = 〈R, I〉 by including the rule p(x1, . . . , xn) → >(x1) ∧ . . . ∧ >(xn) in R for every predicate p

with arity n occurring in P.

We will later employ skolemization to define the consequences of a TGD over a set of facts. The

skolemization sk(ρ) of some TGD ρ = β(~x, ~z) → ∃~yη(~x, ~y) is the rule β(~x, ~z) → η(~x, ~y)σsk where

σsk is a substitution mapping every y ∈ ~y into fyρ (~x) where fyρ is a fresh function unique for every

variable y and TGD ρ.

3.2 Horn Description Logics

In this section, we formally define the syntax and semantics of several Horn DL languages considered

across this paper. More precisely, we define Horn-SROIQ and Horn-SHOIQ [Krötzsch et al. 2013;

3.2. HORN DESCRIPTION LOGICS 13

Ortiz et al. 2010], EL++[Baader et al. 2005a], DL-LiteR [Calvanese et al. 2007] and DLP [Grosof

et al. 2003]. Readers familiar with the Web Ontology Language (OWL) [Hitzler et al. 2009] may

recognize these languages as the logics that underpin the DL, EL, QL and RL standards, respectively.

We assume basic familiarity with the topic and otherwise refer to the literature for further details:

for a thorough theoretical introduction see [Baader et al. 2007]; an extended introduction to DL and

Semantic Web technologies is provided in [Hitzler et al. 2009], where also the relationships between

DL and the different OWL standards are explained in detail. Without loss of generality, we restrict

our attention to ontologies in a normal form close to those in [Krötzsch et al. 2007; Ortiz et al. 2010].

A DL signature is a tuple 〈NC,NR,NI〉 where NC, NR and NI are countable and mutually

disjoint sets of concepts, roles and individual names, respectively, where we additionally assume

that >,⊥ ∈ NC. As customary, we refer to > and ⊥ as the top and bottom concepts, respectively.

For the rest of this paper we assume that a DL signature has been fixed and so omit further references

to it when possible without introducing ambiguity.

An axiom is a formula of one of the forms given in the left hand side of Figure 3.1. Some of

the axioms such figure may appear redundant, as they can be normalized away using other axioms

in such figure; nevertheless, these extra axioms are useful for defining the different types of DL

languages considered in this document (see Definition 3.2.1).

Axioms of the form (3.3-3.12) are referred to terminological or TBox axioms. Axioms of the form

(3.13) and (3.14) are referred to assertional or ABox axioms (or simply assertions). A TBox (resp.

an ABox) is a set of TBox (resp. ABox) axioms.

Given some TBox T , we define the relation v∗T over NR ∪ {R− | R ∈ NR} as the minimal

transitive and reflexive relation such that R v∗T S and R− v∗T S− if R v S ∈ T , and R− v∗T S and

R v∗T S− if R− v S ∈ T , where R,S ∈ NR.

Definition 3.2.1 We proceed with the definition of all the different types of TBoxes considered

across this document.

1. A Horn-SROIQ TBox is a TBox.

2. A Horn-SHOIQ TBox is a TBox such that, for every axiom of the form R ◦ S v V ∈ T ,

R = S = V .

3. A Horn-SRIQ TBox is a TBox which does not contain axioms of the form (3.8) or (3.9).

4. An EL++TBox T is a TBox which does not contain axioms of the form (3.7) or (3.11). Fur-

thermore, if T contains axioms the form R ◦ S v V and > v ∀V ′.B in T with V v∗T V ′, then

> v ∀S.B ∈ T .

3.2. HORN DESCRIPTION LOGICS 14

nl

i=1

Ai v B −→
n⋂
i=1

AIi ⊆ BI (3.3)

A v ∃R.B −→ x ∈ AI → ∃y((x, y) ∈ RI ∧ y ∈ BI) (3.4)

∃R.A v B −→ (x, y) ∈ RI ∧ y ∈ AI → x ∈ BI (3.5)

> v ∀R.B −→ (x, y) ∈ RI → y ∈ BI (3.6)

A v ≤ 1R.B −→ x ∈ AI ∧ (x, y) ∈ RI ∧ y ∈ BI ∧ (x, z) ∈ RI ∧ z ∈ BI → y = z (3.7)

A v {a} −→ x ∈ AI → x = aI (3.8)

A v ∃R.{a} −→ x ∈ AI → (x, aI) ∈ RI (3.9)

R v S −→ RI ⊆ SI (3.10)

R− v S −→ (x, y) ∈ RI → (y, x) ∈ SI (3.11)

R ◦ S v V −→ (x, y) ∈ RI ∧ (y, z) ∈ SI → (x, z) ∈ SI (3.12)

A(a) −→ aI ∈ AI (3.13)

R(a, b) −→ (aI , bI) ∈ RI (3.14)

Figure 3.1: Syntax and Semantics of Axioms. In the above, A(i), B ∈ NC, R,S, V ∈ NR and

a, b ∈ NI.

5. A DL-LiteR TBox T is a TBox which does not contain axioms of the form (3.5), (3.7), (3.8),

(3.9) or (3.12). Furthermore, for every axiom in T of the form (3.3), n = 1.

6. An DLP TBox is a TBox which does not contain axioms of the form (3.4).

An L ontology, where L is one of the previously discussed DL languages, is a tuple 〈T ,A〉 where

T is an L TBox.

As with programs, we often abuse notation and simply identify the set of axioms T ∪A with the

ontology 〈T ,A〉.

Note that, we disregard certain syntactic restrictions, such as simplicity of roles occurring with

numeric quantifiers or role regularity, considered in other definitions of DL [Horrocks et al. 2006].

Such restrictions, imposed in order to maintain decidability of tableau based reasoning algorithms,

are unnecessary for our specialized algorithms and thus, we ignore them.

Without loss of generality, instead of dealing with conjunctive query (CQ) answering, we restrict

our attention to the simpler task of CQ entailment of boolean conjunctive queries (BCQs). This

is without loss of generality since CQ answering can be reduced to checking entailment of BCQs.

3.3. THE RELATION BETWEEN DLS AND EXISTENTIAL RULES 15

A BCQ, or simply a query, is a formula of the form ∃~yη(~y) where η is a conjunction of atoms not

containing occurrences of constants, function symbols nor ≈.

As customary, the semantics of ontologies is given through the definition of interpretations. An

interpretation I of some ontology O is a tuple (∆I , ·I) where ∆I is a non-empty set, referred to

as the domain of I, and ·I is a function that maps each individual, concept and role in O to an

element, a subset and a binary relation in ∆I , respectively, such that >I = ∆I and ⊥I = ∅.

Let I be an interpretation of some ontology O. We say that I satisfies an axiom α, written

I |= α, if the corresponding condition shown in Figure 3.1 holds. Furthermore, we say that I

satisfies the ontology O, written I |= O, if I |= α for every α ∈ O. If this is indeed the case, we say

that I is a model of O.

An ontology O is satisfiable if there exists at least some interpretation I which is also a model

of O. An ontology O entails an axiom α, written O |= α, if, for every model I of O, I |= α.

Finally, we introduce several reasoning tasks which will be considered across this document. Let

O be some ontology.

• Ontology satisfiability: Determine whether O is satisfiable.

• ABox retrieval: Compute all ABox axioms that are entailed by O.

• Classification: Compute all axioms of the form A v B with A,B ∈ NC that are entailed by O.

3.3 The Relation between DLs and Existential Rules

In subsequent chapters, we employ mappings from ontologies to programs in such a way that the

latter can be used to solve reasoning tasks over the former. In this section, we briefly introduce one

of such mappings which is reused across further sections in this document.

Definition 3.3.1 Given a TBox T , let R(T) = {π(α) | α ∈ T } where π is the function from Figure

3.2. Given an ontology O = 〈T ,A〉, let P(O) = 〈R(T),A〉.

3.4 Axiomatizations of the Equality Predicate

In FOL, the equality predicate is commonly assumed to have a predefined interpretation. Neverthe-

less, equality can also be treated as an ordinary predicate with an explicit axiomatization. In this

section, we introduce two different approaches to axiomatize this predicate.

3.4. AXIOMATIZATIONS OF THE EQUALITY PREDICATE 16

nl

i=1

Ai v B 7→
n∧
i=1

Ai(x)→ B(x)

A v ∃R.B 7→ A(x)→ ∃y(R(x, y) ∧B(y))

∃R.A v B 7→ R(x, y) ∧A(y)→ B(x)

A v ∀R.B 7→ A(x) ∧R(x, y)→ B(y)

A v ≤ 1R.B 7→ A(x) ∧R(x, y) ∧B(y) ∧R(x, z) ∧B(z)→ y ≈ z

A v {a} 7→ A(x)→ x ≈ a

A v ∃R.{a} 7→ A(x)→ R(x, a)

R v S 7→ R(x, y)→ S(x, y)

R− v S 7→ R(x, y)→ S(y, x)

R ◦ S v V 7→ R(x, y) ∧ S(y, z)→ V (x, z)

Figure 3.2: Function π Mapping DL Axioms to Rules. In the above, A(i), B ∈ NC, R,S, V ∈ NR,

a ∈ NI ∩C and x, y, z ∈ V.

3.4.1 The Standard Equality Axiomatization

Definition 3.4.1 Given a formula φ, let Eq(φ) be the formula that results from substituting every

atom of the form t ≈ u by Eq(t, u) where Eq is a fresh predicate. Given a program P = 〈R, I〉, let

Eq(P) = 〈Eq(R), I〉.

Let P be some program. Then, the standard equality axiomatization of P = 〈R, I〉 is the program

SEA(P) = 〈R′, I〉 where R′ is the set of rules containing the set Eq(R), the rules (3.15-3.17) from

Figure 3.3, and an instance of rule (3.18) for every n-ary predicate p in P for every 1 ≤ i ≤ n.

As shown by the following result, the standard equality axiomatization preserves CQ entailment.

Proposition 3.4.2 Given a program P and a query γ, P |= γ if and only if SEA(P) |= γ.

3.4.2 Singularization

Another method to axiomatize the meaning of equality is singularization, first described in [Marnette

2009].

Definition 3.4.3 A singularization of a conjunct of atoms β is a conjunct of atoms that results from

performing the following transformation to β: For every variable x occurring in β, (i) arbitrarily

3.5. THE CHASE ALGORITHM 17

>(x)→ Eq(x, x) (3.15)

Eq(y, x)→ Eq(x, y) (3.16)

Eq(x, z) ∧ Eq(z, y)→ Eq(x, y) (3.17)

p(x1, . . . , xi, . . . , xn) ∧ Eq(xi, x
′
i)→ p(x1, . . . , x

′
i, . . . , xn) (3.18)

Figure 3.3: Rules Employed in the Axiomatization of Equality.

select some occurrence of x, (ii) replace each other occurrences of x with different fresh variables

x1, . . . , xn and, (iii) for every i = 1, . . . , n, add the conjunct Eq(x, xi) to β, where Eq is a fresh

predicate.

A singularization of a rule ρ is a rule that results from substituting the body of ρ by some of its sin-

gularizations and replacing every atom of the form t ≈ u in the head with Eq(t, u). A singularization

of a query ∃~xβ is a query with a singularization of β as body.

A singularization of a set of rules R is the set of rules containing rules (3.15-3.17) and exactly

one singularization for every rule in R. The singularization of a program P is a program that results

from replacing the set of rules in P with some of its singularizations.

Given a conjunction of atoms, query, rule, set of rules or program φ, let Sing(φ) be the set of all

possible singularizations of φ.

Example 3.4.4 Let ρ = A(x) ∧B(x) ∧C(x)→ ∃y(R(x, y) ∧B(y)). Such rule admits the following

singularizations.

A(x) ∧B(x1) ∧ C(x2) ∧ Eq(x, x1) ∧ Eq(x, x2)→ ∃y(R(x, y) ∧B(y))

A(x1) ∧B(x) ∧ C(x2) ∧ Eq(x, x1) ∧ Eq(x, x2)→ ∃y(R(x, y) ∧B(y))

A(x1) ∧B(x2) ∧ C(x) ∧ Eq(x, x1) ∧ Eq(x, x2)→ ∃y(R(x, y) ∧B(y))

As shown in [Marnette 2009], any singularization of a program P can alternatively be employed

in place of P to solve BCQ entailment.

Proposition 3.4.5 A program entails a query if and only if every singularization of such program

entails every singularization of such query.

3.5 The Chase Algorithm

BCQ entailment over programs and Horn ontologies can, in some cases, be addressed via application

of the chase algorithm, a technique where all relevant consequences of an ontology are precomputed,

3.5. THE CHASE ALGORITHM 18

allowing queries to be directly evaluated on the materialized set of facts. In this section we present

two variants of the chase algorithm, which are somewhat similar to the oblivious and restricted chase

from [Cal̀ı et al. 2013].

Definition 3.5.1 A fact φ is an oblivious consequence of a TGD ρ = β(~x, ~y)→ ∃~zη(~x, ~z) on a set

of facts F if and only if there is some substitution σ with β(~x, ~z)σ ⊆ F and φ ∈ sk(η(~x, ~y))σ where

sk(η(~x, ~y)) is the head of the (skolemized) TGD sk(ρ). A fact φ is a restricted consequence of ρ on

F if and only if there is a substitution σ with (1) β(~x, ~z)σ ⊆ F and φ ∈ sk(η(~x, ~y))σ, and (2) there

is no substitution τ ⊇ σ with η(~x, ~y)τ ⊆ F .

The result of obliviously applying ρ to F , written ρO(F), is the set of all oblivious consequences

of ρ on F . The result of obliviously applying a set of TGDs R to F , written RO(F), is the set⋃
ρ∈R ρO(F)∪F . The result of restrictively applying ρ to F (resp., R to F), written ρR(T) (resp.,

RR(T)), is analogously defined.

Definition 3.5.2 Let ; be some total strict order over the set of all terms such that t; u only if

dep(t) ≤ dep(u). Furthermore, we say that t is greater than u with respect to ; to indicate t; u.

Given a set of EGDs R and a set of facts F , let 7→RF be the minimal congruence relation over

terms such that t 7→RF u if and only if there exists some β(~x)→ x ≈ y ∈ R and some substitution σ

with β(~x)σ ⊆ F , σ(x) = t and σ(y) = u. Let R(F) be the set that is obtained from F by replacing

all occurrences of every term t by u where u is the greatest term with respect to ; such that t 7→RF u.

Note that we define consequences with respect to sets of rules instead of simply (single) rules as

it is customary [Cal̀ı et al. 2013]. This allows us to define the chase as a deterministic procedure

(modulo ;). Also, unlike in [Cal̀ı et al. 2013], where a lexicographic order is used to direct the

replacement of terms, we employ a type of order which ensures that terms are always replaced by

terms of equal or lesser depth. This effectively precludes some terms with larger depth from being

introduced during the computation of the chase.

Definition 3.5.3 Let P = 〈R, I〉 be some program. The oblivious chase sequence of P is the

sequence F0,F1, . . . such that F1 = I and, for all i ≥ 1, Fi is the set of facts defined as follows.

• If R≈(Fi−1) 6= Fi−1, then Fi = R≈(Fi−1).

• If Fi−1 = R≈(Fi−1) and Fi−1 6= R∀O(Fi−1), then Fi = R∀O(Fi−1).

• Otherwise, Fi = R∃O(Fi−1).

The restricted chase sequence of P is defined analogously.

3.5. THE CHASE ALGORITHM 19

For the sake of brevity, we frequently denote the oblivious (resp., restricted) chase sequence of a

program P with P1
O,P2

O, . . . (resp., P1
R,P2

R, . . .).

Definition 3.5.4 Let P be some program and let R be some set of rules. Then, the oblivious chase

of P is the set OC(P) =
⋃
i∈N PiO. The restricted chase of P, written RC(P), is defined analogously.

The oblivious (resp., restricted) chase of P terminates if and only if there is some i such that,

for all j ≥ i, PiO = PjO. Furthermore, the oblivious (resp., restricted) chase of a set of rules R

terminates if the oblivious (resp., restricted) chase of every program of the form 〈R, I〉 terminates.

The (restricted or oblivious) chase of a program can be employed to solve CQ entailment [Cal̀ı

et al. 2013]. I.e., a program P entails a query γ, written P |= γ, if and only if either OC(P) |= ∃y⊥(y)

or OC(P) |= γ (resp., RC(P) |= ∃y⊥(y) or RC(P) |= γ). Thus, we may also use the chase to solve

CQ entailment over ontologies: An ontology O entails a query γ if and only if OC(P(O)) |= ∃y⊥(y)

or OC(P(O)) |= γ (resp., RC(P(O)) |= ∃y⊥(y) or RC(P(O)) |= γ).

In the above paragraph, |= represents the standard FOL entailment relationship. As customary,

given a set of facts F and a query γ = ∃~xβ, F |= γ if and only if there is some substitution σ such

that βσ ⊆ F .

For readability purposes, we say that the oblivious (resp. restricted) chase of some ontology O

terminates if and only if the oblivious (resp. restricted) chase of P(O) terminates. The oblivious

(resp. restricted) chase of some TBox T terminates if and only if if the oblivious (resp. restricted)

chase of R(T) terminates.

The restricted chase has a relevant advantage over the oblivious chase: in some cases, the former

might terminate whereas the latter does not.

Example 3.5.5 Let O = 〈T ,A〉 be as in Figure 3.4. This figure depicts the oblivious and restricted

chase sequence of P(O). In this case, RC(P(O)) terminates whilst OC(P(O)) does not.

3.5. THE CHASE ALGORITHM 20

T = {Film v ∃isProdBy.Producer,Producer v ∃prod.Film, isProdBy− v prod,

prod− v isProdBy}

O = 〈T , {Film(AI)}〉

R(T) = {ρ = Film(x)→ ∃y[isProdBy(x, y) ∧ Producer(y)],

υ = Producer(x)→ ∃y[prod(x, y) ∧ Film(y)],

isProdBy(y, x)→ prod(x, y), prod(y, x)→ isProdBy(x, y)}

P(O) = 〈R(T), {Film(AI)}〉

P(O)1R = {Film(AI), isProdBy(AI, fyρ (AI)),Producer(fyρ (AI))}

P(O)2R = {prod(fyρ (AI),AI)} ∪ P(O)1O

RC(P(O)) = P(O)2O

OC(P(O)) = RC(P(O)) ∪ {prod(fyρ (AI), fyυ (fyρ (AI))),Film(fyυ (fyρ (AI))), . . .}

Figure 3.4: Ontology O = 〈T ,A〉, Program P(O) and the (Restricted and Oblivious) Chase of P(O).

4

The RCAn Fragment of Horn DL

In some cases, CQ answering over Horn DL can be addressed via application of the chase algorithm

(see Section 3.5 for a thorough description of this reasoning algorithm). However, the chase is not

guaranteed to terminate for all ontologies, and checking whether it does is not a straightforward

procedure. It is thus an ongoing research endeavor to establish so-called acyclicity conditions; i.e.,

sufficient conditions which characterize ontologies for which the chase does indeed terminate.

The main contribution presented in this chapter is the definition of restricted chase acyclicity

(RCAn), a novel acyclicity condition applicable to Horn-SRIQ ontologies. If an ontology is proven

to be RCAn, then n-cyclic terms do not occur during the computation of the chase of such ontology

and thus, the chase is guaranteed to terminate. Note that, an acyclicity notion such as RCAn may

be regarded as the definition of a language; i.e., the RCAn fragment of Horn DL is the set of all

Horn ontologies that are RCAn.

In contrast with existing acyclicity notions [Cuenca Grau et al. 2013] which deal with termination

of the oblivious chase of arbitrary sets of existential rules, we restrict our attention to the language

Horn-SRIQ and seek to achieve termination of the restricted chase algorithm. As described in

Section 3.5, this is a special variant of the chase in which the inclusion of further terms to satisfy

existential restrictions is avoided if such restrictions are already satisfied. By considering such a

chase algorithm we are able to devise acyclicity conditions which are empirically more general than

any other of the notions previously described.

On the theoretical side, we show that RCAn is more general than model-faithful acyclicity (MFA)

provided n is linearly large size of ontology. As shown in [Cuenca Grau et al. 2013], MFA is one

of the most general acyclicity conditions for ontologies described to date, as it encompasses many

other existing notions such as joint acyclicity [Krötzsch and Rudolph 2011], super-weak acyclicity

[Marnette 2009] or the hybrid acyclicity notions presented in [Baget et al. 2014]. Furthermore, we

show that deciding RCAn membership of an ontology is not harder than deciding MFA membership.

21

4.1. MODEL FAITHFUL ACYCLICITY 22

On the practical side, we empirically show that (i) RCAn characterizes more real-world ontologies

as acyclic than MFA. Furthermore, we demonstrate that (ii) the use of RCAn results in a more

efficient reasoning procedure. This is because acyclicity is still preserved in the case when employing

renaming techniques when reasoning in the presence of equality. Thus, the use of cumbersome

axiomatizations of equality such as singularization [Marnette 2009] can be avoided. Moreover, we

report on an implementation of the restricted chase algorithm based on the datalog engine RDFOx

[Nenov et al. 2015] and show that (iii) it vastly outperforms state-of-the-art DL reasoners. To verify

(i-iii), we complete an extensive evaluation with very encouraging results.

4.1 Model Faithful Acyclicity

In this section we briefly describe MFA [Cuenca Grau et al. 2013], one of the most general acyclicity

notions for sets of existential rules. MFA guarantees the termination of the oblivious chase of a

program by precluding the occurrence of cyclic terms in the chase.

When one is interested in checking the termination of the oblivious chase of a set of rules with

respect to every possible instance, it is enough to check termination with respect to a special instance,

the critical instance [Marnette 2009]. The critical instance is the minimal set which contains all

possible atoms that can be formed using the relational symbols which occur in TGDs and the

special constant ?. Such a strategy is used by MFA to guarantee termination of a set of rules.

Definition 4.1.1 The critical instance I?(R) of a set of rules R is the set of all facts that can be

constructed using relational symbols in R and the fresh constant ?.

Definition 4.1.2 A set or TGDs R is MFA if and only if no cyclic term occurs in the oblivious

chase sequence of the program 〈R, I?(R)〉.

The previous definition may also be applied to set of axioms in the following manner. A TBox

T is MFA if and only if the set R(T) is MFA (the set R(T) is introduced in Definition 3.3.1). Note

that, a condition such as MFA can be applied to check whether a TBox T is acyclic; i.e., T is MFA

if and only if R(T) is MFA.

While the actual definition of MFA does not preclude the existence of EGDs, equality is assumed

to be axiomatized, and thus it is treated as a regular predicate (EGDs are de facto TGDs). Nev-

ertheless, the use of the standard equality approach to axiomatize equality tends to make the MFA

membership check fail (see [Cuenca Grau et al. 2013] for a lengthier discussion on this topic). Thus,

the use of singularization [Marnette 2009] (introduced in Section 3.4.2), a somewhat “less-harmful”

axiomatization of equality, is proposed in [Cuenca Grau et al. 2013]. The use of singularization

results in the definition of several variants of MFA, which are introduced in the following definition.

4.2. RESTRICTED CHASE ACYCLICITY 23

Definition 4.1.3 For a set of TGDs R, if there is some set of rules in Sing(R) which is MFA, then

R is MFA∃. If every set in Sing(R) is MFA, then R is MFA∀.

Due to the high number of possible singularizations, it is frequently not feasible to check MFA∃ or

MFA∀ membership. Given a set of TGDs R, a simpler alternative is to check whether
⋃
R′∈Sing(R)R′

is MFA. If that is the case, then R is said to be MFA∪. Note that given some Horn-SRIQ TBox

T , the set |
⋃
R′∈Sing(R(T))R′| is actually polynomial in |T | and, as such, MFA∪ is more feasible to

check. Thus, we will use MFA∪ as a baseline for the empirical evaluation of our novel acyclicity

condition RCAn, which is introduced in the next section.

4.2 Restricted Chase Acyclicity

While MFA is quite a general acyclicity condition, it has two main drawbacks:

1. It only considers the oblivious chase, which as we have seen in Example 3.5.5, might not termi-

nate (even though the restricted chase does!), and

2. its treatment of equality via singularization is cumbersome and inefficient in practice. Not only

MFA∃ and MFA∀ are difficult to check, but even after a set of TGDs are established to belong

to some MFA subclass, one has to employ a singularized program for reasoning purposes.

In this section, we present RCAn, an acyclicity notion with neither of these drawbacks: RCAn

verifies termination of the restricted chase of a TBox and does not require the use of cumbersome

axiomatizations of the equality predicate.

Since we are primarily interested in termination of the restricted chase of a Horn-SRIQ TBox,

one might wonder why we do not simply check for termination of the restricted chase for such a

TBox with respect to the critical instance, as it is done in the previous section with the oblivious

chase. Unfortunately, this is not possible: The restricted chase of any set of existential rules always

terminates with respect to the critical instance. Thus, we have to devise more sophisticated tech-

niques to check the termination of the restricted chase. We start by introducing the notion of an

overchase for a TBox.

Definition 4.2.1 A set of facts V is an overchase for some TBox T if and only if, for every

O = 〈T ,A〉, RC(P(O))? ⊆ V.

As defined in Chapter 3, the set RC(P(O))? is the set that results from substituting every

syntactic occurrence of constant in RC(P(O)) by ?. Given some TBox T , an overchase for T may

be intuitively regarded as an over-approximation of the restricted chase of T .

4.2. RESTRICTED CHASE ACYCLICITY 24

Lemma 4.2.2 If there exists a finite overchase for a TBox, then the restricted chase of such TBox

terminates.

Proof 1 Let V be some finite overchase of T . By the definition of an overchase, we have that, for

every ontology of the form O = 〈T ,A〉, |RC(P(O))| |NI(O)|2 ≤ |V| where NI(O) is the set of all

individuals in O. Note that, the maximum arity of a fact occurring in RC(P(O)) is 2. By Lemma

4.4.2, we have that, once a fact φ is removed from the chase sequence, then φ may not reoccur.

Thus, having an upper bound on the number of facts that may occur in RC(O) for every program of

the form P(O) where O = 〈T ,A〉, termination of the restricted chase of T is guaranteed.

Thus, to determine whether the chase of a TBox T terminates, we introduce a procedure to

compute an overchase for T and a means to check its termination. We proceed with some preliminary

notions and notation.

Definition 4.2.3 Let T be some TBox and t a term. Let I(t) be the set of facts defined as follows: If

t is of the form fyρ (s) where ρ = A(x)→ ∃y[R(x, y)∧B(y)], then I(t) = {A(s), R(s, t), B(t)}∪I(s);

otherwise, I(t) = ∅. Furthermore, we introduce the program U(T , t) = 〈R(T)∀ ∪R(T)≈, I(t)〉.

Intuitively, the restricted chase of the program U(T , t) can be regarded as some kind of under-

approximation of the facts that must occur in the chase of every program of the form P(〈T ,A〉)

where t occurs. I.e., if t occurs in the restricted chase sequence of any program P(〈T ,A〉), then

the facts in the restricted chase of U(T , t) must also occur (up to renaming) in the chase sequence

of such program. Furthermore, due to the special priority of application of the rules during the

computation of the chase, the facts in the restricted chase of U(T , t) must occur in the restricted

chase sequence of every program of the form P(〈T ,A〉) before any successors of t are introduced.

Example 4.2.4 Let O, ρ and υ be the ontology and rules from Example 3.5.5. Then, by Definition

4.2.3:

I(fyρ (AI)) = {Film(AI), isProdBy(AI, fyρ (AI)),Producer(fyρ (AI))} and

RC(U(T , fyρ (AI))) = {prod(fyρ (AI),AI)} ∪ I(fyρ (AI)).

All the facts in the restricted chase of U(T , t) occur in the restricted chase sequence of P(O) before

any successors of term fyρ (AI) are introduced. This is because the rule isProdBy(y, x) → prod(x, y)

is applied with a higher priority than the rule υ = Producer(x)→ ∃y[prod(x, y) ∧ Film(y)].

Given a TBox T and some term of the form fyρ (t), we can in some cases conclude that such a

term may never occur during the computation of the restricted chase of every program of the form

P(〈T ,A〉) by carefully inspecting the facts in the set U(T , t).

4.2. RESTRICTED CHASE ACYCLICITY 25

Definition 4.2.5 Let T be a TBox and t a term of the form fyρ (s) where ρ = A(x)→ ∃y[R(x, y) ∧

B(y)]. We say that a term t is restricted with respect to T if and only if there is some term u with

{R([s], u), B(u)} ⊆ RC(U(T , s)) where [s] = [v], if s is replaced by v during the computation of the

restricted chase sequence; and [s] = s, otherwise.

We often simply say that a term is “restricted”, instead of “restricted with respect to T ,” if the

TBox T is clear from the context.

Lemma 4.2.6 Let T be a TBox and t a restricted term. Then, for every possible O = 〈T ,A〉,

t /∈ RC(P(O)).

Proof 2 (Sketch) Let t be a term of the form fyρ (s) where ρ = A(x)→ ∃y(R(x, y)∧B(y)). We can

verify that, if t occurs during the computation of the chase sequence, then every fact RC(U(T , s))

will also be included in such chase sequence before any new terms are introduced. Thus, if t is indeed

restricted, there must be some u with R([s], u) and B(u) occurring in the chase sequence. Therefore,

by the definition of the chase, the term t may never be derived.

For a complete proof of the previous lemma, see Section 4.4.2.

Example 4.2.7 Let T , ρ and υ be the TBox and rules from Example 3.5.5. We proceed to show

that the term fyρ (fyυ (AI)) is restricted. First, we compute the restricted chase of U(T , fyυ (AI)).

RC(U(T , fyυ (AI))) = {Producer(AI), prod(AI, fyυ (AI)),Film(fyυ (AI)), isProdBy(fyυ (AI),AI)}

Note that {isProdBy(fyυ (AI),AI),Producer(AI)} ⊆ RC(U(T , fyυ (AI))). Thus, fyρ (fyυ (AI)) is re-

stricted with respect to T and, by Lemma 4.2.6, it may not occur in the restricted chase of a program

of the form P(〈T ,A〉). Furthermore, by Definition 4.2.5, if fyρ (fyυ (AI)) is restricted, then every term

of the form fyρ (fyυ (c)), where c is a constant, is also restricted.

With Definition 4.2.5 and Lemma 4.2.6 in place, we proceed with the definition of a procedure

to construct an overchase for some given TBox T .

Definition 4.2.8 Let T be a TBox. We define VT as the set initially containing every fact in

I?(R(T)) which is then expanded by exhaustively applying the rules in Figure 4.1 (in non-deterministic

order).

Lemma 4.2.9 The set VT is an overchase of the TBox T .

4.2. RESTRICTED CHASE ACYCLICITY 26

∀-rule if there is some TGD of the form ρ = β(~x, ~y)→ η(~x) ∈ R(T)

then VT → ρR(VT) ∪ VT
∃-rule if there is some TGD of the form ρ = A(x)→ ∃y[R(x, y) ∧B(y)] ∈ R(T) and there

exists some substitution σ such that (i) A(x)σ ⊆ VT and (ii) fyρ (x)σ is not

restricted with respect to T

then VT → {R(x, fyρ (x)), B(fyρ (x))}σ ∪ VT
≈-rule if there is some EGD β(~x, ~y)→ x ≈ y ∈ R(T) and there exists some substitution σ

such that β(~x, ~y)σ ⊆ VT
then VT → {Eq(x, y),Eq(y, x)}σ ∪ VT

Eq-rule if there are some terms t, u and ui where i = 1, . . . , n and some predicate p such that

(i) p 6= Eq, (ii) {Eq(t, u), p(u1, . . . , un)} ⊆ VT , (iii) dep(t) ≤ dep(u) and (iv) u = uj

for some j = 1, . . . , n

then VT → {p(u1, . . . , un)}[u/t] ∪ VT

Figure 4.1: Expansion rules for the construction of VT .

Proof 3 (Sketch) The lemma can be proven via induction on chase sequence of any ontology of the

form O = 〈T ,A〉. Note that, O0
R ⊆ VT by the definition of VT . It can be verified that, for every

possible derivation of a set of facts during the computation of the chase of O, such facts will always

be contained in VT .

See Section 4.4.3 for a complete proof of the previous lemma.

Corollary 4.2.10 The restricted chase of some TBox T terminates if VT is finite.

Example 4.2.11 Let T be the TBox from Example 3.5.5. Then VT is as follows.

VT = {Film(?), isProdBy(?),Producer(?), prod(?, ?),

isProdBy(?, fyρ (?)),Producer(fyρ (?)), prod(?, fyυ (?)),Producer(fyυ (?))}

Note that terms fyρ (fyυ (?)) and fyυ (fyρ (?)) are restricted and thus, they are not included in VT .

Since VT is finite, we can conclude termination of the restricted chase of the TBox T .

In the previous example, we were able to ascertain termination of the restricted chase of T after

verifying that the set VT is finite. A sufficient condition for finiteness of VT is to only allow cyclic

terms up to a certain depth in this set. We use such condition to formally define RCAn.

Definition 4.2.12 A TBox T is RCAn if and only if there are no n-cyclic terms in VT . An ontology

〈T ,A〉 is RCAn if and only if T is RCAn.

4.3. EVALUATION 27

Theorem 4.2.13 If a TBox T is RCAn then the restricted chase of T terminates.

We proceed with several results regarding the complexity of deciding RCAn membership and

reasoning over RCAn ontologies.

Theorem 4.2.14 Deciding whether some TBox T is RCAn is in ExpTime.

Theorem 4.2.15 Let O = 〈T ,A〉 be some RCAn ontology and γ a query. Then, checking whether

O |= γ is ExpTime-complete.

The complete proofs of the previous results can be found in Section 4.4.4.

To close the section, we present several results in which we theoretically compare the generality

of RCAn to MFA∪.

Theorem 4.2.16 MFA∪ does not cover RCA1.

Proof 4 The TBox T from Example 3.5.5 is RCA1 but not MFA∪.

Theorem 4.2.17 If T is MFA∪ then T is RCAn for every n > |T ∃| where T ∃ is the set of all

existential axioms in T .

The proof of the previous result can be found in Section 4.4.5.

4.3 Evaluation

4.3.1 An Empirical Comparison of RCAn and MFA∪

In this section we include an empirical comparison of the generality of RCAn and MFA∪. For

our experiments, we use the TBoxes of the ontologies in the OWL Reasoner Evaluation workshop

(ORE, https://www.w3.org/community/owled/ore-2015-workshop/) and Ontology Design Pat-

terns (ODP, http://www.ontologydesignpatterns.org) datasets. The former is a large repository

used in the ORE competition containing a large corpus of ontologies. The latter contains a wide

range of smaller ontologies that capture design patterns commonly used in ontology modeling. The

ORE dataset is rather large, and thus we restrict our experiments to the 294 ontologies with the

smallest number of existential axioms, while skipping the 77 ontologies with the largest number

of existential axioms. The number of such axioms contained in an ontology is a useful metric to

predict the “hardness” of acyclicity membership tests; i.e. running these experiments would be very

time-intensive, while our results, reported below, already indicate that for such very hard TBoxes

4.3. EVALUATION 28

MFA∪ and RCAn will likely not differ much (while they differ significantly for ontologies with a

lower count of existential axioms).

Horn-SRIQ TBoxes which can be expressed in EL++, DL-LiteR and DLP were not considered

in our experiments. This is because all DLP TBoxes are acyclic (with respect to every applicable

acyclicity notion known to us), and there already exist effective algorithms and efficient implemen-

tations that solve CQ answering over EL++and DL-LiteR ontologies [Stefanoni et al. 2014] (albeit,

if these do not include complex roles).

The results from our experiments are summarized in Figure 4.1. The evaluated TBoxes are

sorted into brackets depending on the number of existential axioms they contain. For each bracket

we provide the average number of axioms in the ontologies (“Avg. Size”), the number of ontologies

(“Count”), and, for every condition “X” considered, the percentage of “X acyclic” ontologies

RCA2 and RCA3 turned out to be indistinguishable with respect to the TBoxes considered and

thus, we limit our evaluation to RCAn with n ≤ 3. Our tests reveal that RCA2 is significantly more

general than MFA∪, particularly when it comes to TBoxes with a low count of existential axioms.

However note that reasoning over ontologies with few (existential) axioms is in general not trivial:

All of the ontologies considered in our materialization tests (see Figure 4.2) contain less than 20

existential axioms. For TBoxes containing from 1 to 10 existential axioms in the ORE dataset, more

than half of the ontologies which are not MFA∪ are RCA2. Furthermore, the 4 ontologies in the

ODP dataset which are not MFA∪ are RCA2. Interestingly, in both repositories we could not find

any ontology that is MFA∪ but not RCA1. Thus, with respect to the TBoxes in our corpus, RCA1

already proves to be more general than MFA∪.

In total, we looked at 312 ontologies, 62% and 75% of which are MFA∪ and RCA2, respectively.

To gauge the significance of this improvement, we roughly compare these numbers with the results

presented in [Cuenca Grau et al. 2013]. In that paper, the authors consider a total of 336 ontologies,

of which 49%, 58% and 68% are weakly acyclic [Fagin et al. 2005], jointly acyclic [Krötzsch and

Rudolph 2011] and MFA∪, respectively. Even though the comparison is not over the same TBoxes,

we verify that the improvement in generality of our notion is in line with previous iterations of

related work.

4.3.2 A Materialization Based Reasoner

We now report on an implementation of the restricted chase as defined in Section 3.5. Moreover,

we also present an implementation of the oblivious chase with singularization, i.e., the chase as it

must be used if we employ MFA∪ (see Section 4.1). We use the datalog engine RDFOx [Nenov et al.

2015] in both implementations.

4.3. EVALUATION 29

ORE

∃-Axioms Avg. Size Count MFA∪ RCA1 RCA2 RCA3

1-5 175 70 70.0 87.1 92.9 92.9

6-10 219 48 58.3 83.3 83.3 83.3

11-25 916 54 83.3 85.2 91 91

26-100 521 42 54.8 59.5 61.9 61.9

101-500 1290 42 26.2 26.2 28.6 28.6

501-1922 5052 38 60.5 60.5 60.5 60.5

1-1922 1362 294 60.9 70.1 73.1 73.1

ODP

∃-Axioms Size Total MFA∪ RCA1 RCA2 RCA3

1-12 39 18 73.7 100.0 100.0 100.0

Table 4.1: Results for the ORE and ODP Repositories.

We evaluate the performance of our chase based implementations against Konclude [Steigmiller

et al. 2014], a very efficient OWL DL reasoner, and PAGOdA [Zhou et al. 2015], a hybrid approach

to query answering over ontologies. PAGOdA combines a datalog reasoner with a fully-fledged

OWL 2 reasoner in order to provide scalable ’pay-as-you-go’ performance and is, to the best of our

knowledge, the only other implementation that may solve CQ answering over Horn-SRIQ ontologies

with completeness guarantees, albeit only in some cases. Nevertheless, PAGOdA was able to solve

all the queries (that is, all of which for which it did not time-out or run out of memory) in this

evaluation in a sound and complete manner.

We consider two real-world ontologies in our experiments, Reactome and Uniprot, and two stan-

dard benchmarks, LUBM and UOBM, all of which contain a large amount of ABox axioms. Axioms

in these ontologies which are not expressible in Horn-SRIQ were pruned. Furthermore, one extra

axiom had to be removed from Uniprot for it to be both MFA∪ and RCA1 acyclic.

The results from our experiments are summarized in Figure 4.2. For each ontology, we consider

four samples of the original ABox. The number of triples contained in each one of these is indicated

at the beginning of each row, under the column “Triples Count.” As previously mentioned, we

consider four different implementations: These include the two aforementioned variants of the chase

(“Restricted” and “Oblivious”), PAGOdA (“PAGOdA”) and Konclude (“Konc.”). For both chase

based implementations, we check the time it takes to compute the chase (“C”) and then the time to

solve each of the four queries crafted for each ontology (“Q1-Q4”). In a similar manner, we list the

4.3. EVALUATION 30

Triples Restricted Oblivious PAGOdA Konc.

Count C Q1-Q4 C Q1-Q4 P Q1-Q4 R

2.8M 10 0 0 0 0 45 0 0 TO 0 89 OM 4 1 0 75

5.1M 21 0 0 0 0 138 0 0 TO 3 147 OM 1 2 0 214

6.7M 28 0 0 0 0 1029 2 0 TO 0 203 OM 2 3 1 506

8.1M 36 37 0 0 0 TO - - - - 263 OM 2 2 6 1347

9.0M 37 0 0 0 0 OM - - - - 113 1 1 1 1 198

17.8M 72 0 0 0 0 OM - - - - 232 2 2 3 3 987

26.2M 107 0 0 0 0 OM - - - - 378 4 10 12 5 3491

33.9M 141 0 1 0 0 OM - - - - 521 6 21 21 12 TO

2.8M 8 0 0 0 1 70 0 0 0 74 51 OM 0 0 0 51

5.7M 16 0 0 0 2 158 1 1 1 154 99 OM 1 1 0 118

8.4M 26 0 0 0 3 242 1 1 2 186 142 OM 2 1 1 220

11.4M 37 1 0 0 5 341 2 2 3 311 197 OM 3 1 1 315

2.2M 11 0 0 0 0 56 0 0 0 1 61 28 0 TO 1 53

4.5M 27 2 0 0 0 133 0 0 1 2 121 60 0 TO 2 125

6.6M 42 3 1 1 0 216 1 1 2 3 186 TO 0 TO 5 292

8.9M 58 5 1 2 1 310 1 2 4 6 260 TO 0 TO 5 644

Table 4.2: Results for Reactome, Uniprot, LUBM and UOBM (sorted from top to bottom in the

above table).

time PAGOdA takes to preprocess each ontology (“P”) plus the time it takes to answer the queries

(“Q1-Q4”). Finally, we list the time Konclude takes to solve realization; i.e., the task of computing

every fact of the form A(a) entailed by an ontology (note that Konclude cannot solve arbitrary CQ

answering). Time-outs, indicated with “TO,” were set at 1 hour for materialization and 5 minutes

for queries. We make use of the acronym “OM” to indicate that an out-of-memory error occurred.

Sometimes, a time-out or an out of memory error prevents us from answering the queries: Such a

situation is indicated with “-.” All experiments were performed on a MacBook Pro with 8GB of

RAM and a 2.4 GHz Intel Core i5 processor.

For each ontology, we consider four different queries which are listed in Figure 4.2 (such figure can

be found at the end of the chapter). For every ontology, the query Q1 is of the form ∃x, y, zR(x, y)∧

R(z, y) where R is an existentially quantified role occurring in the TBox. It appears that PAGOdA

has trouble with this kind of query, whereas the chase based implementations efficiently solve it in

all but one case. This is probably due to the design of the hybrid reasoner which considers under

4.4. PROOFS 31

and over approximations to provide complete answers to CQ: It appears that queries as the one

previously considered find a large number of matches in the upper bound which slows down the

performance of this reasoner. Queries Q2, and Q3 and Q4 are acyclic and cyclic, respectively (a

query is acyclic if the shape of its body is acyclic). Even though it is well-known that answering

acyclic CQs can be reduced to satisfiability [Carral and Hitzler 2012], we included such a type of

query in our evaluation in an attempt to verify whether solving acyclic queries is simpler than cyclic

queries (this is indeed the case theoretically). Nevertheless, our experiments do not reveal any

significant differences.

4.4 Proofs

This section contains the complete formal proofs for all the lemmas and theorems presented across

the chapter as well as several further intermediate and preliminary results.

4.4.1 Overchase and Termination

Lemma 4.4.1 Let P = 〈R, I〉 be some program and t be a term occurring in some PiR. If there is

some PjR such that t /∈ PjR and j ≥ i, then t /∈ PkR for every k ≥ j.

Proof 5 It is clear that the Lemma holds if t is a constant since constants may never occur in the set

of consequences of a rule or a set of rules (note that, by definition, rules may not contain occurrences

of constants). Thus, let us assume that t is of the form fyρ (t1, . . . , tn) where ρ = β(~x, ~z)→ ∃yη(~x, ~y)

and ~x = x1, . . . , xn. Furthermore, let l be the smallest natural number such that t ∈ P lR.

Note that, the term t may only be introduced in the chase sequence if it occurs as part as the set

of consequences of the rule ρ with respect to some substitution σ such that, for every i = 1, . . . , n,

σ(xi) = ti.

The lemma follows from the following claim: For every m ≥ l and every substitution σ such that

σ(xi) = ti with i = 1, . . . , n and β(~x, ~z)σ ⊆ PmR , there is some substitution τ ⊇ σ and η(~x, ~y)τ ⊆ PmR .

Such a claim can be verified via induction on the sequence P lR,P
l+1
R . . .

Lemma 4.4.2 Let P be some program and φ be a fact occurring in some PiR. If there is some PjR
such that φ /∈ PjR and j ≥ i, then φ /∈ PkR for every k ≥ j.

Proof 6 By the definition of the chase sequence, φ must contain some term t that has been removed

from the chase sequence due to some replacement as defined in Definition 3.5.2. Thus, the lemma

holds since, Lemma 4.4.1, term t may not be reintroduced in any PkR where k ≥ j.

4.4. PROOFS 32

4.4.2 Restricted Terms

We introduce some preliminary function that allows us to keep track of the replacements of terms

and atoms that are performed during the computation of the restricted chase.

Definition 4.4.3 Let P = 〈R, I〉 be a program and t be some term. Then we define the term [t]iP

as follows:

• If the term t is replaced by some different term u during the computation of the restricted chase

sequence of P up to the set PiR, then [t]iP = [u]iP .

• Otherwise, [t]iP = t.

Furthermore, given some fact φ = p(t1, . . . , tn) and a set of facts F , let [φ]jP = p([t1]jP , . . . , [tn]jP)

and [F]iP = {[φ]iP | φ ∈ F}.

We often write [φ] (resp., [F]) instead of [φ]iP (resp., [F]iP) if the set PiR is clear from the context.

Lemma 4.4.4 Let P be some ontology and φ a fact occurring in the restricted chase of P. Further-

more, let i be the smallest natural number such that φ ∈ PiR. Then, [φ]Pj ∈ P
j
R for every j ≥ i.

Proof 7 We prove the lemma via induction on the sequence PiR,P
i+1
R , . . . Let φ = p(t1, . . . , t, . . . , tn)

and P = 〈R, I〉.

(Base Case) We proceed to show that [φ]iP ∈ PiR. Note that, since i is the smallest number with

φ ∈ PiR,

[φ]iP = p([t1]iP , . . . , [tn]iP) = p(t1, . . . , tn) = φ.

(Induction Step) We proceed to show that [φ]kP ∈ PkR where k > i. By induction hypothesis (IH),

we have that [φ]k−1P = p([t1]k−1P , . . . , [tn]k−1P) ∈ Pk−1R . Two possible cases arise.

1. [φ]k−1P /∈ PkR. Then PkR = R≈(Pk−1R) and some of the terms [tl]
k−1
P must have been replaced by

some different terms ul. Nevertheless, [φ]kP ∈ PkR since, by the definition of [·]kP , we have that

[tl]
k
P = ul for every term [tl]

k−1
P that was been replaced by ul.

2. [φ]k−1P ∈ PkR. Then none of the terms [tl]
k−1
P have been replaced. Then the lemma holds because

[φ]k−1P ∈ PkR and, by definition, [φ]kP = [φ]k−1P .

Lemma 4.4.5 Let O = 〈T ,A〉 be some ontology and let t be some term of the form fyρ (u) where

ρ = A(x) → ∃y[R(x, y) ∧ B(y)] that occurs in the restricted chase of P(〈T ,A〉). Furthermore, let i

be the smallest number such that t ∈ P(O)iR. Then, {A(u), R(u, t), B(t)} ⊆ P(O)iR.

4.4. PROOFS 33

Proof 8 Since t occurs in the chase of P(O), then A(x)→ ∃y[R(x, y) ∧B(y)] ∈ R(T). Also, since

i is the smallest number with t ∈ P(O)iR, then P(O)iR = R(T)∃(P(O)i−1R). Furthermore, the term t

may only occur in P(O)iR if there is some substitution σ with σ(x) = u and A(u) ∈ P(O)i−1R . Thus,

{R(x, fyρ (x)), B(fyρ)])σ ⊆ P(O)iR.

Lemma 4.4.6 Let O = 〈T ,A〉 be some ontology and let t be some term occurring in the restricted

chase of P(O). Furthermore, let i be the smallest number such that t ∈ P(O)iR. Then, [I(t)] ⊆

P(O)iR.

Proof 9 Note that, since t is a term which occurs in the restricted chase of P(O), t is of the form

fn(. . . f2((f1(c))) where all fi are unary function symbols and c is a constant. We prove the lemma

via induction on the following sequence c, f1(c), f2(f1(c)), . . . , fn(. . . f2((f1(c))).

(Base Case) Note that, if t is a constant then I(t) = ∅ and thus the lemma trivially holds.

(Induction Step) Let t be some term of the form fyρ (u), where ρ = A(x)→ ∃yR(x, y)∧B(y) (note

that every term which is not a constant occurring in P(O) must be of that form). By the definition of

the set I(t), I(t) = I(u) ∪ {A(u), R(u, t), B(t)}. Let j be the smallest number such that u ∈ P(O)jR

(note that, necessarily j ≤ i since u is an immediate ancestor of t). By IH, [I(u)] ⊆ P(O)jR.

Furthermore, by Lemma 4.4.4, [I(u)] ⊆ P(O)iR. By Lemma 4.4.5, {A(u), R(u, t), B(t)} ⊆ P(O)iR.

Thus, [{A(u), R(u, t), B(t)}] ⊆ P(O)iR since, by Definition 4.4.3, [u] = u and [t] = t.

Lemma 4.4.7 Let O = 〈T ,A〉 be some ontology and let t be some term occurring in the restricted

chase of P(O). Furthermore, let i be the smallest number with t ∈ P(O)iR. Then, there exists some

j ≥ i such that all of the following hold.

1. For every φ ∈ RC(U(T , t)), we have that [φ]jP(O) ∈ P(O)jR.

2. P(O)jR does not contain any successors of t.

Proof 10 For the rest of the proof, we simply write U instead of U(T , t) and Uk, where k ≥ 0, as a

shortcut for U(T , t)kR. In the same manner, we simply write P instead of P(O) and Pk instead of

P(O)kR. Furthermore, given some k, l ≥ 0, we write S(Uk,P l) if and only if [Uk] ⊆ P l and P l does

not contain any successors of the term t.

The lemma follows if, for every set in the sequence U0,U1,U2, . . ., there exists some chase step

P l with S(Uk,P l). We proceed to show that this is indeed the case via induction on such sequence.

(Base Case) We proceed to show that S(U0,Pi). First, note that, by Lemma 4.4.6, [I(t)] ⊆ Pi.

It is clear that Pi may not contain any successors of t, since i is the smallest number with t ∈ Pi.

(Induction Step) We verify that, for every k ≥ 2, the existence of some m with S(Uk−1,Pm)

implies that there is some l with S(Uk,P l). We assume that there is some φ ∈ Uk with [φ] /∈ Pm

4.4. PROOFS 34

as, otherwise, S(Uk,Pm) and the induction step holds. Furthermore, since S(Uk−1,Pm), we have

that φ /∈ Uk−1. There exist two possible cases, which are considered along the following paragraphs:

Either (i) Uk = U≈(Uk−1) or (ii) Uk = U∀(Uk−1) (note that, by definition, program Udoes not

contain any rules with existentially quantified variables).

Let (i) Uk = U≈(Uk−1). In this case, we verify that S([Uk],Pm+1).

We first show Pm+1 = P≈(Pm). As previously argued, there is at least some fact φ with φ ∈ Uk,

φ /∈ Uk−1 and [φ] /∈ Pm. Therefore, one of the following cases must hold:

1. φ is of the form C(t), there is some rule ρ = A(x) ∧ R(x, y) ∧ B(y) ∧ R(x, z) ∧ B(z) → x ≈

y ∈ U and some u and v such that {A(v), R(v, u), B(u), R(v, t), B(t), C(u)} ⊆ Uk−1. By IH,

[{A(v), R(v, u), B(u), R(v, t), B(t), C(u)}] ⊆ Pm. Furthermore, ρ ∈ P, by the definition of U.

Since [φ] /∈ Pm, Pm 6= P≈(Pm) and thus, by Definition 3.5.3, Pm+1 = P≈(Pm).

2. φ is of the form R(t, s) (resp., R(s, t)), ρ = A(x)∧R(x, y)∧B(y)∧R(x, z)∧B(z)→ x ≈ y ∈ U and

{A(v), R(v, u), B(u), R(v, t), B(t), S(u, s)(resp.,S(s, u))} ⊆ Uk−1 for some u and v. Analogous

to the previous case.

In either case, we have that Pm+1 = P≈(Pm). Thus, the set Pm+1 does not contain any successors

of t, since, by IH, Pm contains no such terms.

We proceed to show that, [Uk] ⊆ Pm+1; i.e., we show that, for every φ ∈ Uk, we have that

[φ] ∈ Pm+1. A fact φ ∈ Uk only if one of the following cases holds.

1. Let φ ∈ Uk−1. Then, by IH, [φ]mP ∈ Pm. By Lemma 4.4.4, [φ]m+1
P ∈ Pm+1.

2. Let φ /∈ Uk−1. Several possible cases arise.

(a) φ is of the form C(t), there is some rule of the form ρ = A(x)∧R(x, y)∧B(y)∧R(x, z)∧

B(z)→ x ≈ y ∈ U and there are some u and v such that {A(v), R(v, u), B(u), R(v, t), B(t), C(u)} ⊆

Uk−1. By IH, [{A(v), R(v, u), B(u), R(v, t), B(t), C(u)}] ⊆ Pm. Then [C(t)] ∈ Pm+1

(b) φ is of the form S(t, s) (resp., S(s, t)), there is some rule of the form ρ = A(x) ∧

R(x, y) ∧ B(y) ∧ R(x, z) ∧ B(z) → x ≈ y ∈ U and there are some u and v such that

{A(v), R(v, u), B(u), R(v, t), B(t), S(u, s)(resp.,S(s, u))} ⊆ Uk−1. Analogous to the previ-

ous case.

Thus, S([Uk],Pm+1).

Let (ii) Uk = U∀(Uk−1). We proceed to show that Pm 6= P∀(Pm). As in case (i), there is some

fact φ with φ ∈ Uk, φ /∈ Uk−1 [φ] /∈ Pm. Thus, one of the following cases must hold:

1. φ is of the form B(t) and either of the following holds:

4.4. PROOFS 35

(a) A1(x)∧. . .∧An(x)→ B(x) ∈ U and {A1(t), . . . , An(t)} ⊆ Uk−1. By IH, [{A1(t), . . . , An(t)}] ⊆

Pm. Moreover, A1(x)∧ . . .∧An(x)→ B(x) ∈ P by the definition of U. Since [φ] = [B(t)] /∈

Pm, we have that Pm 6= P∀(Pm).

(b) A(x)∧R(x, y)→ B(y) ∈ U and {A(u), R(u, t)} ⊆ Uk−1 for some term u. Analogous to the

previous case.

2. φ is of the form R(t, u)

(a) S(x, y)→ R(x, y) ∈ U and S(t, u) ∈ Uk−1. Analogous to the previous case.

(b) S(y, z)→ R(x, y) ∈ U and S(u, t) ∈ Uk−1. Analogous to the previous case.

(c) S(x, z)∧ V (z, y)→ R(x, y) ∈ U and {S(t, v), V (v, u)} ⊆ Uk−1 for some term v. Analogous

to the previous case.

In every case we have that Pm 6= P∀(Pm).

Therefore, by Definition 3.5.3, we have that either of the following holds: (x) Pm+1 = P≈(Pm)

or (xx) Pm+1 = P∀(Pm).

Let (x) Pm+1 = P≈(Pm). We first show that S(Uk−1,Pm+1). By induction hypothesis we have

that, for every φ ∈ Uk−1, [φ]mP ∈ Pm. Note that, by Lemma 4.4.4, for every φ ∈ Pm, [φ]m+1
P ∈ Pm+1.

Thus, for every φ ∈ Uk−1, [φ]m+1
P ∈ Pm+1. Furthermore, note that, since Pm+1 = P≈(Pm), we can

conclude that Pm+1 contains no successors of t (note that by induction hypothesis, Pm contains no

such terms). Hence, S(Uk−1,Pm+1).

Let us assume that there is some φ ∈ Uk such that [φ] /∈ Pm+1 as otherwise we would have that

S(Uk,Pm+1) and the induction step would hold. In this case, we may verify Pm+1 6= P∀(Pm+1) mak-

ing an analogous argument as the one at the beginning of case (i). Thus, the same situation as before

arises: We either have that Pm+2 = R≈(Pm+1) or Pm+2 = P∀(Pm). If Pm+2 = P≈(Pm+1), we can

make an analogous argument to the one at the beginning of case (x) to conclude that S(Uk−1,Pm+2).

Yet again, if S(Uk,Pm+2) does not hold, the very same situation could arise: We either have that

Pm+3 = R≈(Pm+2) or Pm+3 = P∀(Pm + 2).

Eventually, there must be some Pn, where n = m+ c, such that

• Pn−1 = R≈(Pn−2),Pn−2 = R≈(Pn−3), . . . ,Pm+1 = P≈(Pm), and

• either Pn = R∀(Pn−1) or S(Uk,Pn).

Note that, for every possible program P ′ and any o ≥ 0, if Po = P≈(Po−1), then set Po contains

at least one term less than P≈(Po−1). We proceed to show that, if Pn = R∀(Pn−1), then S(Uk,Pn).

4.4. PROOFS 36

It is clear that Pn does not contain any successors of t since Pn = R∀(Pn−1), Pn−1 =

R≈(Pn−2),Pn−2 = R≈(Pn−3), . . . ,Pm+1 = P≈(Pm), and the set Pm does not contain any suc-

cessors of t. Furthermore, note that S(Uk−1,Pn−1). Thus, it only remains to show that, for every

φ ∈ Uk, [φ] ∈ Pn.

A fact φ ∈ Uk only if one of the following holds:

1. φ ∈ Uk−1. Then, [φ] ∈ Pn−1 since S(Uk−1,Pn−1), and thus [φ] ∈ Pn.

2. φ /∈ Uk−1 and φ is of the form B(t). Then, since φ ∈ Uk and φ /∈ Uk−1, we have that one of the

following must hold:

(a) A1(x) ∧ . . . ∧ An(x) → B(x) ∈ U and {A1(t), . . . , An(t)} ⊆ Uk−1. Since S(Uk−1,Pn−1),

[{A1(t), . . . , An(t)}] ⊆ Pn−1. Moreover, A1(x) ∧ . . . ∧An(x)→ B(x) ∈ P by the definition

of U.

(b) A(x)∧R(x, y)→ B(y) ∈ U and {A(u), R(u, t)} ⊆ Uk−1 for some term u. Analogous to the

previous case.

3. φ /∈ Uk−1 and φ is of the form R(t, u)

(a) S(x, y)→ R(x, y) ∈ U and S(t, u) ∈ Uk−1. Analogous to the previous case.

(b) S(y, z)→ R(x, y) ∈ U and S(u, t) ∈ Uk−1. Analogous to the previous case.

(c) S(x, z)∧ V (z, y)→ R(x, y) ∈ U and {S(t, v), V (v, u)} ⊆ Uk−1 for some term v. Analogous

to the previous case.

Note that, in either case, [φ] ∈ Pn and thus, S(Uk,Pn).

(xx) Let Pm+1 = P∀(Pm). Then, we may show that S(Uk,Pm+1) in an analogous way as we

show that (Uk,Pn)) in the second part of case (x).

Lemma 4.2.6 Let T be a TBox and t a restricted term. Then, for every possible O = 〈T ,A〉,

t /∈ RC(P(O)).

Proof 11 By Definition 4.2.5, we have that t is of the form fyρ (u) where ρ = A(x)→ ∃y[R(x, y) ∧

B(y)]. Note that, t ∈ RC(P(O)) only if u ∈ RC(P(O)). Let i be the smallest number such that

u ∈ P(O)iR. Then, by Lemma 4.4.7, there is some j such that [U(T , u)] ⊆ P(O)jR and P(O)jR does

not contain any successors of u. Furthermore, by the definition of a restricted term, we have that

there is some s with {R([u], s), B(s)} ⊆ P(O)jR. By Lemma 4.4.4, for every P(O)kR with k ≥ j, we

have that [{R(u, s), B(s)}] ⊆ P(O)kR and thus, by the definition of the restricted consequences of a

TGD, term t may not be introduced in any PkR.

4.4. PROOFS 37

4.4.3 VT is an Overchase of T

Lemma 4.4.8 Let T be some TBox and let t1, . . . , tn be a sequence of terms such that, for every

i = 1, . . . , n, dep(t1) ≤ dep(ti) and {Eq(t1, t2), . . . ,Eq(tn−1, tn)} ⊆ VT . Then, for every i = 2, . . . , n,

Eq(t1, ti) ∈ VT .

Proof 12 We proof the lemma via induction on the sequence t1, . . . , tn. It is clear that the base

case holds, since Eq(t1, t2) ∈ VT .

We proceed to show the induction step; i.e., we verify that Eq(t1, ti−1) ∈ P implies Eq(t1, ti) ∈ P

for every i = 3, . . . , n. By definition, we have that Eq(ti−1, ti) ∈ VT . Thus, there must be some A(x)∧

R(x, y)∧B(y)∧R(x, z)∧B(z)→ y ≈ z ∈ R(T) and some u such that {A(u), R(u, ti−1), B(ti−1), R(u, ti),

B(ti))} ⊆ VT (note that, a fact of the form Eq(s, v) may only occur in VT via application of the

≈-rule and every EGD in R(T) is of the form C(x)∧ S(x, y)∧D(y)∧ S(x, z)∧D(z)→ y ≈ z). By

IH, we have that Eq(t1, ti−1) and dep(t1) ≤ dep(ti−1). Hence, {R(u, t1), B(t1)} ⊆ VT by application

of the ∃-rule. Thus, Eq(t1, ti) ∈ VT by application of the ≈-rule.

Lemma 4.2.9 Set VT is an overchase of the TBox T .

Proof 13 To show the lemma, we verify that, for every ontology O = 〈T ,A〉 and every i ≥ 0, the

following hold.

1. If B(t) ∈ P(O)iR where B ∈ NC, then B(t)∗ ∈ VT .

2. If R(t, u) ∈ P(O)iR where R ∈ NR, then R(t, u)∗ ∈ VT .

We proceed to show (a) and (b) via induction on the chase sequence of P(O). Our argument is

structured as follows.

• Base Case: Claims (a) and (b) hold for P(O)1R.

• Induction Step: For every i > 1, claims (a) and (b) hold for P(O)iR provided such claims hold

for P(O)i−1R

(Base Case) The base case holds since P(O)0R = A and I?(T) ⊆ VT . Note that, by assumption,

there are neither concept nor role names in A which do not occur in T (see Section ??).

(Induction Step) Let P(O) = 〈R, I〉. By the definition of the chase sequence, three possible cases

arise: For every i ≥ 1, P(O)iR is either (i) R∃R(P(O)i−1R), (iii) R∀R(P(O)i−1R) or (iii) R≈(P(O)i−1R).

We proceed to show that, in either case, the induction hypothesis (IH) holds.

Let (i) P(O)iO = R∃R(P(O)i−1R). We do a case by cases analysis of all the possible facts that

may occur in P(O)iO and verify that the induction step holds. When checking if the induction step

4.4. PROOFS 38

holds for some given fact φ ∈ P(O)iO we assume that φ /∈ P(O)i−1O as otherwise the induction step

trivially holds by induction hypothesis (IH).

• B(t) ∈ P(O)iR only if ρ = A(x)→ ∃y[R(x, y) ∧B(y)] ∈ R(T) and t = fyρ (u). By Lemma 4.2.6,

t is not restricted since t occurs in the restricted chase of P(O). Then, by Definition 4.2.5, t∗ is

not restricted as well. By IH, A(u)∗ ∈ VT . Thus, by application of the ∃-rule from Figure 4.1,

B(t)∗ ∈ VT .

• R(t, u) ∈ P(O)iR only if ρ = A(x) → ∃y[R(x, y) ∧ B(y)] ∈ P(O) and u = fyρ (t). Analogous to

the previous case.

Thus, the induction step holds if P(O)iO = R∃R(P(O)i−1R).

Let (ii) P(O)iR = R∀R(P(O)i−1R). Again, we do a case by cases analysis of all the possible facts

that may occur in P(O)iO and verify that claims (a) and (b) hold.

• B(t) ∈ P(O)iR only if one of the following holds.

– A1(x)∧. . .∧An(x)→ B(x) ∈ R(T) and {A1(t), . . . , An(t)} ⊆ P(O)i−1R . By IH, {A1(t), . . . , An(t)}∗ ⊆

VT . Thus, by application of the ∀-rule from Figure 4.1, B(t)∗ ∈ VT .

– A(x) ∧R(x, y)→ B(y) ∈ P(O) and {A(u), R(u, t)} ⊆ P(O)i−1O . Analogous to the previous

case.

• R(t, u) ∈ P(O)iR only if one of the following holds.

– S(x, y)→ R(x, y) ∈ P(O) and S(t, u) ∈ P(O)i−1R . Analogous to case the previous case.

– S(y, x)→ R(x, y) ∈ P(O) and S(u, t) ∈ P(O)i−1R . Analogous to the previous case.

– S(x, z) ∧ V (z, y) → R(x, y) ∈ P(O) and {S(u, v), V (v, t)} ⊆ P(O)i−1R . Analogous to the

previous case.

Thus, the induction step holds if P(O)iO = R∀R(P(O)i−1R).

Let (iii) P(O)iR = R≈P(O)i−1R . Again, we do a case by cases analysis of all the possible facts

that may occur in P(O)iO and verify that both (a) and (b) hold.

• B(t) ∈ P(O)iR only if there exists a sequence of terms t1, . . . , tn such that t1 = t; B(tn) ∈

P(O)i−1R ; for every j = 1, . . . , n, dep(t1) ≤ dep(tj); and, for every j = 1, . . . , n−1, there is some

EGD Aj(x)∧Rj(x, y)∧Cj(y)∧Rj(x, y)∧Cj(y) ∈ R(T) and some uj with {Aj(uj), Rj(uj , tj), Cj(tj),

Rj(uj , tj+1), Cj(tj+1)} ⊆ P(O)iR. By IH, for every j = 1, . . . , n− 1, {Aj(uj), Rj(uj , tj), Cj(tj),

Rj(uj , tj+1), Cj(tj+1)}∗ ⊆ VT . Thus, {Eq(t1, t2), . . . ,Eq(tn−1, tn)}∗ ⊆ VT by application of the

Eq-rule. By Lemma 4.4.8, Eq(t1, tn)∗ ∈ VT (note that the lemma is indeed applicable since, for

every j = 1, . . . , n, dep(t1∗) ≤ dep(tn∗)). Thus, B(t)∗ ∈ VT by application of the ∀-rule.

4.4. PROOFS 39

• R(t, u) ∈ P(O)iR (resp., R(u, t) ∈ P(O)iR) only if there exists a sequence of terms t1, . . . , tn such

that t1 = t; R(tn, u) ∈ P(O)i−1R (resp., R(tn, u) ∈ P(O)iR); for every j = 1, . . . , n, dep(t1) ≤

dep(tj); and, for every j = 1, . . . , n−1, there is some EGD Aj(x)∧Rj(x, y)∧Cj(y)∧Rj(x, y)∧

Cj(y) ∈ R(T) and some uj with {Aj(uj), Rj(uj , tj), Cj(tj), Rj(uj , tj+1), Cj(tj+1)} ⊆ P(O)iR.

Analogous to the previous case.

Thus, the induction step holds if P(O)iO = R≈P(O)i−1R .

4.4.4 Complexity Results

Lemma 4.4.9 Let T be some TBox and let t be some term which may occur during the computation

of the chase of a program P(〈T ,A〉). If t is not n-cyclic, then deciding whether t is restricted is in

PTime with respect to T .

Proof 14 We can decide whether t is restricted by computing the restricted chase of the program

U(T , t). If t is non-n-cyclic, then dep(t) ≤ n|T ∃|: Note that (i) t is of the form f1(. . . fn(∗)), the

number of function symbols in VT is at most |T ∃|, and a term f1(. . . fn(∗)) is n-cyclic if and only if

it contains n+ 1 occurrences of the same function symbol. Thus, by definition, |I(t)| is linear with

respect to |T ∃| and so is the number of terms in it.

It is clear that the restricted chase of U(T , t) can be computed in polynomial time. Note that:

(i) U(T , t) does not contain any TGDs featuring existentially quantified variables, (ii) every rule

in U(T , t) contains at most 3 different variables, (iii) every predicate in U(T , t) has a maximum

arity of 2 and (iv) once a functional term is removed from the restricted chase sequence due to some

replacement, it is never reintroduced again (see Lemma 4.4.1).

Lemma 4.2.14 Deciding whether some TBox T is RCAn is in ExpTime.

Proof 15 By the definition of RCAn: T is RCAn if and only if there is some n-cyclic term in VT .

Thus, it suffices to compute the set VT up to the occurrence of the first n-cyclic term. Hence, for

the rest of the argument, we assume that VT may not include n-cyclic terms.

Every term t in VT has a depth of at most n|T ∃|: Note that (i) t is of the form f1(. . . fn(∗)), the

number of function symbols in VT is at most |T ∃|, and a term f1(. . . fn(∗)) is n-cyclic if and only if it

contains n+ 1 occurrences of the same function symbol. Thus, there exist at most T =
∑n|T ∃|
i=0 |T ∃|i

non-n-cyclic terms that may occur in VT .

Every axiom in T may contain at most 3 different concept or role names and there are at most

|NC(T) + NR(T)| different predicates in VT where NC(T) and NR(T) are the sets of concept names

and role names in T . Thus, the number of predicates in VT is at most P = 3|T |. Thus, the maximum

4.4. PROOFS 40

number of facts that may occur in VT is F = PT2 since the arity of every predicate is at most two.

Hence, since all of the rules from Figure 4.1 result in the addition of at least some fact to VT , it takes

at most T many applications of such rules to compute VT . It can be verified that T is exponentially

large with respect to n|T |.

Finally, note that all of the expansion rules can be applied in polynomial time. This is also the

case for the ∃-rule: Given some term non-cyclic t, we can decide whether t is restricted in polynomial

time (see Lemma 4.4.9).

Lemma 4.4.10 Let O = 〈T ,A〉 be some RCAn ontology and γ a query. Then, checking whether

O |= γ is in ExpTime.

Proof 16 As shown in Section 3.5, it suffices to compute the restricted chase of P(O) to decide

whether O |= γ. We proceed to show that RC(P(O)) can be computed in ExpTime.

As shown in the proof of Lemma 4.2.14, if T is RCAn then VT contains at most F facts, a

number which is exponential with respect to n|T ∃| (where T ∃ is the set of all existential axioms

in T). By the definition of an overchase we have that φ ∈ RC(P(O)) only if φ∗ ∈ VT . Thus, the

maximum number of facts in RC(P(〈T ,A〉)) is T|NI(O)|2 where NI(O) is the number of individuals

in the ontology O. Note that every predicate in P(〈T ,A〉) has a maximum arity of 2.

Furthermore, even if some facts are removed from the restricted chase sequence during its com-

putation, this is not problematic: See Lemma 4.4.2 to verify that, once a fact is removed from the

restricted chase sequence, it may not be reintroduced again.

Lemma 4.4.11 Let O = 〈T ,A〉 be some RCAn ontology and γ a query. Then, checking whether

O |= γ is in ExpTime-hard.

Proof 17 It is shown in [Cuenca Grau et al. 2013] that weak acyclicity is less general than universal

MFA when it comes to Horn-SRI TBoxes. It can be easily verified that, when it comes to Horn-

SRI TBoxes, universal MFA and RCA1 coincide in terms of generality. I.e., a Horn-SRI TBox is

universally MFA if and only if it is RCA1. Thus, the Lemma follows from Lemma 59 from [Cuenca

Grau et al. 2013] which states the following: “Let T be a weak acyclic Horn-SRI TBox, let I be an

instance and let φ be a fact. Then, checking whether 〈R(T), I〉 |= φ is ExpTime-hard.”

Lemma 4.2.15 Let O = 〈T ,A〉 be some RCAn ontology and γ a query. Then, checking whether

O |= γ is ExpTime-complete with respect to |T | and n.

Proof 18 Follows from Lemmas 4.4.10 and 4.4.11.

4.4. PROOFS 41

4.4.5 RCAn vs MFA∪

In an attempt to make this document more self-contained, we present a summarized definition of

MFA∪ that can be directly applied to Horn-SRIQ TBoxes.

Definition 4.4.12 Let Eq = {>(x)→ Eq(x, x),Eq(y, x)→ Eq(x, y),Eq(x, z) ∧ Eq(z, y)→ Eq(x, y)}

and let Ξ be the function mapping axioms to rules which is identical to π from Figure 3.2 in all but

the following cases:

Given some TBox T , let MFA∪(T) = 〈π(T) ∪ Eq, I?(T)〉. A TBox T is MFA∪ if and only if

there are no cyclic terms in the oblivious chase of MFA∪(T).

It can be easily verified that our definition coincides with the on from [Cuenca Grau et al. 2013].

We proceed a theoretical comparison of MFA∪ and RCAn.

Lemma 4.2.17 If T is MFA∪ then T is RCAn for every n > |T∃|.

Proof 19 Let T be some MFA∪ TBox. We proceed to show that T is RCAn for every n > |T∃|.

By the definition of MFA∪, we have that the set OC(MFA∪(T)) does not contain any cyclic

terms. Thus, for every term OC(MFA∪(T)), dep(t) ≤ |T ∃| since, by definition, a term s with

dep(s) > |T ∃| is necessarily cyclic.

We proceed to show that this upper bound on the depth of terms also holds for VT . Note that, if

such is the case, then T is necessarily RCAn for every n > |T ∃|. This is because T is RCAn if and

only if some n-cyclic term occurs in VT , and, for every n-cyclic term u, dep(u) > |T ∃|. Thus, the

lemma follows if we verify that, for every term t ∈ VT , dep(t) ≤ |T ∃|.

We show that |T ∃| is an upper bound on the depth on the terms in VT by constructing a set WT
with the following properties:

1. If there is some term t ∈ WT , then there is some term u ∈ MFA∪(T) with dep(t) ≤ dep(u).

2. A term t occurs in VT only if it occurs in WT .

We proceed with the construction of WT . We first present a function, which will be used in the

definition of such set. Let Ψ be the function mapping TBox axioms into rules defined as follows:

Where ρ = A(x)→ ∃yR(x, y) ∧B(y).

Let W1
T ,W2

T ,W3
T , . . . be the sequence such that W1

T = {A(?, ?) | A ∈ NC(T)} ∪ {R(?, ?, ?, ?) |

R ∈ NR(T)} and, for every i ≥ 2, Wi
T is the set that results by applying some rule in Figure 4.3 to

Wi−1
T . Furthermore, let WT =

⋃
i∈NWi

T .

We proceed to show some properties of WT , which will be used in subsequent parts of this argu-

ment. For all terms t t′, u and u′, and predicates A and R, the following hold.

4.4. PROOFS 42

1. If A(t, t′), R(t, t′, u, u′) or R(u, u′, t, t′) in WT , then dep(t) ≤ dep(t′).

2. If A(t, t′) ∈ WT , then A(t′, t′) ∈ WT .

3. If R(t, t′, u, u′) ∈ WT , then R(t′, t′, u, u′) ∈ WT .

4. If R(t, t′, u, u′) ∈ WT , then R(t, t′, u′, u′) ∈ WT .

These claims can be proven via induction via induction on the sequence W1
T , W2

T , W3
T , It is

clear that the base case holds since W1
T = {A(?, ?) | A ∈ NC(T)} ∪ {R(?, ?, ?, ?) | R ∈ NR(T)}. The

induction step can be shown with a simple case by case analysis on all the possible facts that may be

derived during the computation of the sequence W1
T , W2

T , W3
T ,

4.4.5.1 Claim (a):

We proceed to show the following claim: If there is some term t ∈ WT , then there is some term

u ∈ MFA∪(T) with dep(t) ≤ dep(u).

To do so, we first introduce a function π which maps the terms in WT into terms in MFA∪(T).

Let π be some function such that π(?) = ? and, for every term of the form t = fyρ (u) where

ρ = A(x) → ∃y[R(x, y) ∧ B(y)], π(t) = fyρ (π(u′)) where u′ is some term such that A(u, u′) ∈ WT .

By claim (ii), term t may not occur in WT unless there is some fact of the form A(u, u′) ∈ WT and

thus, π is well-defined. Furthermore, since dep(u) ≤ dep(u′) for every A(u, u′) ∈ WT by claim (i),

we have that dep(t) ≤ dep(π(t)) for every term t.

We proceed to show the following claims via induction.

1. If t occurs in WT , then π(t) occurs in OC(MFA∪(T)).

2. A(t, t′) ∈ WT implies {Eq(π(t), π(t′)), A(π(t′))} ⊆ OC(MFA∪(T)).

3. R(t, t′, u, u′) ∈ WT implies {Eq(π(t), π(t′)), R(π(t′), π(u′)),Eq(π(u′), π(u))} ⊆ OC(MFA∪(T)).

4. Eq(t, u) ∈ WT implies Eq(π(t), π(u)) ∈ OC(MFA∪T).

Note that, claim (a) directly follows from (1) and the fact that dep(t) ≤ dep(π(t)) for every term T

in WT . The remainder of the claims (2-4) are just introduced to properly structure our induction

argument.

The base case of the induction trivially holds since I?(T) ⊆ OC(MFA∪(T)) and W1
T = {A(?, ?)

| A ∈ NC(T)} ∪ {R(?, ?, ?, ?) | R ∈ NR(T)}. We proceed to show the induction step; i.e., we show

that (1-4) hold for every fact φ ∈ Wi
T provided they hold for every fact in Wi

T . When showing that

the claims hold for some term or fact φ ∈ Wi
T we assume that φ /∈ Wi−1

T as otherwise the induction

step trivially holds by induction hypothesis.

4.4. PROOFS 43

Let t be some term occurring in Wi
T . Then, t is of the form t = fyρ (u) for some term u where

ρ = A(x) → ∃y[R(x, y) ∧ B(y)], A(x, x′) → R(x, x′, fyρ (x), fyρ (x)) ∧ B(fyρ (x), fyρ (x)) ∈ Ψ(T) and

A(u, u′) ∈ Wi−1
T . By the definition of π, we have that t = fyρ (u) = fyρ (s′) where s′ is some term

such that A(u, s′) ∈ Wi−1
T . By IH, A(s′) ∈ OC(MFA∪(T)). It is clear that claim (1) holds since

ρ ∈ MFA∪(T).

Let φ be a fact of the form A(t, t′) ∈ Wi
T . Then, one of the following cases must hold.

•
∧n
i=1A(x, x′i) →

∧n
i=1(B(x, x′i) ∧ B(x′i, x

′
i)) ∈ Ψ(T) and {Ai(t, t′i) | i = 1, . . . , n}. Then,∧n

i=1Ai(xi) ∧
∧n−1
i=1 Eq(xi, xi+1)→

∧n
i=1B(xi) ∈ MFA∪(T). By IH, {Eq(π(t), π(t′i)), Ai(π(t′i)) |

i = 1, . . . , n}.

• A(x, x′)∧R(x, x′′, y, y′)→ B(y, y′) ∈ Ψ(T) and {A(u, u′), R(u, u′′, t, t′)} ⊆ Wi−1
T . Then A(x)∧

Eq(x, x′)∧R(x′, y)→ B(y) ∈ MFA∪(T). By IH, {Eq(π(u), π(u′)), A(π(u′)),Eq(π(u), π(u′′)), R(π(u′′), π(t′)),Eq(π(t), π(t′))} ⊆

OC(MFA∪(T)).

• A(x, x′)→ R(x, x′, fyρ (x), fyρ (x))∧B(fyρ (x), fyρ (x)) ∈ Ψ(T) where ρ = A(x)→ ∃y[R(x, y)∧B(y)],

A(u, u′) ∈ Wi−1
T , t = t′ = fyρ (u). By the definition of π, we have that π(t) = fyρ (s′) where s′

is some term such that A(u, s′) ∈ Wi−1
T . By IH, A(π(s′)) ∈ OC(MFA∪(T)). Also, note that

A(x)→ ∃y[R(x, y) ∧B(y)] ∈ MFA∪(T).

• {Eq(t, s), A(s, t′)} ⊆ Wi−1
T and dep(t) ≤ dep(s). By IH, {Eq(π(t), π(s)), Eq(π(s), π(t′)), A(π(t′))} ⊆

OC(MFA∪(T)).

It is clear that in either case, claim (2) holds. Note that {>(x) → Eq(x, x),Eq(y, x) → Eq(x, y),

Eq(x, z) ∧ Eq(z, y)→ Eq(x, y)} ⊆ MFA∪(T).

Let φ ∈ Wi be a fact of the form S(t, t′, u, u′). Then, S(t, t′, u, u′) ∈ Wi
T only if one of the

following cases hold.

• A(x, x′) → S(x, x′, fyρ (x), fyρ (x)) ∧ B(fyρ (x), fyρ (x)) ∈ Ψ(T) and A(t, t′) ∈ Wi−1
T . Note that,

in this case, fyρ (t) = u = u′. By the definition of π, we have that π(fyρ (t)) = π(u) = fyρ (s′)

where s′ is some term such that A(t, s′) ∈ Wi−1
T . By IH, A(π(s′)) ∈ OC(MFA∪(T)). Also,

A(x)→ ∃y[R(x, y) ∧B(y)] ∈ MFA∪(T).

• R(x, x′, y, y′) → S(x, x′, y, y′) ∈ Ψ(T) and R(t, t′, u, u′) ∈ Wi−1
T . Then, R(x, y) → S(x, y) ∈

MFA∪(T). By IH, {Eq(π(t), π(t′)), R(π(t′), π(u′)),Eq(π(u′), π(u))} ⊆ OC(MFA∪(T)).

• R(y, y′, x, x′) → S(x, x′, y, y′) ∈ Ψ(T) and R(u, u′, t, t′) ∈ Wi−1
T . Then, R(y, x) → S(x, y) ∈

MFA∪(T). By IH, {Eq(π(u), π(u′)), R(π(u′), π(t′)), Eq(π(t′), π(t))} ⊆ OC(MFA∪(T)).

4.4. PROOFS 44

• R(y, y′, z, z)∧V (z, z′′, y, y′)→ S(x, x′, y, y′) ∈ Ψ(T) and {R(t, t′, s, s′), S(s, s′′, u, u′)} ⊆ Wi−1
T .

Then, R(x, z)∧Eq(z, z′)∧R(z′, y)→ S(x, y) ∈ MFA∪(T). By IH, {Eq(π(t), π(t′)), R(π(u′), π(t′)),Eq(π(s′), π(s)),Eq(π(s), π(s′′)),

R(π(s′′′), π(u′)), Eq(π(u′), π(u))} ⊆ Wi−1
T .

It is clear that in either case, claim (3) holds. Again, note that note that {>(x)→ Eq(x, x),Eq(y, x)→

Eq(x, y), Eq(x, z) ∧ Eq(z, y)→ Eq(x, y)} ⊆ MFA∪(T).

Let φ be a fact of the form Eq(t, u). Then, Eq(t, u) ∈ Wi
T only if one of the following cases hold.

• A(x, x′)∧R(x, x′′, y, y′)∧B(y, y′′)∧R(x, x′′′, z, z′)∧B(z, z′′)→ Eq(y, z) ∈ WT and {A(s, s′), R(s, s′′, t, t′), B(t, t′′), R(s, s′′′, u, u′), B(u, u′′)} ⊆

Wi−1
T . By IH, {Eq(π(s), π(s′)), A(π(s′)),Eq(π(s), π(s′)), R(π(s′), π(t′)),Eq(π(t′), π(t)), Eq(π(t), π(t′′)), B(π(t′′)),

Eq(π(s), π(s′′′)), R(π(s′′′), π(u′)), Eq(π(u′), π(u)), Eq(π(u), π(u′′)), B(π(u′′))} ⊆ OC(MFA∪(T)).

Also, A(x)∧Eq(x, x′)∧R(x′, y)∧Eq(y, y′)∧Eq(x, x′′)∧R(x′′, z)∧Eq(z, z′)∧B(z′)→ Eq(y, z) ∈

MFA∪(T).

• Eq(u, t) ∈ Wi−1
T . By IH, Eq(π(u), π(t)) ∈ OC(MFA∪(T)).

• {Eq(t, s),Eq(s, u)} ⊆ Wi−1
T . By IH, {Eq(t, s),Eq(s, u)} ⊆ OC(MFA∪(T)).

It is clear that in either case, claim (3) holds. Again, note that note that {>(x)→ Eq(x, x),Eq(y, x)→

Eq(x, y), Eq(x, z) ∧ Eq(z, y)→ Eq(x, y)} ⊆ MFA∪(T).

4.4.5.2 Claim (b): A term t occurs in VT only if it occurs in WT .

Claim (a) follows from the following statements.

1. For every term t, if t ∈ VT , then t ∈ WT .

2. For every term t and every A ∈ NC, if A(t) ∈ VT , then A(t, t) ∈ WT

3. For every terms pair of terms t and u, and every role name R, if R(t, u) ∈ VT , then R(t, t, u, u) ∈

WT .

4. For all terms t and u, if Eq(t, u) ∈ VT , then Eq(t, u) ∈ WT .

Claim (b) follows from (1): The rest of the claims (2-4) are in placed to properly structure the

induction argument.

Let V1
T , V2

T , . . . be a sequence constructed as follows: V1
T = I?(T) and, for every i ≥ 2, ViT is

obtained by applying some (randomly chosen) rule in Figure 4.1 to Vi−1T . Claims (1-4) can be proven

via induction on the sequence V1
T , V2

T , . . . It is clear that the base case holds since V1
T = I?(R(T))

and set WT contains every fact in {A(?, ?) | A ∈ NC(T)} ∪ {R(?, ?, ?, ?) | R ∈ NR(T)}. The

induction step can be easily verified by doing a case by case analysis of all the possible facts that may

be derived when computing some set ViT with i ≥ 2.

4.4. PROOFS 45

Q1(w, y) : {physicalEntity(w, z), physicalEntity(y, z)}

Q2(x, z) : {Complex(z),Pathway(x),memberPhysicalEntity(z, w),memberPhysicalEntity(z, w),

participant(y, z), pathwayComponent(x, y)}

Q3(x, z) : {SequenceSite(x), featureLocation(x,w), featureLocation(x, y), sequenceIntervalBegin(w, z),

sequenceIntervalBegin(y, z),SequenceSite(z)}

Q4(x, z) : {Pathway(x),Protein(x), participant(w, z), participant(y, z), pathwayComponent(x,w),

pathwayComponent(x, y)}

Q1(x, y) : {cellularComponent(x, z), cellularComponent(y, z)}

Q2(x) : {translatedFrom(w, x),NucleotideResource(x), locatedOn(x, y), database(x, z),Database(z)}

Q3(x) : {translatedFrom(w, y),Resource(y), translatedFrom(w, x),Resource(x), database(y, z),

Database(z), database(x, z)}

Q4(x) : {CellularComponent(z), locatedIn(x,w), cellularComponent(w, z), locatedIn(x, y),

cellularComponent(y, z)}

Q1(x, z) : {worksFor(x, y),worksFor(z, y), publicationAuthor(x, z)

Q2(x) : {advisor(x, y),Faculty(y), teacherOf(y, z),Course(z),memberOf(y, w),Department(w)}

Q3(x, y, z) : {teacherOf(y, z),Course(z), advisor(x, y),Faculty(y), takesCourse(x, z),Student(x)}

Q4(x) : {publicationAuthor(x, z), publicationAuthor(x, y), advisor(z, y),Professor(y),

memberOf(z, w),memberOf(y, w)}

Q1(x, y) : {takesCourse(x, z), takesCourse(y, z)}

Q2(x) : {teachingAssistantOf(x, y),TeachingAssistant(x), publicationAuthor(z, x),

Book(z), takesCourse(w, y),worksFor(x, v),ResearchGroup(v)}

Q3(x, y) : {isFriendOf(x, y),UndergraduateStudent(x),GraduateStudent(y), like(x, z)}

Q4(x, y) : {hasDoctoralDegreeFrom(x, z), hasDoctoralDegreeFrom(y, z), hasMasterDegreeFrom(x,w),

hasMasterDegreeFrom(y, w),worksFor(x, v),worksFor(y, v)}

Figure 4.2: Queries for Reactome, Uniprot, LUBM and UOBM.

4.4. PROOFS 46

∀-rule if there is some TGD ρ ∈ Ψ(T)

then WT → ρO(WT) ∪WT
Eq1-rule if there is some A(t, t′) ∈ WT and some s with Eq(t, s) ∈ WT and dep(t) ≤ dep(s)

then WT → {A(s, t′)} ∪WT
Eq2-rule if there is some R(t, t′, u, u′) ∈ WT and some s with Eq(t, s) ∈ WT and dep(t) ≤ dep(s)

(resp., Eq(u, s) ∈ WT and dep(u) ≤ dep(s))

then WT → {R(s, t′, u, u′)} ∪WT (resp., {R(t, t′, s, u′)} ∪ VT)

Eq3-rule if there are some t, u and s with Eq(u, t) ∈ WT , {Eq(t, s),Eq(s, u)} ⊆ WT or t = u

then WT → {Eq(t, u)} ∪WT

Figure 4.3: Expansion rules for the construction of WT .

5

The RSA Fragment of Horn DL

In recent years there has been a growing interest in so-called lightweight DL languages, which

are based on logics with favorable computational properties. The most prominent examples of

lightweight ontology languages are the EL++, DL-LiteR and DLP (formally introduced in Section

3.2). These languages are often referred to as profile languages, because they serve as the formal basis

for the profile fragments EL, QL and RL of the Web Ontology Language (OWL) [Hitzler et al. 2009].

Standard reasoning tasks, such as classification and fact entailment, are feasible in polynomial time

for all profiles, and many highly scalable profile-specific reasoners have been developed [Baader et al.

2006; Bishop et al. 2011; Calvanese et al. 2011; Kazakov et al. 2014; Motik et al. 2014; Rodriguez-

Muro and Calvanese 2012]. In contrast to the lightweight logics underpinning the profiles, the logics

required to capture expressive Horn ontologies are intractable: standard reasoning is ExpTime-

complete for Horn-SHOIQ and and 2-ExpTime-completefor the more expressive Horn-SROIQ

[Kazakov 2008].

In an attempt to push the expressivity of lightweight DLs whilst still preserving its beneficious

complexity properties, we present the role safety acyclic (RSA) fragment of Horn DL. This frag-

ment, for which standard reasoning tasks can be solved in polynomial time, encompasses the profile

languages in terms of expressiveness; i.e., every ontology defined over a profile language is also an

RSA ontology. As in the previous chapter, we also present a reasoning algorithm to solve stan-

dard reasoning tasks over this fragment and moreover, we empirically verify that many real-world

ontologies, which cannot be defined within the profile languages, are RSA.

5.1 The Notion of Role Safety

As mentioned in the previous chapter, reasoning over Horn-SROIQ, the most expressive of the Horn

DL fragments, is intractable. In particular, satisfiability is ExpTime-hard already for Horn-ALCI

47

5.1. THE NOTION OF ROLE SAFETY 48

(the fragment of Horn-SROIQ without nominals, cardinality restrictions or complex roles).

A closer look at existing complexity results reveals that the main source of intractability is the

phenomenon typically known as and-branching : due to the interaction between existential quantifiers

over a role R (i.e., axioms of the form A v ∃R.B) and universal quantifiers over R (encoded by

axioms of type A v ∀R.B), an ontology may only be satisfied in models of exponential size which

cannot be summarized. The same effect can be achieved via the interaction between existential

quantifiers and cardinality restrictions (axioms of type (A v ≤ 1R.B)): reasoning in the extension

of the EL profile with counting is also known to be ExpTime-hard [Baader et al. 2005b].

And-branching can be tamed by precluding the harmful interactions between existential and

universal quantifiers, on the one hand and existential quantifiers and cardinality restrictions, on the

other hand. If we disallow existential quantifiers altogether (i.e., axioms of the form A v ∃R.B)),

then we obtain the DLP profile, and ontologies become a subset in terms of expressivity to Datalog

programs with equality. Similarly, if we disallow the use of inverse roles and cardinality restrictions,

thus precluding both universal quantification over roles and counting, then we obtain the EL profile.

The main idea behind our notion of role safety is to identify a subset of the roles in an ontology

over which these potentially harmful interactions between language constructs do not occur. On

the one hand, if a role does not occur existentially quantified in axioms of type A v R.B, then its

“behavior” is similar to that of a role in an DLP ontology, and hence it is safe. On the other hand,

if a role occurs existentially quantified, but no axioms involving inverse roles or counting apply to

any of its super-roles, then the role behaves like a role in an EL ontology, and hence it is also safe.

Definition 5.1.1 A role R is safe with respect to some Horn-SHOIQ ontology O if at least one

of the following conditions holds.

1. There are no axioms of the form A v ∃R.B ∈ O.

2. For every axiom of the form A v ≤ 1S.B ∈ O, R 6v∗O S and R− 6v∗O S; and for every axiom of

the form ∃S.A v B ∈ O with A 6= >, R− 6v∗O S.

See Section 3.2 for the definition of the relation v∗O. Also, if the ontology O is clear from the

context, we simply say that a role is “safe” instead of “safe with respect to O.”

Example 5.1.2 Consider the example ontology from Figure 5.1, which is not captured by any of

the logics underpinning the OWL profile languages. Note that the role Attends is safe: although it

occurs existentially quantified in axiom (5.2), its inverse IsAttendedBy does not occur in an axiom

of the form ∃R.A v B, and the ontology does not contain at most restrictions. In contrast, the role

IsAttendedBy is unsafe since it occurs existentially quantified in (5.5) and its inverse role Attends in

(5.3).

5.2. ROLE SAFETY ACYCLICITY 49

Lazy v Student (5.1)

Student v ∃Attends.Course (5.2)

∃Attends.MorningCourse v Diligent (5.3)

Lazy u Diligent v ⊥ (5.4)

Course v ∃IsAttendedBy.Student (5.5)

Attends− v IsAttendedBy (5.6)

IsAttendedBy− v Attends (5.7)

Lazy(David) (5.8)

Figure 5.1: Example ontology O

Definition 5.1.1 intuitively explains why Horn-SHOIQ ontologies captured by any of the logics

underpinning the OWL profile languages contain only safe roles:

• In EL++, roles can be existentially quantified, but there are no inverse roles or cardinality

restrictions. Thus, the second condition in Definition 5.1.1 trivially holds for every role.

• In DLP, roles do not occur axioms of the form A v ∃R.B. Thus, the first condition of Definition

5.1.1 trivially holds.

• In DL-LiteR, there are no cardinality restrictions and nor axioms of the form ∃R.A v B. Thus,

the second condition in Definition 5.1.1 trivially holds.

5.2 Role Safety Acyclicity

In this section, we propose a novel role safety acyclicity (RSA) condition that is applicable to Horn-

SHOIQ ontologies and that does not completely preclude unsafe roles. Instead, our condition

restricts the way in which unsafe roles are used so that they cannot lead to the interactions between

language constructs that are at the root of ExpTime-hardness proofs; in particular, and-branching.

To check whether an ontology O is RSA we first generate a directed graph G(O) by means

of a Datalog program PG(O). The edges in G(O) are generated from the extension of a fresh

“edge” predicate E in the materialization of PG(O). Intuitively, the relevant facts over E in the

materialization stem from the presence in O of existential restrictions over unsafe roles. Once

the directed graph G(O) has been generated, we check that it is a directed acyclic graph (DAG)

5.2. ROLE SAFETY ACYCLICITY 50

and that it does not not contain “diamond-shaped” subgraphs; the former requirement will ensure

termination of our reasoning algorithm in Section 5.3, while the latter is critical to ensure tractability.

Furthermore, we define a weaker version of RSA (WRSA) where G(O) is only required to be a DAG.

Although this relaxed notion does not ensure tractability of reasoning, it does guarantee termination

of our reasoning algorithm, and hence is still of relevance in practice.

Definition 5.2.1 Let O be an ontology and let π be the mapping defined in Figure 3.2. Let PE and

E be fresh binary predicates, and let U be a fresh unary predicate. Furthermore, for each pair of

concepts A,B and each role R, let vAR,B be a fresh constant. Finally, let Ξ be the function mapping

each axiom α in O to a datalog rule as given next, and let Ξ(O) = {Ξ(α) | α in O}:

Ξ(α) =

A(x)→ R(x, vAR,B) ∧B(vAR,B) ∧ PE(x, vAR,B) if α = A v ∃R.B

π(α) Otherwise.

Then, let PG(O) be the standard equality axiomatization of the following program

Ξ(O) ∪ {U(x) ∧ PE(x, y) ∧ U(y)→ E(x, y)} ∪ {U(vAR,B) | R is unsafe}

Let G(O) be the smallest directed graph having an edge (c, d) for each fact E(c, d) with E(c, d) ∈

OC(PG(O)). Then, we say that O is Role Safety Acyclic (RSA) if G(O) is an oriented forest.

Furthermore, we say that O is weakly RSA (WRSA) if G(O) is a DAG.

An oriented forest is a disjoint union of oriented trees; that is, a DAG whose underlying undirected

graph is a forest.

The core of the program PG(O) is obtained from O by translating its axioms into first-order

logic in the usual way with the single exception of existentially quantified axioms α, which are

translated into Datalog by transforming the (unique) existential variable in π(α) into a constant.

The fresh predicate PE is used to track all facts over roles R generated by the application of the

rules, regardless of whether the relevant role R is safe or not. In this way, PE records “possible

edges” in the graph. The safety distinction is realised by the unary predicate U, which is populated

with all fresh constants introduced by the Skolemisation of existential restrictions over the unsafe

roles. Finally, the rule U(x) ∧ PE(x, y) ∧ U(y) → E(x, y) ensures that only possible edges between

Skolem constants in the extension of U eventually become edges in the graph.

Example 5.2.2 Figure 5.2 depicts the rules in the program PG(O) for our example ontology O.

Consider the application of the chase on PG(O), which applies to the initial facts PG(O)0O =

5.2. ROLE SAFETY ACYCLICITY 51

Lazy(x) → Student(x)

Student(x) → Attends(x, vSt
At,Co) ∧ Course(vSt

At,Co) ∧ PE(x, vSt
At,Co)

Attends(x, y) ∧MorningCourse(y) → Diligent(y)

Lazy(x) ∧ Diligent(x) → ⊥(x)

Course(x) → AttendedBy(x, vCo
Ia,St) ∧ Student(vCo

Ia,St) ∧ PE(x, vCo
Ia,St)

Attends(y, x) → AttendedBy(x, y)

AttendedBy(x, y) → Attends(y, x)

U(x) ∧ PE(x, y) ∧ U(y) → E(x, y)

Lazy(David)

U(vCo
Ia,St)

Figure 5.2: Checking acyclicity of our example ontology O.

{Lazy(David),U(vCoIa,St)}. The chase terminates after the following iterations:

PG(O)1O = PG(O)0O ∪ {Student(David)}

PG(O)2O = PG(O)1O ∪ {Attends(David, vStAt,Co),Course(vStAt,Co),PE(David, vStAt,Co)}

PG(O)3O = PG(O)2O ∪ {AttendedBy(vStAt,Co, vCoIa,St),Student(vCoIa,St),PE(vStAt,Co, v
Co
Ia,St)}

PG(O)4O = PG(O)3O ∪ {Attends(vCoIa,St, vStAt,Co),PE(vCoIa,St, v
St
At,Co)}

No more atoms are derived in subsequent steps and hence OC(PO) = PG(O)4O. Note that the graph

induced by the auxiliary PE predicate is cyclic; in contrast, the extension of E is empty and G(O)

has no edges. Clearly, O is thus RSA.

The following theorem establishes that checking RSA and WRSA is tractable. Intuitively, the

program P(O) is linear in the size of O and each of its rules contains at most three variables

regardless of O; as a result, the materialization (and hence also the resulting graph) is polynomially

bounded.

Theorem 5.2.3 Checking whether an ontology O is RSA (resp. WRSA) is feasible in polynomial

time in the size of O.

Proof 20 The program P(O) is linear in the size of O. Furthermore, each rule in P(O) contains

at most three variables. Thus, the set OC(P(O)) is bounded in size by O(|O|3). Finally, checking

whether a directed graph is an oriented tree (resp. acyclic) is feasible in polynomial time by means

of standard graph traversal algorithms.

5.3. REASONING OVER ACYCLIC ONTOLOGIES 52

Lazy(x) → Student(x)

Student(x) → Attends(x, vSt
At,Co) ∧ Course(vSt

At,Co)

Attends(x, y) ∧MorningCourse(y) → Diligent(y)

Lazy(x) ∧ Diligent(x) → ⊥(x)

Course(x) → ∃y(AttendendBy(x, y) ∧ Student(y))

Attends(y, x) → AttendedBy(x, y)

AttendedBy(x, y) → Attends(y, x)

Lazy(David)

Figure 5.3: Running Example: Reasoning.

5.3 Reasoning Over Acyclic Ontologies

In this section, we show that standard reasoning tasks are tractable for RSA ontologies. To this

purpose, we propose a translation from a Horn-SHOIQ ontology O into a set N (O) of existential

rules, which may contain existentially quantified variables in the head. Axioms in O are translated

directly into existential rules as specified in Figure 3.2.

Definition 5.3.1 Let O be an ontology and let π be the mapping defined in Figure 3.2. Furthermore,

for each pair of concepts A,B and each safe role R in O, let vAR,B be a fresh constant. Let Λ be the

function mapping each axiom α in O to a Datalog rule as given next:

Λ(α) =

A(x)→ R(x, vAR,B) ∧B(vAR,B) if α = A v ∃R.B with R safe

π(α) Otherwise.

Finally, we define the program N (O) as the set {Λ(α) | α ∈ O}.

Example 5.3.2 Figure 5.3 depicts the rules of the program N (O) for our running example O.

We next show that this translation preserves satisfiability, subsumption, and instance retrieval

reasoning outcomes, regardless of whether the ontology O is acyclic or not. Thus, we can reason

over N (O) instead of O without sacrificing correctness.

Lemma 5.3.3 The following properties hold for each ontology O, concept names A,B and named

individuals a and b, and c is a fresh constant not occurring O:

5.3. REASONING OVER ACYCLIC ONTOLOGIES 53

1. O is satisfiable if and only if N (O) is satisfiable if and only if OC(N (O)) contains no fact over

⊥.

2. O |= A(a) if and only if N (O) |= A(a) if and only if A(a) ∈ OC(N (O)).

3. O |= A v B if and only if N (O) ∪ {A(c)} |= B(c) if and only if B(c) ∈ OC(N (O) ∪ {A(c)}).

So far, we have established that we can dispense with the input ontology O and reason over the

program N (O) instead. The chase of N (O), however, may still be infinite. We next show, if O

is RSA, then there exist a polynomial upper bound on the size of the chase of N (O). Intuitively,

every functional term occurring in an atom of the chase of N (O) corresponds to a single path in

G(O), and the size of the graph is polynomial in O. In an oriented forest there is at most one path

between any two nodes, which bounds polynomially the number of possible functional terms. In

contrast, the latter condition does not hold for DAGs, where only a bound in the length of paths

can be guaranteed.

Lemma 5.3.4 Let O be an RSA ontology. Then, the chase of N (O) terminates and OC(N (O)) is

of polynomial size. Furthermore, if O is WRSA, then the chase of N (O) terminates and OC(N (O))

is of exponential size.

Lemmas 5.3.3 and 5.3.4 suggest a reasoning algorithm for acyclic ontologies O. First, compute

the program N (O) as in Definition 5.3.1. Then, run the chase for N (O) and read out the reasoning

outcomes from the computed Herbrand model. If G(O) is an oriented forest (i.e., O is RSA) we can

implement our algorithm efficiently, which yields the following result as a corollary of the previous

theorems.

Theorem 5.3.5 Satisfiability and unary fact entailment is feasible in polynomial time for the class

of RSA ontologies.

In contrast to RSA, our algorithm runs in exponential time for WRSA ontologies. We next show

that, indeed, reasoning with WRSA ontologies is intractable under standard complexity-theoretic

assumptions.

Theorem 5.3.6 Unary fact entailment is Pspace-hard for WRSA ontologies.

Proof 21 In [Cuenca Grau et al. 2013] [Lemma 63] validity checking for QBF formulas which is

a standard Pspace-complete problem is reduced to fact entailment w.r.t. weakly-acyclic Horn-SHI

ontologies. While weak-acyclicity and WRSA are two distinct conditions, the particular reduction

provided as proof of that lemma produces a set of existential rules which can be translated into a

WSRA Horn-SHI ontology. As such, the reduction shows as well that fact entailment w.r.t. WSRA

Horn-SHOIQ ontologies is Pspace-hard.

5.4. STRONGER NOTIONS OF ACYCLICITY 54

5.4 Stronger Notions of Acyclicity

Note that Theorem 5.3.5 does not make any claims about the tractability of concept subsumption for

RSA ontologies. To check whether O |= A v B we need to extend N (O) with an assertion A(c) over

a fresh individual c, run the Skolem chase, and check whether B(c) is derived (see Lemma 5.3.3).

However, as illustrated by the following example, RSA membership is not robust under addition of

ABox assertions.

Example 5.4.1 Let O consist of a fact B(c) and the following axioms:

A v B B v C A v ∃R.A > v≤ 1.R.>

Ontology O is RSA because the rule corresponding to the “dangerous” axiom A v ∃R.A involving

the unsafe role R does not fire during materialization; as a result, the graph generated by PG(O) is

empty. Indeed, the chase terminates on N (O) and determines satisfiability as well as all the facts

entailed by O. In contrast, if we add the fact A(c) to N (O) to determine the subsumers of A, the

chase will no longer terminate because the ontology O extended with A(c) is now cyclic.

To ensure tractability of subsumption and classification, we therefore propose the following

stronger notion of acyclicity.

Definition 5.4.2 Let O be some ontology. For each concept name A in O, let cA be a fresh con-

stant and let ACl = {A(cA) | A is a concept name occurring in O}. We say that O is RSA for

classification if O extended with ACl is RSA.

Tractability of subsumption immediately follows from our results in Section 5.3.

Proposition 5.4.3 Checking whether O |= A v B is feasible in polynomial time for ontologies O

that are RSA for classification.

Although this notion is well-suited for TBox reasoning, data-intensive applications where the

ABox changes frequently require a further strengthening.

Definition 5.4.4 An ontology O is universally RSA if O ∪A′ is RSA for every ABox A′.

Checking whether O = R ∪ T ∪ A is universally RSA can be reduced to checking whether the

ontology O extended with the critical instance I?(A) which is defined as the set of facts containing

all facts of the form A(?) and R(?, ?) for every concept name A and role R occurring in A.

Proposition 5.4.5 An ontology O is universally RSA if and only if O ∪ I?(A) is RSA.

5.4. STRONGER NOTIONS OF ACYCLICITY 55

Proof 22 Assume O is universally RSA. Then, it is RSA also for O ∪ I?(A). It remains to be

shown that if O ∪ I?(A) is RSA, O ∪ A is RSA for every ABox A. Let OA be the extension of O

with an arbitrary such ABox A and let O? = O ∪ I?(O). Also let N?
I and NAI be the set of named

individuals occurring in O? and OA, respectively. Then, we define a mapping µ : terms(PG(OA))→

terms(PG(O?)) as follows:

µ(x) =

x, if x ∈ terms(PG(O?))

?, otherwise

It can be shown by induction on the level of atoms in OC(PG(OA)) that:

• for every A(t) ∈ OC(PG(OA)): A(µ(t)) ∈ OC(PG(O?)), and

• for every R(t, u) ∈ OC(PG(OA)): R(µ(t), µ(u)) ∈ OC(PG(O?)).

• for every x ≈ y ∈ OC(PG(OA)): µ(x) ≈ µ(y) ∈ OC(PG(O?)).

Thus, the graph G(OA) is a subgraph of G(O?).

Example 5.4.6 The critical ABox for our example ontology O consists of all facts A(?) and R(?, ?)

for A a concept name and R a role name from O. It can be checked that O is universally RSA, and

hence also RSA for classification.

Universal RSA is, however, a rather strict condition, especially in the presence of equality. The

following example illustrates that, e.g., every ontology with a functional role used in an existential

restriction is not universally RSA.

Example 5.4.7 Consider O consisting of axioms A v ∃R.B and > v≤ 1R.>. The critical ABox

contains facts A(?), B(?), and R(?, ?). The corresponding Datalog program entails a fact R(?, vAR,B)

due to axiom A v ∃R.B. Due to the functionality of R, the individuals ∗ and vAR,B become equal,

and hence we have A(vAR,B) and eventually also R(vAR,B , v
A
R,B). Since R is unsafe, the graph contains

a cyclic edge E(vAR,B , v
A
R,B). Indeed, the chase of both O and N (O) is infinite.

It is well-known that the Skolem chase often does not terminate in the presence of equality [Cuenca

Grau et al. 2013; Marnette 2009]. The standard approach to circumvent this issue is to exploit the so-

called singularization technique [Marnette 2009] described in Section 3.4.2. After application of the

singularization transformation, the ontology is thus equality-free. singularization preserves reasoning

outcomes in a well-understood way, and it is effective in addressing non-termination problems.

5.5. RELATED WORK 56

5.5 Related Work

In recent years the computational properties of Horn DL have been extensively investigated. The

logical underpinnings for the EL and QL profiles of OWL 2 are provided by, respectively, the Horn

logics EL++[Baader et al. 2005b] and DL-LiteR [Calvanese et al. 2007], while the RL profile is

based on Datalog and its intersection with DL [Grosof et al. 2003]. Hustadt et al. proposed the

expressive logic Horn-SRIQ, and established its complexity [Hustadt et al. 2005]. Krötzsch et al.

studied the complexity of a wide range of Horn DLs with complexities in-between the tractable

logics underpinning the profiles and Horn-SROIQ [Krötzsch et al. 2013; 2007]. Finally, the exact

complexity of Horn-SHOIQ and Horn-SROIQ was determined by Ortiz et al. [Ortiz et al. 2010].

Our techniques in Section 5.3 extend the so-called combined approach to reasoning in EL

[Kontchakov et al. 2011; Stefanoni et al. 2013], where ontologies are transformed into Datalog

programs by means of Skolemisation of all existentially quantified variables into constants. Skolemi-

sation into constants was also exploited by Zhou et al. [Zhou et al. 2015] to compute upper bounds

to query answers.

Finally, in the literature we can find a wide range of acyclicity conditions that are sufficient to

ensure chase termination. Weak acyclicity [Fagin et al. 2005] was one of the first such notions, and

was subsequently extended to joint acyclicity [Krötzsch and Rudolph 2011], acyclicity of a graph of

rule dependencies [Baget et al. 2014], and super-weak acyclicity [Marnette 2009], amongst others.

The notion of acyclicity closest to ours is model summarizing acyclicity (MSA) [Cuenca Grau et al.

2013], where acyclicity can also be determined by the materialization of a Datalog program. Unlike

existing acyclicity notions, ours was designed to ensure tractability of reasoning rather than chase

termination. In particular, the Skolem chase of our example RSA ontology O is infinite and hence O

cannot be captured by any acyclicity condition designed for chase termination. Instead, our notion

ensures termination of the Skolem chase over a particular transformed Horn program N (O), which

we can use for reasoning over O. Another important difference is that, in contrast to the chase of

O, the chase of the transformed program N (O) is not a universal model of O, and hence it does not

preserve answers to general CQs (but only for satisfiability and fact entailment). Finally, although

existing acyclicity conditions guarantee termination of the chase, none of them ensures polynomiality

of the computed Herbrand model. Indeed, checking fact entailment over Horn-SHI ontologies that

are weakly acyclic [Fagin et al. 2005] (the most basic acyclicity notion for chase termination) is

Pspace-hard [Cuenca Grau et al. 2013].

5.6. PROOF OF CONCEPT 57

Repository Reasoning Task Total Safe
RSA Cyclic Time-out

no Sng. Sng. no Sng. Sng. no Sng. Sng.

Oxford Satisfiability 126 37 37+43 37+44 46 39 0 6

Ontology Classification 126 37 37+35 37+35 52 49 2 5

Repository Universality 126 37 37+2 37+31 87 57 0 1

Ontology Satisfiability 23 14 14+9 14+9 0 0 0 0

Design Classification 23 14 14+8 14+8 1 1 0 0

Patterns Universality 23 14 14+4 14+8 5 1 0 0

Table 5.1: Acyclicity evaluation results for ontologies outside the OWL 2 profiles.

5.6 Proof of Concept

We have implemented RSA and WRSA checkers using RDFox [Motik et al. 2014] as a Datalog

reasoner. For testing, we used the ontologies in the Oxford Repository and the Design Patterns

repository. The former is a large repository currently containing 761 real-world ontologies; the latter

contains a wide range of smaller ontologies that capture design patterns commonly used in ontology

modeling (these ontologies are particularly interesting as they highlight common interactions between

language constructs). Experiments were performed on a laptop with 16 GB RAM and an Intel Core

2.9 GHz processor running Java v.1.7.0 21, with a timeout of 30 min.

Our results are summarised in Table 5.1. For each repository, we first selected those ontologies

that are Horn-SHOIQ and are not captured by any of the OWL 2 profiles. We found 126 such

ontologies in the Oxford Repository and 23 in the Design Patterns repository. We then tested our

acyclicity conditions for satisfiability (Def. 5.2.1), classification (Def. 5.4.2) and universality (Def.

5.4.4) on all these ontologies (for classification and universality, we disregarded the ABox part of the

ontologies). We performed tests both with and without employing singularization. Interestingly, in

both repositories we could not find any ontology that is WRSA but not RSA, and hence the two

notions coincided for all our tests.

As we can observe, 37 ontologies in the Oxford Repository contained only safe roles, and hence

are RSA. Without singularization, we found 43 additional ontologies with unsafe roles that are

RSA, 35 of which were also RSA for classification and only 2 universally acyclic. When using

singularization the number of additional RSA ontologies increased significantly, and we obtained 29

additional universally RSA ontologies, but unfortunately our tests timed-out for several ontologies.

This can be explained by the fact that the use of singularization leads to more complicated Datalog

rules for which RDFox is not optimised.

5.7. PROOFS 58

In the case of the Design Patterns repository, all ontologies are RSA. We only found one ontology

that was not universally RSA when using singularization. Ontologies in this repository are smaller,

and we encountered no time-outs.

Note that, in this chapter, we do not include an evaluation of the reasoning algorithm. This

is because, being so similar to the procedure presented in the previous section, we foresee this

evaluation not being very informative. Thus, to gain an insight of the performance of our algorithm

presented in this section, see the results presented in [?].

Furthermore, the algorithm presented in this section may only be used to solve standard reasoning

tasks over RSA ontologies. To solve the problem of CQA over this fragment see [Feier et al. 2015].

5.7 Proofs

Lemma 5.3.3 The following properties hold for each ontology O, concept names A,B and named

individuals a and b, where c is a fresh constant.

1. O is satisfiable if and only if N (O) is satisfiable if and only if OC(N (O)) contains no fact over

⊥.

2. O |= A(a) if and only if N (O) |= A(a) if and only if A(a) ∈ OC(N (O)).

3. O |= A v B if and only if N (O) ∪ {A(c)} |= B(c) if and only if B(c) ∈ OC(N (O) ∪ {A(c)}).

Proof 23 For each claim of the form A iff B iff C in the theorem it is enough to show that A iff

C as B iff C follows from the properties of the chase (see Section 3.5). We also reformulate all ‘A’

statements regarding satisfiability of and entailments w.r.t. O in terms of properties of the chase of

O. For the third claim in the theorem, we note that for a Horn ontology O, it is well-known that

O |= A v B iff O ∪ {A(c)} |= B(c), where c is a fresh constant. It remains to be shown that:

a) OC(P(O)) contains no fact over ⊥ iff OC(N (O)) contains no fact over ⊥; and

b) A(a) ∈ OC(P(O)) iff A(a) ∈ OC(N (O)).

To prove the ‘if ’ part of these claims (soundness) we map each term occurring in OC(N (O))

to a set of terms occurring in OC(P(O)) and show inductively that certain properties hold between

atoms/terms in OC(N (O)) and atoms over mapped terms/mapped terms in OC(P(O)) .

We first introduce some notions which will make the formulation of the IH more straightforward.

For a Horn-SHOIQ ontology O, its skolemization sk(O) is the program obtained from P(O)

by standard Skolemisation of existentially quantified variables into functional terms. For a Horn

5.7. PROOFS 59

program P , its grounding, ground(P), is the program obtained by replacing each variable occurring

in P with each term that can be formed using constants and functional symbols occurring in P .

The derivation level of a ground atom a in OC(P), level(a,OC(P)), is a natural number k s.t.:

a ∈ P(O)kO and a /∈ P(O)k−1O , where S is the set of facts occurring in P and H is the set of rules

occurring in P . The derivation level of a ground term t in OC(P), level(t,OC(P)), is a natural

number k s.t.: t occurs in some atom a with level(a,OC(P)) = k, but t does not occur in any atom

a with level(a,OC(P)) < k. For a set of ground atoms S, terms(S) is the set of all terms occurring

in some atom in S.

Definition 5.7.1 Let O be a Horn-SHOIQ ontology, and let R be a role name occurring in O.

We say that R is a forward-sound role iff for every axiom of type A v ∃S.B in O, with S being a

safe role: S 6v∗O R. Conversely, R is a backward-sound role iff for every axiom of type A v ∃S.B

in O, with S being a safe role: S 6v∗O R−.

Lemma 5.7.2 Let O be a Horn-SHOIQ ontology and let µ : terms(OC(N (O)))→ 2terms(OC(P(O)))

be the following function:

µ(x) =

{x}, if x ∈ NI

{fCRD(t) | t ∈ µ(y)}, if x = fCRD(y)

{fCRD(y) | fCRD(y) ∈ terms(OC(P(O)))} if x = vCRD

Then, all of the the following hold.

i) For every x ∈ terms(OC(N (O))): µ(x) 6= ∅.

ii) A(x) ∈ OC(N (O)) implies A(t) ∈ OC(P(O)), for every t ∈ µ(x) and unary predicate A ∈ NC.

iii) R(x, y) ∈ OC(N (O)), where R is a backward-sound role implies: for every t1 ∈ µ(x), there

exists a t2 ∈ µ(y) s.t. R(t1, t2) ∈ OC(P(O)).

iv) R(x, y) ∈ OC(N (O)), where R is forward-sound role implies: for every t2 ∈ µ(y), there exists a

t1 ∈ µ(x) s.t. R(t1, t2) ∈ OC(P(O)).

v) R(x, y) ∈ OC(N (O)), where R is a simple role implies: for every t1 ∈ µ(x), there exists a

t2 ∈ µ(y) s.t. R(t1, t2) ∈ OC(P(O)), and for every t2 ∈ µ(y), there exists a t1 ∈ µ(x) s.t.

R(t1, t2) ∈ OC(P(O)).

vi) x ≈ y ∈ OC(N (O)) implies: for every t1 ∈ µ(x), there exists a t2 ∈ µ(y) s.t. t1 ≈ t2 ∈

OC(P(O)), and for every t2 ∈ µ(y), there exists a t1 ∈ µ(x) s.t. t1 ≈ t2 ∈ OC(P(O)).

5.7. PROOFS 60

Proof 24 By induction on the derivation level of atoms and terms in OC(N (O)).

IB: the hypothesis holds for every ABox assertion, named individual a ∈ NI and facts of type

x ≈ x ∈ OC(N (O)).

IH: the hypothesis holds for every atom/term a with level(a,OC(N (O))) < k. We show that it

holds also for every atom/term a with level(a,OC(N (O))) = k:

i) a ∈ terms(OC(N (O))) (other than some i ∈ NI). Then a is either of the form:

1. vCRD: then, it has been introduced in OC(N (O)) via a rule of the form C(x)→ R(x, vCRD)∧

D(vCRD) and sk(O) contains a counterpart rule C(x) → R(x, fCRD(x)) ∧ D(fCRD(x))(†).

Then: level(x,OC(N (O))) < level(a,OC(N (O))). From the IH: µ(x) 6= ∅ and for every

y ∈ µ(x): C(y) ∈ OC(P(O)). Thus, there exists a u s.t. C(u) ∈ OC(P(O)) and from (†)

it follows that: D(fCRD(u)) ∈ OC(P(O)). Then fCRD(u) ∈ µ(vCRD), and thus µ(vCRD) 6= ∅.

2. or of the form fCRD(y). From the IH: µ(y) 6= ∅ and thus, µ(fCRD(y)) 6= ∅.

ii) a is of the form A(x). Then, N (O) must contain a rule with head a whose body is satisfied in

OC(N (O)):

1. C1(x) ∧ . . . ∧ Cn(x) → D(x) (where a = D(x)): from the IH, for every t ∈ µ(x):

C1(t), . . . , Cn(t) ∈ OC(P(O)). Then, by applying the counterpart rule in sk(O) we ob-

tain that for every t ∈ µ(x): D(t) ∈ OC(P(O)).

2. C(x) → R(x, fCRD(x)) ∧ D(fCRD(x)) (where a = D(fCRD(x))): from the IH, for every t ∈

µ(x): C(t) ∈ OC(P(O)). Then, for every t ∈ µ(x): D(fCRD(t)) ∈ OC(P(O)), or for every

t ∈ µ(fCRD(x)): D(t) ∈ OC(P(O)).

3. C(x) → R(x, vCRD) ∧ D(vCRD) (where a = D(vCRD)). Then, there exists a GCI of type:

C v ∃R.D in O and sk(O) contains a rule of type C(x) → D(fCRD(x)). Note that this is

the only rule which introduces functional terms of type fCRD(. . .). Thus, for every such term

t = fCRD(y) occurring in terms(OC(P(O))) it holds that D(t) ∈ OC(P(O)).But µ(vCRD) is

exactly the set of all such terms.

4. R(x, y) ∧ C(y) → D(x) (where a = D(x)). Then, R must be a backward-sound role (from

the definition of safe roles). From the IH: for every t ∈ µ(x), C(t) ∈ OC(P(O)) and there

exists a t′ ∈ µ(y) s.t. R(t, t′) ∈ OC(P(O)). Then, by applying the counterpart rule in

sk(O) for every t ∈ µ(x) we obtain D(t) ∈ OC(P(O)).

5. C(x) ∧ x ≈ y → C(y). From the IH: for every t ∈ µ(x), C(t) ∈ OC(P(O)) and for every

t2 ∈ µ(y) there exists a t1 ∈ µ(x) s.t. t1 ≈ t2. Then, C(t1) ∈ OC(P(O)) for every such t1,

5.7. PROOFS 61

and by applying the counterpart rule in sk(π(O)) we obtain C(t2) ∈ OC(P(O)), for every

t2 ∈ µ(y).

iii) a = R(x, y), where R is a backward-sound role. Then, there must be a ground rule with head

R(x, y) whose body is satisfied in ground(N (O)):

1. U(x, y) → R(x, y). As R is a backward-sound role, U is a backward-sound role as well.

From the IH: for every t1 ∈ µ(x), there exists t2 ∈ µ(y) s.t. U(t1, t2) ∈ OC(P(O)),

and thus, by applying the counterpart rule in sk(π(O)): for every t1 ∈ µ(x), there exists

t2 ∈ µ(y) s.t. R(t1, t2) ∈ OC(P(O)).

2. U(y, x) → R(x, y). Then, U− v∗O R, and U must be a forward-sound role (otherwise R

would not be a backward-sound role). Then from the IH: for every t2 ∈ µ(x), there exists

t1 ∈ µ(y) s.t. U(t1, t2) ∈ OC(P(O)), and thus by applying the counterpart rule in sk(π(O)):

for every t2 ∈ µ(x), there exists t1 ∈ µ(y) s.t. R(t2, t1) ∈ OC(P(O)).

3. C(x) → R(x, fCRD(x)) ∧ D(fCRD(x)). Similar to case ii) 2) above: for every t ∈ µ(x):

R(t, f(t)) ∈ OC(P(O)).

4. C(x) → R(x, vCRD) ∧ D(vCRD). Then, there exists a GCI of type: C v ∃R.D in O and

sk(π(O)) contains a rule of type C(x)→ D(fCRD(x)) (†). From the IH: for every t ∈ µ(x):

C(t) ∈ OC(P(O)). Then, by applying (†) we obtain R(t, fCRD(t)) ∈ OC(P(O)), for every

t ∈ µ(x)).

5. R(x, s) ∧ R(s, y) → R(x, y). From the IH it follows that: for every t1 ∈ µ(x), there exists

t2 ∈ µ(s) s.t. R(t1, t2) ∈ OC(P(O)) and for every t2 ∈ µ(s), there exists t3 ∈ µ(y) s.t.

R(t2, t3) ∈ OC(P(O)). By applying the counterpart rule in sk(π(O)), we obtain that for

every z ∈ µ(x) there exists u ∈ µ(y) s.t. R(z, u) ∈ OC(P(O)).

6. R(x, y) ∧ x ≈ z → R(z, y). From the IH: for every t1 ∈ µ(x), there exists t2 ∈ µ(y) s.t.

R(t1, t2) ∈ OC(P(O)), and for every t3 ∈ µ(z), there exists t1 ∈ µ(x) s.t. t1 ≈ t3. Then,

by applying the counterpart rule in sk(π(O)), we obtain that for every t3 ∈ µ(z) there exists

t2 ∈ µ(y) s.t. R(t3, t2) ∈ OC(P(O)).

7. R(x, y) ∧ y ≈ z → R(x, y). From the IH: for every t1 ∈ µ(x), there exists t2 ∈ µ(y) s.t.

R(t1, t2) ∈ OC(P(O)), and for every t2 ∈ µ(y), there exists t3 ∈ µ(z) s.t. t2 ≈ t3. Then, by

applying the counterpart rule in sk(π(O)), we obtain that for every t1 ∈ µ(x) there exists

t3 ∈ µ(y) s.t. R(t1, t3) ∈ OC(P(O)).

iv) a = R(x, y), where R is a forward-sound role. Then, there must be a ground rule with head

R(x, y) whose body is satisfied in ground(N (O)):

5.7. PROOFS 62

1. U(x, y)→ R(x, y). Similar to case iii) 1) above.

2. U(y, x) → R(x, y). Then, U− v∗O R and thus, U is a backward-sound role. From the IH:

for every t1 ∈ µ(y), there exists t2 ∈ µ(x) s.t. U(t1, t2) ∈ OC(P(O)), and thus by applying

the counterpart rule, for every t1 ∈ µ(y), there exists t2 ∈ µ(x) s.t. R(t2, t1) ∈ OC(P(O)).

3. C(x)→ R(x, fCRD(x)) ∧D(fCRD(x)). Similar to case iii) 2) above.

4. C(x)→ R(x, vCRD)∧D(vCRD): then R must be safe. Contradiction with R being a forward-

sound role.

5. R(x, s) ∧ R(s, y) → R(x, y). From the IH it follows that: for every t3 ∈ µ(y), there exists

t2 ∈ µ(s) s.t. R(t2, t3) ∈ OC(P(O)) and for every t2 ∈ µ(s), there exists t1 ∈ µ(x) s.t.

R(t1, t2) ∈ OC(P(O)). By applying the counterpart rule, we obtain that for every t3 ∈ µ(y)

there exists t1 ∈ µ(x) s.t. R(t1, t3) ∈ OC(P(O)).

6. R(x, y) ∧ x ≈ z → R(z, y). From the IH: for every t2 ∈ µ(y), there exists t1 ∈ µ(x) s.t.

R(t1, t2) ∈ OC(P(O)), and for every t1 ∈ µ(x), there exists t3 ∈ µ(z) s.t. t1 ≈ t3. Then,

by applying the counterpart rule in sk(π(O)), we obtain that for every t2 ∈ µ(y) there exists

t3 ∈ µ(z) s.t. R(t3, t2) ∈ OC(P(O)).

7. Similar to case iii) 7) above.

v) a = R(x, y), with R being a simple role. Then, there must be a ground rule with head R(x, y)

whose body is satisfied in ground(P(O) ↑ ω):

1. U(x, y)→ R(x, y): U is a simple role as well, follows directly from the IH.

2. U(y, x)→ R(x, y): U− is a simple role as well, follows from the symmetry of the IH.

3. C(x)→ D(vCRD)∧R(x, vCRD): then R must be safe and there exists a GCI of type: C v ∃R.D

in O and sk(O) contains a rule of type C(x)→ D(fCRD(x))∧R(x, fCRD(x)). Note that this is

the only rule which introduces functional terms of type fCRD(. . .). Thus, for every such term

t = fCRD(y) occurring in terms(OC(P(O))) it holds that R(y, fCRD(y)) ∈ OC(P(O)).But

µ(vCRD) is exactly the set of all such terms. Also, from the IH for every t ∈ µ(x): C(t) ∈

OC(P(O)). Then, for every t ∈ µ(x): R(t, fCRD(t)) ∈ OC(P(O)).

4. C(x) → D(fCRD(y) ∧ R(x, fCRD(y): from the IH, for every t ∈ µ(x): C(t) ∈ OC(P(O)).

Then, for every t ∈ µ(x): R(t, fCRD(t)) ∈ OC(P(O)), or for every t ∈ µ(fCRD(x)): D(t) ∈

OC(P(O)).

5. R(x, y) ∧ x ≈ z → R(z, y). Similar to cases iii) 6) (in one direction) and iv) 6) (in the

other direction) above.

5.7. PROOFS 63

6. R(x, y) ∧ y ≈ z → R(x, z). Similar to cases iii) 7) (in one direction) and iv) 7) (in the

other direction) above.

vi) a is an equality atom: a = x ≈ y. Then, there must be a ground rule whose body is satisfied in

ground(P(O) ↑ ω):

1. C(s)∧R(s, x)∧D(x)∧R(s, y)∧D(y)→ x ≈ y: Then, R is a simple role and from the IH:

• for every t1 ∈ µ(x), D(t1) ∈ OC(P(O)) and there exists t2 ∈ µ(s) s.t. R(t2, t1) ∈

OC(P(O)) and for every t2 ∈ µ(s) there exists t3 ∈ µ(y) s.t. R(t2, t3) ∈ OC(P(O)).

Also, for every t2 ∈ µ(s), C(t2) ∈ OC(P(O)), and for every t3 ∈ µ(y), D(t3) ∈

OC(P(O)). Thus, by applying the counterpart equality rule in sk(π(O)), we obtain

that for every t1 ∈ µ(x), there exists t3 ∈ µ(y) s.t. t1 ≈ t3;

• similarly as above one can show that for every t3 ∈ µ(y), there exists t1 ∈ µ(x) s.t.

t1 ≈ t3;

2. C(x) → x ≈ a. From the IH: for every t ∈ µ(x), C(t) ∈ OC(P(O)) and thus for every

t ∈ µ(x): t ≈ a ∈ OC(P(O)). As µ(x) 6= ∅ (also from the IH), it follows that for every

t2 ∈ µ(a) = {a}, there exists t1 ∈ µ(x) s.t. t1 ≈ t2.

3. x ≈ y → y ≈ x: follows from the symmetry of the IH.

4. x ≈ y ∧ y ≈ z → x ≈ z: follows from the IH, similar to case iv) 5), but bidirectional.

Claims a) and b) follow directly from Lemma 5.7.2 point ii).

Lemma 5.7.3 Let O be a Horn-SHOIQ ontology. If fCRD(fASB(t)) ∈ terms(OC(N (O))), then

E(vCRD, v
A
SB) ∈ OC(PG(O)).

Proof 25 Let V = {vCRD | vCRD ∈ terms(OC(N (O)))} and let µ : terms(OC(N (O)))→ terms(OC(PG(O)))

be defined as follows:

µ(x) =

x, if x ∈ NI ∪ V

vCRD, if x = fCRD(y)

Then, it can be shown by straightforward induction that: C(x) ∈ OC(N (O)) implies C(x) ∈

OC(PG(O)) (all rules in N (O) are also in PG(O) except for rules of type C(x) → R(x, fCRD(x)) ∧

D(fCRD(x)) which are replaced with rules of type C(x)→ R(x, vCRD) ∧D(vCRD) ∧ PE(x, vCRD)).

Assume fCRD(fASB(t)) ∈ terms(OC(N (O))). Then, ground(N (O)) must contain the following

two rules:

• A(t)→ S(t, fASB(t)) ∧B(fASB(t)), and

5.7. PROOFS 64

• C(fASB(t))→ R(fASB(t), fCRD(fASB(t))) ∧D(fCRD(fASB(t))),

and it must also be the case that: A(t) ∈ OC(N (O)) and C(fASB(t)) ∈ OC(N (O)). Then, A(µ(t)) ∈

OC(PG(O)), C(µ(fASB(t))) ∈ OC(PG(O)), and ground(PG(O)) contains the following rules:

• A(µ(t))→ S(µ(t), vCRD) ∧B(vCRD) ∧ PE(µ(t), vCRD),

• C(vCRD)→ R(vCRD, v
A
SB) ∧D(vASB) ∧ PE(vCRD, v

A
SB),

• U(vCRD) ∧ PE(vCRD, v
A
SB) ∧ U(vASB)→ E(vCRD, v

A
SB), and

• facts: U(vCRD) and U(vASB).

From the above it follows that: PG(O) |= E(vCRD, v
A
SB), and thus: E(vCRD, v

A
SB) ∈ OC(PG(O)).

Lemma 5.3.5 Let O be an RSA ontology with signature Σ. Then, the Skolem chase of N (O)

terminates with a Herbrand model of polynomial size. Furthermore, if O is WRSA, then the Skolem

chase of N (O) terminates with a Herbrand model of size at most exponential.

Proof 26 Let t ∈ terms(OC(N (O))). Then, t is of the form gn(. . . (g1(u)) . . .), where each gi

is of the form fCi

Ri,Di
and u ∈ NI or u is of the form vCRD. From Lemma 5.7.3 it follows that

E(vi, vi+1) ∈ OC(PG(O)), where vi = fCi

Ri,Di
, for every 1 ≤ i < n.

If d is a polytree, for every two nodes v1 and vn there is at most one path in G(O): (v1, . . . , vn)

which connects them. Thus for given gn, g1, and u, OC(N (O)) contains at most one term t as

above. As both the number of function symbols and of terms of form vCRD in N (O) is polynomial in

the size of the O and the number of unary and binary atoms which occur in N (O) is also polynomial,

it follows that the size of OC(N (O)) if also polynomial in the size of O.

If G(O) is acyclic, every path of the form (v1, . . . , vn) in G(O) must not contain the same node

twice. Then, the number of terms t of form gn(. . . (g1(u)) . . .) is bounded by ckn, where c is the

number of named individuals and terms of form form vCRD occurring in N (O) and k is the number

of function symbols occurring in N (O). Thus, the total number of terms occurring in N (O) is

finite and bounded by cΣ0≤i≤kk
i, which is exponential in the size of O. Consequently, the size of

OC(N (O)) is also bounded by an exponential in the size of O.

6

Conclusions and Future Work

We have proposed the new classes of RCAn and RSA ontologies, presented in the previous two

chapters. Our experiments suggest that a significant proportion of out-of-profile ontologies are

RCAn and RSA; as a result, we can exploit a efficient algorithms, also presented in the previous

sections, to efficiently solve reasoning tasks over ontologies within these fragments.

As for future work, we intend to follow different directions with both approaches presented in

the previous chapters.

• First of, we intend to lift RCAn so it can be applied to the more general fragment of disjunctive

existential rules; i.e., rules that, apart from existentially quantified variables in the head, also

allow for the use of disjunction. This extension would allow the application of RCAn to (possibly

non-Horn) ontologies, for which there are no implementations that can solve CQ entailment.

• The reasoning techniques presented in the previous chapter may be extended to the whole

fragment of Horn-ALCIOQ. Despite the fact that tractability of reasoning would be lost, we

foresee that this would enable the development of very efficient reasoning algorithms for this

fragment. Furthermore, the notions from [Feier et al. 2015], an implementation to solve CQ

entailment over such fragment could also be produced.

65

References

Baader, F., Brandt, S., and Lutz, C. 2005a. Pushing the EL envelope. In Proc. 19th Int. Joint

Conf. on Artificial Intelligence (IJCAI-05). Morgan-Kaufmann Publishers, Edinburgh, UK.

Baader, F., Brandt, S., and Lutz, C. 2005b. Pushing the EL envelope. In IJCAI-05, Pro-

ceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh,

Scotland, UK, July 30 - August 5, 2005, L. P. Kaelbling and A. Saffiotti, Eds. Professional Book

Center, 364–369.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. 2007.

The Description Logic Handbook: Theory, Implementation, and Applications, Second ed. Cam-

bridge University Press.

Baader, F., Lutz, C., and Suntisrivaraporn, B. 2006. CEL - A polynomial-time reasoner for

life science ontologies. In Automated Reasoning, Third International Joint Conference, IJCAR

2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, U. Furbach and N. Shankar, Eds.

Lecture Notes in Computer Science, vol. 4130. Springer, 287–291.

Baget, J., Garreau, F., Mugnier, M., and Rocher, S. 2014. Extending acyclicity notions

for existential rules. In ECAI 2014. Frontiers in Artificial Intelligence and Applications, vol. 263.

IOS Press, 39–44.

Barrett, C. L., Jacob, R., and Marathe, M. V. 2000. Formal-language-constrained path

problems. SIAM J. Comput. 30, 3, 809–837.

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., and Velkov, R. 2011.

OWLIM: A family of scalable semantic repositories. Semantic Web 2, 1, 33–42.

Cal̀ı, A., Gottlob, G., and Kifer, M. 2013. Taming the infinite chase: Query answering under

expressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174.

66

67

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro,

M., Rosati, R., Ruzzi, M., and Savo, D. F. 2011. The MASTRO system for ontology-based

data access. Semantic Web 2, 1, 43–53.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R. 2007. Tractable

reasoning and efficient query answering in description logics: The DL-Lite family. Automated

Reasoning 39, 3, 385–429.

Carral, D. and Hitzler, P. 2012. Extending description logic rules. In ESWC 2012, Heraklion,

Crete, Greece, May 27-31, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7295.

Springer, 345–359.

Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., and

Wang, Z. 2013. Acyclicity notions for existential rules and their application to query answering

in ontologies. JAIR 47, 741–808.

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. 2005. Data exchange: semantics and

query answering. Theor. Comput. Sci. 336, 1, 89–124.

Fan, W. 2012. Graph pattern matching revised for social network analysis. In 15th International

Conference on Database Theory, ICDT ’12, Berlin, Germany, March 26-29, 2012, A. Deutsch,

Ed. ACM, 8–21.

Feier, C., Carral, D., Stefanoni, G., Grau, B. C., and Horrocks, I. 2015. The combined

approach to query answering beyond the OWL 2 profiles. In Proceedings of the Twenty-Fourth

International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,

July 25-31, 2015, Q. Yang and M. Wooldridge, Eds. AAAI Press, 2971–2977.

Grosof, B., Horrocks, I., Volz, R., and Decker, S. 2003. Description logic programs:

combining logic programs with description logic. In Proceedings of the Twelfth International

World Wide Web Conference, WWW 2003, Budapest, Hungary, May 20-24, 2003. ACM, 48–57.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S., Eds.

27 October 2009. OWL 2 Web Ontology Language: Primer. W3C Recommendation. Available

at http://www.w3.org/TR/owl2-primer/.

Hitzler, P., Krötzsch, M., and Rudolph, S. 2009. Foundations of Semantic Web Technologies.

Chapman & Hall/CRC.

68

Horrocks, I., Kutz, O., and Sattler, U. 2006. The even more irresistible SROIQ. In Proc.

of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006).

AAAI Press, 57–67.

Hustadt, U., Motik, B., and Sattler, U. 2005. Data complexity of reasoning in very ex-

pressive description logics. In Proceedings of the 19th international joint conference on Artificial

intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 466–471.

Kazakov, Y. 2008. RIQ and SROIQ are harder than SHOIQ. In 11th on Principles of

Knowledge Representation and Reasoning (KR’08), G. Brewka and J. Lang, Eds. AAAI Press,

274–284.

Kazakov, Y., Krötzsch, M., and Simancik, F. 2014. The incredible ELK - from polynomial

procedures to efficient reasoning with el ontologies. J. Autom. Reasoning 53, 1, 1–61.

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Zakharyaschev, M. 2011. The

combined approach to ontology-based data access. See ?]DBLP:conf/ijcai/2011, 2656–2661.

Krötzsch, M. and Rudolph, S. 2011. Extending decidable existential rules by joining acyclicity

and guardedness. In IJCAI. 963–968.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2007. Complexity boundaries for Horn description

logics. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI’07). AAAI

Press, 452–457.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2013. Complexities of Horn description logics.

ACM Trans. Comp. Log. 14, 1, 2:1–2:36.

Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M. L., and

Tommasi, P. 2014. Smart traffic analytics in the semantic web with STAR-CITY: scenarios,

system and lessons learned in dublin city. J. Web Sem. 27, 26–33.

Marnette, B. 2009. Generalized schema-mappings: from termination to tractability. In Pro-

ceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, PODS 2009, June 19 - July 1, 2009, Providence, Rhode Island, USA,

J. Paredaens and J. Su, Eds. ACM, 13–22.

Motik, B., Nenov, Y., Piro, R., Horrocks, I., and Olteanu, D. 2014. Parallel materi-

alisation of datalog programs in centralised, main-memory RDF systems. In Proceedings of

the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,

Québec, Canada., C. E. Brodley and P. Stone, Eds. AAAI Press, 129–137.

69

Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., and Banerjee, J. 2015. Rdfox: A

highly-scalable RDF store. In The Semantic Web - ISWC 2015 - 14th International Semantic

Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part II. Lecture Notes

in Computer Science, vol. 9367. Springer, 3–20.

Ortiz, M., Rudolph, S., and Simkus, M. 2010. Worst-case optimal reasoning for the horn-dl

fragments of OWL 1 and 2. In Principles of Knowledge Representation and Reasoning: Proceed-

ings of the Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13,

2010, F. Lin, U. Sattler, and M. Truszczynski, Eds. AAAI Press.

Ortiz, M., Rudolph, S., and Simkus, M. 2011. Query answering in the horn fragments of the

description logics SHOIQ and SROIQ. See ?]DBLP:conf/ijcai/2011, 1039–1044.

Rodriguez-Muro, M. and Calvanese, D. 2012. High performance query answering over dl-

lite ontologies. In Principles of Knowledge Representation and Reasoning: Proceedings of the

Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012.

Rudolph, S. and Glimm, B. 2014. Nominals, inverses, counting, and conjunctive queries or: Why

infinity is your friend! CoRR abs/1401.3849.

Stefanoni, G., Motik, B., and Horrocks, I. 2013. Introducing nominals to the combined

query answering approaches for EL. In AAAI.

Stefanoni, G., Motik, B., Krötzsch, M., and Rudolph, S. 2014. The complexity of answering

conjunctive and navigational queries over OWL 2 EL knowledge bases. J. Artif. Intell. Res.

(JAIR) 51, 645–705.

Steigmiller, A., Liebig, T., and Glimm, B. 2014. Konclude: System description. J. Web

Sem. 27, 78–85.

Walsh, T., Ed. 2011. IJCAI 2011, Proceedings of the 22nd International Joint Conference on

Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011. IJCAI/AAAI.

Zhou, Y., Grau, B. C., Nenov, Y., Kaminski, M., and Horrocks, I. 2015. Pagoda: Pay-

as-you-go ontology query answering with a datalog reasoner. J. Artif. Intell. Res. (JAIR) 54,

309–367.

