
Rule Extraction From Artificial Neural Networks
Under Background Knowledge

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Applied Mathemtics

by

Maryam Labaf
B.S, Esfahan University, 2007

2017
Wright State University

Wright State University
SCHOOL OF GRADUATE STUDIES

July 2017

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Maryam Labaf ENTITLED Rule Extraction From Artificial Neural Networks
Under Background Knowledge BE ACCEPTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF Master of Science in Applied Mathmatics.

Anthony B. Evans, Ph.D. Pascal Hitzler, Ph.D.
Thesis Director Thesis Co-Director

Ayse Sahin, Ph.D.
Chair, Department of

Mathemtics and
Statistics

Committee on
Final Examination

Pascal Hitzler, Ph.D.

Anthony B.Evans, Ph.D.

Ayse Sahin, Ph.D.

ABSTRACT

Labaf, Maryam. M.S, Department of Mathematics and Statistics, Wright State University, 2017.
Rule Extraction From Artificial Neural Networks Under Background Knowledge.

It is well-known that the input-output behavior of a neural network can be recast in

terms of a set of propositional rules, and under certain weak preconditions this is also

always possible with positive (or definite) rules. Furthermore, in this case there is in fact a

unique minimal (technically, reduced) set of such rules which perfectly captures the input-

output mapping.

In this dissertation, we investigate to what extent these results and corresponding rule

extraction algorithms can be lifted to take additional background knowledge into account.

It turns out that uniqueness of the solution can then no longer be guaranteed. However,

the background knowledge often makes it possible to extract simpler, and thus more easily

understandable, rulesets which still perfectly capture the input-output mapping.

iii

Contents

1 Introduction and Motivation 1

2 Artificial Neural Networks 4
2.1 Neural Symbolic Representation . 5
2.2 Connectionist System . 7
2.3 Neural Logical Model . 8

2.3.1 Logical Function ”AND” . 9
2.3.2 Logical Function ”OR” . 10
2.3.3 Logical Function ”NOT” . 10

2.4 Feedforward and Feedbackward Models 11

3 Preliminaries 12

4 Rule Extraction 14
4.1 Propositional Rule Extraction Using the Layer-By-Layer Method 15
4.2 Propositional Rule Extraction as a Black Box 16

4.2.1 Definite Logic Program . 17
4.2.2 Normal Logic Program . 20

5 Recurrent Neural Networks and Core Method 22
5.1 Three–Layer Network . 22
5.2 Recurrent Network and Core Method . 23

6 Rule Extraction with Background Knowledge 26
6.1 Definitions and Notation . 28
6.2 Extracting Reduced Definite Program with Background Knowledge 29

6.2.1 Existence of Solutions . 29
6.2.2 Algorithms . 32

7 Conclusions and Further Work 39

Bibliography 41

iv

List of Figures

2.1 Three-Link Chain of Rule Refinement . 5
2.2 Three –Layer Neural Network . 7
2.3 Conjunction . 9
2.4 Disjunction . 10
2.5 Negation . 10

4.1 A Simple Propositional Logic Program and the Corresponding Network . . 17

5.1 Thee–Layer Recurrent Connectionist Network 23

v

List of Algorithms

1 Reduced Definite Program Extraction . 18

2 Construct All Reduced Solutions for (P,K) 32
3 Reduced Solution for (P ,K) . 34

vi

Acknowledgment
I would first like to take this opportunity to extend my special thanks to my thesis advisor,

Professor Anthony B. Evans of the Mathematics Department at Wright State University,

for his unconditional help and support during my master thesis.

Also, I would like to express my sincere gratitude to my co–advisor, Professor Pascal

Hitzler of the Computer Science Department at Wright State University, who has mentored

me through my master thesis with his expertise, care, and patience. He gave me the oppor-

tunity to work in a different area of my background and taught me how to write a scientific

article. He commented on my weekly reports and guided me in the right direction when-

ever I needed it. Furthermore, thanks for his financial support through my final semester at

Wright State University.

I am extremely fortunate to have these two expert advisors from two different pro-

grams. Their different view points from their respective academic backgrounds gave me

insight to conduct my research. I really appreciate their time and effort reading and com-

menting on my work. This dissertation would not have been possible without their help.

My confidence to further pursue my studies in a doctoral program is mainly inspired by

their passion.

I would like to thank Professor Ayse Sahin for serving on my committee and providing

valuable insights to my research. Additionally, I appreciate the Mathematics Department’s

help in providing financial assistance through teaching assistantships.

Finally, I would like to extend my most profound gratitude to my husband and my

family for providing me with unfailing support and continuous encouragement throughout

my years of study.

vii

Introduction and Motivation

Artificial neural networks (ANNs) have the ability to learn complex nonlinear input-output

relationships. They are also a great way to learn decision boundary problems to distin-

guish the positive and negative examples. ANNs were widely used in 80’s and early 90’s.

Their popularity diminished in late 90’s when machine learning move towards the convex

optimization methods. Throughout the 80’s and 90’s there was not enough computational

power in order to train the highly nonlinear non-convex and very complicated computa-

tions that neural networks need. But nowadays, thanks to technology advancement, neural

networks is one of the state–of–the–art techniques for many applications.

The efficiency of computing models of ANN to solve complex problems in artifi-

cial intelligence is definite. ANN is an information processing paradigm, made of a large

number of interconnected processing elements, which was inspired by the way biological

nervous system works. During the last decades, applying neural networks to solve a variety

of problems, such as pattern recognition, medical diagnosis, stuck markets, data classifi-

cation, prediction, and function approximation have been the focus of a large number of

researchers and practitioners. For pattern recognition, we could use feedforward networks

(see 2.4). The main reasons for using neural networks to solve pattern recognition prob-

lems is low dependence on domain-specific knowledge and availability of efficient learning

algorithms for practitioners.

One of the main concerns of data classification and prediction research is deriving

understandable rules from data analysis, e.g., discover the hidden rules and structures from

1

an existing large amount of data. Trained neural networks are black boxes; despite the

application of neural network as a predictive models, sometimes it cannot be classified as

a satisfiable data mining tool for pattern discovery. Furthermore, the knowledge learned by

neural networks is hard to understand. Also, we cannot find an explicit explanation of the

mechanism inside the trained neural networks due to a large amount of connections [22,

23]. In most of the critical application areas, extracting rules from trained neural networks

can logically justify the knowledge embedded in the network. Additionally, understanding

the internal logic of the system gives us a better insight into a problem. To address all

of these limitations, various approaches have been developed to extract useful knowledge

from trained neural networks.

There needs to be a three-step process to use neural networks for the refinement of ex-

isting knowledge: (1) inserting knowledge into a neural network; (2) refining the network,

and; (3) extracting knowledge from the refined network [19]. For the last method we are

looking for an efficient method to extract symbolic rules from trained neural networks. The

study of rule extraction has two main goals – attain an exact and comprehensive learning

system, and understand the working mechanism of the neural network [22]. Propositional

logic program is one of the eminent methods which mainly focus on symbolic integration.

More precisely, the input-output values are identical with truth values for propositional

variables and the behavior of the network can be described in term of logical rules.

In this dissertation, we investigate rule extraction from trained neural networks under

the assumption that there is additional background knowledge which can be connected to

network node activations. This background knowledge will make it possible to formulate

the simpler rulesets which still explain the input-output functions of the networks, if the

background knowledge is also taken into account. In recent years there has been a very

considerable growth in the availability of the structured data on the World Wide Web, i.e.,

it becomes easier and easier to actually find such structured knowledge for all different

kinds of application domains. This being the case, it is, among other things, a result of

2

recent developments in the field of Semantic Web [6, 11], which is concerned with data

sharing, discovery, integration, and reuse, and where corresponding standards, methods

and tools are being developed. For example., structured data in the form of knowledge

graphs, usually encoded using the W3C standards RDF [5] and OWL [10], has been made

available in ever increasing quantities for over 10 years [7, 17]. Other large-scale datasets

include Wikidata [20] and data coming from the schema.org [9] effort which is driven by

major Web search engine providers.

In the following chapters , we will first review and introduce ANN and symbolic

representation of neural networks as a connectionist system. After some preliminaries are

reviewed in chapter 3, we will give an overview of some of the theoretical results on the

rule extraction methods of propositional logical program, which prepare the main idea of

our work in chapter 6. The main focus of this chapter 4 is explaining Lehnamm ’s result

[16] of extracting a unique irredundant definite logic program. In chapter 5, we introduce

recurrent network and core methods. Chapter 6 focuses on our results regarding rulesets

properties for definite propositional logic program under background knowledge together

with corresponding algorithms. We will show under background knowledge the uniqueness

of the solutions can no longer be guaranteed. A version of this chapter has been published

in International Workshop on Neural-Symbolic Learning and Reasoning (NESY’17) [15].

The conclusion and final work are drawn in the last chapter.

3

Artificial Neural Networks

One of the research areas in Artificial Intelligence is inspired from the neural networks

of human nervous system. How is the information represented in the brain? If we think

of the brain as a neural network, with firing and synchronization of nodes, synapses, and

transmitters, how is the knowledge encoded there?

The idea of ANNs is based on how the neurons in the human brain process informa-

tion. The brain is composed of tens of billions of neurons, which send information through

their axons and receive information through their dendrites. Information takes the form of

electrical impulses, which quickly travel through this neural network. A neuron processes

the information and can decide whether or not to transmit the information to other neu-

rons. More precisely, the dendrites of the neuron are considered as inputs and, depending

on what input the neuron receives, the neuron cell body performs computations and deter-

mines whether or not to send an electrical pulse. The output wires are connected to other

neurons and this is how the human brain works.

Similarly, ANNs are composed of multiple nodes, where a node is equivalent to a neu-

ron and the multiple nodes are equivalent to a neural network. These nodes are connected

by links, which are equivalent to the axons and dendrites, and interact with other nodes via

the links. The nodes can then receive information and perform simple operations on the

information. The result of these operations can be passed to other nodes in the network.

The output at each node is called its activation or node value. Each link is associated with

a weight that controls the signal between neurons. ANNs are capable of learning, which

4

Figure 2.1: Three-Link Chain of Rule Refinement

takes place by altering weight values. Adjusting the weights can be performed when the

network does not generate a desired output or error. In order to improve the consequent

results in the system, we should alter the weights.

2.1 Neural Symbolic Representation

We could use a three-link chain of neural networks in order to revise and correct the sym-

bolic knowledge. See Figure 2.1. First, we should insert knowledge into the neural net-

work, which becomes a knowledge-based neural networks (KNN). This step changes the

rule from symbolic to neutrally based. Second, train KNN using any standard neural net-

work algorithm, e.g., backpropagation or any other weight optimized method of feedfor-

ward neural networks. At the end, we need to extract the rules from the trained KNNs

[19].

The main question is how symbolic knowledge is represented within the connectionist

system in a suitable way. It is not easy to identify one or a small number of the nodes whose

activations contain and process a certain symbolic piece of knowledge. In order to insert

knowledge into the neural network, we could use the connectionist weights of the network

by applying the knowledge base representation of rules as propositional horn clauses [19].

Specifically, this method deals with symbolic knowledge within connectionist system by

using logical representation. The landmark paper by McCulloch and Pitts [21] provides

the fundamental insights on how symbolic knowledge in term of propositional logic can

represent neural networks. By using the connectionist representation of symbolic knowl-

edge, we could extract symbolic knowledge from trained ANNs. McCulloch-Pitts in 1943

5

simulated neurons with binary activation functions and made a propositional connectives

model, making the network equivalent to finite automata. In order to apply a logical rep-

resentation of neural networks, the input-output values are identified with truth values for

propositional variables and the behavior of the network can be described in terms of logical

rules. McCulloch and Pitts [21] used the ”all-or-none” character of nervous activity and

constructed a very simple mathematical model of neural activity. Each neuron is simulated

as one node such that the nodes (neurons) are connected to each other using the weighted

connections, with each node having an activation threshold. In this mathematical simula-

tion, a group of input nodes needs to exceed the threshold to fire. If it does not exceed

the threshold, the node does not fire. Neural events and the connections among them can

be treated by means of propositional logic. In this model, the behavior of even the most

complicated nets can be interpreted in the notation of the symbolic logic of propositions

by encoding the network to logical connections – disjunction ∨, conjunction ∧, negation

¬, implication →, and equivalence ≡. In this simple interpretation, we could process all

logical inputs and produce some outputs. Actually, it is possible to correlate the physiolog-

ical relations existing among nervous activities with relations among the propositions; and

the usage of the representation depends upon the identity of these relations with those of

the logic propositions. Due to the time dependency of the activities in the nervous system

and the existence of circular path between nodes, McCulloch and Pitts [21] applied some

physical primitive assumptions to complete the theory: (1) the nets should not be cyclic, i.e.

no circle path; (2) the activity of the neuron is an ”on-off” process; (3) at any time a certain

number of the neurons must be fired and they are independent of the previous action and

position of the neurons, and; (4) the general structure of the system is time independent.

6

Figure 2.2: Three –Layer Neural Network

2.2 Connectionist System

An ANN, which is also called connectionist system, consists of a finite set U of units

(input, hidden and output) and a setW ⊆ U × U of weighted directed connections. Each

connection labeled by a weight w ∈ R such that if there is a connection from unit ui

to uj , then wji is its associated weight. A unit is specified by: (1) an input vector ~i =

(i1, i2, ..., im), ij ∈ R, 1 ≤ j ≤ m; (2) an activation function Φ mapping ~i to a potential

p ∈ R such that p =
∑r=m

r=1 ir.wr or p =
∑r=m

r=1 (ir − wr)
2, and; (3) an output function

Ψ mapping p to an output value v ∈ R. If there is a connection from ui to uj , then wjkvi

is the input received by uj from ui along this connection at time t. Through learning the

network the potential and output value of a unit are simultaneously recomputed or updated.

McCulloch and Pitts [21] simulated the activities of nervous systems by logical calculus.

Their network follows the three –layer connectionist system of input, output, and hidden

layers. In the following, we show how this neural network connectionist system works

and how the logical model represented by McCulloch and Pitts [21] works. We utilize

the McCulloch–Pitts model to train a neural network to learn the logic functions ”AND”,

”OR”, and ”NOR”. Other logic functions can be extracted by applying the same method.

7

2.3 Neural Logical Model

As mentioned earlier, the neuron model is a simple logistic unit. Each neuron has input

units xi where i ≥ 1. After doing computations there is an output function hw(~x), where

~x is a vector of input units, and w is a vector of parameters. Each neuron takes the inner

product between ~x and w and applies the logistic (sigmoid) activation function to find the

simulation of the neuron. We compute the total weighted inputs and calculate the output

using the logistic sigmoid activation function. In Figure 2.2, there is a three–layer neural

network with a layer of input units xi, a
(j)
i activation of unit xi in layer j, w is a matrix

of weights and hw(~x) is a logistic regression function that applies to the features a(j)i in

hidden layer j. Each layer has some features which represent the data. Each node takes an

inner product of ~x with some of the features of w matrix. Applying the sigmoid function,

which defined in the following, to each linear combination of input and output unit values

computed in the previous layer. If the network has sj units in layer j, and sj+1 units in

layer j + 1, then w will be of dimension s(j+1) × (sj + 1).

Definition 1. Sigmoid Function: A sigmoid function, also known as a logistic function,

is defined by the formula (t) = 1
1+e−βt

, where β is a slope parameter. In order to use the

sigmoidal function as an activation function, βt = (pk + θk), where pk and θk are the

potential and value of the of the unit k, respectively.

x =



x0

x1
...

xm


and w =



~w0

~w1

...

~wm


(2.1)

8

where x0 is the bias unit. We have the following equations:

a
(j)
i =

m∑
k=1

wikxk (2.2)

Then hw(~x) = g
∑m

i=1 a
(j)
i finds the output result.

2.3.1 Logical Function ”AND”

Figure 2.3: Conjunction

For the simple network with binary values x1 ∈ {0, 1} and x2 ∈ {0, 1}, in order to

compute the ”AND” logical function, we choose the appropriate weights which are shown

in Figure 2.3. We compute the output function hθ(x) = g(θ)(w1 + w2x1 + w3x2), where

g(θ) is the step function. Using the binary values of x1 and x2, we calculate hθ(x) and

complete the truth table. The column on the right means hθ(x) is approximating x1 and x2.

The output is equal to one if x1 = 1 and x2 = 1, so hθ(x) ≈ x1 ∧ x2.

9

Figure 2.4: Disjunction

2.3.2 Logical Function ”OR”

In Figure 2.4, by changing the connected weights we compute the disjunction, ”OR” logical

function. So, hθ(x) ≈ x1 ∨ x2.

2.3.3 Logical Function ”NOT”

Figure 2.5: Negation

In Figure 2.5, the output represent the negation, ”NOT”. To compute all complicated

logical representation in multiple layered networks, we need at least one head of each layer.

More generally, as we have neural networks with multiple hidden layers, we can imagine

building up more and more complex functions by adding additional layers to the network.

However, the challenge with multiple layers is that the learning problem becomes non–

convex and we need both an approximate algorithm as well as sufficient computational

power in order to train the parameters of the deep network.

10

2.4 Feedforward and Feedbackward Models

There are two different network structures, feedforward and feedbackward. A feedforward

neural network is a type of network architecture where the connections are ”fed forward”,

i.e., there is no cyclic connections and the output of any layer does not affect that same layer.

This network structure has fixed inputs and outputs where traveling through the network

starts from the input layer, then traverses through the hidden layers, and then ends at the

output layer. They are broadly used in pattern recognition. Furthermore, they are a good

candidate for any functional mapping problems where we want to know how a number of

input variables affect output variable. This architecture is also referred to as bottom–up or

top–down

There is, however, the feedbackward which is also called backpropagation. This has

the training algorithm with three steps: (1) feed forward the values; (2) compute the error,

and; (3) propagate it back to the earlier layers. More precisely, feedforward is part of

the feedbackward algorithm and comes before backpropagation. Feedbackward networks

can get highly complicated because signals in the networks can travel in both directions

by introducing loops. Feedbackward networks are dynamic, i.e., their state is changing

continuously until they reach an equilibrium point. Also, they stay at equilibrium until the

input changes and a new equilibrium point is found.

11

Preliminaries

In this chapter we briefly recall some of the standard notations concerning logic programs

with the main focus on propositional logic programs form [16, 12]. The more specialized

definitions and notions are defined further in the related sections. For further background

on notations regarding logic programs, cf. [12].

An atom is a propositional variable. A literal is an atom or a negated atom. In propo-

sitional logic program a Horn clause is defined: q ← p1, . . . , pn, where q is an atom and is

called the head, pi are literals, and {p1, . . . , pn} is called the body of the clause. The clause

body could be empty and there is a conjunctive relation between the literals of the clause

body. The clause length is equal to the number of literals in the body of the clause. A clause

is called definite if all literals pi are atoms. A logic program P is defined as a finite set of

rules and facts. A normal propositional logic program P over a propositional language L

is a finite set of clauses; moreover, if all the clauses in the program P are definite, it is

called a definite propositional logic program.

Let B be the set of all propositional variables occurring in L. An interpretation I is a

mapping B → {true, false}. We will usually identify I with the set of atoms (predicates)

which it maps to true. 2B is the set of all interpretations. IP is the set of all interpretations

of program P . Note that IP is the powerset of the (finite) set BP of all atoms occurring in

P [16].

12

Definition 2. Reduced Logic Program: A logic program P is called reduced if it holds the

following:

1. For every clause q ← p1, ..., pn in P , all pi are mutually distinct.

2. For any two rules q ← p1, ..., pn and q ← r1, ..., rm in P , {p1, ..., pn} * {r1, ..., rm},

where n ≤ m.

Definition 3. Model: A model of a clause C is an interpretation I which maps C to true (in

symbols: I � C). A model of a program P is an interpretation which maps every clause

in P to true [18].

Definition 4. Immediate Consequence Operator: Let B be the set of all propositional

variables occurring in propositional logic program P . The operator TP : IP → IP is

called immediate consequence operator associated with program P such that

TP(I) := {q | there is a clause {q ← B} ∈ P such that I |= B}.

If TP(I) = I , then I is a supported model and vice versa. This operator is well-known

to be monotonic in the sense that whenever I ⊆ J , then TP (I) ⊆ TP (J).

13

Rule Extraction

Even though the representation of symbolic knowledge is necessary for different appli-

cations of connectionist learning system, neural symbolic integration attempts to achieve

connectionist processing of complex logical knowledge, learning, and inferences. Regard-

ing the fact of the various applications of neural networks in real-world problems (e.g. in

engineering, bioinformatics and robotics), knowledge extraction from the trained neural

networks has been the core of the interests [3, 16]. The tendency to make the learned

knowledge accessible to human interpretation and formal assessment necessitate the accu-

racy, efficiency, and rules comprehensibility of the methods for extracting symbolic knowl-

edge from trained neural networks [3]. For each problem we need to extract knowledge in

symbolic form. Then the symbolic extracted knowledge can be used for further processing

using inference engines or other knowledge based systems. Intuitively, for a given trained

neural network, the extraction task is to find the relations between inputs and outputs such

that certain inputs cause a particular output. Extracting knowledge from trained networks

mainly focus on rule extraction in propositional case.

In propositional rule extraction, we are looking for the sets of propositional rules

(i.e., propositional Horn Clauses) which capture or approximate the input–output map-

ping f : I → I, where I denotes the power set of the finite set B of all propositional

variables corresponding to the nodes. In order to obtain such sets, there exists two main

lines of approaches which mainly focus on first–order–neural symbolic integration. We use

propositional logic program for this sake. The first one is a layer–by–layer approach and

14

the second one is a neural networks approach as black boxes.

4.1 Propositional Rule Extraction Using the Layer-By-Layer

Method

Among the learning strategies from neural network, Garcez [8] presented the connectionist

inductive learning and logic programming (C − IL2P) system, which is a massively par-

allel computational model. This model is based on a feedforward ANNs that integrates in-

ductive learning from examples and background knowledge, with deductive learning from

logic programming. This method starts with propositional logic program representation of

background knowledge. It then applies a new translation algorithm which could generate a

trained neural network with examples, as well as compute the stable model of the program

inserted in it. Furthermore, extracting a revised logic program from the network uses the

result of refining the background knowledge with training examples.

There is a trade–off between the complexity and quality of rule extraction methods.

Rule extraction method of symbolic knowledge from trained neural networks introduced by

Garcez and Broda [1] captured non-monotonic rules encoded in the network. This method

is introspective and seeks to construct the rules out of the weights associated with the con-

nections between nodes in the networks, usually proceeding in a layer-by-layer fashion

under differentiable activation function [8, 1]. In their method they used the partial or-

dering on the input space along with a number of pruning and simplification rules that

interact with such an ordering to ameliorate some of the problems of the rule extraction.

Pruning rules reduce the search space of the input vectors so that we avoid clearing irrel-

evant input vectors, and the simplification rules decrease the size of the extracted set of

rules. The method uses the pedagogical approaches to guarantee the knowledge extracted

is equivalent to the network and the extraction process is sound and complete. However,

15

the pedagogical approaches are not effective to use when the network size increases. In this

case decomposition method resolve this limitation. We decompose the network to subsets

of the weight of each neurons in the hidden and output layer of the network such that the

neurons’ input potential exceeds its threshold. This method decreases the complexity of

the extraction algorithm to a large extend.

4.2 Propositional Rule Extraction as a Black Box

This method is in regard to a black box network and considers only the input–output func-

tion f . One of the main issues of this method was that the set of rules extracted from

the networks were particularly redundant and more complex to interpret than the trained

networks. Lehmann [16] showed how to obtain a unique irredundant representation of the

extracted data from ANNs by using the propositional logic rule derivation. He proved that

excluding the use of negation within the knowledge based is required in order to obtain

the desired unique representation, i.e., by considering definite logic programs. However, in

presence of the negation the unique representation is not expected. In both cases, definite

logical program and normal logical program, extracting the irredundant representation from

the trained network would be plausible by using some of the proper algorithms. Lehmann

’s method was mainly based on learning cycles for the rules extraction: first, using back-

ground knowledge to initialize an untrained network; second, training the networks based

on the background knowledge, and; lastly, extracting the data from the trained network.

The black box approach ended with on interesting result. For every monotonic function

f : {0, 1}n → {0, 1}m, there exists a unique reduced set, as defined in definition 2, of

positive propositional rules which capture exactly the function f . Reduced means no re-

dundancies, and as small as possible.

16

4.2.1 Definite Logic Program

Figure 4.1: A Simple Propositional Logic Program and the Corresponding Network

In order to extract a logic program from the definite logic program, we activate the

input layer of the given network with all possible interpretations to obtain the corresponding

interpretation of the output layer. Interpretation by applying the immediate consequence

operator leads to a monotone mapping f : IP → IP for the knowledge extracted from

the given network. Referring to [16], for every such mapping, f : IP → IP , by applying

the full exploration-definite algorithm we can construct a propositional logic program P

such that TP = f . To construct a definite logic program P from this algorithm, for a given

monotone mapping f , for each interpretation I = {p1, p2, . . . , pn} ∈ IP , we add the clause

r ← p1, p2, . . . , pn to P for each r ∈ f(I). Furthermore, by employing a linear order

≺ using in reduction algorithm, we obtain program Q for f = TP such that TP = TQ.

Program Q is also a reduced definite propositional logic program which is least in terms

of size. The most interesting result about the reduction algorithm is Q extracted from

this algorithm is an unique reduced definite propositional logic program that satisfies the

mentioned properties.

17

Algorithm 1: Reduced Definite Program Extraction
Input: A monotone mapping f : I1 → I2.
Output: P , a definite logic program with TP(I) = f(I) for all I ∈ I1.

1: Initialization: P = ∅.
2: Choose a total linear order ≺ on I1, such that for any Ii, Ij ∈ I1 with i < j

we have |Ii| < |Ij|.
3: for all I = {p1, . . . , pn} ∈ I1, chosen in ascending order according to ≺ do
4: for all q ∈ f(I) do
5: if there is no q ← q1 ∧ · · · ∧ qn in P with {q1, . . . , qn} ⊆ I then
6: add the rule q ← p1 ∧ · · · ∧ pn to P .
7: end if
8: end for
9: end for

10: Return P as result.

The following theorem was shown in [16].

Theorem 1. Let f : I1 → I2 be monotonic. Then there exists a unique reduced logic pro-

gram P with TP = f . Furthermore, this logic program can be obtained using Algorithm 1.

If we drop the precondition on f to be monotonic, then Theorem 1 no longer holds,

because of the fact mentioned above that immediate consequence operators are always

monotonic. The following corollary extracted from Theorem 1 shows the program obtained

by Algorithm 1 is unique.

Theorem 2. Given a logic program P , there is always a unique reduced logic program Q

with TP = TQ.

Proof. Given P , we know that TP is monotonic. Now apply Theorem 1.

Theorems 1 and 2 show that the results extracted from definite logic program from

a neural networks must be the same as the results of Algorithm 1. The following is an

example of applying Algorithm 1 for the given definite logic program P .

18

Example 1. Let B1 = {p1, p2, p3} and B2 = {q1, q2} be input and output sets, respectively,

and consider the logic program P given as

q1 ← p1 ∧ p2

q1 ← p1 ∧ p2 ∧ p3

q1 ← p1 ∧ p3

q2 ← p1

q2 ← p1 ∧ p2.

Applying Algorithm 1 then yields the reduced program

q1 ← p1 ∧ p2

q1 ← p1 ∧ p3

q2 ← p1.

Here we mention some of the main principles of this model. There is one unit in the

input and output layer of the network for each atom in the program, and there is a unit in

the hidden layer for each clause. The connection between the layers are constructed such

that the input-output behavior of the network matches the TP operator. Figure 4.1 shows a

propositional logic program P and its network obtained by translation algorithm applied to

P . Connections with weight 1 are depicted solid and the ones with weight -1 are dashed.

The numbers denote the threshold of the units. The knowledge represented by program P

can essentially be captured by the operator TP . The program contains the predicate letters

p, q, r and we consider the interpretations related to these variables. For each rule in P , a

19

logical threshold unit is added to the hidden layer such that the unit become active if and

only if the preconditions of the rule are met by current pattern of the input layer.

4.2.2 Normal Logic Program

As mentioned earlier it is possible to extract a normal logic program P from the given net-

work such that the behavior of the associated TP − operator and the input-output mapping

of the network are identical, but not necessarily a least one. At first we introduce some of

the required definitions, then explain the method proposed by Lehmann [16] to extract all

the reduced normal logic programs from the given networks.

Definition 5. Valid Clause: Let TP be an immediate consequence operator, and r a

predicate. B = p1, p2, . . . ,¬q1, . . . ,¬qb is called valid with respect to r and TP if and only

if for every interpretation I ⊆ BP with I |= B, we have r ∈ TP(I).

Definition 6. Allowed Clause: Let TP be an immediate consequence operator, and r a

predicate. B = p1, p2, . . . ,¬q1, . . . ,¬qb is called allowed with respect to r and TP if the

following properties hold:

1. B is valid with respect to TP and r.

2. There is no valid body B′ ⊂ B for r and TP .

In order to obtain the minimal normal programs for the given network, we could ap-

ply the intelligent program search algorithm. This algorithm is based on the full program

search instead of using of heuristics, i.e., the score function, to add clauses to subprograms

(cf. [16]). The intelligent program search algorithm can be applied to any arbitrary mono-

tone mapping f : IP → IP over the set of predicates BP = {q1, q2, . . . , qm}. The goal

is extracting a logic program Q such that in each iteration for each predicate qi ∈ BP , we

20

construct the set Si of allowed clause bodies for qi. Then we add the set Qi to Q where

Qi consists of the smallest clause body C in Si such that the score(C,Q) is maximum.

The extracted normal program Q from the intelligent search algorithm cannot guarantee

the uniqueness of the solution, but the output is the set of all allowed clause bodies with

respect to TP and BP .

We discussed algorithms for extracting definite and normal propositional logic pro-

grams from neural networks. The results show the existence and uniqueness of the solution

for definite propositional logic program; however, for the normal case, it lost the unique-

ness property and we could only expect extracting the least reduced normal programs from

the networks. In Chapter 6 we only worked on definite logic program with adding back-

ground knowledge. We will see that the uniqueness property of the solution is no longer

valid. Looking for the normal logic program is considered a future work.

21

Recurrent Neural Networks and Core

Method

In this section we discuss knowledge based ANNs, i.e., networks which are initiating by

available background knowledge before training methods are applied. The semantics of

logic programs is defined as the least fixed point of an appropriate meaning operator. If

program P is definite, this operator is called the immediate consequence operator TP ,

which is monotonic function 3. Howeve, the TP operator for the normal program P could

be non-monotonic and there is no guarantee of the existence of a least fixed point of TP .

Hölldobler in [13] used the metric method to establish a strong relationship between logic

programming and connectionist models of computations. His research mainly focused on

investigating the relationship between the normal propositional logic program and recurrent

connectionist system.

5.1 Three–Layer Network

Holldobler-Kalinke at 1994 extended the approach by McCullch–Pitts and worked on the

representation of propositional logic programs, and their semantics by using massively

parallel reasoning. For any logical program P we construct a three–layer recurrent net-

work that is updated along the implication, where TP represents the meaning (semantics)

22

of program P through its fixed point. The recurrent network updates along layers corre-

sponding to the iterator of the semantic operator. The fixed point of the operator (semantics

of the program) can be computed in a parallel manner. Garcez–Zaverucha in 1999 [8] and

Garcez–Broda-Gabby in 2001 [1] used the results of the core method for development of a

learning paradigm. They established a new neural–symbolic learning cycle using a differ-

entiable activation function and using the backpropagation algorithm. The neural–symbolic

learning cycle is applied to the untrained neural network with initializing the initial back-

ground knowledge. We learn the neural network through a repeated cycle by modifying the

initialization. We could extract the learned knowledge in the form of propositional rules

after a finite number of training. The network function maps binary vectors, i.e., any input

value 1 is interpreted as true and 0 as false and then outputs interpreted a value as true or

false according to a threshold.

5.2 Recurrent Network and Core Method

Figure 5.1: Thee–Layer Recurrent Connectionist Network

23

To construct recurrent networks we consider the so–called feedforward networks,

which compute functions from Rn to Rm, where n and m are the number of input and

outputs units, respectively. If the output units of a n–layer feedforward network N con-

nects to the input units ofN , the constructed network is called a recurrent network [13, 4].

Let L be a logic language, where TP is the corresponding immediate consequence

operator for the given logic program P under language L. If I is the set of interpretations

for P , there is a mapping R : I → Rn. Core is a feedforward network computing fP :

Rn → Rn such that the following holds:

if TP(I) = J, then fP(R(I)) = R,where I, J ∈ I. (5.1)

if fP(~s) = ~t, then TP(R−1(~s)) = R−1(~t), where ~s,~t ∈ Rn. (5.2)

Connect the units in the output layer recursively to the units in the input layer. I =

fp(TP) if and only if the recurrent network converges to or approximates R(I). Connec-

tionist model generation uses recurrent networks with feedforward core. Figure 5.1 shows

a blueprint of a three–layer recurrent connectionist network. The left layer is a vector of

input units and the right layer is a vector of output units, where the input and the output

units are identical. Each unit in the input layer is connected to each unit in the output layer,

and each unit in the output layer is connected to the corresponding unit in the input layer.

The weights between all of the connectionist layers are equal. The subnet consisting of

the three layers and the connections between the input and the hidden layers, as well as

between the hidden and the output layers, is a three–layer feedforward network, which will

be used to approximate the operator TP obtained from a certain program P . In the recurrent

network, the TP is computed with an arbitrary initial activation of the input layer with an

initial interpretation. Multilayer feedforward networks are one of the most generally used

and greatly investigated connectionist models.

24

Hölldobler [13] showed that two–layer feedforward networks cannot compute TP for

definite P . The multilayer feedforward neural network, i.e., at least one hidden layer, is the

simplest network that can be used to compute the TP associated with definite propositional

program P . Therefore, for each program, P there is a multilayer feedforward network

which computes TP and vice–versa.

The main idea of the core method is to use a feedforward connectionist network to

compute the meaning function of logic programs. The propositional core method allows

for model generation with respect to variety of logics in a connectionist system.Hölldobler

[13] proved that for any propositional logic program P , there exists a three–layer recurrent

network, i.e, core, computing its meaning function TP and, for each acyclic logic program

P , there exists a core with the recurrent connectionist such that the computation with any

arbitrary initial input converges and yields to a unique fixed point of TP . Furthermore, if P

is the program associated with three–layer feedforward subnet of the three–layer recurrent

network N , and N always settles down in a unique stable state, then TP has a unique

fixed point. All of these results are extendable to three–valued or four–valued logics. In

order to do this, we should extend the input and output layers of the network such that for

each propositional variable P occurring in the formula, there are two units in the layers

representing P and ¬P , respectively. Program P obtained from the recurrent network is

not always acceptable, and finding the stable state is not always possible. There is a close

relationship between normal propositional logic programs and recurrent networks of binary

threshold. We always could use the three–layer feedforward networks in order to find the

approximation of TP for propositional program P .

25

Rule Extraction with Background

Knowledge

During the training process from the raw data, ANNs acquire expert knowledge about the

problem, and the ability to recognize this knowledge similar to but previously unencoun-

tered situations in a way which often surpasses the abilities of human expert. One of the

limitations in the range of the applicability of the neural networks technology is that the

knowledge obtained during the training process is hidden within the acquired network ar-

chitecture and connections weights, which is not directly accessible for analysis, reuse or

improvement. As discussed in Section 4, rulesets extraction from either method are subject

to be large and complex. From inspection of these rulesets, it is often difficult to obtain

real insights into what the networks have learned. In this section, we investigate rule ex-

traction under the assumption that there is additional background knowledge which can

be connected to the network node activation, with the expectation that such background

knowledge will make it possible to formulate simpler rulesets that still explain the input–

output functions of the networks if the background knowledge is also taken into account.

In the following, we consider a very simple example to illustrate a key insight as to how

additional background knowledge can change the result proved by Lehmann [16] for the

propositional logic program.

26

Example 2. Assume there is an input–output mapping of programP of the neural networks

without background knowledge. Then

P = {o← p1 ∧ p, o← p2 ∧ p}

and there is background knowledge program K with rules

K = {q ← p1, q ← p2}.

Then, taking background knowledge into account, we obtain the simplified input–

output mapping PK, as

PK = {o← q ∧ p}.

In Example 2 q serves as a more general propositional, and p1 and p2 are the sub-

branches of q, e.g., p1 could stand for ”is an apple”, and p2 could stand for ”is a banana”,

while q could stand for ”is a fruit”. Now we could take, e.g., p to stand for ”is ripe”, and

o to stand for ”can be harvested”, then we obtain a not–so–abstract toy example, where

the background knowledge facilitates a simplification because it captures both apples and

bananas using the more general concept ”fruit”.

As discussed in Section 4.2.1, Lehmann [16] proved the uniqueness of the reduced

definite propositional logic programQ for any TP of a definite propositional logic program

P . In this section, we investigate and discuss in detail to what extent we can carry over

results regarding positive rulesets from [16] to new scenarios with background knowledge.

We now introduce more notation as needed and recall preliminary results from [16].

27

6.1 Definitions and Notation

We recall some of the results from [16] and previously used notation in Section 3 which

will be central for this section.

Following the notation presented in Section 3, let B be a finite set of propositional

variables, let I be the power set of B, and consider functions f : I → I as discretizations

of input-output functions of trained neural networks. In this section, we only examine all

of the (propositional) logic programs with positive (or definite) rules.

We need to make a mild assumption. We assume that the propositional variables used

to represent input and outputs node are distinct, i.e., each propositional variable represents

either an input node or an output node, but not both. This means that the power set B can

be partitioned into two sets, B1 and B2, such that B = B1 ∪ B2. As a consequence, we

obtain I1 and I2, the corresponding power sets, such that the semantic operator (immediate

consequence operator) is a function TP : I1 → I2.

Due to our assumption, we now give a different but equivalent formalization for the

definition of the immediate consequence operator, which will help us in this section. For

any I = {p1, . . . , pn} ⊆ B, let c(I) = p1 ∧ · · · ∧ pn. Now, for a given logic program P and

I ∈ I1, we obtain:

TP(I) = {q ∈ B2 | c(I) ∧ P |= q},

where c(I) ∧ P denotes c(I)
∧
R∈P R.

Definition 7. Equivalence Class: Two programs, P and G, are in equivalence class if

TP(I) = TG(I), where I is an interpretation, and symbolically we denote it by P ∼ G.

28

6.2 Extracting Reduced Definite Program with Background

Knowledge

As laid out in Theorems 1 and 2 of Section 4.2.1, for any definite logic program P , there

is a unique reduced logic program. In this section, we investigate Theorem 1 when consid-

ering additional background knowledge. Assume P is a logic program which captures the

input–output function of a trained network according to Theorem 1. Let logic program K

account for our background knowledge, which may use additional propositional variables,

i.e., propositional variables not necessarily occurring in P . We then seek a logic program

PK such that, for all I ∈ I1, we have

{q ∈ B2 | c(I) ∧ P |= q} = {q ∈ B2 | c(I) ∧ K ∧ PK |= q}.

In this case, we call PK a solution for (P ,K).

6.2.1 Existence of Solutions

There are two assumptions for the rules in program K. The first assumption is no proposi-

tional variable from B2 appears in K. The second assumption propositional variables from

B1 appear only in the body of rules in K. The justification for the first assumption is based

on the explanation of the networks such that the occurrence of the variables from B2 in K

would bypass the network. The second one can be easily justified by the use case, which

indicates that the network input activation should be our starting point, i.e., the activation

should not be altered by the background knowledge. The existence of the solution can-

not be guaranteed if we drop the second assumption, i.e., appearance of the propositional

variables from B1 in the body of rules in K.

29

Example 3. Let B1 = {p1, p2}, let B2 = {q1, q2}. Then, for the given programs P

q1 ← p1

q2 ← p2

and K

p2 ← p1,

there is no solution for (P ,K). To see this, assume PK is a solution for (P ,K). Then,

because p2 ∧ P |= q2, we obtain p2 ∧K ∧ PK |= q2. But then p1 ∧K ∧ PK |= q2 although,

p1 ∧ P 6|= q2. In other words, PK cannot be a solution for (P ,K).

However, the existence of the solution has been guaranteed under the second assump-

tion.

Proposition 1. Let P and K be the given logic programs under our standing assumptions.

Then there always exists a solution for (P ,K) which is reduced.

Proof. Because rule heads from K never appear in P , we obtain

{q ∈ B2 | c(I) ∧ P |= q} = {q ∈ B2 | c(I) ∧ K ∧ P |= q}

for all I ∈ I1, i.e., P is always a solution for (P ,K). Existence of a reduced solution then

follows from Theorem 2.

Proposition 1 shows the existence of the solution. However, this solution is not always

30

unique. Naturally, we are interested in all other solutions which are simpler that P .

Proposition 2. There exists logic programs P and K which satisfy our standing assump-

tions, such that there are two distinct reduced solutions for (P ,K).

Proof. Let B1 = {p1, p2, p3} and B2 = {q}. Then consider the programs P

q ← p2 ∧ p3

q ← p1 ∧ p3

and K

r1 ← p2 ∧ p3

r1 ← p1 ∧ p3

r2 ← p1

r2 ← p2.

The two logic programs

PK1 = {q ← r1}

and

PK2 = {q ← p3 ∧ r2}

are then both reduced solutions for (P ,K).

For any given logic program P and program K of additional background rules, the

number of solutions extracted by applying Algorithm 1 is actually exponential in the worst

31

Algorithm 2: Construct All Reduced Solutions for (P,K)

Input: Logic programs P and K with TP : I1 → I2 and TK : I1 → I3 which satisfy
our standing assumptions, where B2 = {q1, . . . , qn}.

Output: All the reduced solutions for (P ,K).
1: Set S = ∅ and B = B1 ∪ B3.
2: Set I to be the power set of B.
3: SetR to be the power set of I.
4: for all (R1, . . . , Rn) ∈ Rn do
5: for all i ∈ {1, . . . , n} do
6: Qi = {c(B)→ qi | B ∈ Ri}
7: end for
8: Set Q =

⋃
i∈{1,...,n}Qi.

9: if TQ is a solution for (P ,K) then
10: Apply Algorithm 1 to TQ to obtain a reduced program S with TS = TQ.
11: if S 6∈ S then
12: Add S to S.
13: end if
14: end if
15: end for
16: Return S as result.

case. We will discuss about it in the proof of Theorem 3.

6.2.2 Algorithms

Let P and K be the given propositional logic programs under our standing assump-

tions in Section 6.2.1. In order to compute all reduced solutions for (P ,K), i.e., PK, we

use Algorithm 2, which uses a brute-force approach to check all possible logic programs

that can be constructed over the given propositional variables, where they constitute all the

solutions for (P ,K). To obtain a corresponding reduced program for every extracted solu-

tion from Algorithm 2, it invokes Algorithm 1. The output of the Algorithm 2 is a set of all

reduced solutions for (P ,K).

Algorithm 2 has exponential runtime because in line 4, if the setB hasm elements, the

power set I has 2m interpretations and therefore the power setR has 22m interpretations. If

there are n propositional variables in B2, then the searching cost to find all of the solutions

32

for (P ,K) is O(n.22m). Even though Algorithm 2 is quite correct and always terminates, it

is too naive to be practically useful for anything other than toy examples.

Theorem 3. The problem of finding all solutions to (P ,K) is, in the worst-case, exponen-

tial, in the combined size of P and K.

Proof. Let n be any positive integer. Define the logic program Pn to consist of the single

rule

q ← p1 ∧ · · · ∧ pn

and let

Kn = {ri,1 ← pi, ri,2 ← pi | i = 1, . . . , n}.

Then, for any function f : {1, . . . , n} → {1, 2}, the logic program

Pf = {q ← r1,f(1) ∧ · · · ∧ rn,f(n)}

is a reduced solution for (Pn,Kn). Since there exist 2n distinct such functions f , the

number of reduced solutions in this case is 2n, so their production is exponential in n,

while the combined size of Pn and Kn grows only linearly in n.

Algorithm 2 computes all of the reduced solutions to (P ,K). However, Algorithm 3,

which is the combination of Algorithms 1 and 2 can find only one of the reduced solutions

which makes it more efficient.

33

Algorithm 3: Reduced Solution for (P ,K)

Input: Logic programs P and K with TP : I1 → I2 and TK : I1 → I3 which satisfy
our standing assumptions.

Output: A reduced solution for (P ,K).
1: Set S = ∅ and B = B1 ∪ B3.
2: Set I to be the power set of B.
3: Choose a total linear order ≺ on I, such that for any Ii, Ij ∈ I with i < j we

have |Ii| < |Ij|.
4: for all I = {p1, . . . , pm} ∈ I1, chosen in ascending order according to ≺ do
5: for all q ∈ TP(I) do
6: if c(I) ∧ K ∧ S 6|= q then
7: Set endloop = false.
8: Choose first J = {b1, . . . , bn} ∈ I according to ≺.
9: while endloop = false do

10: if c(I) ∧ K ∧ S ∧ (J → q) |= q then
11: if {H ∈ I1 | H ∧K∧S ∧ (q ← J) |= q} ⊆ {H ∈ I1 | q ∈ TP(H)} then
12: Add the rule q ← J to S and set endloop = true.
13: end if
14: else
15: Choose next J = {b1, . . . , bn} ∈ I according to ≺.
16: end if
17: end while
18: end if
19: end for
20: end for
21: Return S as a result.

Proposition 3. Algorithm 3 is correct and always terminating.

Proof. Like Algorithm 1, Algorithm 3 checks all combinations of I ∈ I1 and q ∈ TP(I)

and makes sure that there are rules in the output program such that c(I) ∧K ∧ S |= q. The

rules for the output program are checked one by one in increasing length until a suitable

one is found. Note that the rule q ← I is going to be checked at some stage, i.e., the

algorithm will either choose this rule, or a shorter one, but in any case we will eventually

have c(I)∧K∧S |= q. This shows that the algorithm always terminates and that we obtain

c(I) ∧ K ∧ S |= q for all q ∈ TP(I).

34

In order to demonstrate that the algorithm output S is indeed a solution for (P ,K),

we also need to show that for all q ∈ B2 and H ∈ I1 we have H ∧ K ∧ S |= q implies

q ∈ TP(H). This is in fact guaranteed by line 11 of Algorithm 3, i.e. the algorithm output

S is indeed a solution for (P ,K).

We finally show that the output of the algorithm is reduced. Assume otherwise. Then

there are q ← I1 and q ← J in S with I1 (J . By our condition on the order, we thus have

I1 ≺ J , and so we know that q ← I1 was added to S earlier in the algorithm than q ← J .

Now let us look at the instance of line 12 in Algorithm 3 when the rule q ← J was added to

S. In this case, (using notation from the algorithm description, and S denoting the current

S at that moment) we know that c(I) ∧ K ∧ S ∧ (J → q) |= q and c(I) ∧ K ∧ S 6|= q.

This implies c(I) ∧ K ∧ S |= J , and because I1 ⊆ J we obtain c(I) ∧K ∧ S |= I1. But

we also observed that I1 → q is already contained in S at this stage, and thus we obtain

c(I)∧K∧S |= q, which contradicts the earlier statement that c(I)∧K∧S 6|= q. Therefore,

we have to reject the assumption that S is not reduced; hence S is indeed reduced. This

completes the proof.

The following example indicates how Algorithm 2 computes all of the reduced solu-

tions of (P ,K).

35

Example 4. Let B1 = {p1, p2, p3} and B = {q1, q2, q3, q4}. Consider the program P

q1 ← p1 q1 ← p2

q2 ← p1 q2 ← p2

q3 ← p1 q3 ← p2

q4 ← p1 q4 ← p2 ∧ p3

and K

r1 ← p1 r1 ← p2 ∧ p3

r2 ← p1 r2 ← p2

r3 ← p2.

Then there is only one reduced solution PK for (P ,K), which is

q1 ← r2 q2 ← r2

q3 ← r2 q4 ← r1.

Note, that PK is simpler and shorter than P .

Referring to Proposition 3, we expect to have more than one reduced solution for

(P ,K). Even though we miss the uniqueness of the result by adding background knowl-

edge, all the solutions are in equivalent class.

36

Proposition 4. Let P andK be the given programs under out standing assumption. If there

exist more than one reduced solution for (P ,K), all the solutions are in equivalent class.

Proof. Let there be n distinct reduced solutions for (P ,K). We want to show there is a

class of solutions PK such that [PK]R = {PKm ∈ S|PKi ∼ PKm , 1 ≤ i ≤ n}, where S is

the set of all reduced solutions, such that c(I)∧P � q if and only if c(I)∧ [PK]R ∧K � q.

We use contradiction to prove it.

Let there be two classes [PK]R and [P ′K]R such that if c(I) ∧ P � q, then c(I) ∧

[PK]R ∧R � q and c(I) ∧ [P ′K]R ∧ K � q.

Without loss of generality, assume the rules of the two classes are all the same except

with one different rule, [PK]R = {q ← r1, r2, ...rk−1, rk, rk+1, ..., rl} and [P ′K]R = {q ←

r1, r2, ...rk−1, ρ, rk+1..., rl}, l ≥ 1. For the two classes the only different variables are rk

and ρ. As [PK]R is equal to one of the members in set S, suppose [PK]R = {PKi}:

Case 1. Suppose ρ ∈ PKi . Then rk = ρ, and there is nothing to prove.

Case 2. Suppose ρ /∈ PKi . Then rk 6= ρ and ∃PKj ∈ S such that ρ ∈ PKj . As all the

programs PKi ∈ S, 1 ≤ i ≤ l, it does not effect the uniqueness property.

Case 3. Suppose ρ is a rule that is not in any member programs in set S. Then ρ is

one of the redundant clauses which should be dropped from the class of [P ′K]R.

37

Example 5. Let B1 = {p1, p2, p3} and B2 = {q}. Consider programs P

q ← p2

q ← p1 ∧ p3

and K

r1 ← p2 ∧ p3

r1 ← p1 ∧ p3

r2 ← p2

Then then are two reduced programs, PK1 and PK2 , for (P ,K), which are:

PK1 = {q ← p2; q ← r1}

and

PK2 = {q ← r1, q ← r2}

The set S = {PK1 ,PK2}, and

[PK]R = {q ← r1, q ← r2}

is the unique class for the given programs.

38

Conclusions and Further Work

We reviewed the propositional rule extraction from trained neural networks for definite

and normal programs. Then we investigated the propositional rule extraction from trained

neural networks under background knowledge for the case of definite rules. We showed

that the extraction of the reduced logic program with additional background knowledge is

guaranteed by applying some of the mild assumptions to the background knowledge and

also by using a monotonic input–output function. This extracted solution exactly repro-

duced the input-output function. In addition, we showed the reduced extracted solution is

not unique anymore; however, all the reduced extracted solutions are in equivalence class.

Furthermore, we presented algorithms for obtaining corresponding reduced programs.

The investigated results can be fundamentals for further work, rather than directly

applicable in practice. Our observation that background knowledge can yield simpler ex-

tracted rulesets of course carries over to more expressive logics which extend propositional

logic.

It is such extensions which we intend to pursue, which hold significant promise for

practical applicability: structured information on the World Wide Web, as discussed in the

Introduction, is provided in logical forms which are usually non-propositional fragments

of first-order predicate logic, or closely related formalisms. In particular, description logics

[2], i.e. decidable fragments of first-order predicate logic, form the foundation of the Web

Ontology Language OWL. First-order rules are also commonly used [14]. This raises the

question how to extract meaningful non-propositional rules from trained neural networks

39

while taking (non-propositional) background knowledge, in a form commonly used on the

World Wide Web, into account.

40

Bibliography

[1] D.M. Gabbay A.S. dAvila Garcez a, K. Broda. Symbolic knowledge extraction from

trained neural networks: A sound approach. Artificial Intelligence, 125:155–207,

2001.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,

and Applications. Cambridge University Press, 2nd edition, 2010.

[3] Sebastian Bader and Pascal Hitzler. Dimensions of neural-symbolic integration – A

structured survey. In Sergei N. Artëmov, Howard Barringer, Artur S. d’Avila Garcez,

Luı́s C. Lamb, and John Woods, editors, We Will Show Them! Essays in Honour of

Dov Gabbay, Volume One, pages 167–194. College Publications, 2005.

[4] Sebastian Bader and Steffen Hlldobler. The core method: Connectionist model gen-

eration. In Lecture Notes in Computer Science, volume 4132, pages 1–13, 2006.

[5] D. Beckett, T. Berners-Lee, E Prud’hommeaux, and G. Carothers. RDF 1.1. Turtle –

Terse RDF Triple Language. W3C Recommendation, 25 February 2014. Available at

http://www.w3.org/TR/turtle/.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific

American, 284(5):34–43, May 2001.

41

[7] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – The Story So Far.

International Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

[8] Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist inductive lerarning

and logic programming system. Applied Intelligence, 11(1):59–77, 1999.

[9] Ramanathan V. Guha, Dan Brickley, and Steve Macbeth. Schema.org: evolution of

structured data on the web. Commun. ACM, 59(2):44–51, 2016.

[10] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Se-

bastian Rudolph, editors. OWL 2 Web Ontology Language Primer (Second Edi-

tion). W3C Recommendation, 11 December 2012. http://www.w3.org/TR/

owl2-primer/.

[11] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic

Web Technologies. CRC Press/Chapman & Hall, 2010.

[12] Pascal Hitzler and Anthony K. Seda. Mathematical Aspects of Logic Programming

Semantics. CRC Press/Chapman and Hall, 2010.

[13] Steffen Hölldobler, Yvonne Kalinke, Fg Wissensverarbeitung Ki, Fakultat Informatik,

and Tu Dresden. Towards a new massively parallel computational model for logic

programming. In In ECAI94 workshop on Combining Symbolic and Connectioninst

Processing, pages 68–77, 1991.

[14] Adila Krisnadhi, Frederick Maier, and Pascal Hitzler. OWL and rules. In Axel

Polleres, Claudia d’Amato, Marcelo Arenas, Siegfried Handschuh, Paula Kroner,

Sascha Ossowski, and Peter F. Patel-Schneider, editors, Reasoning Web. Semantic

Technologies for the Web of Data – 7th International Summer School 2011, Galway,

Ireland, August 23-27, 2011, Tutorial Lectures, volume 6848 of Lecture Notes in

Computer Science, pages 382–415. Springer, 2011.

42

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

[15] Maryam Labaf, Pascal Hitzler, and Anthony B. Evans. Propositional rule extrac-

tion from neural networks under background knowledge. International Workshop on

Neural-Symbolic Learning and Reasoning, NESY’17, pages 1–10, July 2017.

[16] Jens Lehmann, Sebastian Bader, and Pascal Hitzler. Extracting reduced logic pro-

grams from artificial neural networks. Appl. Intell., 32(3):249–266, 2010.

[17] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören

Auer, and Christian Bizer. DBpedia – A large-scale, multilingual knowledge base

extracted from Wikipedia. Semantic Web, 6(2):167–195, 2015.

[18] Uwe Schoning. Logic for Computer Science. Springer, 1989.

[19] Geoffrey G. Towell and Jude W. Shavlik. Extracting refined rules from knowledge-

based neural networks. Machine learning, 13(3):71–101, 1993.

[20] Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledge-

base. Commun. ACM, 57(10):78–85, 2014.

[21] McCulloch W.S. and Pitts W. Bltn. A logical calculus of the ideas immanent in ner-

vous activity. Bulletin of Mathematical Biology, 52(1/2):99–115, 1990.

[22] Jing T. Yao. Knowledge extracted from trained neural networks: What’s next? Proc.

SPIE 5812, Data Mining, Intrusion Detection, Information Assurance, and Data Net-

works Security, 2005 151 (April 05 2005); doi:10.1117/12.604463.

[23] ZhiHua Zhou, Yuan Jiang, and ShiFu CHen. Extracting symbolic rules from trained

neural network ensembles. AI Communications, 16(1):3–15, 2003.

43

	Abstract
	Introduction and Motivation
	Artificial Neural Networks
	Neural Symbolic Representation
	Connectionist System
	Neural Logical Model
	Logical Function "AND"
	Logical Function "OR"
	Logical Function "NOT"

	Feedforward and Feedbackward Models

	Preliminaries
	Rule Extraction
	Propositional Rule Extraction Using the Layer-By-Layer Method
	Propositional Rule Extraction as a Black Box
	Definite Logic Program
	Normal Logic Program

	Recurrent Neural Networks and Core Method
	Three–Layer Network
	Recurrent Network and Core Method

	Rule Extraction with Background Knowledge
	Definitions and Notation
	Extracting Reduced Definite Program with Background Knowledge
	Existence of Solutions
	Algorithms

	Conclusions and Further Work
	Bibliography

