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Abstract
Autonomous systems are a new frontier for pushing sociotech-
nical advancement. Such systems will eventually become per-
vasive, involved in everything from manufacturing, healthcare,
defense, and even research itself. However, proliferation is sti-
fled by the high development costs and the resulting inflexibil-
ity of the produced systems. The current time needed to create
and integrate state of the art autonomous systems that operate
as team members in complex situations is a 3-15 year develop-
ment period, often requiring humans to adapt to limitations in
the resulting systems. A new research thrust in interactive task
learning (ITL: Laird et al., 2017) has begun, calling for natu-
ral human-autonomy interaction to facilitate system flexibility
and minimize users’ complexity in providing autonomous sys-
tems with new tasks. We discuss the development of an un-
differentiated agent with a modular framework as a method of
approaching that goal.
Keywords: cognitive model; cognitive agent; instruction fol-
lowing; learning

Introduction
Autonomous systems are a new frontier for socio-technical
advancement. Such systems will be required to team with
humans, potentially operating at the level of peers and not
just subordinates. One such autonomous synthetic team-
mate (AST) demonstrated that they can be included in teams
without detriment to teams’ or team members’ performance
(McNeese, Demir, Cooke, & Myers, 2017; Myers et al.,
2019). Nonetheless, there remain two significant obstacles
to the wider adoption of synthetic agents operating as peers
or subordinates in complex environments: 1) their develop-
ment and evaluation time and 2) their limited scope of transfer
once developed. The AST took approximately nine years to
develop plus an additional year to evaluate (Ball et al., 2010;
Rodgers, Myers, Ball, & Freiman, 2013), and yet it would
require further research and development to adapt it to per-
form a different task within the same domain and even more
to adapt it to an entirely new domain.

Instructions are a ubiquitous part of the human experience.
They provide guidance through a space of potential states to
a solution (i.e., the problem space; Newell and Simon 1972).
Without instruction, one is free to roam about the problem
space freely in an attempt to find, or discover, the solution.
Instruction also plays a critical role in our ability to advance
as a civilization: calculus, laws of physics, and other ad-
vanced domains do not need to be re-discovered by each gen-
eration, but are taught through instruction. Although learn-
ing is sometimes characterized as the acquisition of all skills

needed for a given task, in fact, the learning of complex tasks
more typically reflects the integration of already-known pro-
cesses (e.g., interactive routines; Gray 2008) in novel ways
(Gray, Sims, Fu, & Schoelles, 2006) – of which one way is
through instruction (Salvucci, 2013).

Recent advances have demonstrated the ability to turn a set
of instructions into declarative knowledge that is then used
to enable performance across paradigms of different com-
plexity: ranging from those typically used by experimental
psychology to dialing while driving an automobile (Salvucci,
2013). In a similar vein, Kirk, Mininger, & Laird (2016)
have successfully demonstrated the ability to train robots on
novel tasks through direct interaction. The objective associ-
ated with the presented research is to leverage past work on
instruction learning to address the development and transfer
issues, simultaneously. Specifically, we propose a general-
izable, undifferentiated agent (uAgent) that can learn a new
task relatively independently through written instruction and
be trained to a desired level of proficiency with reduced de-
veloper intervention.

To achieve these goals, the uAgent was developed with a
modular architecture, to allow for expansion into other tasks
and fields with minimal burden to other researchers. The
components of the architecture are instruction parsing, an on-
tology of instruction, declarative memory representation, and
procedures for accomplishing the instructed tasks. Each of
the uAgent components are discussed in the following sec-
tions, followed by their integration as a single system. Fi-
nally, a case study on development times relative to current
approaches to model development times is presented.

In the following sections, we will discuss this development
in each of the discretized modules that together represent the
uAgent, along with the general specifications for said mod-
ules to allow for future revision and expansion. Second, the
uAgent will be specialized to desired levels of proficiency us-
ing AFRL’s Autonomous Research System (ARES; Nikolaev
et al., 2016).

Toward Undifferentiated Cognitive Models
The undifferentiated agent, or uAgent, is a system capable
of learning new tasks through instruction. The process in-
volves: (1) parsing the instructions in to a structure that can
be (2) integrated with prior information within a declarative
memory system through an ontology of instruction. Given



an integrated declarative system, the uAgent (3) associates it
newly acquired knowledge with existing interactive routines
through a controlled vocabulary. Finally, the uAgent is ready
to (4) perform the task based on its knowledge of instructions.
Components associated with each step will be discussed in
detail, below.

Instruction Parsing
Though many advances have been made in the field of natu-
ral language processing (NLP), it still remains a challenging
problem to extract complex rules and meanings out of text.
To make the problem of parsing text more tractable, we use
a controlled natural language - Attempto Controlled English
(ACE; Fuchs, Kaljurand, & Kuhn, 2008).

A controlled natural language is a language that permits
only a subset of grammatical constructions available in natu-
ral language (in this case, only present perfect tense, no use
of second person, and a very specific syntax for commands).
These restrictions make it possible for software (e.g., the At-
tempto Parsing Engine, APE; Fuchs et al., 2008) to automat-
ically parse sentences written in the controlled language into
logical statements called discourse representation structures
(DRS). These structures approximate first-order logic.

The requirements of the Instruction Parsing module are
as follows. First, the language requirements of incoming
instructions must be specified (here, we use the ACE
controlled language). Second, these instructions must be
processed into a form compatible with the target declarative
memory system structure to be used by the acting uA-
gent.https://www.overleaf.com/project/607840726e9a778f9940dc4b

In the current system, we begin with plain English instruc-
tions of a task of interest. Two types of tasks we are currently
working with include basic experimental psychology tasks -
psychomotor vigilance (Dinges & Powell, 1985) and visual
search (Treisman & Gelade, 1980) - and a material engineer-
ing task in which an individual guides a set of experiments
with a 3D printer (Nikolaev et al., 2016). In both cases, in-
structions are re-written by hand into sentences that follow
the rules of the ACE language. Then, the instructions are
provided to APE 1 to translate the ACE sentences into DRS
structures, which are then integrated into a declarative mem-
ory structure based on an ontology of instruction.

Ontology of Instruction
The primary function of the Ontology module is to directly
formalize the structure of information necessary to complete
the desired tasks and goals of the uAgent. This furthers the
goal of the uAgent as a whole, as it provides the founda-
tion for the structure and relationships within the declarative
memory system used by the uAgent (see Figure 1).

In order to create a system that is both generalizable and
able to correctly handle diverse types of instructions, an on-
tology was created that is capable of representing instructions
for a cognitive agent task. This instruction ontology can be

1http://attempto.ifi.uzh.ch/site/resources

English:
You will be seated in front of a computer screen.
A letter will appear in the middle of the screen.
When you see the letter, press the spacebar.

ACE:
p:psychomotorVigilance is a task.
There is a screen.
There is a letter.
There is a subject.
The n:spacebar is a button.
If the task is active then the subject v:watchesFor the letter
and the letter v:appearsOn the screen.
If the letter v:appearsOn the screen then the subject presses
the n:spacebar. The task is active.

Table 1: PVT instructions in English and ACE.

used to directly inform relationships among tokens of knowl-
edge within a cognitive agent performing tasks. Further, it
can be leveraged to derive a semantically-anchored declar-
ative memory system for long-term storage for knowledge,
such as a knowledge graph (Noy et al., 2019). It can also
support experiment design, irrespective of any agent, by pro-
viding a structured basis for evaluating the content and design
of similar tasks. Additionally, because an ontology contains
a precise axiomatization of the knowledge it is supposed to
represent, deductive reasoning techniques can be applied to
detect possible gaps or errors in instructions. Further infor-
mation regarding the ontology can be found in (Eberhart et
al., 2020).

The ontology was developed to represent the relationships
between steps, items, actions, instructions associated with
tasks relying on a graphical user interface. To ensure a po-
tentially high degree of complexity in instructions, the multi-
stage Intelligence, Surveillance, & Reconnaissance Mutli-
Attribute Task Battery (ISR-MATB) task (Frame et al., 2019)
was used as an example task when developing the ontology.
Because it has multiple interconnected cognitive tasks, us-
ing the ISR-MATB aids in the development of a undiffer-
entiated representation of instruction knowledge. The on-
tology was produced by following the Modular Ontology
Modeling (MOMo) methodology, outlined in (Krisnadhi &
Hitzler, 2016; Hitzler & Krisnadhi, 2018; Shimizu, Ham-
mar, & Hitzler, 2021), and is designed to ensure high quality
and reusability of the ontology. The adaptability required to
model the ISR-MATB task, together with the modular tech-
niques used to create it, mean that the ontology can very eas-
ily be adapted for use in new tasks.

Currently, DRS items from instruction are obtained as
input to the ontology whenever an agent begins learning
through instruction (see Figure 1). The DRS structured in-
formation is then available to an agent during a task, and ad-
ditional knowledge that the agent acquires can be added to
supplement this. As new tasks are implemented and tested



Figure 1: Architectural components of the undifferentiated cognitive agent (uAgent).

this process is simple to extend to encompass new types of
knowledge, since the structure of the ontology and the format
of input data is agnostic to the actual content of the knowl-
edge represented.

To summarize, the Ontology leverages information theory
and formal logical structures to ensure that pertinent infor-
mation is assimilated in the most reasonable, orderly fash-
ion possible from a theoretical standpoint. Importantly, this
ensures that any future expansions of the uAgent into addi-
tional research fields and tasks will be expedited, as any addi-
tional pertinent information can be distilled directly into the
most useful form through the ontology and into the uAgent’s
declarative memory system.

Declarative Memory System

The declarative memory system of the uAgent contains infor-
mation associated with parsed instructions, prior knowledge,
and a controlled vocabulary connecting verbs to known pro-
cedures in the procedural system. The approach taken to rep-
resent the declarative memory system was a knowledge graph
(Noy et al., 2019), which describes facts, actions, objects of
interest, and the relationships between them.

The uAgent here stores a knowledge graph built from
declarative chunks. Specifically, it incorporates chunks that,

using ACT-R-like slot-value pairs (Anderson, 2007), links
knowledge together in a graph by having one chunk’s slots
include other chunks as values for those slots. As such, the
representation is flexible enough to incorporate all the declar-
ative knowledge needed in the instructions for our purposes,
including not only basic actions but also conditionals and se-
quences of actions.

A declarative memory system structured as a knowledge
graph requires connections to real action/observable behav-
ior to ground the information in the actions available within
the instructed task. Without grounding, the agent can have
all of the available information about the task but no way to
observe or interact with its task environment. To this end, a
controlled vocabulary (CV) was introduced to map verbs onto
concepts or actions. For example, a CV entry for ”search”
could map onto an interactive routine (Gray, 2008) instruct-
ing the agent to attend a location, locate an item there, and
encode it. Within the ACT-R paradigm, this led to creating a
new class of chunks for CV entries. These chunks contain the
CV term and map to a production or set of procedures built
into the agent prior to instruction, thereby grounding that term
onto a known set of actions (Ji, van Rij, & Taatgen, 2019).

Novel task strategies can be constructed using these
grounded interactive routines, thereby allowing the agent to



interact with an environment for which it was not specifically
designed and perform tasks without needing to have a whole
set of bespoke procedures and knowledge built into it.

Altogether, the CV defines the set of verbs which are al-
ready grounded to behavior(s); in essence, it represents the
agent’s knowledge of general behaviors a priori. Accord-
ingly, by relating the CV to task appropriate interactive rou-
tines, we ensure the knowledge is inherently grounded to the
environment.

As a module, the knowledge graph serves as the basis of
the uAgent memory: it contains information pertinent to the
instructions given, but processed through the lens of overall
task knowledge it should have before hand (i.e. the Ontol-
ogy). It must follow the format of the structures provided
within the formal ontology, and further, should use a defined
controlled vocabulary to map those terms onto active agent
behaviors where appropriate.

Procedural Memory System
Given the above declarative memory structures for repre-
senting instructions, the system needs to ground concepts to
simulated actions via interactive routines (i.e., embedded or
learned procedural knowledge). Models developed in cogni-
tive architectures such as ACT-R (Anderson, 2007) or Soar
(Laird, 2012) typically use production systems to represent
this procedural knowledge. Here, we take a different ap-
proach, using cognitive code (Salvucci, 2016) to maintain and
execute procedural knowledge. Cognitive code embeds pro-
cedural knowledge into a common programming language,
facilitating the development of model code while maintain-
ing the most important properties of human-like abilities and
limitations inherent to any cognitive architecture. Specifi-
cally, we are using the Think architecture 2, which incor-
porates declarative and procedural concepts taken primarily
from ACT-R and provides them for easy use via the Python
programming language.

Several components of this project have led to important
extensions of Think’s code base. One extension involves
the integration of traditional declarative memory with Think
execution. The default Think code base includes a declar-
ative memory module that embodies ACT-R’s core theory
of memory (Anderson, 2007). For this project, we bypass
this traditional memory module, and instead use the ontol-
ogy and knowledge graph described earlier as the model’s
primary long-term declarative storage. The Think procedures
still maintain short-term declarative items, namely those that
comprise the current ”context” during execution (i.e., infor-
mation that would traditionally be stored in ACT-R’s imagi-
nal buffer).

Besides this integration of a new type of declarative mem-
ory, the other critical extension of Think’s code base relates
to the realization of procedural learning. Although cognitive
code can often be made to operate in ways very similar to tra-
ditional production systems, a critical difference is that cogni-

2https://github.com/salvucci/think

tive code cannot (in most cases) be constructed during simu-
lation as some architectures have done with procedural learn-
ing. For example, ACT-R’s production compilation mecha-
nism (Taatgen & Lee, 2003)) transforms declarative instruc-
tions into procedural form which eventually leads to grad-
ual learn of new procedures; the most critical aspect of this
learning is that, at first, a model must perform a declarative
retrieval to remember the learned instruction before execut-
ing it, but later, the compiled instruction (in the form of a
production rule) skips the retrieval and simply executes the
associated action. Although Think does not create new code
on the fly in the same way, we have augmented its capabili-
ties by adding procedural learning that captures the essence of
ACT-R’s production compilation—specifically, in perform-
ing declarative retrievals early in learning (which take addi-
tional time and may fail), and then skipping these retrievals
later in learning (leading to gradual speedup and eventually
fast performance).

As a module, the cognitive code contained with Think
serves as the ”actual” uAgent, so to speak – it represents the
system which is deciding and acting upon the best course of
behavior during any task. In theory, this could be replaced
with any number of cognitive architectures, provided they are
capable of using the prespecified knowledge graph structures
to serve as the basis of memory, and further, have a correctly
specified controlled vocabulary to map that knowledge graph
onto the behaviors known to the system a-priori.

System Integration
To develop the uAgent with an adaptable framework going
forward, we used a modular design approach (Bryson, 2000).
In particular, this capitalizes on the interdisciplinary nature
of the researchers involved while simultaneously minimizing
the overall burden of coordination. To that end, during devel-
opment the fundamental uAgent capabilities were segregated
into discrete modules. Overall integration of these modules
was then assigned to a few individuals, with the entire re-
search team meeting to discuss overall design strategies as
appropriate. Of note, this approach also allowed for a de-
gree of asynchronous development across the research teams
involved, thereby reducing the project coordination burden
significantly. In addition, the modular approach ensures that
the uAgent will be adaptable to other fields of research and
task performance, as future research can adapt the uAgent by
focusing on a specific uAgent module where appropriate. We
now move on to discuss the primary modules of interest in
the uAgent.

Given the interdiscipinary nature of this research, we first
settled on the use of the open source Python as the primary
programming language, integrating each individaul uAgent
module into one coherent system. In particular, this allows us
to utilize the Think system (Salvucci, 2021) in order to simu-
late both the uAgent behavior, and the enviroment in which is
it actively behaving. Further, whenever these separate mod-
ules are expected to interact directly, we worked to determine
the best overall form of interface and information exchange



to facilitate ease of integration and future expansion. To that
end, we now note the primary interface decisions we made
during said development.

First, we concluded that the Ontology of instruction should
serve as a form of blueprint for the knowledge graph. This en-
sures that the Instruction Parsing module will produce struc-
tures that can be assigned to knowledge graph structures
where appropriate. Effectively we are leveraging the relations
inherent to the Ontology in order to improve the capabilities
of the instruction interpretation; in essence, the uAgent can
make informed assumptions about the informational structure
while processing any incoming instructions.

Similarly, to ensure the agent is capable of acting on those
instructions, we concluded that the knowledge graph module
should also consider a controlled vocabulary representing the
behaviors found within the Think cognitive agent. This con-
trolled vocabulary is essentially the actions that the think uA-
gent is capable of performing in the current environment. In
essence, we ensure that the knowledge graph structures which
serve as the basis of the Think agent memory also have a di-
rect mapping onto Think behaviors where appropriate.

Altogether, we integrate each of the uAgent modules into
a coherent end-to-end system, and explicitly define the in-
terface requirements necessary to ensure the system can take
instructions as input, and produce human behavior with high
fidelity.

Case Study
As a proof-of-concept for the approach, we built an end-to-
end system that takes ACE instructions of cognitive tasks
commonly used in basic research - psychomotor vigilance
and visual search - converts the instructions into a knowledge
representation capable of performing the task, and then per-
forms the task in a simulated environment.

As an exercise to determine if the current approach could
save time with respect to building a traditional ACT-R model,
we compared the amount of time it took to build a model of a
set of cognitive tasks with the amount of time it took to write
ACE instructions of the same task. The task we used was a
novel task battery that includes a set of commonly used ex-
perimental psychology tasks (Frame et al., 2019; Eberhart et
al., 2020). This battery includes four subtasks - psychomo-
tor vigilance, visual search, auditory search, and multi-cue
decision-making. We a built model of the task in a Java im-
plementation of ACT-R 6 and wrote a set of ACE instructions
for it.

It took approximately 120 hours to build the ACT-R model,
but only approximately 30 hours to write the ACE instruc-
tions. This exercise suggests that the present method could
potentially save a substantial amount of time in developing
new models and agents. Moreover, writing the ACE instruc-
tions required only a brief reading of publicly available tuto-
rials on the ACE language, and not training and experience
in writing ACT-R models, the latter of which can be substan-
tial. In our proof-of-concept system, we showed that the ACE

instructions of the PVT and Visual Search subtasks could be
successfully integrated into the ontology and the agent could
use this resulting knowledge to perform the task. We are
working toward end-to-end demonstrations of the other two
subtasks.

Conclusions & Future Work
Progress toward a modeling framework capable of being
taught new tasks through written instruction was presented.
As evidenced in the uAgent case study, such an approach
will likely significantly reduce model and agent development
times. Further, the modular-based approached toward uAgent
development will facilitate the integration of other cognitive
architectures by using the uAgent declarative memory as its
knowledge repository.

While the uAgent shows promise as a means for teach-
ing models how to perform new tasks, multiple challenges
remain. For example, it is unreasonable to assume that the
union of instruction and prior knowledge is sufficient for
completing an instructed task. As a result, we have begun
developing approaches for detecting and resolving gaps in a
uAgents knowledge base. This work will require multidisci-
plinary approaches to model development coupled with em-
pirical investigations into when and how humans detect and
resolve knowledge gaps.

In order to better understand how humans form representa-
tions from instructions and identify and resolve gaps in un-
derstanding from those instructions, we plan to conduct a
human-subjects experiment using the task battery described
above. We plan to teach participants to perform the tasks in
the battery using either a complete set of instructions, or a
set with ambiguities with respect to certain types of knowl-
edge. We plan to use think-aloud protocols to track how par-
ticipants extract knowledge from these instructions and how
they detect and resolve uncertainty. We believe this will pro-
vide insights in how to improve the undifferentiated model’s
knowledge acquisition.
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