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ABSTRACT

Sengupta, Kunal. Ph.D., Department of Computer Science and Engineering, Wright State

University, 2015. A Language for Inconsistency-Tolerant Ontology Mapping.

Ontology alignment plays a key role in enabling interoperability among various data

sources present in the web. The nature of the world is such, that the same concepts differ

in meaning, often so slightly, which makes it difficult to relate these concepts. It is the

omni-present heterogeneity that is at the core of the web. The research work presented in

this dissertation, is driven by the goal of providing a robust ontology alignment language

for the semantic web, as we show that description logics based alignment languages are not

suitable for aligning ontologies.

The adoption of the semantic web technologies has been consistently on the rise over

the past decade, and it continues to show promise. The core component of the semantic web

is the set of knowledge representation languages – mainly the W3C 1 standards Web On-

tology Language (OWL), Resource Description Framework (RDF), and Rule Interchange

Format (RIF). While these languages have been designed in order to be suitable for the

openness and extensibility of the web, they lack certain features which we try to address in

this dissertation. One such missing component is the lack of non-monotonic features, in the

knowledge representation languages, that enable us to perform common sense reasoning.

For example, OWL supports the open world assumption (OWA), which means that

knowledge about everything is assumed to be possibly incomplete at any point of time.

However, experience has shown that there are situations that require us to assume that

1World Wide Web Consortium - http://w3c.org
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certain parts of the knowledge base are complete. Employing the Closed World Assumption

(CWA) helps us achieve this. Circumscription is a very well-known approach towards

CWA, which provides closed world semantics by employing the idea of minimal models

with respect to certain predicates which are closed. We provide the formal semantics of

the notion of Grounded Circumscription, which is an extension of circumscription with

desirable properties like decidability. We also provide a tableaux calculus to reason over

knowledge bases under the notion of grounded circumscription.

Another form of common sense logic, is default logic. Default logic provides a way

to specify rules that, by default, hold in most cases but not necessarily in all cases. The

classic example of such a rule is: If something is a bird then it flies. The power of defaults

comes from the ability of the logic to handle exceptions to the default rules. For example,

a bird will be assumed to fly by default unless it is an exception, i.e. it belongs to a class of

birds that do not fly, like penguins. Interestingly, this property of defaults can be utilized to

create mappings between concepts of different ontologies (knowledge bases). We provide a

new semantics for the integration of defaults in description logics and show that it improves

upon previously known results in literature.

In this study, we give various examples to show the utility and the advantages of using

a default logic based ontology alignment language. We provide the semantics and decid-

ability results of a default based mapping language for tractable fragments of description

logics (or OWL). Furthermore, we provide a proof of concept system and present a qualita-

tive analysis of the results obtained from the system, and compare it to the results obtained

by applying ontology mapping repair techniques.
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1 Introduction

The semantic web effort has given rise to a plethora of new domain ontologies across

the web. With that arises a significant challenge: aligning the meaning of terms from

different data models to enable exchange of data. The nature of the world is such, that the

same concepts differ in meaning, often so slightly, that it becomes difficult to relate these

concepts. It is the omni-present heterogeneity that is at the core of the web. The process of

making connections between various ontologies is commonly known as ontology mapping

(ontology alignment) in the semantic web community.

The main goal of this research work is to produce a basis for a robust ontology map-

ping language to encode mappings, which are not susceptible to the heterogeneous nature

of the world. Such a language would allow us to gauge the similarities as well as the differ-

ences in the meaning of the same conceptual entities defined in various data sources. The

major problem that is, more often than not, encountered as a result of mapping terms from

different ontologies, using the standard description logic (DL) based languages, is the prob-

lem of logical inconsistency of merged knowledge bases as well as incoherent concepts.1

The usual approach of dealing with issues that result from mappings are commonly known

as ontology mapping repair. Typically, a repair process identifies the minimal set of map-

pings that cause inconsistencies (or incoherence) and remove the mappings as part of the

repair process. We want to take an alternative approach, whereby, we propose a mapping

language which makes use of non-standard semantics to avoid such inconsistencies but at

1See section 2.3 for definitions
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the same time provide more intuitive mappings.

The language should provide new constructs to relate concepts/roles, in a manner

that the semantics of these constructs allow the occurrence of exceptions to the mapping

relation. This would allow us to say that most people of type MarriedMale, in one ontology,

are same as that of MarriedMale of another, however, there may be exceptions. There are

some non-monotonic logics that fit this requirement right away. Especially, default logic

which allows us to write inference rules that hold in most cases and at the same time allows

for exceptions.

Therefore, as a part of this research, we examine the utility of some non-monotonic

extensions of DLs as an ontology mapping language, and in the process, fix some of the

issues that occur when we try to extend DLs with these non-monotonic formalisms. In the

following, we discuss the problem statement and the approach taken for this research work.

1.1 Problem Statement

As mentioned above, the motive of this research work is to facilitate interoperability be-

tween various heterogeneous data sources, by providing an ontology mapping language

that is resilient and less vulnerable to the slight differences in the meaning of the terms

used in different ontologies. The hypothesis of this dissertation is as follows:

1. Making use of non-monotonic constructs, inspired by default logic can provide an

ontology mapping language which improves upon the existing mapping languages

based on OWL constructs (and thereby DLs), as they are too strict to be used for

reasoning.

2. Consider a query answering set up with multiple low-level ontologies and one over-

arching ontology such that only uni-directional (from lower-level ontology to the

over-arching ontology) mappings are allowed in the form of default rules. Then,

2



computing the completion of the over-arching ontology under the semantics of de-

faults is a decidable problem. Furthermore, we do not impose any restrictions in the

application of the default rules to named or implicit individuals.

1.2 Approach

Our approach towards achieving the goal of robust ontology alignment language has mainly

two parts. We discuss them in the following.

1.2.1 Exploring Non-monotonic Extensions of Description Logics

The first part of the research work is identifying a suitable non-monotonic language, which

helps us solve the problems that one faces when mapping ontologies using the standard

monotonic languages. Of course, default logic provides a natural way of modeling mapping

relations between concepts, as well as roles of two or more ontologies. Please refer to

section 2.4.1 for a preliminary understanding of defaults. Briefly, defaults are a kind of

inference rules which state things that are most likely true. E.g., most people have their

heart on the left-hand side is a type of default rule. If we know that x is a Human then we

can assume that x’s heart is on the left-hand side of their body unless it is explicitly stated

to be otherwise.

This gives us an intuition that default rules could be made use of to encode mappings.

E.g., assume there are two ontologies representing the domain of food, and it is possible

that the two ontologies have a concept or a role which look exactly the same prima facie, but

upon digging harder, subtle differences in their actual semantics may be discovered. For in-

stance, the definition of concepts named Vegetarian and Non-Vegetarian defined in both the

ontologies, may slightly vary in the meaning, such that in most of the properties they agree,

but for some properties, they may differ. In one ontology Vegetarian includes EggEaters

but not in the other ontology, furthermore, the other ontology considers EggEaters disjoint

3



with Vegetarian. Clearly, mapping the above concepts, using description logic constructs

would render the merged ontology inconsistent. However, specifying the mappings using

default rules would allow for exceptions, such that instances of EggEaters would be excep-

tions to the mapping: most instances of a:Vegetarian also belong to b:Vegetarian, where

a, b are the two food ontologies. It seems very reasonable to model such mappings using

defaults.

The qualities that we need from our new language are: (1) Ability to model mappings

as default statements, (2) easy integrations with description logics, and (3) decidability of

reasoning tasks. The first quality is obvious from the previous discussion. The second

quality is needed because we are interested in mapping ontologies in description logics (or

OWL). Decidability is also important without which we cannot achieve anything practical.

In this work, we have explored the integrations of description logics with two non-

monotonic approaches: default logic and circumscription, to achieve the above mentioned

qualities in a mapping language. While defaults is a natural fit to our needs, we explored

circumscription as well, the reason being that using circumscription we can simulate de-

faults (see section 2.4.3) and it also provides a simpler semantics.

Circumscription is an approach to closed world semantics where we can close certain

parts (concepts/roles), of the knowledge base such that the extensions of the closed predi-

cates may contain only those things that are necessarily required. The models of a circum-

scribed knowledge base are minimal, with respect to the extensions of the closed predicates.

We provide formal definitions in section 2.4.3. We also present a new semantics called

grounded circumscription for description logics, which overcomes the previously known

problem of undecidability, when roles are closed. In grounded circumscription, along with

the condition of minimality for the closed predicates, we restrict their extensions to contain

named individuals (or pairs).

Similarly, for defaults it was shown in [6] that integration of defaults and description

logics lead to undecidability. We provide an extension of defaults called free defaults, that

4



improves upon the undecidability result and provides a more intuitive semantics towards

defaults and description logics.

Both the approaches impose certain restrictions to achieve decidability of the inte-

grated logics. In this work, we explore these two approaches and identify some of the

decidable fragments of these languages, which have more desirable features than in the

state of the art results.

1.2.2 Mapping Language for Tractable Description Logics

In the first part of the research work, we provide decidability results for description logics

with defaults and circumscription. In the second part of our approach, we define the se-

mantics of a default based mapping language for tractable fragments of DL. 2 We assume

a restricted, yet very practical, query answering system where there are several heteroge-

neous data models in the form of (lower-level) ontologies and one overarching ontology.

Queries can be asked in terms of the vocabulary of the overarching ontology.

To achieve this, we propose a new mapping language that we develop in this work,

using which, one can generate one-way mappings from the lower-level ontologies to the

overarching ontology. These mappings are non-monotonic in nature and are mainly based

on an integration of defaults with a tractable fragment of DL ER⊥,O that we present in

section 5.2. ER⊥,O is a very simple language consisting of just existentials, conjunction,

concept disjointness and assertions. We show that in the query answering scenario consid-

ered here, reasoning with default rules integrated with DLs is a decidable problem, without

any restrictions placed on the application of defaults.

2Tractable DLs are those for which the time complexity of performing reasoning tasks is polynomial with
respect to the input size.
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1.3 Structure

This document is structured as follows: in Chapter 2, we provide the basic foundations as

preliminaries for the rest of the chapters, which includes a brief background on semantic

web technologies, syntax and semantics for description logics, as well as basic foundations

for circumscription and defaults. Chapter 3 contains the details of grounded circumscrip-

tion approach including semantics, decidability result as well as a tableau procedure. In

Chapter 4, we provide the details of free defaults, its semantics and the decidability results.

Chapter 5, we present a default based ontology alignment language for a specific query

answering scenario. In Chapter 6, we provide implementation details and the results of

a simple evaluation. A discussion of the related work in detail is covered in Chapter 7.

Finally, we conclude in Chapter 8.

6



2 Background and Preliminaries

In this chapter, we familiarize the readers with the background regarding the general area

of knowledge representation and reasoning for the Semantic Web. For this, we need to

define the notions, as well as the notations, that will be used in all the succeeding chapters.

2.1 Semantic Web and Ontologies

Semantic web is a term that is used to collectively describe a stack of technologies that

support the, so called, Web of data. The phrase ”web of data” generally refers to sharing

data on the web, such that its meaning can be readily understood by a software agent.

Before the adoption of semantic web technologies most of the documents present on the

web mainly consisted of unstructured data that could be understood only by humans, e.g.,

HTML documents. Due to the unstructured nature of these documents, the only good

way to make queries over the web is through keywords. The idea of the semantic web

was proposed to overcome these difficulties. How should the content producers annotate

their data, such that it is readily available to be consumed by a software? For this, a set of

standards need to be established that could be used to share data, not only with plain text but

also with attached meaning. The World Wide Web Consortium (W3C)1 is an organization

that provides these standards, which enables the content producers to share their data in

machine-processable format. This brings us to the question: what exactly is needed to

1http://www.w3c.org
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establish the standards for the semantic web? In figure 2.1,2 we show the semantic web

technology stack, which represents the set of technologies that are required in order to have

a standardized way of sharing data. We briefly describe each layer of this stack:

Figure 2.1: The semantic web layer cake diagram.

(I) URI/IRI: The most fundamental component of the semantic web technologies is

Unique Resource Identifier (URI)/International Resource Identifier (IRI). URI/IRIs

are used as identifiers for entities on the web. E.g., to represent my identity on the

web, we could use http://example.com/kunal sengupta as an IRI. It may appear that

URI/IRIs are similar to URLs, they indeed look alike, but the URI/IRIs don’t need

to be resolvable. Given the nature of the web it is possible and most likely, that a

single entity has many different URI/IRIs. There are many ways to resolve this, if at

all needed, but the discussion on that is out of scope of this document.

(II) RDF, XML (Data Interchange): The second layer on the stack mainly comprises

of the serialization formats for data interchange for the semantic web. XML is a

2Source: http://www.w3.org/2007/03/layerCake.png

8

http://www.w3.org/2007/03/layerCake.png


standard data exchange format that can be used to transfer data to, and from, different

systems in a platform-independent manner. RDF is a data representation format in

graph structure. A statement in RDF is represented as a triple, <subject, predicate,

object>. RDF provides its own vocabulary to define classes and their instances. We

recommend the reader to visit [39, 68] for a detailed understanding of RDF.

(III) OWL, RDFS, RIF, and SPARQL: The third layer of the stack represents the set

of W3C standards for the knowledge representation languages, as well as a query

language for the semantic web. Knowledge representation languages provide the

means to model domain specific knowledge. There are three knowledge represen-

tation standards: RDF Schema (RDFS), Web Ontology Language (OWL), and Rule

Interchange Format (RIF). The main defining features of a knowledge representation

language include the expressiveness with which things can be modeled, the reasoning

services it offers, and the complexity of performing the reasoning tasks. RDFS is a

lightweight modeling language that provides simple constructs, like classes, objects

and relationship between objects using properties. Using the vocabulary of RDFS,

we can model domain and range of properties. RDFS is somewhat limited in the

area of reasoning, i.e., the amount of implicit knowledge that can be derived from

the explicit knowledge is very limited. However, OWL is much more expressive

than RDFS and provides more intensive reasoning capabilities. OWL is actually a

family of languages derived from the well-known subset of First Order Logic (FOL),

Description Logics (DLs). Due to the underpinning of formal logics, OWL has the

benefit of unambiguous semantics. The OWL family consists of three sublanguages

(also called as fragments or profiles). OWL DL, the most expressive of all OWL

fragments, is mainly based on the DL SROIQ. The other OWL profiles are OWL

EL, OWL RL, and OWL QL which are based on less expressive description logics,

thereby exhibit the property of polynomial time complexity for various reasoning

tasks. While there are many ways to write OWL syntax, we omit the specifics and

9



point the readers to [82] for more details. The semantic web standards also include

a query language called SPARQL, using which any semantically enriched database

can be queried.

The other layers of the semantic web technology stack are very abstract and largely

untouched. We are going to skip the discussion on these layers, as they are also not relevant

to this dissertation.

Knowledge representation is the backbone of semantic web technologies. Using knowl-

edge representation languages, we can describe various entities and relationships among

them. Semantic web has recommended OWL as the ontology (knowledge representation)

language. OWL is a very expressive language; using which we can describe complex rela-

tionships between complex entities. They are based on a very well-known family of logics

called description logics. The advantage of using description logics as a modeling language

is that it comes with, so called, reasoning services. Reasoning is a mechanism to derive im-

plicit knowledge from explicit knowledge, and that is one of the major advantages of using

formal logics. In the following chapter, we discuss, one of major DL languages SROIQ.

For readers interested in deeper coverage of the topics we discussed above, we refer

them to [3] for RDFS, [3, 39] for OWL.

2.2 Description Logics

Description Logics (DLs) is a family of formal logics, which is a decidable fragment of

First Order Logic (FOL). The DL SROIQ provides the basis for the Web ontology lan-

guage, which formally defines the semantics of the language. In this section, we first pro-

vide the syntax for the description logic SROIQ, followed by its semantics. It should be

mentioned that although the major part of the discussion in this dissertation would be using

sublanguages of SROIQ, it will be helpful to review SROIQ in order to understand all

the different constructs in the sublanguages. For a deeper coverage of description logics
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please refer to [5].

2.2.1 Building Blocks (Syntax)

The syntax of a language consists of the legal constructs that can be used to define terms and

relations between them. The fundamental building blocks of a DL language are concepts,

roles, and individuals.3 We defineNC , NR, andNI as the mutually disjoint sets of concepts,

roles and individuals, respectively. For readers familiar with FOL, concepts are the same

as unary predicates, roles are the same as binary predicates, and individuals are the same

as constants in FOL. The grammar of the language SROIQ is defined as follows:

C = > | ⊥ | A | {a} | ¬C | C uD | C tD | ∃R.D | ∀R.D |≥ nR.D |≤ nR.D | ∃R.Self

Where A ∈ NC is called an atomic concept or a classname, a ∈ NI is a named

individual and n ∈ N \ {0}. The symbols > (top) and ⊥ (bottom) denote the class of

everything and the class of nothing, respectively. Using the above grammar we can define

what is usually known as complex class expressions.

Example 1. The following statements give an intuition of the kind of class expressions we

can form using SROIQ constructs.

Human v Male t Female (2.1)

Male u Female v ⊥ (2.2)

Father v Male u ∃hasChild.Human (2.3)

A SROIQ knowledge base (or ontology) is constructed using a set of axioms. Ax-

ioms in a knowledge base can be divided into three sets TBox, RBox, and ABox. A TBox

consists of axioms of the form C v D, which we call general concept inclusion (GCI)

3Concepts and roles are also referred to as classes and properties respectively.
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axioms, where C,D are complex class expressions. The axioms in Example 1 are some ex-

amples of GCIs. A RBox consists of role inclusions (RI) of the form: R v S, R1◦R2 v R,

and Disjoint(R, S). Note that C ≡ D is short for C v D and D v C and similarly, R ≡ S

is short forR v S and S v R. An ABox comprises of assertions of the form C(a), R(a, b),

a = b, and a 6= b, where a, b ∈ NI are named individuals. In addition to this, SROIQ

also provides inverse role (R−) constructs, as well as a universal role U analogous to the

concept of >. To retain decidability, certain role regularity constraints are imposed on the

role chains; we omit the discussion of role regularity as it is not relevant to this dissertation

and point the interested readers to [42].

Example 2.

hasFather ◦ hasBrother v hasUncle (2.4)

hasWife v hasHusband− (2.5)

Father(james) (2.6)

hasBrother(james,peter) (2.7)

Finally, we provide a formal definition for a knowledge base in SROIQ.

Definition 1. A SROIQ knowledge base KB is a finite collection of TBox, RBox and ABox

axioms.

2.2.2 Semantics

The semantics of a language defines the formal meaning of the constructs. Description

logic follows model theoretic semantics, in this section we define the notions required to

provide a formal understanding of the various axioms in the language of SROIQ.
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Table 2.1: Semantics of the language SROIQ
Term Syntax Semantics

Individual a aI

Top > ∆I

Bottom ⊥ ∅
Nominal {a} {aI}
Negation ¬C ∆I \ CI

Conjunction C uD CI ∩DI
Disjunction C tD CI ∪DI

Existential Restriction ∃R.D {x | there exists some y with (x, y) ∈ RI and y ∈ DI}
Universal Restriction ∀R.D {x | for all y(x, y) ∈ RI → y ∈ DI}
At least Restriction ≥ nR.D {x | #{y with (x, y) ∈ RI and y ∈ DI} ≥ n}
At most Restriction ≤ nR.D {x | #{y with (x, y) ∈ RI and y ∈ DI} ≤ n}

Role Chain R1 ◦R2 RI1 ◦RI2
Inverse Role R− {(x, y) | (y, x) ∈ RI}

Universal Role U ∆I ×∆I

Definition 2. (Interpretation) An interpretation I of a SROIQ knowledge base KB is a

pair (∆, .I). Where, ∆ is non-empty set of interpretation and .I is a function which maps:

– Every named individual a in KB to aI ∈ ∆I .

– Every concept C ∈ KB to CI ⊆ ∆I .

– Every role R ∈ KB to RI ⊆ ∆I ×∆I

The syntax and semantics of the DL SROIQ is summarized in Table 2.1. If an

axiom α is satisfied by an interpretation I, we denote that with I |= α. An interpretation I

satisfies a GCI of the form C v D if CI ⊆ DI holds, a RIR v S ifRI ⊆ SI holds. ABox

axioms of the form C(a) and R(a, b) are satisfied by I if aI ∈ CI and (aI , bI) ∈ RI hold,

respectively. Furthermore, I satisfies axioms of the form a = b, a 6= b, and Disjoint(R, S),

if aI = bI , aI 6= bI , and RI ∩ SI = ∅, respectively

Definition 3. (Model) Given a SROIQ knowledge base KB , let I be an interpretation of

KB . Then I is said to be a model of KB (I |= KB) if I satisfies all axioms α ∈ KB . In

other words I |= KB iff for all α ∈ KB , I |= α holds.
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∆I = {a, b, c}
jamesI = a

peterI = b

HumanI = {a, b, c}
MaleI = {a, b}

FemaleI = {c}
FatherI = {a}

hasFatherI = {(c, a)}
hasChildI = {(a, c)}

hasBrotherI = {(a, b)}
hasUncleI = {(c, b)}
hasWifeI = ∅

hasHusbandI = (hasHusband−)I = ∅

Figure 2.2: An interpretation I of a knowledge base KB

This brings us to the notions of satisfiability and logical consequence of a SROIQ

knowledge base.

Definition 4. (Satisfiability) Given a SROIQ knowledge base KB , KB is said to be satisfi-

able or consistent if there exists a model I of KB . Otherwise, KB is said to be unsatisfiable

or inconsistent.

The notion of a logical consequence is used to define what is logically implied from

the knowledge base. This allows us to formally infer implicit knowledge from explicit

knowledge.

Definition 5. (Logical Consequence) Given a SROIQ knowledge base KB , an axiom α

is said to be a logical consequence of KB (KB |= α) iff I |= α holds for all models I of

KB . We also say that KB entails α.

Example 3. Consider a SROIQ knowledge base KB consisting of all the axioms from

Examples 1, 2. I is an interpretation of KB defined in Figure 2.2. It can be seen that the

interpretation I is indeed a model of the knowledge base KB as it satisfies all the axioms

in KB .
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Note that in this example, we have an individual which is not explicitly mentioned

in the knowledge base. We refer to such individuals as unknown/anonymous/unnamed

individuals. These individuals are produced due to existential restrictions. As in the case

of this example we had the existential Father v Male u ∃hasChild.Human, since james is

a Father it entails that there is an unnamed individual c who is a child of james.

One of the major advantages of using formal semantics is logical reasoning. Logical

reasoning is a mechanism to infer implicit knowledge from explicit knowledge using the

semantics of the underlying language. Now, we discuss the kind of inferences that one can

derive from a SROIQ knowledge base as follows:

– Consistency checking: Given a DL knowledge base KB , is it consistent?

– Subsumption checking: Given a DL knowledge base KB , does KB |= C v D?

– Instance checking: Given a DL knowledge base KB , does KB |= C(a)?

– Instance retrieval: Given a DL knowledge base KB , find all individuals a such that KB |=

C(a).

– Classification: Computing the subsumption hierarchy for a given DL knowledge base

KB .

Finally, in this section we provide a theorem which forms the basis for how the reason-

ers work to produce logical consequences. As it can be observed, there are many possible

models of a knowledge base, and it would be virtually impossible to check all the mod-

els for logical consequences. Decision procedures for DLs are mainly implemented as a

Tableaux procedure. We discuss a Tableaux algorithm in this dissertation in the later chap-

ters. A Tableaux procedure constructs a set of canonical models to check for the logical

consequences.

Theorem 1. Let KB be a SROIQ knowledge base, then KB |= α iff KB ∪ {¬α} is

unsatisfiable. Where α is a SROIQ axiom.
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It is worth mentioning here that description logics, as well as OWL, have the property

on monotonicity. The property of monotonicity can be formally defined as: Let KB and KB ′

be two knowledge bases, such that KB ⊆ KB ′ then {α | KB |= α} ⊆ {α | KB ′ |= α}. In

other words adding new axioms cannot invalidate previously derived logical consequences.

2.3 Ontology Alignment

In the previous section, we saw how knowledge can be represented using description log-

ics; in this section we will see a way to integrate different ontologies. Ontology alignment

(or mapping) [48, 88] is the notion of creating correspondences between terms from dif-

ferent ontologies (knowledge bases). This is a very active area of research where many

researchers are trying to come up with ways to (semi-)automatically match ontologies. The

task of ontology alignment is to identify relations between semantically similar or same

terms defined in different ontologies. This is important to the data sharing community on

the web, as it will improve overall interoperability among different data sources.

Definition 6. Let O1,O2 be two DL ontologies, a mapping is defined as a quadruplet rep-

resented as < PO1 , PO2 ,R,m >. Where, PO1 , PO2 are both classes or roles from O1,O2,

respectively,R = {v,w,≡}, and 0 ≤ m ≤ 1 is a confidence value. An ontology mapping

is then defined as the triplet < O1,O2, δ >, where δ is a set of all the mappings.

It can be seen from our definition that the concepts and roles from different ontolo-

gies can be mapped using monotonic constructs available in DLs. In later chapters, we

show that using DL constructs to map ontologies can lead to problems. The reason being,

identifying ontology alignments is a complex procedure and often depends on the syntactic

structure of the terms, but due the heterogeneity present in the web, it may happen that the

automatically mapped terms are semantically slightly different. We elaborate on this point

in later chapters.
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Now, we identify two of the major issues that occur when using monotonic DL con-

structs to map ontologies.

Definition 7. (Inconsistent mapping) Given two DL ontologiesO1 andO2, and (O1,O2, δ),

the ontology mapping between O1 and O2. A mapping is called inconsistent if O1 ∪ O2 is

consistent and O1 ∪O2 ∪ δ is inconsistent. δ is a set of axioms such that PO1R PO2 ∈ δ iff

< PO1 , PO2 , R,m >∈ δ.

Ontology mappings may also lead to mapping incoherence.

Definition 8. Given two DL ontologies O1 and O2 and (O1,O2, δ), the ontology mapping

betweenO1 andO2, a mapping is called incoherent ifO1∪O2 6|= A v ⊥ andO1∪O2∪δ |=

A v ⊥ hold, where A is a classname in O1 ∪ O2 and δ is a set of axioms such that

PO1R PO2 ∈ δ iff < PO1 , PO2 , R,m >∈ δ.

It is indeed possible and in many cases, automatic alignments do lead to inconsistent

mappings and incoherent mappings. One approach to resolve these problems is to use the

technique of ontology mapping repair.

Definition 9. (Mapping repair) Let (O1∪O2∪δ) be an incoherent or inconsistent ontology

mapping. A mapping δ′ ⊂ δ is called a mapping repair of (O1 ∪ O2 ∪ δ) if (O1 ∪ O2 ∪ δ′)

is consistent and not an incoherent mapping.

It is clear from the definition that some of the mapping axioms need to be removed in

order to fix the issues of inconsistency and incoherence. We take an alternative approach

where we modify the mapping language such that we do not remove any axioms as such

and retain the maximal mapping between the two ontologies. Please refer to Chapters 4

and 5 for more details on our language.

17



2.4 Non-monotonic Logics

In this section, we are going to familiarize the reader with two different types of non-

monotonic logics, which is a branch of formal logic with different properties in their se-

mantics than the monotonic FOL and DLs that give a non-monotonic characteristic to them.

There are three major types of non-monotonic logics in literature Default Logic, Circum-

scription, and Autoepistemic Logic, we discuss the first two in this chapter, as the third one

is less relevant to this dissertation.

2.4.1 Default Logic

Default logic was first introduced for first order predicate logic (FOL), by Reiter in the

1980s [80]. The main purpose of the logic was to model logical sentences which could

state default behavior of things, such that incomplete knowledge could be completed by

making the most probable conjectures. The classical example happens to be of birds– in

absence of information to the contrary- if something is a bird then we can assume that

it flies. In simple words default logic allows us to model sentences of the form, ”Most

birds fly”. Something that does not fit a default sentence is known as an exception. In this

section, we introduce the basic notions of defaults that would be useful in understanding

the rest of the chapters. We first define the notion of default rules formally.

Definition 10. A default rule is an expression of the form
α : β1, . . . , βn

γ , where α, βi, γ

are first order formulae. α is called the pre-requisite of the rule, β1, . . . , βn are its justifi-

cations and γ its consequent. A default rule is closed if all the formulae that occur in the

default are closed first order formulae, otherwise the default rule is called open. A default

theory is further defined as a pair (D,W), where D is a set of defaults andW is a set of

closed first order formulae. A default theory is closed if all the default rules in the set D
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are closed, otherwise it is called an open default theory.

The intuitive meaning of a default rule is that if α is true, and if furthermore assuming

β1, . . . , βn to be true does not result in an inconsistency, then γ is entailed.

Example 4. In this example we show the FOL sentences and default rule for the classical

bird example. In statement 2.8, we say every Penguin is also a Bird. In statement 2.9, we

say a Penguin does not fly. Followed by a fact saying Tweety is a Bird. While the default

rule 2.11 says if something is a Bird and it is safe to assume that it flies then assume it flies.

∀x(Penguin(x)→ Bird(x)) (2.8)

∀x(Penguin(x)→ ¬Fly(x)) (2.9)

Bird(Tweety) (2.10)

Bird(x) : Fly(x)

Fly(x)
(2.11)

The formal semantics of a default theory is defined in terms of a notion of an exten-

sion. An extension of a default theory is a completion (i.e., closure under entailment) of a

possibly incomplete theory. The following formally describes the notion of an extension,

directly taken from [80].

Definition 11. . Let ∆ = (D,W) be a closed default theory, so that every default of D has

the form

α : β1, . . . , βn
γ ,

where α, β1, . . . , βn, γ are all closed formulae of L (a first order language). For any set of

closed formulae S ⊆ L, let Γ(S) be the smallest set satisfying the following three proper-

ties:
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- W ⊆ Γ(S)

- Γ(S) is closed under entailment.

- If
α : β1, . . . βn

γ ∈ D, α ∈ Γ(S), and ¬β1, . . . ,¬βn /∈ Γ(S), then γ ∈ Γ(S).

A set of closed formulae E ⊆ L is an extension of ∆ if Γ(E) = E, i.e. if E is a fixed point

of the operator Γ.

The complexity of reasoning with (variants of) default logic is generally very high

[34], and the same holds for most other non-monotonic logics, unless severe restrictions

are put in place.4 In this dissertation, we discuss a special kind of default rules, called

normal defaults as defined below.

Definition 12. (Normal Defaults) Let r̄ =
α : β
γ be a default rule, we say r̄ is a normal

default if β = γ, i.e. the justification and the consequent are the same.

As one can imagine, having many rules in a default theory could lead to multiple

extensions as the triggering of one rule could stop some other rule to fire and vice versa.

For example, if in a knowledge base we have the following default rules along with the

facts Quaker(Nixon),Republican(Nixon)

Quaker : Pacifist
Pacifist

Republican : ¬Pacifist
¬Pacifist

As we can see, that depending on which of the default rules is fired first, we end up with a

different extension of the knowledge base:

{Republican(Nixon), Quaker(Nixon), Pacifist(Nixon)} and

{Republican(Nixon), Quaker(Nixon), ¬Pacifist(Nixon)}. What would be a valid conclu-

sion of this knowledge base Pacifist(Nixon) or ¬Pacifist(Nixon)? There are two ways to
4An exception is [55] for tractable description logics, but the practical usefulness of that approach for

default modeling still needs to be shown.

20



have logical conclusions for defaults: (1) Skeptical – α is a logical consequence if, and

only if, α ∈ E for all extensions E of the knowledge base, (2) Credulous – α is a logical

consequence if for some extension E of the knowledge base α ∈ E. It should also be noted

that, there is a possibility that there is no extension for a default theory, but in the case of

normal defaults, it has been shown in [80], that there is always an extension for a normal

default theory.

2.4.2 Integration with Description Logics

We have now set up the basic information required to understand what default logic is. We

briefly discuss the results of integrating defaults with description logics and the relevant

problems in doing so. In [6], the authors try to integrate defaults with DLs and call them

terminological default theories. It is shown in [6] that, for a certain extension of the DL

ALC the problem of finding extensions of a terminological default theory is undecidable.

The problem is alleviated by restricting the application of defaults to named individuals in

the knowledge base.

We improve the results of [6] by lifting the restrictions on application of defaults in

later chapters. The remaining open question is: what are the maximal decidable combina-

tions of defaults and DLs?

2.4.3 Circumscription

The other main approach for non-monotonic reasoning, which we consider in this disser-

tation is Circumscription. The original idea of circumscription was given by J. McCarthy

for FOL in [69]. The notion of circumscription allows us to close certain predicates (con-

cepts/roles), such that closed world semantics could apply to them. Two different ways

of dealing with incomplete information in logics are: open world assumption (OWA) and

close world assumption (CWA). In OWA, we assume that the knowledge is always incom-
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plete, and therefore, if a fact is missing from the knowledge base, we don’t assume it to

be false. Whereas, in CWA, knowledge is assumed to be complete and so the absence of

the fact is evidence enough for it to be false. We start by defining the central notions of

circumscription and define what a circumscriptive model of a knowledge base is. In the

following discussion, we use L as a place holder for any decidable DL.

Definition 13. (Circumscriptive Pattern) Given a knowledge base KB in L, we define the

triple CP = (M,V, F ) as the circumscriptive pattern. Where, M,V , and F are mutually

disjoint sets of predicates called minimal, variable, and fixed predicates, respectively.

Definition 14. (Circumscribed Knowledge Base) Given a KB in L and a circumscription

pattern CP = (M,V, F ) containing predicates from KB only, we call the pair (KB , CP )

as a circumscribed knowledge base.

Note, that in addition to the knowledge base we need to define the CP including

the set of minimal predicates, M , containing the predicates to which we want to apply

CWA. Fixed predicates are those that need to have the same extensions in the models in

order to be compared for minimality. Furthermore, the variable predicates are unrestricted

in their extensions. Minimality of models is a key concept in circumscription, and the

idea is that in the minimal models the extensions of the minimized (or closed) predicates

contain only those individuals that are necessarily required. The notion of interpretation

for circumscribed knowledge bases remains the same as mentioned in section 2.2. Now,

we provide a preference relation to compare interpretations for minimality.

Definition 15. (Preference relation<CP ) Given a circumscribed knowledge base (KB , CP ),

let I and J be to interpretations of this knowledge base. Then we say I is preferred over

J or I <CP J if all of the following hold:

1. ∆I = ∆J
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2. aI = aJ , for all named individuals a in KB

3. pI = pJ , for all predicates p ∈ F

4. pI ⊆ pJ , for all predicates p ∈M

5. pI ⊂ pJ , for some predicate p ∈M

With the definition of a preference relation, we can now define the notion of model for

a circumscribed knowledge base.

Definition 16. Given a circumscribed knowledge base (KB , CP ), I is a circumscribed

model of (KB , CP ) if all of the following hold:

– I |= KB , as per the underlying DLs definition.

– I is minimal with respect to the preference relation <CP , i.e. there in no model J of KB

such that J <CP I holds.

I |=CP KB is the symbolic representation of I is a circumscriptive model of KB .

Circumscription is an attractive, non-monotonic approach because of the simplicity of

its semantics and minimalistic modeling needs. However, it is up to the knowledge modeler

to identify which predicates need to go into the different sets of the circumscriptive pattern.

An interesting aspect of circumscription is that we can also simulate default rules using

abnormal predicates as shown in example below.
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I = (∆I , .I)

∆I = {a, b, c}
xI = x, (x = a, b, c)

BirdI = {a, b, c}
PenguinI = {b, c}

FlyI = {a}
abIBird = {b, c}

J = (∆J , .J )

∆J = {a, b, c}
xJ = x, (x = a, b, c)

BirdJ = {a, b, c}
PenguinJ = {c}

FlyJ = {a, b}
abJBird = {c}

Figure 2.3: Interpretations I and J of the knowledge base from Example 5
.

Example 5. In this example we simulate the birds example from the previous section

Bird(a) (2.12)

Bird(b) (2.13)

Penguin(c) (2.14)

Penguin v Bird (2.15)

Penguin u Fly v ⊥ (2.16)

Bird u ¬abBird v Fly (2.17)

Furthermore, we assign to the set M = {abBird} to minimize the Birds that don’t fly.

In the above example, we make use of a new concept, abBird, which represents the set

of abnormal birds that do not fly. Consider the two interpretations in Figure 2.3. Clearly,

both I and J are classical models of the knowledge base from Example 5. However, we

know for sure that J is not a circumscriptive model of the knowledge base as I <CP J

because abIBird ⊂ abJBird. Although, there are many benefits of using circumscription for

CWA, there are certain problems when it comes to the complexity of reasoning. Most non-
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monotonic DLs have very high computational complexity for the reasoning tasks compared

to their monotonic counterparts. The problem with circumscription goes beyond the com-

plexity. In fact, it has been shown in literature [11] that the inference problems for cir-

cumscribed knowledge bases are undecidable when the roles are minimized unless severe

restrictions are placed. We provide an alternative semantics to circumscription to avoid the

undecidability issue.
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3 Grounded Circumscription

In this chapter, we present the semantics, decidability results, and reasoning algorithms for

grounded circumscription. The content of this paper is mainly taken from our published

paper [84].

3.1 Introduction

The semantics of the Web Ontology Language OWL [38] (which is based on the description

logic SROIQ [39]) adheres to the Open World Assumption (OWA), i.e., statements which

are not logical consequences of a given knowledge base are not necessarily considered

false. The OWA is a reasonable assumption to make in the World Wide Web context (and

thus for Semantic Web applications). However, situations naturally arise where it would

be preferable to use the Closed World Assumption (CWA), that is, statements which are

not logical consequences of a given knowledge base are considered false. Such situations

include, for example, when data is being retrieved from a database, or when data can be

considered complete with respect to the application at hand (see, e.g., [35, 79]).

As a consequence, efforts have been made to combine OWA and CWA modeling for

the Semantic Web. Knowledge representation languages, which have both OWA and CWA

modeling features, are said to adhere to the Local Closed World Assumption (LCWA). Most

of these combinations are derived from non-monotonic logics, which have been studied in

logic programming [40], or on first-order predicate logic [69, 72, 80]. Furthermore, many
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of them are of a hybrid nature, meaning that they achieve the LCWA by combining, e.g.,

description logics with (logic programming) rules. Please see [57, Section 4].

On the other hand, there are not that many approaches which provide a seamless (non-

hybrid) integration of OWA and CWA, and each of them have their drawbacks. This is

despite the fact that the modeling task, from the perspective of the application developer,

seems rather simple: Users would want to specify, simply, that individuals in the extension

of a predicate should be exactly those which are necessarily required to be in it, i.e., ex-

tensions should be minimized. Thus, what is needed for applications is a simple, intuitive

approach to closed world modeling, which caters to the above intuition, and is also sound,

complete and computationally feasible.

Among the primary approaches to non-monotonic reasoning, there is one approach

which employs the minimization idea in a very straightforward and intuitively simple man-

ner, namely circumscription [69]. However, a naive transfer of the circumscription ap-

proach to description logics, which was done in [10, 11, 35, 36], has three primary draw-

backs.

1. The approach is undecicable for expressive description logics (e.g., for the descrip-

tion logic SROIQ), unless awkward restrictions are put into place. More precisely,

it is not possible to have non-empty TBoxes plus minimization of roles, if decidabil-

ity is to be retained.

2. Extensions of minimized predicates can still contain elements which are not named

individuals (or pairs of such, for roles) in the knowledge base, which is not intuitive

for modeling (see also [35]).

3. Complexity of the approach is very high.

The undecidability issue (point 1) hinges, in a sense, also on point 2 above. In this

chapter, we provide a modified approach to circumscription for description logics, which

we call grounded circumscription that remedies both points 1 and 2.1 Our idea is simple,

1We are not yet addressing the complexity issue; this will be done in future work.
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yet effective: we modify the circumscription approach from [10, 11, 35, 36], by adding the

additional requirement that extensions of minimized predicates may only contain named

individuals (or pairs of such, for roles). In a sense, this can be understood as porting a

desirable feature from (hybrid) MNKF description logics [23, 55, 54, 75], to the circum-

scription approach. In another (but related) sense, it can also be understood as employing

the idea of DL-safety [76], respectively of DL-safe variables [59] or nominal schemas

[15, 56, 58].

The structure of this chapter is as follows. In Section 3.2, we introduce the seman-

tics of grounded circumscription. In Section 3.3, we show that the resulting language is

decidable. Next, we provide a tableaux calculus in Section 3.4 to reason with grounded

circumscription. We conclude with a discussion of further work in Section 3.5.

3.2 Local Closed World Reasoning with Grounded Cir-

cumscription

In this section, we describe LCW reasoning with grounded circumscription (GC), and also,

revisit the syntax and semantics of the Description Logic ALC and extend it with GC.

Some results shown here also apply to many other description logics besides ALC, and we

will point this out in each case.

3.2.1 Grounded Circumscription

We now describe a very simple way for ontology engineers to model local closed world

aspects in their ontologies: simply use a description logic (DL) knowledge base (KB) as

usual, and augment it with meta-information, which states that some predicates (concept

names or role names) are closed. Semantically, those predicates are considered minimized,

i.e., their extensions contain only what is absolutely required, and, furthermore, only con-
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tain known (or named) individuals, i.e., individuals which are explicitly mentioned in the

KB. In the case of concept names, the idea of restricting their extensions only to known

individuals is similar to the notion of nominal schema [15, 58] (and thus, DL-safe rules

[59, 76]) and, also, the notion of DBox [87], while the minimization idea is borrowed from

circumscription [69], one of the primary approaches to non-monotonic reasoning.

In the earlier efforts to carry over circumscription to DLs [10, 35, 36], circumscription

is realized by the notion of circumscription pattern. A circumscription pattern consists

of three disjoint sets of predicates (i.e., concept names and role names), which are called

minimized, fixed and varying predicates, and a preference relation on interpretations.2 The

preference relation allows us to pick minimal models as the preferred models, with respect

to set inclusion of the extensions of the minimized predicates.

Our formalism here is inspired by one of the approaches described by Makinson in

[66], namely restricting the set of valuations to get more logical consequences than what

we can get as classical consequences. Intuitively, this approach is a simpler version of the

circumscription formalism for DLs, as presented in [11, 36], in the sense that we restrict

our attention only to models in which the extension of minimized predicates may only

contain known individuals from the KB. Furthermore, the predicates (concept names and

role names) in KB are partitioned into two disjoint sets of minimized and non-minimized

predicates, i.e., no predicate is considered fixed.3 The non-minimized predicates would be

viewed as varying, in the more general circumscription formalism mentioned above.

The non-monotonic feature of the formalism is given by restricting models of an L-

KB, such that the extension of closed predicates may only contain individuals (or pairs of

them) which are explicitly occurring in the KB, plus a minimization of the extensions of

these predicates. We define a function Ind that maps each L-KB to the set of individual

2There is also a notion of prioritization which we will not use, mainly because we are not convinced yet
that it is a desirable modeling feature for local closed world reasoning for the Semantic Web.

3Fixed predicates can be simulated in the original circumscriptive DL approach if negation is available,
i.e., for fixed concept names, concept negation is required, while for fixed role names, role negation is re-
quired. The latter can be added to expressive DLs without jeopardizing decidability [58, 91].
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names it contains, i.e., given an L-KB K, Ind(K) = {b ∈ NI | b occurs in K}. Among

all possible models of K that are obtained by the aforementioned restriction to Ind(K), we

then select a model that is minimal w.r.t. concept inclusion or role inclusion, in accordance

with the following definition.

Definition 17. A GC-L-KB is a pair (K,M) where K is an L-KB and M ⊆ NC ∪ Nr.

For every concept name and role name W ∈ M , we say that W is closed with respect

to K. For any two models I and J of K, we furthermore say that I is smaller than (or

preferred over) J w.r.t. M , written I ≺M J , iff all of the following hold: (i) ∆I = ∆J

and aI = aJ for every a ∈ NI; (ii) W I ⊆ WJ for every W ∈ M ; and (iii) there exists a

W ∈M such that W I ⊂ WJ

The following notion will be helpful.

Definition 18 (grounded model). Given a GC-L-KB (K,M), a model I of K is called a

grounded model w.r.t M if all of the following hold:

(1) CI ⊆ {bI | b ∈ Ind(K)} for each concept C ∈M ; and

(2) RI ⊆ {(aI , bI) | a, b ∈ Ind(K)} for each role R ∈M

We now define models and logical consequence of GC-L-KBs as follows:

Definition 19. Let (K,M) be a GC-L-KB. An interpretation I is a GC-model of (K,M)

if it is a grounded model of K w.r.t. M and I is minimal w.r.t. M , i.e., there is no model J

of K with J ≺M I. A statement (GCI, concept assertion, or role assertion) α is a logical

consequence (a GC-inference) of (K,M) if every GC-model of (K,M) satisfies α. Finally,

a GC-L-KB is said to be GC-satisfiable if it has a GC-model.

Note, that every GC-model is also a grounded model. Moreover, in comparison with

the more general circumscription formalism for DLs as presented in [11, 36], every GC-
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model of a KB is also a circumscriptive model,4 hence every circumscriptive inference is

also a valid GC-inference.

To give an example, consider the knowledge base K consisting of the axioms

hasAuthor(paper1, author1) hasAuthor(paper1, author2)

hasAuthor(paper2, author3) > v ∀hasAuthor.Author

Consider the ABox statements:

¬hasAuthor(paper1, author3) and

(≤2 hasAuthor. Author)(paper1).5

Neither of them is a logical consequence of K under classical DL semantics. However, if

we assume that we have complete information on authorship relevant to the application

under consideration, then it would be reasonable to close parts of the knowledge base

in the sense of the LCWA. In the original approach to circumscriptive DLs, we could

close the concept name Author, but to no avail, but if we close hasAuthor, we obtain

(≤2 hasAuthor.Author)(paper1) as a logical consequence. In addition, if we adopt the

Unique Name Assumption (UNA), ¬hasAuthor(paper1 , author3) is also a logical conse-

quence of K. Even without UNA, we can still obtain this as a logical consequence if we

add the following axioms to K, which essentially forces the UNA:6

A1(author1); A2(author2); A3(author3); Ai u Aj v ⊥ for all i 6= j. With regard to this

example, note that the closure of roles in the original circumscriptive DL approach leads

to undecidability [11]. The GC-semantics, in contrast, is decidable even under role closure

(see Section 3.3 below) and also yields the desired inferences.

4This can be seen, e.g., by a straightforward proof by contradiction.
5The semantics is (≤n R.C)I = {x ∈ ∆I | |{y | (x, y) ∈ RI and y ∈ CI}| ≤ n}; this qualified number

restriction is not part of ALC, though it makes a very good example without depending on the UNA.
6The UNA can be enforced in anALC KB by adding ABox statementsAi(ai), where ai are all individuals

and Ai are new concept names, to the knowledge base, together with all disjointness axioms of the form
Ai uAj v ⊥ for all i 6= j.
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3.3 Decidability of Grounded Circumscription

As noted earlier, circumscription in many expressive DLs is undecidable [11]. Undecid-

ability even extends to the basic DL ALC when non-empty TBoxes are considered and

roles are allowed as minimized predicates. Such a bleak outlook would greatly discourage

useful application of circumscription, despite the fact that there is a clear need of such a

formalism to model LCWA.

Our formalism fills this gap by offering a simpler approach to circumscription in DLs

that is decidable provided that the underlying DL is also decidable. The decidability result

is obtained due to the imposed restriction of minimized predicates to known individuals in

the KB as specified in Definition 19. Let L be any standard DL. We consider the reasoning

task of GC-KB satisfiability: “given a GC-L-KB (K,M), does (K,M) have a GC-model?”

and show in the following that this is decidable.

Assume that L is any DL, featuring nominals, concept disjunctions, concept products,

role hierarchies and role disjunctions. We show that GC-KB satisfiability in L is decidable

if satisfiability in L is decidable.

Let (K,M) be a GC-L-KB. We assume thatM = MA∪Mr, whereMA = {A1, . . . , An}

is the set of minimized concept names and Mr = {r1, . . . , rm} is the set of minimized role

names. Now define a family of (n+m)-tuples as

G(K,M) = {(X1, . . . , Xn, Y1, . . . , Ym) | Xi ⊆ Ind(K), Yj ⊆ Ind(K)× Ind(K)}

with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Note that there are

(
2|Ind(K)|)n · (2|Ind(K)|2

)m
= 2n·|Ind(K)|+m·|Ind(K)|2 (3.1)

such tuples, in particular, note that G(K,M) is a finite set.
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Now, given (K,M) and some G = (X1, . . . , Xn, Y1, . . . , Ym) ∈ G(K,M), let KG be the

L-KB, consisting of all axioms in K together with all of the following axioms, where the

Ai and rj are all the predicates in M—note that we require role disjunction and concept

products for this.

Ai ≡
⊔
{a} for every a ∈ Xi and i = 1, . . . , n

rj ≡
⊔

({a} × {b}) for every pair (a, b) ∈ Yj and j = 1, . . . ,m

Then the following result clearly holds.

Lemma 1. Let (K,M) be a GC-L-KB. If K has a grounded model I w.r.t. M , then

there exists G ∈ G(K,M), such that KG has a (classical) model J which coincides with

I on all minimized predicates. Likewise, if there exists G ∈ G(K,M), such that KG has

a (classical) model J , then K has a grounded model I which coincides with J on all

minimized predicates.

Now consider the set

G ′(K,M) = {G ∈ G(K,M) | KG has a (classical) model},

and note that, this set is finite and computable in finite time since G(K,M) is finite and L

is decidable. Furthermore, consider G ′(K,M) to be ordered by the pointwise ordering ≺

induced by⊆. Note that, the point-wise ordering of the finite set G ′(K,M) is also computable

in finite time.

Lemma 2. Let (K,M) be a GC-L-KB and let

G ′′(K,M) = {G ∈ G ′(K,M) | G is minimal in (G ′(K,M),≺)}.
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Then (K,M) has a GC-model, if, and only if, G ′′(K,M) is non-empty.

Proof. This follows immediately from Lemma 1 together with the following observation:

Whenever K has two grounded models I and J , such that I is smaller than J , then

there exists GI , GJ ∈ G ′(K,M) with GI ≺ GJ such that KGI and KGJ have (classical)

models I ′ and J ′, respectively, which coincide with I, respectively, J , on the minimized

predicates.

Theorem 2. GC-KB-satisfiability is decidable.

Proof. This follows from Lemma 2 since the set G ′′(K,M), for any given GC-KB (K,M), can

be computed in finite time, i.e., it can be decided in finite time whether G ′′(K,M) is empty.

Some remarks on complexity are as follows: assume that the problem of deciding KB

satisfiability in L is in the complexity class C. Observe from equation (3.1) that there are

exponentially many possible choices of the (n+m)-tuples in G(K,M) (in the size of the input

knowledge base). Computation of G ′(K,M) is thus in EXPC, and subsequent computation of

G ′′(K,M) is also in EXP. We thus obtain the following upper bound.

Proposition 1. The problem of finding a GC-model (if one exists) of a given GC-L-KB is in

EXPC , where C is the complexity class of L. Likewise, GC-L-KB satisfiability is in EXPC .

3.4 Algorithms for Grounded Circumscriptive Reasoning

We now present algorithms for reasoning with grounded circumscription. We start with a

tableaux algorithm to decide knowledge base GC-satisfiability, and then, discuss how to

extend it to other reasoning tasks. For simplicity of presentation, we only consider GC-

KB-satisfiability in ALC, but the procedure should be adaptable to other DLs. Inspiration

for the algorithm comes from [36, 43].
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3.4.1 Decision Procedure for GC-Satisfiability in ALC

The algorithm is a tableaux procedure, as usual, where the expansion rules are defined to

be compatible with the semantics of the language, and for easier reference, we call the re-

sulting algorithm Tableau1. It starts with an initial graph Fi constructed using the ABox

of a given GC-ALC-KB (K,M), such that all known individuals are represented as nodes

along with their labels that consist of the concepts that contain them in the ABox. Addi-

tionally, links are added for all role assertions using labels that consist of the roles in the

ABox assertion axioms. We call this set of nodes and labels the initial graph. The creation

of the initial graph Fi is described in terms of the following steps called the initialization

process:

• create a node a, for each individual a that appears in at least one assertion of the form

C(a) in K (we call these nodes nominal nodes),

• add C to L(a), for each assertion of the form C(a) or R(a, b) in K,

• add R to L(a, b), for each assertion of the form R(a, b) in K,

• initialize a set T := {NNF(¬C tD) | C v D ∈ K}.

The algorithm begins with the initial graph Fi along with the sets T and M , and pro-

ceeds by non-deterministically applying the rules defined in Table 1, a process which can

be understood as creating a candidate model for the knowledge base. The −→TBox,−→u

,−→∃ and−→∀ rules are deterministic rules, whereas the−→t,−→GCC
and−→GCR

rules

are non-deterministic rules, as they provide a choice, with each choice possibly leading to

a different graph. The algorithm differs from the usual tableaux algorithm for ALC, as it

provides extra−→GCC
and−→GCR

non-deterministic rules, such that the candidate models

are in fact grounded candidate models as defined in Definition 18. The rules are applied

until a clash is detected or until none of the rules is applicable. A graph is said to contain an

inconsistency clash when one of the node labels contains both C and ¬C, or it contains ⊥,

and it is called inconsistency-clash-free if it does not contain an inconsistency clash. The
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algorithm, by application of the rules upon termination, generates a so-called completion

graph. A notion of blocking is required to ensure termination, and we define it as follows.

Definition 20 (Blocking). A non-nominal node x is blocked

1. if it has a blocked ancestor; or

2. if it has a non-nominal ancestor x′, such that L(x) ⊆ L(x′) and the path between x′

and x consists only of non-nominal nodes.

In the second case, we say that x is directly blocked by the node x′. Note that, any non-

nominal successor node of x is also blocked.

For a GC-ALC-KB (K,M), the tableau expansion rules when applied exhaustively,

generate a completion graph which consists of nodes, edges and their labels, each node x

of the graph is labeled with a set of (complex or atomic) concepts and each edge (x, y) is

labeled with a set of roles.

Lemma 3 (Termination). Given any GC-ALC-KB (K,M), the tableaux procedure for

(K,M) terminates.

Proof. First note that node labels can only consist of axioms from K in NNF or of subcon-

cepts of axioms from K in NNF. Thus, there is only a finite set of possible node labels, and

thus there is a global bound, say m ∈ N, on the cardinality of node labels.

Now, note the following: (1) The number of times any rule can be applied to a node is

finite, since the labels trigger the rules and the size of the labels is bounded by m. (2) The

out-degree of each node is bounded by the number of possible elements of node labels of

the form ∃R.C, since only the −→∃ rule generates new nodes. Thus the out-degree is also

bounded by m. Further, infinite, non-looping paths cannot occur since there are, at most,
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2m possible different labels, and so the blocking condition from Definition 20 implies that

some node along such a path would be blocked, contradicting the assumption that the path

would be infinite. (3) While the −→GCC
rule and the −→GCR

rule delete nodes, they can

only change labels of nominal nodes by possibly adding elements to nominal node labels.

Since the number of possible elements of node labels is bounded by m, at some stage,

application of the −→GCC
rule or the −→GCR

rule will no longer add anything to nominal

node labels, and then no new applications of rules can be enabled by this process.

From (1) and (2) we obtain a global bound on the size of the completion graphs, which

can be generated by the algorithm, and from (3) we see that infinite loops due to deletion

and recreation of nodes cannot occur. Thus, the algorithm necessarily terminates.

Before we show that the tableaux calculus is sound and complete, we define a func-

tion called read function which will be needed for clarity of the proof and verification of

minimality of the models.

Definition 21 (Read Function). Given an inconsistency-clash-free completion graph F ,

we define a read function r which maps the graph to an interpretation r(F ) = I in the

following manner. The interpretation domain ∆I contains all the non-blocked nodes in

the completion graph. Further, for each atomic concept A, we set AI to be the set of all

non-blocked nodes x for which A ∈ L(x). For each role name R, we set RI to be the set

of pairs (x, y) which satisfy any of the following conditions:

• R ∈ L(x, y) and y is not blocked; or

• x is an immediate R-predecessor of some node z, and y directly blocks z

The mapping just defined is then lifted to complex concept descriptions as usual.
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The second condition is due to the well-known technique of unraveling (see, e.g.,

[43]): while disregarding blocked nodes, an incoming edge from an immediateR-predecessor,

x of the blocked node z, is considered to be replaced by an edge from the predecessor to

the node y which directly blocks z. This accounts for the intuition that a path ending in a

blocked node stands for an infinite but repetitive path in the model.

Lemma 4 (Soundness). If the expansion rules are applied to a GC-ALC-KB (K,M), such

that they result in an inconsistency-clash-free completion graph F , then K has a grounded

model I = r(F ). Furthermore, the extensionAI of each conceptA ∈M under I coincides

with the set {x | x ∈ Ar(F )}, the extension RI of each role R ∈ M under I coincides with

the set {(x, y) | (x, y) ∈ Rr(F )}, and both these sets can be read off directly from the labels

of the completion graph.

Proof. From the inconsistency-clash-free completion graph F , we create an interpretation

I = r(F ) where r is the read function defined in Definition 21. Since the completion graph

is free of inconsistency clashes, and the first five expansion rules from Table 5.2 follow

the definition of a model from Section 3.2, the resulting interpretation is indeed a model

of K.7 Moreover, the −→GCC
and −→GCR

rules ensure that the extensions of minimized

predicates contain only (pairs of) known individuals. Hence, r(F ) = I is a grounded model

of K w.r.t M , and Definition 21 shows how the desired extensions can be read off from the

completion graph.

Lemma 5 (completeness). If a GC-ALC-KB (K,M) has a grounded model I, then the

expansion rules can be applied to the initial graph Fi of (K,M) in such a way that they

lead to an inconsistency-clash-free completion graph F , and such that the following hold.
7This can be proven formally by structural induction on formulas as in [43].
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• ∆r(F ) ⊆ ∆I

• ar(F ) = aI for every nominal node a

• W r(F ) ⊆ W I for every W ∈M

• the extensions, under r(F ), of the closed concept and role names can be read off from

F as in the statement of Lemma 4.

Proof. Given a grounded model I for K w.r.t M , we can apply the completion rules to

Fi in such a way that they result in an inconsistency-clash-free completion graph F . To

do this, we only have to ascertain that, for any nodes x and y in the graph, the conditions

L(x) ⊆ {C | π(x) ∈ CI} and L(x, y) ⊆ {R | (π(x), π(y)) ∈ RI} are satisfied, where π

is mapping from nodes to ∆I . This construction is very similar to the one in [43, Lemma

6], to which we refer for details of the argument.

The remainder of the statement follows from the fact that the two conditions just given

are satisfied, and from the reading-off process specified in Lemma 4.

We have provided an algorithm that generates a set of completion graphs, and each

inconsistency-clash-free completion graph represents a grounded model. In fact, (K,M)

is GC-satisfiable if at least one of the completion graphs is inconsistency-clash-free.

Theorem 3. Let (K,M) be a GC-ALC-KB. Then (K,M) has a grounded model, if, and

only, if it is GC-satisfiable.

Proof. The if part of the proof is trivial.

We prove the only if part. For any grounded model I, let |MI | denote the sum of the

cardinalities of all extensions of all the minimized predicates in M , and note that, for any

two grounded models I and J of K w.r.t. M , we have |MJ | < |MI | whenever J ≺M I.
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Hence, for any grounded model I ofK w.r.t. M , which is not a GC-model of (K,M), there

is a grounded model J ofK w.r.t. M with J ≺M I and |MJ | < |MI |. Since |MI | > 0 for

all grounded models I (and because≺M is transitive), we obtain that, given some grounded

model I, it is not possible that there is an infinite descending chain of grounded models

preferred over I. Consequently, there must be some grounded model J of K w.r.t. M

which is minimal w.r.t. |MJ | among all models which are preferred over I. This model J

must be a GC-model, since otherwise it would not be minimal.

The following is a direct consequence of Lemmas 3, 4, 5, and Theorem 3.

Theorem 4. The tableaux algorithm Tableau1 presented above is a decision procedure to

determine GC-satisfiability of GC-ALC-KBs.

3.4.2 Inference Problems beyond GC-Satisfiability

Unlike in other description logics, common reasoning tasks, such as concept satisfiability

or instance checking, cannot be readily reduced to GC-satisfiability checking.8 To cover

other inference tasks, we need to extend the previously described algorithm. To do this,

we first describe a tableaux algorithm Tableau2 which is a modification of Tableau1, as

follows. All computations are done with respect to an input GC-ALC-KB (K,M).

(i) Initialization of Tableau2 is done on the basis of an inconsistency-clash-free comple-

tion graph F , as follows. We create a finite set of nodes which is exactly the domain

∆I of a grounded model I = r(F ). We distinguish between two different kinds of

8E.g., say we want to decide whether (K,M) GC-entails C(a). We cannot do this, in general, by using
the GC-satisfiability algorithm in the usual way, i.e., by adding ¬C(a) to K with subsequent checking of
its GC-satisfiability. This is because, in general, it does not hold that (K,M) does not GC-entail C(a) if
(K ∪ ¬C(a),M) is GC-satisfiable. This is due to the non-monotonic nature of circumscription.
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nodes, the I-nominal nodes, which are nodes corresponding to some aI ∈ ∆I where

a is an individual name, and the remaining nodes which we call variable nodes. For

initialization, we furthermore add all information from the ABox of K to the graph

and create the set T from K, as in the initialization of Tableau1.

(ii) We modify the −→∃ rule as follows:

−→∃ : if ∃R.C ∈ L(x), and x has no R-successor y with C ∈ L(y)

then select an existing node y and

set L(y) := {C} and L(x, y) := {R}

The above change in the −→∃-rule enables us to restrict the graph to contain only the

nodes it was initialized with, which means new nodes are not created.

(iii) We retain all other completion rules, however, we dispose of blocking.

(iv) We retain the notion of inconsistency clash, and add a new notion of preference clash

as follows. A graph F ′ obtained during the graph construction performed by Tableau2

is said to contain a preference clash with I if at least one of the following holds.

• W r(F ′) = W I for each predicate W ∈M

• W r(F ′) ∩ {aI | a an individual } 6⊆ W I for some concept name W ∈M

• W r(F ′) ∩ {(aI , bI) | a, b individuals } 6⊆ W I for some role name W ∈M

Proposition 2. Tableau2 always terminates. If it terminates by constructing an inconsis-

tency and preference-clash-free completion graph F ′, then r(F ′) is preferred over I, i.e., it

shows that I is not a GC-model. If no such graph F ′ is found, then I has been verified to

be a GC-model.

Proof. Termination is obvious due to the fact that no new nodes are created, i.e., the algo-

rithm will eventually run out of choices for applying completion rules.
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Now assume that the algorithm terminates by finding an inconsistency and preference-

clash-free completion graph F ′. We have to show that r(F ′) is preferred over I, i.e., we

need to verify the properties listed in Definition 17. ∆I = ∆r(F ′) holds because we initiate

the algorithm with nodes being elements from ∆I and no new nodes are created. In case

nodes are lost due to the grounding rules of Tableau2, we can simply extend ∆r(F ′) with

some additional elements which are not otherwise of relevance for the model. The condi-

tion aI = ar(F
′) for every aI ∈ ∆r(F ′) holds because this is how the algorithm is initialized.

The remaining two conditions hold due to the absence of a preference clash.

For the last statement of the proposition, note that Tableau2 will non-deterministically

find an inconsistency- and preference-clash-free completion graph if such a graph exists.

This can be seen in a similar way as done in the proof of Lemma 5.

We next use Tableau1 and Tableau2 together to create an algorithm which finds GC-

models for (K,M) if they exist. We call this algorithm GC-model finder. The algorithm is

specified as follows, on input (K,M).

1. Initialize and run Tableau1 on (K,M). If no inconsistency-clash-free completion

graph is found, then (K,M) has no GC-model and the algorithm terminates. Other-

wise let F be the resulting completion graph.

2. Initialize Tableau2 from F and run it. If no inconsistency- and preference-clash-free

completion graph is found, then r(F ) is a GC-model of (K,M) and the algorithm

terminates with output r(F ). Otherwise, let F ′ be the resulting completion graph.

3. Set F = F ′ and go to step 2.

The loop in steps 2 and 3 necessarily terminates, because whenever step 2 finds a

completion graph F ′ as specified, then r(F ′) is preferred over r(F ). As argued in the

proof of Theorem 3, there are no infinite descending chains of grounded models w.r.t. the

preferred over relation, so the loop necessarily terminates. The output r(F ) of the GC-
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model finder is a GC-model of (K,M), and we call F a GC-model graph of (K,M) in this

case.

Theorem 5. On input a GC-ALC-KB (K,M), the GC-model finder creates a GC-model

I of (K,M) if such a model exists. Conversely, for every GC-model J of (K,M), there

exist non-deterministic choices of rule applications in the GC-model finder such that they

result in a model I, which coincides with J on all extensions of minimized predicates.

Proof. The first statement follows from Propositon 2 together with the explanations already

given. The second statement follows due to Lemma 5, since Tableau1 can already create

the sought GC-model I.

We now consider the reasoning tasks usually known as instance checking, concept

satisfiability and concept subsumption. We provide a convenient way to utilize the GC-

model finder algorithm to solve these problems by use of another notion of clash called

entailment clash. The following definition describes the inference tasks and provides the

notion of entailment clash for each of them as well:

Definition 22. For a GC-ALC-KB (K,M).

• Instance checking: Given an atomic concept C and an individual a in (K,M),

(K,M) |=GC C(a), if, and only if, aI ∈ CI for all GC-models I of (K,M). For

instance checking of C(a), a GC-model graph F is said to contain an entailment

clash if C ∈ L(a) in F .

• Concept satisfiability: Given an atomic concept C in (K,M), C is GC-satisfiable,

if, and only if, CI 6= ∅ for some GC-model of (K,M). For checking satisfiability of

C, a GC-model graph F is said to contain an entailment clash if C ∈ L(x) for any

node x in F .
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• Concept subsumption: Given concepts C and D in (K,M), (K,M) |=GC C v D,

if, and only if, CI ⊆ DI for all models I in (K,M). Subsumption can be reduced

to concept satisfiability: GC-ALC-KB(K,M) |=GC C v D if and only if C u¬D is

not GC-satisfiable.

We use the following process to solve these inference problems:

To determine if C(a) is entailed by a GC-ALC-KB (K,M), we invoke the GC-model

finder until we find a GC-model. If this non-deterministic procedure results in a GC-model

graph which does not contain an entailment clash, then (K,M) 6|=GC C(a). If no such

GC-model graph can be generated this way, then (K,M) |=GC C(a).

To determine if C is GC-satisfiable, we invoke the GC-model finder until we find a

GC-model. If this non-deterministic procedure results in a GC-model graph which contains

an entailment clash, then C is satisfiable. If no such GC-model graph can be generated this

way, then C is unsatisfiable.

3.5 Conclusion

We have provided a new approach for incorporating the LCWA into description logics.

Our approach, grounded circumscription, is a variant of circumscriptive description logics

which avoids two major issues of the original approach: Extensions of minimized predi-

cates can only contain named individuals, and we retain decidability even for very expres-

sive description logics while we can allow for the minimization of roles. We have also

provided a tableaux algorithm for reasoning with grounded circumscription.

While the contributions in this chapter provide a novel and, in our opinion, very rea-

sonable perspective on LCWA reasoning with description logics, there are obviously also

many open questions. A primary theoretical task is to investigate the complexity of our

approach. Of more practical relevance would be an implementation of our algorithm with a
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substantial evaluation to investigate its efficiency empirically. More work needs to be done

in carrying over the concrete algorithm to description logics which are more expressive

than ALC.

It remains to investigate the added value and limitations in practice of modeling with

grounded circumscription. This will also shed light onto the question of whether fixed

predicates and prioritization are required for applications.
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Table 3.1: Tableau1 expansion rules for GC-ALC-KBs (K,M). The first five rules are
taken directly from the ALC tableaux algorithm. Input: Fi, T and M .

−→TBox : if C ∈ T and C /∈ L(x)
then L(x) := L(x) ∪ {C}

−→u : if C1 u C2 ∈ L(x), x is not blocked, and {C1, C2} 6⊆ L(x)
then L(x) := L(x) ∪ {C1, C2}

−→t : if C1 t C2 ∈ L(x), x is not blocked, and {C1, C2} ∩ L(x) = ∅
then L(x) := L(x) ∪ {C1} or L(x) := L(x) ∪ {C2}

−→∃ : if ∃R.C ∈ L(x), x is not blocked, and x has no R-successor y
with C ∈ L(y)

then add a new node y with L(y) := {C} and L(x, y) := {R}
−→∀ : if ∀R.C ∈ L(x), x is not blocked, and x has an R-successor y

with C /∈ L(y)
then L(y) := L(y) ∪ {C}

−→GCC
: if C ∈ L(x), C ∈M,x /∈ Ind(K) and x is not blocked

then for some a ∈ Ind(K) do
1. L(a) := L(a) ∪ L(x),
2. if x has a predecessor y, then L(y, a) := L(y, a) ∪ L(y, x),
3. remove x and all incoming edges to x in the completion graph

−→GCR
: if R ∈ L(x, y), R ∈M and y is not blocked.

then initialize variables x′ := x and y′ := y, and do
1. if x /∈ Ind(K) then for some a ∈ Ind(K),L(a) := L(a) ∪ L(x),
x′ := a.

2. if y /∈ Ind(K) for some b ∈ Ind(K),L(b) := L(b) ∪ L(y) and
y′ := b

3. if x′ = a and x has a predecessor z,
then L(z, a) := L(z, a) ∪ L(z, x).

4. L(x′, y′) := L(x′, y′) ∪ {R}
5. if x′ = a remove x and all incoming edges to x and

if y′ = b remove y and all incoming edges to y
from the completion graph.
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4 Free Defaults

In this chapter, we present the notion of free defaults, an alternative approach to integration

of defaults with description logics [83].

4.1 Introduction and Motivation

The wide adoption of linked data principles has led to an enormous corpus of semantically

enriched data being shared on the web. Researchers have been building (semi-)automatic

matching systems [1, 88] to build links (correspondences) between various conceptual en-

tities, as well as instances in the linked data. These systems are commonly known as

ontology matching/alignment systems. The correspondences generated by these systems

are represented using some standard knowledge representation language such as the web

ontology language (OWL). However, due to the amount of heterogeneity present in the

linked data and the web, OWL does not seem to be a completely suitable language for this

purpose as we discuss in the following.

One key aspect of the web (or the world) is variety. There are subtle differences in

how a conceptual entity and its relation to other entities are perceived depending on the

geographical location, culture, political influence, etc. [46]. To give a simple example con-

sider the concept of marriage. In some conservative parts of the world, marriage stands for

a relationship between two individuals of opposite genders whereas in other more liberal

places the individuals involved may have the same gender. Consider the axioms in Figure
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a:hasWife v a:hasSpouse (4.1)
symmetric(a:hasSpouse) (4.2)

∃a:hasSpouse.a:Female v a:Male (4.3)
∃a:hasSpouse.a:Male v a:Female (4.4)

a:hasWife(a:john, a:mary) (4.5)
a:Male(a:john) (4.6)

a:Female(a:mary) (4.7)
a:Male u a:Female v ⊥ (4.8)

symmetric(b:hasSpouse) (4.9)
b:hasSpouse(b:mike, b:david) (4.10)
b:Male(b:david) (4.11)
b:Male(b:mike) (4.12)
b:Female(b:anna) (4.13)

a:hasSpouse ≡ b:hasSpouse (4.14)
a:Male ≡ b:Male (4.15)

a:Female ≡ b:Female (4.16)

Figure 4.1: Running example with selected axioms.

4.1, let axioms (5.1) to (5.8) represent a part of ontology A (the conservative perspective),

and axioms (5.9) to (5.13) represent a part of ontology B (the liberal perspective). It would

be safe to assume that an ontology matching system would output the axioms, (5.14) to

(5.16), as the correspondences between these two ontologies. This however, leads to a

logical inconsistency under OWL semantics when the two ontologies are merged based

on the given correspondences: From axioms (5.10), (5.11), (5.14), and (5.3), we derive

a:Female(b:mike) which together with axioms, (5.12), (5.15), and (5.8), result in an in-

consistency as we derive a:Male(b:mike) and a:Female(b:mike), while axiom (5.8) states

a:Male u a:Female v ⊥.

This drives the need for an alignment language which could handle such subtle dif-

ferences in perspectives. We propose an extension of description logics based on defaults

to be used as an ontology alignment language. Using the notion of defaults we could re-

state axiom (5.14) to an axiom which would semantically mean: every pair of individuals

in b:hasSpouse is also in a:hasSpouse (and vice versa), unless it leads to a logical incon-

sistency. And those pairs which lead to an inconsistency are treated as exceptions to this

axiom. In such a setting, the pair (b:mike, b:david) would be treated as an exception to the
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re-stated axiom and would not cause an inconsistency any more.

A default is a kind of inference rule that enables us to model some type of stereotypical

knowledge such as “birds usually fly,” or “humans usually have their heart on the left side

of their chest.” Default logic, which formalizes this intuition, was introduced by Ray Reiter

[80] in the 80s, and it is one of the main approaches towards non-monotonic reasoning. In

fact, it was the starting point for one of the primary approaches to logic programming and

non-monotonic reasoning today, namely the stable model semantics [29] and answer set

programming [61].

Reiter’s approach is so powerful because exceptions to the default rules are implicitly

handled by the logic, so that it is not left to the knowledge modeler to know all relevant

exceptions and to take care of them explicitly, as is required in OWL-based ontology mod-

eling. In fact, defaults in the general sense of Reiter still appear to be one of the most

intuitive ways of formally modeling this type of stereotypical reasoning [35].

Alas, a paper by Baader and Hollunder [6], published almost 20 years ago, seemed

to put an early nail into the coffin of default-extended description logics. Therein, the

authors show that a certain extension of the description logic ALC1 becomes undecidable

if further extended with Reiter defaults. Since decidability was (and still is) a key design

goal for description logics, this result clearly was a showstopper for further development

of default-extended description logics. Of course, Baader and Hollunder also provided a

quick fix: If we impose that the default rules only apply to known individuals (i.e., those

explicitly present in the knowledge base), then decidability can be retained. However, this

semantics for defaults is rather counter-intuitive, as it implies that default rules never apply

to unknown individuals. In other words: to unknown individuals the defaults do, by default,

not apply. Arguably, this is not a very intuitive semantics for defaults.

In this chapter, we show that there is still a path of development for default-extended

description logics, and that they may yet attain a useful standing in ontology modeling.

1ALC is a very basic description logic which, among other things, constitutes the core of OWL 2 DL
[38, 39].
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In fact, we will present a way to extend decidable description logics with defaults which

transcends the approach by Baader and Hollunder while retaining decidability: in our ap-

proach, default rules do apply to unknown individuals. We refer to the type of default

semantics which we introduce as free defaults. Indeed, the contributions of this work are

(1) A new semantics for defaults (free defaults) in description logics, and thereby OWL,

such that the application of defaults are not limited to named individuals in the knowledge

base, (2) We show that reasoning under this new semantics is decidable, which improves

upon the results shown in [6], (3) Adding default role inclusion axioms also yield a decid-

able logic, and (4) We introduce the use of free defaults as a basis for a new language for

ontology alignment, and show some application scenarios in where defaults could play a

major role and show how our approach covers these scenarios.

4.2 Semantics of Free Defaults

In this section, we introduce the semantics of free defaults. We restrict our attention to

normal defaults and show that reasoning in this setting is decidable in general when the

underlying DL is also decidable. Normal defaults are very intuitive and we observe that

there are many applications in practice where normal defaults can be very useful—see

section 4.5. We also provide a DL syntax to encode default rules in the knowledge bases.

For our purposes, a normal default rule is of the form A : B
B

, where A and B are

class names,2 i.e., the justification and conclusion of the default rule are the same. For

a description logic L, we are going to represent the same rule in the form of an axiom

A vd B, where A and B are L-concepts and vd represents (free) default subsumption. We

refer to statements of the form A vd B as (free) default rules or default axioms.

Definition 23. Let KB be a description logic knowledge base, and let δ be a set of default

axioms of the form C vd D, where C and D are concepts appearing in KB . Then we call
2We will lift this to roles in section 4.4.
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the pair (KB , δ) a default-knowledge-base.

The semantics of the default subsumption can be informally stated as follows: if C vd

D, then every named individual in C can also be assumed to be in D, unless it results in

a logical inconsistency. Also, if C vd D, then every unnamed individual in C is also

in D, i.e., for unnamed individuals vd behaves exactly the same as v. Furthermore, we

say a named individual a satisfies a default axiom C vd D if (1) aI ∈ CI , DI or (2)

aI ∈ (¬C)I . The intuition behind the semantics of free defaults is to maximize the sets of

the named individuals that satisfy the default axioms, while maintaining the consistency of

the knowledge base.

The following notations will be needed to formalize this intuition for the semantics of

free defaults.

Definition 24. For a default-knowledge-base (KB , δ), we define the following.

- IndKB is the set of all the named individuals occurring in KB .

- P(IndKB) is the power set of IndKB .

- Pn(IndKB) is the set of n-tuples obtained from the Cartesian product: P(IndKB)×. . . n times×

P(IndKB), where n is the cardinality of δ.

The notion of interpretation for the default-knowledge-bases (KB , δ) remains the same

as that of the underlying DL of the knowledge base KB .3 Additionally, given an in-

terpretation I, we define δI to be the tuple (XI1 , . . . , X
I
n ), where each XIi is the set

of interpreted named individuals that satisfy the ith default Ci vd Di in the sense that

XIi = (CIi ∩DIi ∩∆IInd) ∪ ((¬Ci)I ∩∆IInd) with ∆IInd = {aI | a ∈ IndKB} ⊆ ∆I being

the set of interpreted individuals occurring in the knowledge base. We now need to define

a preference relation over the interpretations, such that we can compare them on the basis

of the sets of named individuals satisfying each default.

3See chapter 2.
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Definition 25. (Preference relation>KB ,δ) Given a knowledge base KB and a set of default

axioms δ. Let I and J be two interpretations of the pair (KB , δ), then we say that I is

preferred over J or I >KB ,δ J if all of the following hold.

1. aI = aJ for all a ∈ NI

2. XIi ⊇ XJi for all 1 ≤ i ≤ |δ|, where XIi ∈ δI and XJi ∈ δJ .

3. XIi ⊃ XJi for some 1 ≤ i ≤ |δ|, where XIi ∈ δI and XJi ∈ δJ .

The concept of a model under the semantics of free defaults would be the one which

is maximal, with respect to the above relation.

Definition 26. (d-model) Given (KB , δ), we call I a d-model of KB with respect to a set of

defaults δ, written I |=d (KB , δ), if all of the following hold:

1. I satisfies all axioms in KB .

2. CIi \∆IInd ⊆ DIi , for each (Ci vd Di) ∈ δ.

3. There is no interpretation J >KB ,δ I satisfying conditions 1 and 2 above.

Furthermore, if (KB , δ) has at least one model, then the default knowledge base is said to

be d-satisfiable.

The following proposition is obvious from the definition of d-model.

Proposition 3. If I is a d-model of the default-knowledge-base (KB , δ), then I is a classi-

cal model of KB .

For default theories, two types of entailments are usually considered: credulous and

skeptical [80]. A logical formula is a credulous entailment if it is true in at least one of

the extensions of the default theory. Skeptical entailment requires the logical formula to be

true in all the extensions. We follow the skeptical entailment approach, as it fits better to
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the description logic semantics.4

Definition 27. (d-entailment) Given a default-knowledge-base (KB , δ) and DL axiom α, α

is d-entailed by (KB , δ) if it holds in all the d-models of (KB , δ).

4.3 Decidability

In this section, we show that the tasks of checking for d-satisfiability and d-entailment for

default-knowledge-bases are decidable in general. Let (KB , δ) be a default-knowledge-

base where KB is encoded in a decidable DL L, which supports nominal concept expres-

sions. We show that finding a d-model for (KB , δ) is also decidable. For some P =

(X1, . . . , Xn) ∈ Pn(IndKB), let KBP be the knowledge base that is obtained by adding the

following axioms to KB , for each Ci vd Di ∈ δ:

1. Xi ≡ (Ci u Di u {a1, . . . , ak}) t (¬Ci u {a1, . . . , ak}), where Xi is the nomi-

nal expression {x1, . . . , xm} containing exactly all the named individuals in Xi, and

{a1, . . . , ak} = IndKB .

2. Ci u ¬{a1, . . . , ak} v Di, where {a1, . . . , ak} = IndKB .

The first step in the above construction is useful to identify the sets of default-satisfying

individuals. The extensions of the Xis represent those sets. The second step ensures all the

unnamed individuals satisfy the default axioms. Notice that KBP , as constructed using the

above rewriting steps, makes it fall under the expressivity of the DL L, and construction

of KBP requires only a finite number of steps since δ is a finite set. Furthermore, we can

compute an order on the set Pn(IndKB) based on the ⊇-relation, defined as follows: Let

P1,P2 ∈ Pn(IndKB), then P1 � P2 iff

1. X1i ⊇ X2i for each X1i ∈ P1 and X2i ∈ P2 and

2. X1i ⊃ X2i for some X1i ∈ P1 and X2i ∈ P2.
4Whether credulous entailment is useful in a Semantic Web context is to be determined.
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Lemma 6. Given a default-knowledge-base (KB , δ), if KBP is classically satisfiable for

some P ∈ Pn(IndKB), then (KB , δ) has a d-model.

Proof. Let P1 ∈ Pn(IndKB), such that KBP1 has a classical model I. Then there are two

possible cases.

In the first case, there is no Px ∈ Pn(IndKB), such that Px � P1 and KBPx has a

classical model. In this case, I satisfies all the conditions of a d-model: (1) I satisfies all

axioms of KB since KB ⊆ KBP . (2) I satisfies condition 2 of the definition of d-model,

this follows from the second step of the construction of KBP . (3) This follows directly

from the assumption for this case. So I is a d-model for (KB , δ) in this case.

The second case is when there is some Px ∈ Pn(IndKB) for which there is a classical

model I for KBPx and Px � P1. Again, there are two possibilities as in case of P1. Either

the first case above holds for Px, or there is some Py � Px ∈ Pn(IndKB) for which the

second case holds. In the latter situation, the argument repeats, eventually giving rise to an

ascending chain with respect to the order � on Pn(IndKB). However, since Pn(IndKB) is

finite, this chain has a maximal element, and thus the first case applies. Therefore, there is

a d-model for (KB , δ).

The following theorem is a direct consequence of Lemma 6 and the finiteness of δ.

Theorem 6. The task of determining d-satisfiability of default-knowledge-bases is decid-

able.

It should be noted that, in the case of Reiter’s defaults it is known that for normal

default theories an extension always exists, but in the case of free defaults it can be easily

seen that there might be some default-knowledge-bases which do not have a d-model. This
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is not completely satisfactory, of course. However, at this stage, it is unknown whether

a stronger result can be obtained without giving up decidability. Though the notion of

d-satisfiability is important for checking that the default-knowledge-base modelled is con-

sistent and can be used for reasoning-based query services, the more interesting problem in

the case of default-knowledge-bases is to handle d-entailment inference services. As it can

be observed that d-entailment checking is not directly reducible to satisfiability checking of

the default-knowledge-base,5 we define a mechanism of checking d-entailments and show

that this is also decidable.

Proposition 4. Let (KB , δ) be a default-knowledge-base. If I is a d-model of (KB , δ),

then there exists P ∈ Pn(IndKB), such that I is a classical model of KBP and all classical

models of KBP are d-models of (KB , δ).

Proof. Given I, we construct a P ∈ Pn(IndKB) as follows: Given a default Ci vd Di ∈ δ,

let Xi be the maximal subset of IndKB , such that XIi ⊆ (Ci u Di)
I ∪ (¬Ci)I . Given all

these X ′is, let P = {X1, . . . , Xn}.

Clearly, I is then a classical model of KBP .

Furthermore, since I is a d-model of (KB , δ), there is no Px ∈ Pn(IndKB), such that

KBPx has a classical model and Px � P . By construction of KBP all classical models of

KBP satisfy the three d-model conditions for (KB , δ) because (1) KB ⊆ KBP , all axioms

of KB are satisfied, (2) the second step of the construction of KBP ensures the second con-

dition of d-model is satisfied, (3) Since P satisfies the maximality condition, all classical

models of KBP also satisfy the maximality condition of being a d-model ensured by step

one of the construction of KBP .
5This is due to non-monotonicity of the logic.
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Consider the two sets:

PKB -d={P ∈ Pn(IndKB) | KBP is classically satisfiable}

PKB -d-model={P ∈ PKB -d | P is maximal w.r.t. �},

and note that they are both computable in finite time. We refer to all the KBP’s, generated

from all P ∈ PKB-d-model, as d-model generating knowledge bases.

Lemma 7. A DL axiom α is d-entailed by a default-knowledge-base (KB , δ), iff it is clas-

sically entailed by every KBP obtained from KB , δ, and all P ∈ PKB-d-model.

Proof. This is a consequence of Proposition 4, since all classical models of each {KBP |

P ∈ PKB-d-model} are also the d-models of the knowledge base.

We assume KB is in a decidable description logic L that supports nominals and full

negation. It is a well-known result that all common inference tasks are reducible to a

satisfiability check in DLs that support full negation [14]. Furthermore, KBP is constructed

by adding GCIs involving concept expressions using nominals and conjunctions, so we can

safely assume that KBP also falls under the DL L. Hence, all the d-model generating

knowledge bases are in L.

Theorem 7. (Decidability of d-entailment) Let L be a decidable DL with full negation and

nominal support. Then the tasks of subsumption checking, instance checking, and class

satisfiability are decidable for default-knowledge-bases with KB in L.

Proof. Given a default knowledge base (KB , δ), then by Lemma 7 the inference tasks can

be reduced as follows:
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- Subsumption: C v D is d-entailed by (KB , δ) iff KBP ∪ {C u ¬D} is classically unsat-

isfiable for all P ∈ PKB-d-model.

- Instance checking: C(a) is d-entailed by (KB , δ) iff KBP ∪ {¬C(a)} is classically un-

satisfiable for all P ∈ PKB-d-model.

- Class satisfiability: a class C is satisfiable iff C v ⊥ is not d-entailed by (KB , δ).

Consider the task of checking (KB , δ) |=d C v D. Then (KB , δ) |=d C v D, iff

KBP ∪ {C u ¬D} is classically unsatisfiable for all P ∈ PKB-d-model. Since PKB-d-model

is finitely computable and checking classical satisfiability is decidable in L, checking the

satisfiability for each KBP is decidable. Hence, checking (KB , δ) |=d C v D is decidable.

Similar arguments hold for the other tasks.

4.4 Default Role Inclusion Axioms

So far, we have restricted our attention to default concept inclusions. We made this restric-

tion for the purpose of obtaining a clearer presentation of our approach. However, as may

be clear by now, we can also carry over our approach to cover default role inclusions, and

we discuss this briefly in the following.

We use the notation R vd S for free (normal) role defaults. As in the case of default

concept inclusion axioms for role defaults, we restrict the exceptions to these defaults to

be pairs of named individuals only. The intuitive semantics of R vd S is that for every

pair (a, b) of named individuals in the knowledge base, if R holds then assume S also

holds unless it leads to an inconsistency. For all other pairs of individuals (with at least

one unnamed individual), if R holds then S also holds. We extend the definition of default-

knowledge-bases and adjust the other definitions in the following:
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Definition 28. Let KB be a knowledge base in a decidable DL and let δ be a set of default

axioms of the form C vd D or R vd S, where C,D and R, S are respectively concepts

and roles appearing in KB . Then we call (KB , δ) a default-knowledge-base. Furthermore:

- The definition of IndKB ,P(IndKB),Pn(IndKB) carry over from Definition 24, where n is

the number of axioms of the form C vd D in δ.

- P(IndKB × IndKB) denotes the power set of IndKB × IndKB .

- Pm(IndKB×IndKB) is the set ofm-tuples obtained from the Cartesian product: P(IndKB×

IndKB)× . . .mtimes× P(IndKB × IndKB), where m is the number of default role axioms in

δ.

For simplicity of presentation, we assume that δ is arranged, such that all default

concept inclusion axioms appear before all default role inclusion axioms. Now, consider

the set DKB = Pn(IndKB) × Pm(IndKB × IndKB) which is a set of tuples, where each tuple

is of the form ((X1, . . . , Xn) , (Y1, . . . , Ym)), such that (X1, . . . , Xn) ∈ Pn(IndKB) and

(Y1, . . . , Ym) ∈ Pm(IndKB × IndKB). An interpretation for default-knowledge-bases with

default role inclusion axioms should now map δ to a tuple as follows: δI = (X I ,YI) ∈

DKB , where X I = (XI1 , . . . , X
I
n ) and YI = (Y I1 , . . . , Y

I
m) such that XIi = (CIi ∩ DIi ∩

∆IInd)∪ ((¬C)I ∩∆IInd) and Y Ij = (RIj ∩SIj ∩ (∆IInd×∆IInd))∪ ((¬Rj)
I ∩∆IInd×∆IInd),

for all Ci vd Di ∈ δ and Rj vd Sj ∈ δ. In other words, XIi denotes the extension of the

named individuals that satisfy the ith default concept axioms, and Y Ij denotes the extension

of pairs of named individuals that satisfy the jth default role axiom.

To ensure the maximal application of the default axioms, we need the preference rela-

tion to be adapted to this setting.

Definition 29. (Preference Relation >KB ,δ) Given a knowledge base KB , a set of default

axioms δ, let I and J be two interpretations of (KB , δ). We say that I is preferred over J ,
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written I >KB ,δ J , if,

1. conditions 1-4 of Definition 25 hold,

2. Y Ii ⊇ Y Ji for all 1 ≤ i ≤ m, where Y Ii ∈ YI and Y Ji ∈ YJ ,

3. Y Ii ⊃ Y Ji for some 1 ≤ j ≤ m, where Y Ii ∈ YI and Y Ji ∈ YJ .

where m is the number of role inclusion axioms in δ.

The definition of d-model now carries over from Definition 26, the only difference

being that the new definition, >KB ,δ of the preference relation, is used when default role

axioms are also included.

To show the decidability of reasoning, with any default-knowledge-base (KB , δ) hav-

ing role defaults, we assume that KB is in a decidable DL L which supports nominal con-

cept expression, boolean role constructors, concept products, and the universal role U . In

[81], it was shown that expressive DLs can be extended with boolean role constructors

for simple roles without compromising on complexity and decidability. For some tuple

P ≡ ((X1, . . . , Xn), (Y1, . . . , Ym)) ∈ DKB , let KBP be the knowledge base that is obtained

by adding the following axioms to KB . For each Ci vd Di ∈ δ, add the following:

1. Xi ≡ (Ci u Di u {a1, . . . , ak}) t (¬Ci u {a1, . . . , ak}), where Xi is the nominal

expression {x1, . . . , xm} containing exactly the named individuals in Xi, and

{a1, . . . , ak} = IndKB .

2. Ci u ¬{a1, . . . , ak} v Di, where {a1, . . . , ak} = IndKB .

And for each Rj vd Sj ∈ δ, add the following:

1. For each (a, b) ∈ Yj , add the ABox axiom Ra,b(a, b) and the axiom

{x} u ∃Ra,b.{y} v {a} u ∃U .({y} u {b}),

where Ra,b is a fresh role name, and {x} and {y} are so-called nominal schemas as

introduced in [58]: They are a kind of nominal variables, which can stand for any

59



nominal. In fact, this axiom can easily be cast into a set of axioms not containing

nominal schemas, as shown in [58]. The axiom just given enforces thatRIa,b∩(∆IInd×

∆IInd) = {(a, b)}.

2.
⊔

(a,b)∈Yj Ra,b ≡ (Rj uDj u Ug) tRj u ¬Ug, where Ug ≡ IndKB × IndKB .

3. Rj u ¬Ug ≡ Sj , where Ug = IndKB × IndKB .

The proceeding construction for role defaults is analogous to the one for class in-

clusion defaults, with the exception that we do not have a nominal constructor for roles.

However, for the specific setting we have here, we can obtain the same result by using the

axioms from points 1 and 2 just given.

It should also be noted that, the above outlined construction of KBP can be computed

in a finite number of steps.

The remainder of the decidability argument for d-entailment now carries over eas-

ily from section 4.3, and we omit the details. It should be noted that the availability of

boolean role constructors is required for our argument, and that corresponding simplicity

restrictions may apply, depending on the concrete case.

4.5 Application of Defaults in Ontology Alignment

Variety and semantic heterogeneity are at the very core of many fields like the Semantic

Web, and Big Data. To give a concrete example, many interesting scientific and societal

questions cannot be answered from within one domain alone but span across disciplines,

instead. Studying the impact of climate change, for instance, requires us to consider data

and models from climatology, economics, biology, ecology, geography, and the medical

science. While all these disciplines share an overlapping set of terms, the meanings of these

terms clearly differ between disciplines. A street, for instance, is a connection between A

and B from the view point of transportation science, and, at the same time, a disruptive
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a:flowsInto v a:IsConnected (4.17)
a:IrrigationCanal v a:Canal (4.18)

∃a:flowsInto.a:AgriculturalField v a:IrrigationCanal (4.19)
a:Waterbody u a:Land v ⊥ (4.20)

a:AgriculturalField v a:Land (4.21)
b:flowsInto v b:IsConnected (4.22)

b:Canal v (≥2 b:IsConnected.b:Waterbody) (4.23)
b:IrrigationCanal ≡ (=1 b:isConnected.b:Waterbody)

u (=1 b:flowsInto.b:AgriculturalField) (4.24)

Figure 4.2: Fragments of two ontologies, (4.17)-(4.21), respectively (4.22)-(4.24), to be
aligned.

separation which cuts through habitats from the view point of ecology. Even within single

domains, the used terminology differs over time and space [47]. The idea that this variety

should be ’resolved’ is naive at best. The defaults extension proposed in this work can thus

support more robust ontology alignments that respect variety and still allow us to share

and integrate the heterogeneous data. In the following, we give some concrete examples

that cannot be properly addressed with existing ontology alignment frameworks but would

benefit from the proposed extension.

Consider the axioms in Figure 4.2. The ontology fragment consisting of (4.17) to

(4.21) reflects a certain perspective on canals valid in a transportation application. In con-

trast, the axioms (4.22) to (4.24) reflect a different, but equally valid, perspective from an

agricultural perspective. Typically, ontology alignment systems would default to a syntac-

tic matching of shared primitives such as AgriculturalField or IrrigationCanal. However,

applied to these two ontology fragments, this would yield a logical inconsistency in which

some waterbodies would have to be land masses at the same time. Using our proposed free

defaults, only certain canals from a would qualify as canals in b, avoiding the inconsisten-

cies.

61



While in the above example the inconsistency was largely caused by the cardinality

restrictions, other cases involve concrete domains. For instance, each US state (and the

same argument can be made between counties as well) has its own legally binding def-

inition of what distinguishes a town from a city. Thus, to query the Linked Data cloud

for towns it is required to take these local definitions into account. Otherwise one would,

among hundreds of thousands of small municipalities, also retrieve Los Angeles, CA or

Stuttgart, Germany.6 In several cases, these state-specific distinctions solely depend on the

population count and, thus, could be handled using existing alignment systems. However,

in other cases, they are driven by administrative divisions of geographic space, are based

on historical reasons, or other properties. As argued before, our free defaults can handle

these cases.

Let us now return to the example from section 4.1, and discuss it in more tech-

nical depth. We showed that an alignment using axiom (4.14) leads to inconsistency.

Now consider instead using the approach of free defaults, by replacing axiom (4.14) with

b:hasSpouse vd a:hasSpouse. As per our semantics, the pair (b:mike, b:david) will act as

an exception to the default role inclusion that we just added, and a:hasSpouse(b:mike, b:david)

will not hold anymore. On the other hand, if we also add the axiom a:hasSpouse vd

b:hasSpouse then b:hasSpouse(a:john, a:mary) will also hold.

To see this formally, consider all the axioms of figure 4.1 except (4.14) to be KB and let

δ ≡ {(a:hasSpouse vd b:hasSpouse), (b:hasSpouse vd a:hasSpouse)}, and consider an

interpretation I, such that (a:hasSpouse)I = {(a:johnI , a:maryI)} and (b:hasSpouse)I =

{(b:mikeI , b:davidI), (a:johnI , a:maryI)}. Note that, forcing (b:mikeI , b:davidI) in the

extension of a:hasSpouse will result in an inconsistency because of the reasons men-

tioned in section 4.1. On the other hand, if we consider an interpretation J , such that

(a:hasSpouse)J = {(a:johnJ , a:maryJ )} and (b:hasSpouse)J = {(b:mikeJ , b:davidJ )},

then clearly I >KB ,δ J , because the extension of b:hasSpouse in I is greater than that of

6In case of DBpedia via dbpedia:Stuttgart rdf:type dbpedia-owl:Town.
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J . So, I is preferred over J . In fact I is also a d-model of this default-knowledge-base.

The above example shows that in case of ontology alignments, using default constructs

to map terms could help us avoid potentially inconsistent merged knowledge bases due to

subtle semantic differences in the different ontologies.

As final example, we want to discuss the implications our approach has with respect

to the use and abuse of owl:sameAs in linked data [37],7 where this Web ontology lan-

guage (OWL) construct is used extensively to provide links between different datasets.

However, owl:sameAs is, semantically, a strong equality which equates entities, and this

strong (specification-compliant) interpretation easily leads to complications. For instance,

consider two linked datasets a and b where a contains the axioms: a:airport(a:kennedy)

and a:airport v a:place, and b contains axioms b:president(b:kennedy) and b:president v

b:person plus the disjointness axiom b:person u a:place v ⊥.

Now, if some text-based co-reference resolution system identifies a:kennedy and b:kennedy

as the same object, then it will result in a link such as owl:sameAs (a:kennedy, b:kennedy).

Obviously, this yields to an inconsistency because of the disjointness axiom. However, if

we use defaults this could be expressed as {a:kennedy} vd {b:kennedy}, which essen-

tially is another way of saying that a:kennedy is identical to b:kennedy unless it causes an

inconsistency. While [37] argues for a set of variants of equality with differing semantic

strength, automatic identification of the exact variant of equality to be used is yet another

matter, and presumably, rather difficult to accomplish. So for automated co-reference res-

olution, we would argue that the use of free defaults, which semantically recover from

erroneous guesses by the alignment system, are a much more suitable solution.

7Note owl:sameAs is OWL representation of individual equality in DLs
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4.6 Conclusion

In this chapter, we have provided a new semantics for embedding defaults into description

logics and have shown that reasoning tasks are decidable in our setting. Both the decidable

logic from [6] and our work are variants of Reiter’s defaults [80]. But the approach in

[6] is very restricted and arguably violates some key intuitions. Our proposal provides

an improvement, mainly because with our free defaults, the application of defaults is not

limited to named individuals. However, we impose that exceptions to the default rules only

occur in the named individuals of the knowledge base. Also, our approach to the semantics

is model-theoretic whereas most of the previous work on defaults has been mainly based

on fixed point semantics [20, 25]. We have, furthermore, given a thorough account of the

usefulness of free defaults in the context of ontology alignments. Through the examples in

section 4.5, it is shown that the new semantics, which we have introduced in this chapter, is

useful when dealing with the integration of heterogeneous ontologies. We believe that our

work provides a foundation for a new and more powerful ontology alignment language.

Whether defaults over DLs are decidable when we allow exceptions to also occur

over unnamed individuals, is still an open question and we intend to investigate this in

the future. Future work also includes smart algorithmization and implementation of d-

entailment, tasks mentioned in this chapter. A naive algorithm can easily be developed by

searching for maximal d-model generating tuples from Pn(IndKB), i.e. by searching for all

maximal Ps in Pn(IndKB) for which KBP has a classical model, and then using the process

outlined in Theorem 7. Although this reasoning procedure appears to be decidable, it is

very expensive and thus not feasible for practical use. However, the algorithmization could

be made smarter by using some optimization techniques. For instance, Pn(IndKB) could be

represented as an ordered set of tuples where each tuple is a collection of comparable P s

sorted by the � relation. The algorithm would then look for maximally satisfying P s for

each tuple by performing a binary search on every tuple. This should significantly improve
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the performance of the naive approach since the number of steps to find all suitable Ps

has been reduced by a large factor. These and other optimizations will be central to our

investigation of algorithmizations.
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5 Default Logic Based Ontology Align-

ment for Tractable DLs

In this chapter, we present a new semantics of a mapping language for the tractable frag-

ments of description logics. We make use of default logic as the basis of the semantics of

the new mapping language and show that this language is decidable.

5.1 Introduction

Description logic (DL) based knowledge representation is gaining in popularity, and with

that, the number of domain ontologies is also on the rise. Especially in the medical domain,

tractable fragments of DLs are heavily used. For example, SNOMED CT is a medical on-

tology which consists of more than 300,000 concepts, and which can be described in the

description logic EL [4]. Smaller fragments of DLs are especially interesting for applica-

tion scenarios where fast and efficient reasoning may be critical.

In this chapter, we provide a formal framework for dealing with defeasible reasoning

for smaller fragments of DLs, especially in the context of ontology alignment. In particu-

lar we consider a language ER⊥,O which allows for conjunction, existentials, role chains,

disjointness of concepts and ABox statements. We provide semantics for one-way (defea-

sible) alignments from terms in several ontologies to one overarching ontology, such that
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queries can be asked in terms of this overarching ontology, while answers may contain

instances from several lower level ontologies. For defeasibility we take motivation from

default logic [80] and define the semantics along similar lines. It turns out that, combining

DLs with default-like semantics is not very straightforward, as unrestricted default applica-

tions may result in undecidability [6, 83]. Previously, decidability was usually obtained for

such logics by restricting defeasibility to known individuals, i.e. to a finite set of entities.

In this chapter, we show that the combination of defeasible mappings with DLs presented

here is decidable even without this type of restriction. Decidability in our setting results

from the restriction to a tractable language in the EL family, together with the avoidance

of recursion through the defeasible axioms resulting from our specific, but an important

application scenario, namely the one-way alignment of ontologies.

Indeed, similar concepts appear in several ontologies from heterogeneous domains,

but these concepts may slightly differ semantically. The motivation of using defeasible

axioms as alignments stems from the need to handle such heterogeneity among various

data models. As discussed in our previous work [83], DL axioms are semantically too

rigid to be able to deal with alignments in such heterogeneous settings, in particular in

light of the fact that ontology alignment systems mostly rely on string similarity matching

[19]. For example, the concept that represents those human beings who consume only

vegetarian food may be part of two different domain ontologies, but the notion of what

vegetarian food means might slightly differ depending on the context, e.g. in some places

eggs might be part of a typical vegetarian diet while in others this may not be so. Aligning

these different world views appropriately cannot be done by simply mapping the respective

concepts representing a “vegetarian person” in different ontologies, as claiming that they

were equivalent may lead to inconsistencies.

For example, consider the axioms in Figure 5.1 (see section 5.2 for explanations of the

notation). Axioms 5.1–5.4 represent one ontology and axioms 5.5–5.11 another ontology.

An alignment system may give alignments similar to axioms 5.12–5.15. Since romeo is an
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Veg u NonVeg v ⊥ (5.1)
∃consumes.EggFood v NonVeg (5.2)
consumes ◦ contains v consumes (5.3)

{juliet} v Veg (5.4)

{romeo} v Eggetarian (5.5)
Eggetarian v Vegetarian (5.6)
Eggetarian v ∃eats.Egg (5.7)
Eggetarian u NonVegetarian v ⊥ (5.8)
{caesar} v Vegetarian (5.9)
{caesar} v NotEggetarian (5.10)

NotEggetarian u Eggetarian v ⊥ (5.11)

Vegetarian ≡ Veg (5.12)

NonVeg ≡ NonVegetarian (5.13)

EggFood ≡ Egg (5.14)

eats v consumes (5.15)

Figure 5.1: Example mapping with selected axioms.

Eggetarian (axiom 5.5), he is also a Vegetarian (axiom 5.6). Since every Vegetarian is also

a Veg as per the mapping axiom 5.12, romeo is a Veg. From axioms 5.5, 5.7, 5.14, 5.15

and 5.2 we obtain that romeo is also a NonVeg. But Veg and NonVeg are disjoint classes, so

this results in an inconsistency. But applying the same rules to caesar does not cause an

inconsistency. The usual process of repairing alignments like this is to remove mappings

that cause the inconsistency [50]. But we would then lose the conclusion that caesar is also

a Veg. If we replace the mapping axioms with defeasible axioms as introduced below, then

we could achieve this outcome where we carry over the similarities while respecting the

differences.

The chapter is organized as follows. In section 5.2, we set the preliminaries by de-

scribing the language ER⊥,O. The context of ontology mappings as well as the syntax and

the semantics of defeasible mapping axioms along with the discussion on decidability is

presented in section 5.3. Section 5.4 contains a description of the relation of the seman-

tics of this approach with that of answer set programming for logic programs. Finally, we

provide closing remarks in section 5.5.
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5.2 The Description Logic ER⊥,O

We consider the DL ER⊥,O (see [4] for further background). Let NC be a set of atomic

concepts (or atomic classes), let NR be a set of roles, and let NI be a set of individuals,

which contains an element ιR,D for each pair (R,D) ∈ NR × NC . These ιR,D are called

auxiliary individuals. Complex class expressions (short, complex classes) in ER⊥,O are

defined using the grammar

C ::= A | > | ⊥ | C1 u C2 | ∃R.C | {a},

where A ∈ NC , R ∈ NR and C1, C2, C are complex class expressions. Furthermore, a

nominal class (short, nominal) is represented as {a}, where a ∈ NI . A TBox in ER⊥,O

is a set of general class inclusion (GCI) axioms of the form C v D, where C and D

are complex classes. C ≡ D abbreviates two GCIs C v D and D v C. An RBox

in ER⊥,O is a set of role inclusion (RI) axioms of the form R1 ◦ · · · ◦ Rn v R, where

R1, . . . , Rn, R ∈ NR. An ABox in ER⊥,O is a set of GCIs of the form {a} v C and

{a} v ∃R.{b}, where {a}, {b} are nominals and C is a complex class.

An ER⊥,O knowledge base or ontology is a set of TBox, RBox and ABox statements,

which furthermore, satisfy the condition that nominals occur only in ABox statements.

This condition is a restriction of ER⊥,O as compared to, e.g., the allowed use of nominals

in OWL 2 EL: While we allow for a full ABox, the TBox remains free of nominals. In

particular, axioms such as A v ∃R.{a}, with A an atomic or complex class other than a

nominal, are not allowed.

An initial ER⊥,O knowledge base is an ER⊥,O knowledge base which does not con-

tain any auxiliary individuals.

Example 6. The following is an example of an (initial) ER⊥,O knowledge base.
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Table 5.1: Semantics of the language ER⊥,O
Concept Semantics

> ∆I

⊥ ∅
{a} {aI}
C uD CI ∩DI
C v D CI ⊆ DI

∃R.D {x | there exists some y with (x, y) ∈ RI and y ∈ DI}
R1 ◦R2 RI1 ◦RI2

Bird v Fly

Penguin v Bird

Penguin u Fly v ⊥

{tom} v ∃hasPet.Penguin

Next, we describe the semantics of the language ER⊥,O using the notion of interpre-

tation. An interpretation I of an ER⊥,O knowledge base KB is a pair (∆I , .I), where ∆I is

a non-empty set of elements called the domain of interpretation and .I is the interpretation

function that maps every individual in KB to an element of ∆I , every concept in KB to a

subset of ∆I , and every role to a subset of ∆I ×∆I . Concept expressions are interpreted

as shown in Table 5.1. An interpretation I is a model of an ER⊥,O knowledge base KB if

it satisfies all the TBox, RBox and ABox axioms, such that if C v D then CI ⊆ DI , if

R v S the RI v SI , and {a} v C then aI ∈ CI , respectively.

It is well-known that any such knowledge base can be cast into normal form, as fol-

lows.

Definition 30. An initial ER⊥,O knowledge base is in normal form if it contains axioms of

only the following forms, where C,C1, C2, D ∈ NC , R,R1, R2 ∈ NR and a, b ∈ NI
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Ā v C,C v D 7→ Ā v D (5.16)
Ā v C1, Ā v C2, C1 u C2 v D 7→ Ā v D (5.17)

Ā v C,C v ∃R.D 7→ Ā v ∃R.D (5.18)
Ā v ∃R.B̄, B̄ v C, ∃R.C v D 7→ Ā v D (5.19)

C̄ v ∃R.D̄, D̄ v ⊥ 7→ C̄ v ⊥ (5.20)
Ā v ∃R.B̄, R v S 7→ Ā v ∃S.B̄ (5.21)

Ā v ∃R1.B̄, B̄ v ∃R2.C̄, R1 ◦R2 v R 7→ Ā v ∃R.C̄ (5.22)

Figure 5.2: ER⊥,O completion rules. New axioms resulting from the rules are added to the
existing axioms in KB . Symbols of the form Ā can be either a class name or a nominal
class. We initialize comp(KB ) with KB and C v C, ⊥ v C, ⊥ v ⊥ for all named classes
C ∈ NC .

C v D

∃R.C v D

C v ∃R.D

C1 u C2 v D

C1 u C2 v ⊥

R1 v R

R1 ◦R2 v R

{a} v C

{a} v ∃R.{b}

Theorem 8. For every initial ER⊥,O knowledge base KB there exists a knowledge base

KB ′ in normal form, such that KB |= Ā v B if and only if KB ′ |= Ā v B, where Ā is a

class name or a nominal and B is a class name occurring in KB .

Definition 31. Given an initial ER⊥,O knowledge base KB in normal form, we define the

following:

1. Completion: the completion comp(KB) of KB is obtained from KB by exhaustively

applying the completion rules from Figure 5.2.

2. Clash: a completion comp(KB) of KB contains a clash if {a} v ⊥ ∈ comp(KB),

for some nominal class {a}.
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It is easily verified that, repeated applications of completion rules on an initial ER⊥,O

knowledge base produces only axioms which are also in normal form, with one exception:

Axioms of the form {a} v ∃R.D, with R ∈ NR and D ∈ NC , can also appear.

It is straightforward to show that, comp(KB) is well-defined and that the completion

process has a polynomial time complexity. This and the soundness and completeness re-

sults below are adapted from [4].

Theorem 9. (soundness and completeness) Let KB be an initial ER⊥,O knowledge base in

normal form. Then every model of KB is a model of comp(KB). Furthermore, if comp(KB)

contains a clash then KB is inconsistent.

Conversely, if A is an atomic class or a nominal and B is an atomic class such that

KB |= A v B, then A v B ∈ comp(KB). Furthermore, if KB is inconsistent then

comp(KB) contains a clash.

Proof. There are two cases to consider one in which comp(KB) does not contain a clash

and the other in which comp(KB) contains a clash. We first consider the case when there

is no clash. Let I be a model of KB . Hence, I satisfies all the axioms in KB . It suffices to

show that if the Left hand side (LHS) of a completion rule holds under I then so does the

right hand side then by induction on the rule application I is also a model of comp(KB).

For rule 5.16, we have from the LHS I |= C v D, Ā v C. Ā can be either a concept

or a nominal. If Ā is a concept then CI ⊆ DI and AI ⊆ CI from which we get AI ⊆ DI .

Therefore, I |= A v D. If Ā is a nominal CI ⊆ DI and aI ∈ CI from which we get

aI ∈ CI . Therefore, I |= {a} v D.

For rule 5.17, we have from the LHS I |= C1 u C2 v D, Ā v C1, Ā v C2, if Ā is a

concept then CI1 ∩ CI2 ⊆ DI , AI ⊆ CI1 , and AI ⊆ CI2 . Therefore, we have AI ⊆ DI and
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consequently I |= A v D. If Ā is a nominal then CI1 ∩ CI2 ⊆ DI , aI ∈ CI1 , and aI ∈ CI2 .

Therefore, we have aI ∈ DI and consequently I |= {a} v D.

For rule 5.18, we have from the LHS I |= C v ∃R.D, Ā v C. If Ā is a concept

then, CI ⊆ (∃R.D)I , AI ⊆ CI . Therefore, we have AI ⊆ (∃R.D)I and consequently

I |= A v ∃R.D. However, if Ā is a nominal then CI ⊆ (∃R.D)I , aI ∈ CI . Therefore,

we have aI ∈ (∃R.D)I and consequently I |= {a} v ∃R.D.

For rule 5.19, from the LHS we have I |= ∃R.C v D, Ā v ∃R.B̄, B̄ v C, then we

have three possible cases. Both Ā, B̄ are concepts A,B respectively, then BI ⊆ CI , AI ⊆

(∃R.B)I , (∃R.C)I ⊆ DI . Consider, AI ⊆ (∃R.B)I , which means AI ⊆ {x ∈ ∆I |

there exists a y ∈ ∆I with (x, y) ∈ RI and y ∈ BI}, and since BI ⊆ CI , we get, AI ⊆

{x ∈ ∆I | there exists a y ∈ ∆I with (x, y) ∈ RI and y ∈ CI}, which means AI ⊆

(∃R.C)I . And since (∃R.C)I ⊆ DI , we get AI ⊆ DI . Therefore, I |= A v D. If Ā is a

nominal {a} and B̄ is a concept B. The proof of this case is similar to that of the first case

and can be obtained by replacing all occurrences of AI ⊆ with aI ∈ and A v with {a} v.

Finally, if Ā, B̄ are nominals {a}, {b} respectively, we can reuse the arguments of the first

case, where we replace all occurrences of AI ⊆ with aI ∈, A v with {a} v, and all the

occurrences of B with {b} and BI with {bI}.

For rule 5.20, from LHS we have C̄ v ∃R.D̄, D̄ v ⊥. If C̄, D̄ are concepts, C,D

respectively, we get CI = {x | there exists a y ∈ DI , such that (x, y) ∈ RI}, butDI = ∅.

Hence, CI = ∅. The other two cases can be proved in a similar manner.

For rule 5.21, from LHS we have I |= R v S and Ā v ∃R.B̄; then again, we

have three cases. Ā, B̄ are concepts A,B respectively. We have, AI ⊆ (∃R.B)I , which

means AI ⊆ {x ∈ ∆I | there exists a y ∈ ∆I with (x, y) ∈ RI and y ∈ BI}, and since
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RI ⊆ SI , we get, AI ⊆ {x ∈ ∆I | there exists a y ∈ ∆I with (x, y) ∈ SI and y ∈ BI},

subsequently, AI ⊆ (∃S.B)I . Therefore, I |= A v ∃S.C. The other two cases are similar

to that of Rule - 5.19 and the proofs can be obtained in a similar manner as done for Rule -

5.19.

For rule 5.22, from LHS we have Ā v ∃R1.B̄, B̄ v ∃R2C̄, R1 ◦R2 v R. Ā, B̄, C̄ are

conceptsA,B,C respectively, thenBI ⊆ {v ∈ ∆I | there exists a w ∈ ∆I such that (v, w) ∈

RI2 and w ∈ CI} and AI ⊆ {u ∈ ∆I | there exists a v ∈ ∆I such that (u, v) ∈

RI1 and v ∈ BI}. Therefore, AI ⊆ {u ∈ ∆I | there exists a v ∈ ∆I such that (u, v) ∈

RI1 and v ∈ {v ∈ ∆I | there exists a w ∈ ∆I such that (v, w) ∈ RI2 and w ∈ CI}}.

And since, RI1 ◦RI2 ⊆ RI , we have, AI ⊆ {u ∈ ∆I | there exists a w ∈ ∆I with (u,w) ∈

RI and w ∈ CI}, which means AI ⊆ (∃R.C)I , therefore I |= A v ∃R.C.

Note, in the rest of the cases we can have a similar proof with adjustments similar

to that in the proofs of the previous rules. We simply list down all the possibilities. Ā

is a nominal {a}, and B̄, C̄ are concepts B,C, respectively. Ā, B̄ are nominals, {a}, {b}

respectively and C̄ is a concept C. Ā, B̄, C̄ are nominals {a}, {b}, {c}, respectively.

Now, if comp(KB) contains a clash of the form {a} v ⊥, then, as shown above, any

model of KB should also satisfy all the axioms of comp(KB), therefore KB |= {a} v ⊥.

KB is inconsistent.

This shows the first part of the theorem.
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For the converse, consider an interpretation I of comp(KB) as follows:

∆I = {xC | C ∈ NC} ∪ {x{a} | {a} ∈ KB}

AI =



∅, if A v ⊥ ∈ comp(KB)

{xC | C v A ∈ comp(KB)} ∪ {x{a} | {a} v A ∈ comp(KB)},

if A v ⊥ 6∈ comp(KB)

{a}I =


∅, if {a} v ⊥ ∈ comp(KB)

{x{a}}, if {a} v ⊥ 6∈ comp(KB)

RI = {(xC , xD) | C v ∃R.D ∈ comp(KB)} ∪

{(x{a}, xD) | {a} v ∃R.D ∈ comp(KB)} ∪

{(x{a}, x{b}) | {a} v ∃R.{b} ∈ comp(KB)}

We now show that I is also a model of comp(KB) whenever comp(KB) is clash free, and

thereby, also a model of KB ⊆ comp(KB). Let α ∈ comp(KB). If α is of the form C v D,

C v ⊥, {a} v D, C v ∃R.D, {a} v ∃R.D, {a} v ∃R.{b}, there is nothing to show.

For α of the form C1 u C2 v D, let xC ∈ CI1 ∩ CI2 , then C v C1 ∈ comp(KB), and

C v C2 ∈ comp(KB), and thus C v D ∈ comp(KB) by rule - 5.16. Hence, xC ∈ D

as required. For α of the form ∃R.A v B, let (xC , xD) ∈ RI and xD ∈ AI , then D v

A ∈ comp(KB) and C v ∃R.D ∈ comp(KB) and by rule - 5.19 we have C v B and thus

xC ∈ BI as required.

For α of the form R v S, let (xC , xD) ∈ RI , C v ∃R.D ∈ comp(KB), and from
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rule - 5.21, we have C v ∃S.D, and thus (xC , xD) ∈ SI as required. For α of the form

R1 ◦ R2 v R, let (xC , xD) ∈ RI1 , (xD, xE) ∈ RI2 . Then C v ∃R1.D ∈ comp(KB) and

D v ∃R2.E ∈ comp(KB), then by rule - 5.22, we get C v ∃R.E, and thus (xC , xE) ∈ RI .

For α of the form C1 u C2 v ⊥, we prove by contradiction. Let xC ∈ CI1 ∩ CI2 , then

C v C1, C v C2 ∈ comp(KB), Then from rule 5.17, we get C v ⊥ but as per definition

of I we have CI = ∅.

Let A v B 6∈ comp(KB), then we know xA ∈ AI and xA 6∈ BI since A v B 6∈

comp(KB). Then xA ∈ BI \ AI and I 6|= A v B, therefore KB 6|= A v B.

Let {a} v B 6∈ comp(KB), then we know x{a} ∈ {a}I and clearly x{a} 6∈ BI as

{a} v B 6∈ comp(KB), thus I 6|= {a} v B and KB 6|= {a} v B.

Let comp(KB) be clash free then there is no axiom of the form {a} v ⊥, then, as

shown above I is a model of comp(KB),KB , thus KB is consistent.

The claim is proven by contraposition.

Note now that the ER⊥,O knowledge base given in Example 6 is inconsistent.

Central to the proof of Theorem 9 is the following construction, which we will also

use later in this chapter.

Given an ER⊥,O knowledge base KB , let I = I(KB) be defined as the following
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interpretation of comp(KB):

∆I = {x{a}, xC | C is a class name in KB and a is an individual in KB}

AI =


∅, if A v ⊥ ∈ comp(KB)

{xC | C v A ∈ comp(KB)} ∪ {x{a} | {a} v A ∈ comp(KB)},

if A v ⊥ 6∈ comp(KB)

{a}I =


∅, if {a} v ⊥ ∈ comp(KB)

{x{a}}, if {a} v ⊥ 6∈ comp(KB)

RI = {(xC , xD) | C v ∃R.D ∈ comp(KB)} ∪

{(x{a}, xD) | {a} v ∃R.D ∈ comp(KB)} ∪

{(x{a}, x{b}) | {a} v ∃R.{b} ∈ comp(KB)}

The proof of Theorem 9 shows that I is a model of both comp(KB) and KB .

5.3 Mapping Ontologies with ER⊥,O-Defaults

We consider a rather specific but fundamentally important scenario, namely, the integration

of ontology-based information by means of an overarching ontology, as laid out and applied

e.g. in [51, 77] – see also the discussion of this in [83]. One of the central issues related to

this type of information integration is how to obtain the mappings of the to-be-integrated

ontologies to the overarching ontology, as the manual creation of these mappings is very

costly for large ontologies.

However, methods for the automated creation of such mappings – commonly referred

to as ontology alignment – are still rather crude [19, 45], and are therefore prone to lead

to inconsistencies of the integrated ontologies, as discussed in section 5.1. In order to
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deal with this, we introduce a defeasible mechanism to deal with such mappings. For

simplicity of presentation, we consider only two ontologies, with one taking the role of

the overarching ontology. The other ontology can be considered the disjoint union of the

ontologies which are to be integrated.

The following notion is going to be central.

Definition 32. (Defeasible Axiom) A defeasible axiom is of the form C vd D or R vd S,

where C,D are class names and R, S are roles.

Intuitively speaking, our intention with defeasible axioms is the following: It shall

function just like a class inclusion axiom, unless it causes an inconsistency; in which case

it should not apply to individuals causing this inconsistency. In a sense, such defeasible

axioms act as a type of semantic debugging of mappings: The semantics itself encodes the

removal of inconsistencies. More specifically speaking, given a defeasible axiom C vd D,

instances of C will also be instances of D, except those instances of C which cause an

inconsistency when also an instance of D. Such Cs are usually known as exceptions. Of

course, this intuitive understanding of defeasible axioms is not entirely straightforward to

cast into formal semantics.1 We will give such a formal semantics in section 5.3.1 below.

Definition 33. (Mappings) Let O1,O2 be two consistent ER⊥,O knowledge bases. A

(defeasible) mapping from O1 to O2 is a defeasible axiom with the left-hand side of the

axiom a concept or role from O1, and the right-hand side a concept or role from O2.

Note that, here we restrict the mappings to axioms involving roles and atomic classes.

However, we do so without loss of generality as C vd D, for complex classes C, D, can

be replaced by adding the axiom C v A to O1 and the axiom B v D to O2, where A

and B are new concept names, and replacing C vd D in δ by A vd B. Similarly, our

1Different ways how to do this lead to different non-monotonic logics. This is a well-studied subfield of
artificial intelligence, from which we take inspiration.
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approach encompasses the specific case of ontology population, whereO1 is empty and all

mappings are of the form {a} vd C.

Definition 34. (mapped-tuple) Let O1,O2 be two ontologies in ER⊥,O with δ the set of

defeasible mappings from O1 to O2. Then the tuple (O1,O2, δ) is called a mapped-tuple.

5.3.1 Semantics and Decidability

Given a mapped-tuple (O1,O2, δ), we define the formal semantics of the mappings follow-

ing our intuitive reading as discussed above. Informally speaking, the semantics ofC vd D

is similar to that of normal defaults as in Reiter’s default logic [80]: if x is in C, then it can

be assumed that x is also in D, unless it causes an inconsistency with respect to the current

knowledge.

We define the semantics formally as follows: For each mapping axiom C vd D in δ,

we define a set Cand that represents the set of axioms that could be possibly added to the

completion of O2 as a result of the mapping axiom.

Cand(C vd D) ={{a} v D | {a} v C ∈ comp(O1)} (5.23)

Furthermore, we define the set Candn as the power set of Cand for each mapping

axiom.

Candn(C vd D) ={X | X ⊆ Cand(C vd D)} (5.24)

Similarly, we define the corresponding sets CandR and Candn
R for mapping axioms involv-
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ing roles.

CandR(R vd S) ={{a} v ∃S.{b} | {a} v ∃R.{b} ∈ comp(O1)} (5.25)

Candn
R(R vd S) ={X | X ⊆ CandR(R vd S)} (5.26)

Note that a and b may be auxiliary individuals.

Definition 35. (Mapped Ontology) Let (O1,O2, δ) be a mapped-tuple. Define selections

and the corresponding mapped ontology as follows:

(i) For each mapping axiom of the form C vd D ∈ δ, a selection for C vd D is any

ΣCvdD ⊆ Candn(C vd D).

(ii) For each mapping axiom of the form R vd S ∈ δ, a selection for R vd S is any

ΣRvdS ⊆ Candn
R(R vd S)

(iii) Given selections for all mappings µ ∈ δ, we use Σ to denote their union Σ =
⋃
µ∈δ Σµ,

and call Σ a selection for the given mapped-tuple.

(iv) OΣ
2 = comp(O2) ∪

⋃
X∈Σ X is then called a mapped ontology.

Note that, each mapped-tuple (O1,O2, δ) can give rise to only a finite number of

corresponding mapped ontologies, and the number is bounded by |Candn(C vd D)||δ1| ×

|Candn
R(R vd S)||δ2|, where δ1 (respectively, δ2) is the set of class (respectively, role)

mappings contained in δ.

Definition 36. (Preferred Mapping) Let (O1,O2, δ) be a mapped-tuple. Then for any two

mapped ontologies OΣi

2 ,OΣj

2 we say OΣi

2 � OΣj

2 or OΣi

2 is preferred over OΣj

2 , if all of the

following hold:

- Σi
µ ⊇ Σj

µ, for all µ ∈ δ
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- Σi
µ ⊃ Σj

µ, for some µ ∈ δ

Note that µ can be of the form C vd D or R vd S.

The notion of preferred mapping is used to identify the individuals to which the de-

feasible axioms maximally apply.

Definition 37. (Mapped Completion and Mapped Entailment) Given a mapped-tuple (O1,O2, δ),

let OΣ
2 be a mapped ontology obtained from some selection Σ. Then the completion

comp(OΣ
2 ) obtained by exhaustively applying the rules in Figure 5.2 is said to be a mapped

completion of (O1,O2, δ) if OΣ
2 is consistent and there is no consistent mapped ontology

OΣi

2 , such that OΣi

2 � OΣ
2 holds.

Furthermore, let α an axiom of the form {a} v {b} or {a} v ∃R.{b}. Then α is

entailed by (O1,O2, δ), written (O1,O2, δ) |=d α, if α ∈ comp(OΣ
2 ) for each mapped

completion OΣ
2 of (O1,O2, δ).

Lemma 8. A mapped-tuple (O1,O2, δ) always has a mapped completion.

Proof. There are two conditions for obtaining a mapped completion comp(OΣ
2 ): (1) OΣ

2 is

consistent, and (2) OΣ
2 is maximal, with respect to �. It is clear that there is at least one

Σ such that OΣ
2 is consistent, namely Σ = ∅. If this is the only Σ producing a consistent

mapped ontology, then comp(OΣ
2 ) is the corresponding mapped completion. Now, let S

be the set of all selections which produce a consistent mapped ontology. We already know

that S is finite, and so, the set of corresponding consistent mapped ontologies is also finite,

and therefore, contains maximal elements with respect to the preference relation ≺. Each

of these maximal elements is then a mapped completion of (O1,O2, δ).
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Theorem 10. The problem of entailment checking for a mapped-tuple (O1,O2, δ) is decid-

able.

Proof. In order to check entailment, it suffices to obtain all the possible mapped comple-

tions as per definition 37. Since there is only a finite number of possible selections for

(O1,O2, δ) then, as argued in the proof of Lemma 8, there is only a finite number of corre-

sponding mapped ontologies, and furthermore, we know that exhaustive application of the

completion rules terminates. Hence the task is decidable.

5.3.2 Applying Defeasible Mappings to Unknowns

So far, we have defined the semantics of defeasible mappings and a way to derive entail-

ments. Using these mappings, queries can be asked in terms of concepts of the ontology

which is being mapped to.

For instance, let the ontology O1 have axioms sdad

{john} v USCitizen {john} v Traveler

USCitizen v ∃hasPassport.USPassport,

let the ontology O2 have axioms

Tourist v ∃hasPP.Passport

∃hasPP.AmericanPassport v EuVisaNotRequired,
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and let δ consist of the mappings

Traveler vd Tourist hasPassport vd hasPP

USPassport vd AmericanPassport.

We can then ask questions in terms of the concepts and roles of O2, like “list all the

tourists,” i.e., all instances that belong to the class Tourist, and we would get the answer

john. But if we look carefully, we would also expect john as an instance of the class

EuVisaNotRequired.

However, as per the semantics we have defined in the previous section, we would not

be able to derive this conclusion. This is because the defeasible mappings do not apply to

unknowns. In this case, the unknown in question is john’s USPassport. We address this

issue by modifying the semantics in order to apply the mappings to unknowns as well.

First of all, recall that the set NI already contains the auxiliary individuals ιRC for

every R ∈ NR and C ∈ NC – we have not yet made use of them, but we will do so now. In

fact, we now modify the completion rules in Figure 5.2 by adding two additional rules as

follows, and where a ∈ NI , i.e. a may also be an auxiliary individual.

{a} v ∃R.D 7→ {a} v ∃R.{ιRD} (5.27)

{a} v ∃R.D 7→ {ιRD} v D (5.28)

Furthermore, we retain all the definitions from section 5.3.1 starting from Cand, CandR

but using the completion compu(O1) obtained by applying the completion rules in Figure

5.2 in conjunction with the new rules when producing selections. We still use comp, the

previous version without the new rules, for all other steps.
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Returning to the example above, compu(O1) now becomes

{john} v USCitizen {john} v Traveler

USCitizen v ∃hasPassport.USPassport {ιhpp,usp} v USPassport

{john} v ∃hasPassport.{ιhpp,usp},

and from the mappings we obtain:

OΣ
2 = comp(O2) ∪ { {john} v Tourist, {john} v ∃hasPP.{ιhpp,usp},

{ιhpp,usp} v AmericanPassport} }.

Note, that this OΣ
2 is the only maximal mapped ontology. When we apply the completion

rules of Figure 5.2 on OΣ
2 , rule 5.19 will produce the axiom {john} v EuVisaNotRequired.

We now show that, under this new version, default mappings behave just as ordinary

mappings, provided no inconsistencies arise. This is, of course exactly, what we would

like to obtain, i.e., the new semantics is conservative in this respect and “kicks in” only if

needed due to inconsistencies.

Theorem 11. Let (O1,O2, δ) be a mapped-tuple, such that for any selection Σ, OΣ
2 is

consistent. Let α be an ER⊥,O axiom of the form {a} v C or {a} v ∃R.{b}, where a, b

are named individuals from O1 and C,R are class names, respectively role names, from

O2. Then (O1,O2, δ) |= α if and only if O1 ∪ O2 ∪ δ̄ |= α, where δ̄ is exactly the same as

δ but with all vd replaced by v.

Proof. In this case, there is only one relevant selection Σ, namely the full selection, since

for every possible Σ, OΣ
2 is consistent.

Consider an interpretation I = I(OΣ
2 ) ofOΣ

2 , defined as at the end of Section 5.2, and
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recall that I |= OΣ
2 .

Let I ′ be an interpretation of O1 ∪ OΣ
2 which extends I, such that ∆I

′
= ∆I∪{xC |

C ∈ NO1
C }, and for all C ∈ NO1

C and R ∈ NO1
R , CI′ and DI

′ are constructed from

compu(O1) exactly as it is done for I from comp(OΣ
2 ). Then clearly I ′ |= OΣ

2 ∪ O1.

Furthermore, axioms of the form {a} v C, {a} v ∃R.{b} where a, b ∈ NO1
I , C ∈ NO2

C

and R ∈ NO2
R are only produced from the axioms of OΣ

2 .

Moreover, I ′ |= O1∪O2∪ δ̄ holds. To prove this, it suffices to show that I ′ satisfies all

axiomsC v D ∈ δ̄ andR v S ∈ δ̄, since we already know that I ′ |= O1∪O2. And indeed,

for every axiom C v D ∈ δ̄ (which also means C vd D ∈ δ), we know that if {a} v C ∈

compu(O1) then {a} v D ∈ OΣ
2 . Hence, by definition of I ′, a ∈ CI′ ∩DI′ . Similarly, for

every axiom R v S ∈ δ̄, we know that whenever {a} v ∃R.{b} ∈ compu(O1), we have

{a} v ∃S.{b} ∈ OΣ
2 , and by definition of I ′, we obtain (a, b) ∈ RI′ , SI′ .

So now, in particular, if O1 ∪ O2 ∪ δ̄ |= α then I ′ |= α, and therefore I |= α, since

α does not contain any class or role names from O1. By definition of I, we then obtain

α ∈ comp(OΣ
2 ) and consequently (O1,O2, δ) |= α as required.

Conversely, consider an interpretation I = I(O) of O = O1 ∪ O2 ∪ δ̄ obtained as

defined at the end of Section 5.2, and recall that I |= O.

Now considerO′ = compu(O1)∪comp(O2)∪δ∪Σ and note thatOΣ
2 = comp(O2)∪

Σ ⊆ O′ and also that O ⊆ O′. Let I ′ = I(O′) be obtained as defined at the end of Section

5.2, and recall that I ′ |= O′. By construction, we also obtain I ′ |= OΣ
2 and also that I ′ and

I coincide on the signature of O.

So now, in particular, if (O1,O2, δ) |= α, for α as in the statement of the theorem, then

I ′ |= α, and therefore I |= α, and by definition of I we obtain α ∈ comp(O1 ∪ O2 ∪ δ̄).
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Consequently, O1 ∪ O2 ∪ δ̄ |= α as required.

5.4 Relationship with Answer sets

The above semantics is inspired by Reiter’s default logic, as already mentioned. Formally,

we show that it is very closely related with the prominent answer set semantics from logic

programming, which in turn, has a well-established relationship to Reiter’s default logic.

We first recall the definition of answer sets from [30], see [40] for exhaustive background

reading.

Definition 38. (Answer Sets) An extended program is a logic program that contains rules

of the form L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln where 0 ≤ m ≤ n and each Li is a

literal A or ¬A. ¬ denotes so-called classical negation, as opposed to not, which denotes

default negation.

For Π an extended program that contains no variables and does not contain not , let

Lit be the set of ground literals in the language of Π. The answer set α(Π) of Π is the

smallest subset S of Lit, such that

1. for any rule L0 ← L1, . . . , Lm ∈ Π, if L1, . . . L2 ∈ S, then L0 ∈ S, and

2. if S contains a pair of complementary literals, then S = Lit.

For Π a (general) extended program and Lit the set of all literals in the language of

Π, define ΠS , for a set S ⊆ Lit, as the extended program obtained by deleting, from Π,

1. each rule that has some not L in its body with L ∈ S, and

2. all expressions of the form not L in the bodies of the remaining rules.

Finally, S is an answer set of Π if S = α(ΠS).

Let (O1,O2, δ) be a mapped-tuple. We now define an extended program Π(O1,O2, δ)
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Table 5.2: Rewriting of axioms to rules
Axiom Rule

1 C v D D(x)← C(x)
2 C v ⊥ ¬C(x)← C(x)
3 ∃R.C v D D(x)← R(x, y) ∧ C(y)
4 C1 u C2 v D D(x)← C1(x) ∧ C2(x)
5 C1 u C2 v ⊥ ¬C2(x)← C1(x),¬C1(x)← C2(x)
6 R1 v R R(x, y)← R1(x, y)
7 R1 ◦R2 v R R(x, z)← R1(x, y) ∧R2(y, z)
8 {a} v C C(a)←
9 {a} v ∃R.{b} R(a, b)←

as follows. For every axiom of the form C vd D ∈ δ and for all {a} v C ∈ comp(O1),

we add rules of the following form to Π(O1,O2, δ):

C(a)← (5.29)

D(a)← C(a), not ¬D(a) (5.30)

For mapping axioms of the form R vd S ∈ δ, we add the following rules:

R(a, b)← (5.31)

S(a, b)← R(a, b), not ¬S(a, b) (5.32)

Furthermore, we add to Π(O1,O2, δ) all possible groundings of the rules obtained by

rewriting comp(O2), as per the rules in Table 5.2, using all the individuals that occur in

O1,O2.

It should be noted that we do not provide a transformation for axioms of the form

C v ∃R.D in Table 5.2. This is because for representing defeasible axioms in logic

programs we need the classical negation [30] and to represent axioms with existentials

on the right hand side we require existential rules. Although a stable model semantics
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{a} v C (5.33)
{a} v B (5.34)

C vd D (5.35)
B vd E (5.36)

D u E v ⊥ (5.37)
D v F (5.38)
E v F (5.39)

Figure 5.3: Example mapping

for existential rules has been defined in [63], it is not defined for extended programs with

classical negation. Furthermore, it is not straightforward to extend the approach from [63]

to extended programs. So we restrict ourselves to showing that our reduction works for the

case when axioms of the form C v ∃R.D are not present. This is sufficient to show that

our approach aligns well with the answer set semantics.

Example 7. Consider the axioms listed in Figure 5.3 where axioms 5.33, and 5.34 are

from O1, axioms 5.37, 5.38, and 5.39 are from O2 and the axioms 5.35, and 5.36 represent

the set δ of defeasible mappings. The corresponding extended program Π(O1,O2, δ) is as

follows.

C(a)← D(a)← C(a) ∧ not ¬D(a)

B(a)← E(a)← B(a) ∧ not ¬E(a)

¬E(a)← D(a) F (a)← D(a)

¬D(a)← E(a) F (a)← E(a)

Note there are two answer sets, S1 = {C(a), B(a), D(a),¬E(a), F (a)} and S2 =

{C(a), B(a), E(a),¬B(a), F (a)}, for Π(O1,O2, δ).

Definition 39. Let OΣ
2 be a mapped ontology for (O1,O2, δ), and let comp(OΣ

2 ) be a

corresponding mapped completion. Then we define the mapped answer set S(OΣ
2 ) to be
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the following set:

{C(a) | C vd D ∈ δ and {a} v C ∈ comp(O1)} ∪

{R(a, b) | R vd S ∈ δ and {a} v ∃R.{b} ∈ comp(O1) ∪

{C(a) | {a} v C ∈ comp(OΣ
2 )} ∪

{¬D(a) | C vd D ∈ δ, {a} v C ∈ comp(O1) and {a} v D 6∈ comp(OΣ
2 )} ∪

{R(a, b) | {a} v ∃R.{b} ∈ comp(OΣ
2 )} ∪

{¬S(a, b) | R vd S ∈ δ, {a} v ∃R.{b} ∈ comp(O1) and {a} v ∃S.{b} 6∈ comp(OΣ
2 )}

Lemma 9. Let OΣ
2 be a mapped ontology for (O1,O2, δ), and let comp(OΣ

2 ) be a corre-

sponding mapped completion. Then the mapped answer set, S(OΣ
2 ), is an answer set of

Π(O1,O2, δ).

Proof. We use Π as a short notation for Π(O1,O2, δ). We need to show that (1) S(OΣ
2 ) ⊆

Lit (the set of all literals in Π), (2) S(OΣ
2 ) = α(Π

S(OΣ
2 )

). Condition (1) trivially holds. For

condition (2), we first assume that δ = ∅ then Π
S(OΣ

2 )
= Π, since Π does not contain any

not in the rules. For this case, all the rules of Π are constructed using the rules of Table

5.2, followed by grounding. We show that S(OΣ
2 ) = α(Π) by showing that S(OΣ

2 ) satisfies

the conditions of definition 38. We only need to show that S(OΣ
2 ) satisfies condition (1),

since O2 is consistent. For all rules in Π of the form C(a) → D(a) generated using the

transformation 1 of table 5.2, S(OΣ
2 ) satisfies the condition: if C(a) ∈ S(OΣ

2 ) then D(a) ∈

S(OΣ
2 ). C(a) ∈ S(OΣ

2 ), whenever {a} v C ∈ comp(OΣ
2 ) and if C v D ∈ comp(OΣ

2 )

then {a} v D ∈ comp(OΣ
2 ), therefore, D(a) ∈ S(OΣ

2 ) by definition of S(OΣ
2 ).

For rules of the form C(a) → ¬C(a) in Π generated using transformation 2, S(OΣ
2 )
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trivially satisfies the condition if: C(a) ∈ S(OΣ
2 ) then¬C(a) ∈ S(OΣ

2 ) asOΣ
2 is consistent,

therefore, no axiom of the form {a} v ⊥ ∈ comp(OΣ
2 ).

For rules of the form R(x, y) ∧ C(y)→ D(x) in Π generated using transformation 3,

S(OΣ
2 ) satisfies the condition if: R(a, b), C(b) ∈ S(OΣ

2 ), then D(a) ∈ S(OΣ
2 ). We have

∃R.C v D ∈ comp(OΣ
2 ) by definition of the transformation rule. R(a, b), C(b) ∈ S(OΣ

2 )

whenever {a} v ∃R.{b}, {b} v C ∈ comp(OΣ
2 ), respectively, by definition of S(OΣ

2 ).

Then {a} v D ∈ comp(OΣ
2 ) should hold by rule 5.19 of the completion rules of ER⊥,O.

Hence, D(a) ∈ S(OΣ
2 ).

For rules of the form C1(a) ∧ C2(a) → D(a) in Π generated using transformation

4, S(OΣ
2 ) satisfies the condition if: C1(a), C2(a) ∈ S(OΣ

2 ), then D(a) ∈ S(OΣ
2 ). This

is because C1(a), C2(a) ∈ S(OΣ
2 ) whenever {a} v C1, {a} v C2 ∈ comp(OΣ

2 ), since

C1 u C2 v D ∈ comp(OΣ
2 ), {a} ∈ D should be in comp(OΣ

2 ), therefore, D(a) ∈ S(OΣ
2 ).

Again for rules in Π generated using transformation 5 are trivially satisfied by S(OΣ
2 )

since OΣ
2 is consistent.

For rules of the form R1(a, b) → R(a, b) in Π generated using transformation 6,

S(OΣ
2 ) satisfies the condition if: R1(a, b) ∈ S(OΣ

2 ) then R(a, b) ∈ S(OΣ
2 ). R1(a, b) ∈

S(OΣ
2 ), whenever {a} v ∃R1.{b} ∈ comp(OΣ

2 ) and since, R1 v R ∈ comp(OΣ
2 ), {a} v

∃R.{b} ∈ comp(OΣ
2 ) should hold, therefore, R(a, b) ∈ S(OΣ

2 ).

For rules of the form R1(a, b) ∧ R2(b, c)→ R(a, c) in Π generated using transforma-

tion 7, S(OΣ
2 ) satisfies the condition: if R1(a, b), R2(b, c) ∈ S(OΣ

2 ) then R(a, c) ∈ S(OΣ
2 ).

R1(a, b), R2(b, c) ∈ S(OΣ
2 ) whenever {a} v ∃R1.{b}, {b} v ∃R2.{c} ∈ comp(OΣ

2 )

and since R1 ◦ R2 v R ∈ comp(OΣ
2 ), we have {a} v ∃R.C ∈ comp(OΣ

2 ). Hence,

R(a, c) ∈ S(OΣ
2 ).
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For rules in Π generated using transformations 8 and 9, it is easy to see that S(OΣ
2 )

trivially satisfy these rules since it follows directly from the definition of S(OΣ
2 ).

Now consider the case when δ 6= ∅. The mappings in δ gives rise to rules in Π of the

form of rules in 5.29, 5.30, 5.31 and 5.32. For rules of type 5.29, 5.31 there is nothing to

show and S(OΣ
2 ) satisfies such rules (facts) by definition of S(OΣ

2 ). Now rules of type 5.30,

5.32 are the only rules that contain not. Now consider Π
S(OΣ

2 )
as per the transformations

in definition 38. Rules of type 5.30 are either deleted or they are transformed to the form

C(a) → D(a). S(OΣ
2 ) satisfies rules of this form since C(a) ∈ S(OΣ

2 ) if C vd D ∈ δ

and {a} v C ∈ comp(O1). Note that, for such cases there are only two possibilities

D(a) ∈ S(OΣ
2 ) or ¬D(a) ∈ S(OΣ

2 ). Clearly, ¬D(a) 6∈ S(OΣ
2 ), otherwise, the rule would

have been deleted. Hence, D(a) ∈ S(OΣ
2 ). Similarly, rules of the form 5.32 are either

deleted or are transformed into R(a, b) → S(a, b). R(a, b) ∈ S(OΣ
2 ) holds if R vd S ∈ δ

and {a} v ∃R.{b} ∈ comp(O1). Clearly, S(a, b) ∈ S(OΣ
2 ), otherwise, the rule would

have been deleted. Note, the arguments made above for the case of δ = ∅ still hold and

thereby S(OΣ
2 ) = α(Π

S(OΣ
2 )

). It can also be seen from the definition of S(OΣ
2 ), it is in fact

the smallest subset of Lit satisfying these conditions.

Lemma 10. Let (O1,O2, δ) be a mapped-tuple and let S be an answer set of Π(O1,O2, δ)

= Π. Then S = S(OΣ
2 ) for some mapped ontology OΣ

2 of (O1,O2, δ).

Proof. First we construct OΣ
2 from S. Let ΣCvdD = {{a} v D | D(a) ∈ S} for each

mapping axiom C vd D ∈ δ and ΣRvdS = {{a} v ∃S.{b} | R(a, b) ∈ S} for each

mapping axiom R vd S ∈ δ. Let Σ be the collection of all such ΣCvdD and ΣRvdS . Then

OΣ
2 = comp(O2)∪ {X | X ∈ Σ} is a mapped ontology as per definition 35. It remains
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to be shown that comp(OΣ
2 ) is a mapped completion. We assume OΣ

2 is not a mapped

completion which means there is some OΣi

2 with comp(OΣi

2 ) a mapped completion and

OΣi

2 � OΣ
2 . Therefore, for some mapping axiom C vd D ∈ δ or R vd S ∈ δ we have

Σi
CvdD

� ΣCvdD or Σi
RvdS

� ΣRvdS . For the case when Σi
CvdD

� ΣCvdD then there is

an axiom {a} v D with {a} v C ∈ comp(O1) and {a} v D ∈ OΣi

2 , {a} v D 6∈ OΣ
2 .

For the case when Σi
RvdS

� ΣRvdS there is an axiom {a} v ∃S.{b} ∈ OΣi

2 with {a} v

∃R.{b} ∈ comp(O1) and {a} v ∃S.{b} 6∈ OΣ
2 . Also from lemma 9, S(OΣi

2 ) is an answer

set of Π with D(a) ∈ S(OΣi

2 ) or S(a, b) ∈ S(OΣi

2 ). But that could not be the case since

S ⊂ S(OΣi

2 ) is an answer set of Π and an answer set should be the minimal subset of Lit

satisfying the rules of Π as per definition 38.

The following theorem is now a direct consequence of Lemmas 9 and 10.

Theorem 12. Let (O1,O2, δ) be a mapped-tuple. Then (O1,O2, δ) |=d {a} v C if, and

only if, Π(O1,O2, δ) |=S C(a), where |=S represents stable model entailment.

5.5 Conclusion

In this chapter, we provided an extension for the description logic ER⊥,O with the ability

to have defeasible mappings between ontologies. This work should be easily extendable to

other logics in the EL family, provided soundness and completeness proofs can be obtained

for the base logic along similar lines. We show a reduction from our semantics of defeasible

mappings to that of answer set programming. This shows that the approach outlined here

is very close to the original notion of defaults. Furthermore, the application of defaults is

not limited to named individuals but also applies to unknowns that are implicitly referred

to in the knowledge base due to existentials.
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Of course, our resulting logic appears to be no longer tractable. However, it should be

remarked that the application of monotonic semantics is completely impossible in the con-

text of inconsistencies coming from the mappings, and repair approaches currently require

human intervention and are generally employed at the level of axioms, rather than individ-

uals. Some form of paraconsistent reasoning [65] may be a more efficient contender, but

then, paraconsistent approaches such as [65] tend to miss many desired consequences.

As a part of future work, we consider a smart algorithmization for entailment check-

ing that would perform with reasonable efficiency. One possible approach would be to find

a method to generate rules that act as templates which could be used to check which selec-

tions used to create the mapped ontologies would lead to inconsistencies without actually

running the completion algorithm on the mapped ontologies. We also plan to implement

the algorithm and perform a detailed evaluation of its performance, with respect to time

when compared to the monotonic extensions and also with respect to the quality of en-

tailments obtained by defeasible mappings, compared to traditional alignments produced

by automatic alignment systems. We could make use of data made available by the ontol-

ogy alignment evaluation initiative [24, 27]. Good results would lead to a solid framework

towards a robust mapping language for tractable ontology languages.

93



6 Implementation and Evaluation

6.1 Implementation

In this chapter, we present an implementation of a reasoner built to support the semantics

presented in Chapter 5 and to be used as a proof of concept. For this purpose, we use one

of the well-known OWL 2 reasoners called Hermit [32] and build a wrapper around it to

simulate the semantics of default mappings. Hermit is a sound and complete reasoner for

all profiles of OWL. ELK [52], a consequence based reasoner built specifically for efficient

OWL EL reasoning, was also considered to be used for the implementation, however, it

turned out that ELK does not support some of the OWL API [41] reasoning methods which

are critical to the default mapping reasoning process discussed in this dissertation.

In Algorithm 1, we outline the procedure to find all the mapped ontologies, as defined

in Definition 35, for two given ontologies O1,O2. The input to the algorithm consists of

two ontologies O1, O2. The output of this algorithm is a set of all mapped ontologies, as

per the semantics of default mappings. In the first part of the algorithm, we initialize the

sets MappedOntology and Σ as empty sets. MappedOntology is the set in which we would

collect all the candidate mapped ontologies. Next, a call to the subroutine, findAllMappings

is made and the return value is assigned toM . We call LogMap [48], an ontology matching

and repair system, to generate the mappings from O1 to O2. We only retain the mappings

from O1 to O2 from the mappings returned by LogMap. E.g., if LogMap returns CO1 ≡
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Algorithm 1 Construct all mapped ontologies for two ontologies O1,O2.
Require: Ontology O1, O2

1: MappedOntology← ∅
2: Σ← ∅
3: M ← findAllMappings(O1,O2)
4: precomputeInferences(O1)
5: for all m ∈M do
6: if m.type = ObjectPropertyMapping then
7: Σ← Σ× pow(getCandidatePairs(O1,m.left))
8: else if m.type = ClassMapping then
9: Σ← Σ× pow(getCandidateInstances(O1,m.left))

10: end if
11: end for
12: for all Σi ∈ Σ do
13: if isConsistent(O2 ∪ getAxioms(Σi,M)) then
14: MappedOntology← O2 ∪ getAxioms(Σi,M)
15: end if
16: end for
17: return findMaximal(MappedOntology)

CO2 as one of the mappings, we convert it to CO1 v CO2 , where CO1 , CO2 are concepts

from ontologies O1,O2, respectively. Similarly, we reject mappings of the form CO1 w

CO2 . The subroutine findAllMappings does exactly what we just described: calling LogMap

to obtain the mappings and retain only those mappings which map from O1 to O2.

In the next step of the algorithm, we call the subroutine precomputeInferences. The

subroutine, precomupteInferences, takes an ontology as input and computes all logical con-

sequences that can be obtained from the axioms in the input ontology. To implement this

procedure, we use Hermit’s implementation of the precomputeInferences() method.

In the first for loop, we go through all the mappings obtained from the call to the

procedure, findAllMappings. At each iteration, we check the type of mapping (concept or

role) and, based on the type of the mapping, we call the appropriate procedure to get the

candidate instances or pairs of instances for the mapping. In line 7, we call the procedure,

getCandidatePairs, which returns a set of pairs of individuals that satisfy the role on the

left-hand side of the mapping axiom. Formally, let RO1 v RO2 be a mapping that is
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being processed in one of the iterations of the for loop, then getCandidatePairs will return

all the pairs of individuals (a, b), such that O1 |= RO1(a, b). Similarly, for a mapping

CO1 v CO2 , the procedure getCandidateInstances returns the set of all individuals a, such

that O1 |= CO1(a). Furthermore, the procedure pow returns the powerset of a given input

set. In lines 7, 9, the set Σ is assigned the set corresponding to the Cartesian product of

Σ from previous iteration and the set of candidate instances (or pairs) obtained from the

calls to pow(getCandidateInstances(O1,m.left)) (or pow(getCandidatePairs(O1,m.left))

for pairs). Note that m.left represents the term on the left-hand side of the mapping axiom

m.

Now it may be clear by this point of the algorithm that we have obtained the set of all

possible selections Σ, from which we can select the maximal selections to identify all the

mapped ontologies.

In the second for loop, we iterate through all the selections in Σ and collect all the

selections for which the resulting mapped ontologies are consistent. To check the consis-

tency of the mapped ontology for a given selection, at each iteration of the for loop, we

call the procedure isConsistent with input argument O2 ∪ (getAxioms(Σi,M)). The pro-

cedure isConsistent checks if the input ontology is consistent using the Hermit reasoner.

Algorithm 2 outlines the steps followed by the getAxioms procedure.

In the final step of Algorithm 1, we filter the MappedOntology set to retain only

those mapped ontologies that correspond to maximal selections. We use the procedure

findMaximal for this purpose. This procedure identifies the mapped ontologies as described

in Definition 35.

The getAxioms procedure as defined in Algorithm 2 takes, as input, a selection set Σi

and the set M containing the mapping axioms. The algorithm goes through all the map-

pings and creates corresponding assertion axioms. m.right represents the right hand side

of the mapping axiom. We assume that we can look-up the candidate sets from Σi corre-

sponding to each mapping axiom in M . The functions ObjectPropertyAssertionAxiom and
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Algorithm 2 Get all axioms from a selection Σi,M . Assuming, Σi,M are indexed sets
such that Σi[j] corresponds to the set of candidates for M [j].
Require: Selection Σi, a set of mappings M

Axioms← ∅
for all m ∈M do

if m.type = ObjectPropertyMapping then
for all (a, b) ∈ Σi[M.indexOf(m)] do

Axioms← Axioms ∪ ObjectPropertyAssertionAxiom(m.right, a, b)
end for

else if m.type = ClassMapping then
for all a ∈ Σi[M.indexOf(m)] do

Axioms← Axioms ∪ ClassAssertionAxiom(m.right, a)
end for

end if
end for
return Axioms

ClassAssertionAxiom are constructor methods that create role assertion and class assertion

axioms, as per the OWL API definitions, respectively.

Now, we describe the procedure to get logical consequences from the default map-

pings. In Algorithm 3, we outline a simple procedure to find all instances of a class or all

pair of instances that satisfy a role. The procedure takes, as input, a set of mapped ontolo-

gies which one can obtain from Algorithm 1 together with a class or a role expression, and

returns, as output, a set Output = {a | O |= P (a) for all O ∈ MappedOntology} if P is a

class expression, and Output = {(a, b) | O |= P (a, b) for all O ∈ MappedOntology} if P

is a role expression.

Algorithm 3 Get inferred property and class assertions.
Require: A set of mapped ontologies MappedOntology, a class or role expression P

Output← ∅
for all O ∈ MappedOntology do
O ← O ∩ getInferredAssertions(O, P )

end for
return Output

The overall process of checking mapped entailments for two ontologies O1,O2 is to
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call Algorithm 1 to find all the mapped ontologies followed by a call to Algorithm 3 to

query for instances (or pairs of instances) of a class expression (or a role expression).

In the following section, we describe the experiments and the results of the evaluation

of the algorithm we just described.

6.2 Experiments

6.2.1 Mapping Marriage Ontologies

In Chapter 4, Figure 4.1, we show two example ontologies that represent two different

world views on marriage. It is mentioned in that chapter, that using an ontology matching

system would result in mappings that equate all the syntactically matching roles and con-

cepts. In this section, we show the applicability of our default semantics using the proof of

concept system that we described in the previous section.

Comparison With Ontology Mapping Repair

For the purpose of testing this example, we created the ontologies using the ontology editor

Protégé [92]. The ontologies are shown in the Appendix. Note, that there are some slight

differences in the ontologies used in the experiments to that in Figure 4.1, specifically,

ontology 1 in the experiments, corresponds to ontology b from Figure 4.1 and ontology

2 in the experiments, corresponds to ontology a from Figure 4.1. Furthermore, we add

some class assertions and role assertions to ontology 1. The mappings obtained from the

LogMap system are as follows:

1. O1:Male == O2:Male

2. O1:Female == O2:Female

3. O1:hasSpouse == O2:hasSpouse
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Table 6.1: Results of Experiment 1
System Query Instances

Default O2 :hasSpouse(?,?) {(mark, julie),(john, mary), (jacob, jane)}
Default O2 :Male(?) {mark, jacob, john}
Default O2 :Female(?) {mary, julie, jane}

LogMap Repair O2:hasSpouse(?,?) Inconsistent ontology
LogMap Repair O2 :Male(?) Inconsistent ontology
LogMap Repair O2 :Female(?) Inconsistent ontology

LogMap returns mapping correspondences in terms of ==, <=, >= that represent ≡,v

,w, respectively. We ran through the procedure described in the previous section and out-

line the results in Table 6.1.

When using our system under the semantics of default logic based mappings, we get

the answers to the query hasSpouse(?,?) as a set containing three pairs as shown in Ta-

ble 6.1. Note, that only the pair (john, mary) is from ontology 2, whereas, the other pairs

are obtained in the answer due to the mappings. The LogMap repair system did not give

any answers, as it failed due to the inconsistency of the merged ontology. The LogMap

system throws an exception when trying to repair the merged ontology.

In this experiment, we were able to verify the results that we were expecting from

the default system. To get an idea of what could be the possible automatic repair options,

we created a merged version of these two ontologies using the three mapping axioms and

ran the explain functionality on Protégé using Hermit. The explain functionality provides

justifications for an inconsistent ontology. Justifications are defined as a minimal set of

axioms that, taken together, cause an inconsistency. The result of the explanation tool is

shown in Figure 6.1, which shows that there are a total of 8 axioms, which, if taken together,

cause the inconsistency in the merged ontology. An automatic mapping repair function

would most probably remove one of the two mapping axioms from the justifications to

repair the mapping. We analyze what would be the impact of removing the mapping axioms
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Figure 6.1: Protégé explanation window for the inconsistency in the merged ontology.

Table 6.2: Answer to queries after removing the mapping, O1 : Male v O2 : Male
Ontology Query Instances

O1 ∪ O2 ∪ {δ1} O2 :hasSpouse(?,?) {(mark, julie),(john, mary), (jacob, jane), (david, mike)}
O1 ∪ O2 ∪ {δ1} O2 :Male(?) {mark, jacob, john}
O1 ∪ O2 ∪ {δ1} O2 :Female(?) {mary, julie, jane}

one at a time.

Suppose the mapping repair system repairs the mapping by removing the axiom O1 :

Male v O2 : Male. To find the impact of this repair, we removed this mapping from

the merged ontology and ran the Hermit reasoner to compute logical consequences. The

results are shown in Table 6.2, where δ1 is the modified set of mappings. It can be seen

that the answer to query O2 :hasSpouse returns four pairs including (david,mike). This is

an undesired consequence, as both david and mike are instances of Male in the lower-level

ontology. However, as shown in Table 6.1, our system does not produce this as a logical

consequence.

In the other case, we remove the mapping, O1 : hasSpouse v O2 : hasSpouse

and examine the logical consequences of the resulting merged ontology O1 ∪ O2 ∪ δ2.

After running the reasoning process on this merged ontology, we get the logical conse-

quences as shown in Table 6.3. In this case, we lose some desired logical consequences,
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Table 6.3: Answer to queries after removing the mapping, O1 : hasSpouse v O2 :
hasSpouse

Ontology Query Instances

O1 ∪ O2 ∪ {δ2} O2 :hasSpouse(?,?) {(john, mary)}
O1 ∪ O2 ∪ {δ2} O2 :Male(?) {mark, jacob, john, mike, david}
O1 ∪ O2 ∪ {δ2} O2 :Female(?) {mary, julie, jane}

Table 6.4: Answer to queries when mapping from O1 to O2 ∪ {O2 : Male(mike)}
Ontology/System Query Instances

Default O2 :hasSpouse(?,?) {(john, mary), (jacob,jane), (mark, julie)}
Default O2 :Male(?) {mark, jacob, john, mike}
Default O2 :Female(?) {mary, julie, jane}

O O2 :hasSpouse(?,?) {(john, mary), (jacob,jane), (mark, julie), (david, mike)}
O O2 :Male(?) {mark, jacob, john, mike}
O O2 :Female(?) {david, mary, julie, jane}

i.e. O2 :hasSpouse(mark, julie) and O2 :hasSpouse(jacob, jane), as the two ontologies

agree on these two role assertions. On the other hand, our system shows that these two

assertions hold.

From the axioms of the two ontologies, O1 and O2, we know that there is no agree-

ment between the two ontologies about the following assertions: hasSpouse(mike, david),

Male(mike) and Male(david), therefore, none of these should appear as logical conse-

quences. However, on applying any of the two possible repairs, we get some of these

undesired logical consequences and, at the same time, we lose of some of the desired logi-

cal consequences.

One can also consider the possibility that O2 :Male(mike) is present in O2 even be-

fore mapping the ontologies O1,O2. It is not unusual for ontologies to contain over-

lapping individuals, especially if the individual is a well-known entity. In that case, if

we apply the first repair, that we considered above, then O2 :Female(david) would be

a logical consequence of the resulting repaired and merged ontology. In Table 6.4, we

show the comparison of logical consequences obtained when running our system on O1,
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O2 ∪ {O2 : Male(mike)} and applying logical reasoning to the repaired, merged ontol-

ogy O = O1 ∪ O2 ∪ {O2 : Male(mike)} ∪ δ1. As it can be seen in this case as well,

our system performs better than the traditional repair techniques in the quality of answers

to the queries. The repair technique leads to undesired answers Female(david) and has-

Spouse(mike, david), whereas the default mapping system provides more meaningful an-

swers.

Comparison With Paraconsistent Reasoning

In this section, a comparison with an implementation of paraconsistent reasoning is pre-

sented to show the results of an alternative approach to deal with inconsistency in the

mapped ontologies. The paraconsistent system used in this experiment is in accordance

with the translations provided in [65].1 The paraconsistent system takes an input ontology

O and translates it into an ontology O′, such that O′ |= α, if and only if, O |=P α, where

α is an axiom in the language of O and |=P represents entailment under the semantics of

paraconsistent description logics [65].

In this experiment, we chose the input ontology O = O1 ∪ O2 ∪ δ, where O1,O2 are

the marriage ontologies from previous experiment and δ = {O1 : Male v O2 : Male,O1 :

Female v O2 : Female,O1 : hasSpouse v O2 : hasSpouse}. O′ is the translation we ob-

tained from the translation procedure of the paraconsistent algorithm. Next, we ran OWL

reasoner Hermit to obtain the logical consequences with input ontologyO′ which are noth-

ing but the logical consequences of O as per the semantics of paraconsistent description

logics. Table 6.5, shows the results of running the paraconsistent algorithm on O. In this

case, we get an undesired consequence of hasSpouse(david, mike) because, as discussed

above, the two ontologies O1 and O2 do not have an agreement on the hasSpouse relation-

ship for david and mike. Whereas, our approach does not provide hasSpouse(david, mike)

102



Table 6.5: Query result comparison: Default mapping vs Paraconsistent logic
Ontology/System Query Instances

Default O2 :hasSpouse(?,?) {(john, mary), (jacob,jane), (mark, julie)}
Default O2 :Male(?) {mark, jacob, john, mike}
Default O2 :Female(?) {mary, julie, jane}

Paraconsistent O2 :hasSpouse(?,?) {(john, mary), (jacob,jane), (mark, julie), (david, mike)}
Paraconsistent O2 :Male(?) {mark, jacob, john, mike}
Paraconsistent O2 :Female(?) {mary, julie, jane}

as a logical consequence which is more in line with the descriptions of the two ontologies.

In the above experiments, we have shown with a simple, yet demonstrative, example

that using default logic based mappings avoids the possibility of logical inconsistencies

and, at the same time, provides the desired logical consequences.

6.2.2 Mapping Biomedical Ontologies

In this part of the experiments section, we want to show the applicability of defaults in

real world ontologies. We picked two ontologies from the Ontology alignment evaluation

initiative (OAEI) [24]2. OAEI aims to evaluate the quality of automatic ontology align-

ment systems and provide analysis on the state-of-the-art systems. The two ontologies

we chose are from the “Large Biomedical Ontologies” track from OAEI 2014. The on-

tologies used for this experiment are (1) A fragment of the National Cancer Institute The-

saurus (NCI) ontology with file name oaei2014 FMA small overlapping nci.owl (O1), and

(2) Foundational Model of Anatomy (FMA) ontology with file name oaei2014 NCI sma-

ll overlapping fma.owl (O2).3

These ontologies are relatively large and contain only TBox axioms. O1 consists of

3,696 classes, and O2 consists of 6,488 classes. In the first step of the experiment, we ob-

1We acknowledge the co-operation of Fredrick Maier (Institute for Artificial Intelligence, University of
Georgia) in providing us with the code for the paraconsistent system.

2Link to website: http://oaei.ontologymatching.org/
3URL to download the ontologies: http://www.cs.ox.ac.uk/isg/projects/SEALS/

oaei/2014/LargeBio_dataset_oaei2014.zip
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tained mappings between the two ontologies using the LogMap matching system. LogMap

returned 2,709 mappings between O1 and O2. After importing the merged ontology to

Protégé, it was identified that the class Visceral Pleura was unsatisfiable due to the map-

pings. Upon running the explain functionality on Protégé, six sets of justifications were

found as shown in Figures 6.2, 6.3, 6.4.

Figure 6.2: Protégé explanation window with explanations # 1, 2 for biomedical ontologies.

The root cause of the issue is the difference in meanings of the classes Pleura, Vis-

ceral Pleura in O1 and O2. As can be seen from the explanations, everything in Vis-

ceral Pleura, and everything in Pleura, are linked to two disjoint classes Thoracic Cavity

and Lung with the same role. Furthermore, Visceral Pleura is a sub class of Pleura. Specif-

ically, the following two axioms seem to be the cause of concern as they appear in all of
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Figure 6.3: Protégé explanation window with explanations # 3, 4 for biomedical ontologies.

the justifications.

O1 : Visceral Pleura v ∃O1 : Anatomic Structure Has Location.O1 : Lung

O1 : Pleura v ∀O1 : Anatomic Structure Has Location.O1 : Thoracic Cavity

In O2, Lung and Thoracic Cavity are mutually disjoint, whereas, these classes are not

mutually disjoint in O1. An attempt to use LogMap repair functionality did not work as

LogMap was unable to repair the mappings that are causing Visceral Pleura to be unsatis-

fiable in the merged ontology. Repairing this problem manually is too complicated because

of the complex relationships in both the ontologies. However, we tried removing the map-

ping axiom O1 :Thoracic Cavity v O2 :Thoracic Cavity, but the class Visceral Pleura
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Figure 6.4: Protégé explanation window with explanations # 5, 6 for biomedical ontologies.

remained unsatisfiable in the merged ontology with a new set of justifications. Clearly,

there are many disagreements among the two ontologies.

Note, that these ontologies do not contain any ABox, therefore, adding ABox to both

the ontologies would lead to an inconsistency if Visceral Pleura has at least one instance

in any one of the ontologies.

We tested the working of our default mapping system for these ontologies. For that,

we added some individuals to classes Pleura, Visceral Pleura, Thoracic Cavity, and Lung

in O1 and ran our algorithm to generate mappings and find logical consequences from

the mappings. Furthermore, we added the following two axioms in O2 to simulate the
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Table 6.6: Results of Experiment 2
Concept O1 O2 Inferred

Pleura Ind1001, Ind1003 Ind1001
Visceral Pleura Ind1003 None
Thoracic Cavity Ind1100, Ind1101 Ind1100, Ind1101

Lung Ind1000 Ind1000
Pair Of Lungs None Ind1000

Organ None Ind1000
Body cavity subdivision None Ind1100, Ind1101

inconsistency in the merged ontologies.

O2 : Visceral Pleura v ∃O2 : Anatomic Structure Has Location.O2 : Lung

O2 : Pleura v ∀O2 : Anatomic Structure Has Location.O2 : Thoracic Cavity

The default mappings used for this test case are as follows:

O1 : Visceral Pleura vd O2 : Visceral Pleura

O1 : Thoracic Cavity vd O2 : Thoracic Cavity

O1 : Pleura vd O2 : Pleura

Table 6.6, shows the result of running our algorithm to process the default map-

pings. The first column displays the concept name, the second column shows the in-

stances added to O1 :Concept, and the third column represents the inferred instances in

O2 :concept. This exemplifies the use of default mappings, as the concept Visceral Pleura

differs in meaning in the two ontologies, only the instances of concept Pleura are car-

ried over to that of ontology O2. Furthermore, we also get inferred instances for classes

O2 :Thoracic Cavity, which would not be the case if we would remove the mapping
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O1 :Thoracic Cavity v O2 :Thoracic Cavity and gather our conclusions from the merged

ontology. The same holds for the class O2 :Body cavity subdivision. We would not get

Ind1100 or Ind1101 as logical consequences using the repair methods because of the ax-

iom O2 :Thoracic Cavity v O2 :Body cavity subdivision, and if, O1 :Thoracic Cavity v

O2 :Thoracic Cavity is removed as a repair then Ind1100, Ind1101 would not belong to the

class O2 :Thoracic Cavity. This shows that using default mappings, we get more logical

consequences whereas when we perform repair by removing axioms we lose many logical

consequences, which is an undesirable result.

The above two experiments show the utility of the default based mapping language

that we have presented in this dissertation. As it can be seen from both the synthetic as

well as the real world ontology mapping cases, the use of defaults as a mapping language

helps in avoiding inconsistencies that result due to the differences in meanings of same

conceptual entities in different ontologies and at the same time provides the tools to infer

the data about the similarity of the two ontologies.
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7 Related Work

In this chapter, we present a coverage of the related work that is relevant to this disserta-

tion. The related work is divided into two parts (1) Non-monotonic description logics, (2)

Repairing ontology alignments.

7.1 Non-monotonic Description Logics

In this section, we cover the related work in the area of integrating description logics with

non-monotonic features.

There are several approaches described in the literature for local closed world assump-

tion (LCWA) which combine the open world assumption (OWA) and the closed world

assumption (CWA) semantics, and in the following we briefly discuss some of the most

important proposals which is relevant to the grounded circumscription approach in this

dissertation.

Autoepistemic Logic [72, 73] is a thoroughly researched approach by a number of

authors. The semantics of autoepistemic logic has been defined using an autoepistemic

operator K [21, 22] and has been studied for ALC and also for more expressive DLs.

[21, 23] further provide an epistemic operator A related to negation-as-failure which allows

for the modeling of default rules and integrity constraints.

Circumscription [69] is another approach taken to develop LCWA extensions of DLs

[11, 35, 36]. [11] evaluates the complexities of reasoning problems in variations of DLs
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with circumscription. [35] provides examples to stress the importance of LCWA to provide

an intuitive notion of matchmaking of resources in the context of Semantic Web Services.

[36] provides an algorithmization for circumscriptive ALCO by introducing a preferential

tableaux calculus, based on previous work on circumscription [10]. [53] proves a method to

eliminate fixed predicates in circumscription patterns by adding negation of fixed predicates

to the minimized set of predicates. A more recent work [8], contains a bigger coverage of

complexity results for various fragments of DLs under the semantics of circumscription.

An extension of grounded circumscription is presented in [7] which covers the reasoning

procedure for integration of circumscription and the DL SROIQ.

Some significant proposals involve the use of hybrid MKNF knowledge bases [44, 54,

75] which are based on an adaptation of the stable model semantics [30] to knowledge bases

consisting of ontology axioms and rules, thereby combining both open world and closed

world semantics. A variant of this approach using the well-founded semantics which has

a lower computational complexity of reasoning has also been presented [55, 54], and the

corresponding algorithms and implementations have been developed in [2, 33].

[25] takes a hybrid approach to combine ontologies and rules by keeping the semantics

of both parts separate and at the same time allowing for building rules on top of ontologies

and vice versa with some limitations, again following the Stable Model Semantics. [26]

provides a related well-founded semantics.

Some of the work related to LCWA also involves the use of integrity constraints (ICs)

and of the Unique Name Assumption (UNA). An approach extending OWL ontologies to

add ICs such that it adds non-monotonicity to the DL is [74]. [90] provides semantics for

OWL axioms to allow for IC and UNA to achieve local closed world reasoning. A recent

approach [78] proposes the use of ICs using the semantics of grounded circumscription.

In [87], the notion of DBox is introduced. A DBox consists of a set of (atomic) as-

sertions such that the extension of a DBox predicate under any interpretation is exactly as

defined by this set of assertions. In a sense, grounded circumscription encompasses this
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expressive feature but goes beyond it, while, as expected, loosing some of the desirable

features of the more specialized DBox approach.

Related to the notion of free defaults, a series of work has recently been published

which is related to typicality reasoning in description logics [31], in which the authors pro-

vide a minimal model semantics to achieve typicality. While our work is also based on

preferred models, our goal is to follow some of the central ideas of default logic and to

adapt it to provide a model-theoretic approach to defaults in DLs. Exact formal relation-

ships between different proposals remain to be investigated. Other approaches that could

be used to simulate defaults include circumscription [11, 84], while again the exact rela-

tionship between the approaches remains to be investigated. Also [9] talks about defeasible

inclusions in the tractable fragments of DL, which again follows a similar intuition. We

understand our proposal and results as a contribution to the ongoing discussion about the

best ways to capture non-monotonic reasoning for Semantic Web purposes. Recent work

[18, 16, 17] has been proposed in integrating the semantics of rational closure and KLM

style semantics to DLs. These are alternative semantics to defaults and thus give a different

perspective for apply defeasible logic to DLs.

7.2 Ontology Alignment Repair

The second part in this discussion of the related work involves the area of ontology align-

ment repair. As the main purpose of this research work is to provide a robust ontology

mapping language, we take a look at other approaches that could be used to resolve the

problematic alignments which result due the use of monotonic description logic (DL) con-

structs.

Paraconsistent description logics [62, 64, 65] make use of four-valued logics in order

to deal with inconsistencies in knowledge bases. The semantics could be used to reason

over merged ontologies even when the mappings cause an inconsistency under the mono-
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tonic DL semantics.

Another approach which could be used to enable interchange of data using ontology

mappings is the idea of distributed description logics (DDL) mainly proposed by [12, 85,

86]. DDL was designed to enable reasoning between multiple ontologies by using the so

called bridge rules which are nothing but mappings using description logics axioms. This

could be seen as an alternative approach to what we have proposed in this dissertation.

This work also led to what is known as context OWL (C-OWL) [13] which provides the

framework for DDL to contextualize ontologies. In [89], the authors propose how C-OWL

could be used for alignment of medical ontologies.

With respect to repairing ontology alignments there are approaches like [60, 71]. On-

tology mapping repair systems like Alcomo [70], ContentMap [49] and LogMap [48] have

been developed that make use of justifications to identify possible repairs. A justification

for a inconsistent ontology or a unsatisfiable concept is a minimal set of axioms which taken

together cause the inconsistency. A repair is then to choose which of the axioms should

be removed to perform repair. Therefore, the existing mapping repair systems remove one

of the mapping axioms that belong to the set of justifications, whereas in our approach we

partially apply the mappings to those individuals only that do not cause an inconsistency,

thereby getting more logical consequences than the case of mapping repair.

The work in [71] is specifically close in spirit to our approach, though we provide a

much more detailed semantic treatment which is closely related to Reiter’s defaults and

answer set programming. Our approach also forms a basis for a mapping language rather

than focusing on the repairing of ontology alignments.
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8 Conclusion

The objective of this work was to set the grounds for a robust ontology alignment lan-

guage, such that applying the mappings do not render the ontologies useless. We provide

a summary of the results obtained in this dissertation and point out some of the possible

directions in which future work could extend/improve the results of this dissertation.

8.1 Summary

The contribution of this dissertation can be grouped into two broad categories: (1) Ad-

vancing the integration of non-monotonic logics with description logics, (2) Providing a

basis for a new and powerful alignment language. The first part of this dissertation was to

identify non-monotonic extensions of description logics that could be used as a basis for a

robust ontology alignment language. In the second part, we identify a default based map-

ping language for a particular query answering scenario for tractable description logics. In

the following sections, we summarize the contributions of this research work.

8.1.1 Grounded Circumscription (GC)

We provide a new semantics to circumscription which is more intuitive, as well as, has

the property of decidability for all the reasoning tasks, even when roles are minimized.

Furthermore, we also provide reasoning procedures to compute logical consequences of
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knowledge bases using the semantics of GC. Indeed, the results shown in Chapter 3 im-

prove upon previously known decidability results from [11], which showed that having

closed roles with a non-empty TBox leads to undecidability. This was a severe limitation

as decidability is the minimal requirement of any logic to be used in practice. We also

argue in Chapter 3 that the semantics of GC is more intuitive than that of circumscription,

as we restrict the extensions of the closed predicates to named individuals only.

In fact, the applicability of GC is visible by its use in applications like [78], where

the authors propose an extension of integrity constraints based on GC and [67], as it makes

use of GC closure semantics to model an ontology design pattern to address the issue of

quantification over types.

8.1.2 Free Defaults

In Chapter 4, we introduced a new semantics for defaults when integrated with description

logics. The decidability results shown in [6], essentially meant that defaults could only be

used with description logics when the application of the default rules are restricted only to

the named individuals in the knowledge base. However, in the case of defaults, it is rather

counter-intuitive to not apply default rules to unknown individuals. In free defaults, we

modified the semantics of defaults description logics by treating default rules as subsump-

tion for unknown individuals, such that exceptions can occur only in named individuals,

but defaults always apply to unknowns.

We showed that free defaults are decidable with the new, more intuitive semantics.

Furthermore, we also showed decidability results for having role defaults which was previ-

ously not known. Various examples of application of free defaults is also shown in Chap-

ter 4.
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8.1.3 Mapping Language For ER⊥,O

The mapping language introduced in Chapter 5 overcomes the limitations of integration of

defaults with description logics. Wherein, we show that the application of defaults need

not be restricted to named or unknown individuals. The scenario considered in this chapter

is a framework with many, perhaps, heterogeneous ontologies at the lower-level and one

over-arching ontology, such that, mappings from the lower-level ontologies are directional

mappings to the over-arching ontology. This facilitates a query answering framework, such

that queries can be framed using the vocabulary of the over-arching ontology and answers

may contain individuals from the lower-level ontologies. Such a framework could also

be used to understand the agreements and disagreements among the various lower level

ontologies. This seems to be a very useful scenario given the heterogeneous nature of data

descriptions across the ontologies over the web.

Apart from the usefulness of the ER⊥,O based mapping language, the most significant

contribution of this work is to provide the first fragment of description logics, in which

defaults could be integrated without the restrictions that were previously placed on the ap-

plication of defaults in order to retain decidability. In fact, the proposed approach could be

adapted to any of the tractable fragments of description logics which are commonly known

as the EL family of logics. This research work opens the doors for further investigations on

the fragments of description logics where defaults could be applied in an unrestricted man-

ner. This leaves us with an open question to be answered: Is the unrestricted integration of

defaults with non-tractable fragments of description logics truly undecidable?

Besides the theoretical foundations of a mapping language, we also implemented a

proof of concept system to evaluate the utility of the proposed framework in real world

applications. The experiments show promising results as we evaluate two mapping scenar-

ios. In one, we show how our system behaves in practice when we try to map the example

ontologies that present different world views on marital relationships. Indeed, the system
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performs as expected by avoiding inconsistencies due to the mapping but at the same time

provides useful answers to the queries. In the second experiment, we take two real world

ontologies and again exemplify the utility of our approach to map ontologies.

8.2 Future Work

There are many directions in which future work could be pursued, extending the contri-

butions of this dissertation. Indeed, there are some theoretical as well as some practical

research questions that can be worked on in the future.

From the theoretical point of view, a detailed computational complexity analysis of

the approaches presented in this dissertation would definitely be of worth to the researchers

working in the area of the semantic web. Tight complexity bounds provide a good insight

on the practical utility of the approaches. Therefore, establishing the complexity classes

for our approaches, namely, grounded circumscription , free defaults and the default logic

based mapping language would already be a substantial future work. For grounded cir-

cumscription and free defaults, we can also find the complexity of reasoning tasks for all

the major fragments of DLs. We refer the interested reader to [11] as an inspiration for

complexity analysis of a related approach.

Scalability is a major challenge when it comes to reasoning algorithms for the non-

monotonic extensions with description logics. All the approaches discussed in this disser-

tation have a common problem, i.e., identifying the sets of maximal/minimal individuals

in order to perform the reasoning tasks. In the worst case, we may end up checking all

possible combinations and compare each other for maximality/minimality. The complexity

of the brute force method to find all the maximal/minimal models of the knowledge base,

would be at least exponential to the size of the set of all the named individuals in the knowl-

edge base. Therefore, finding efficient procedures to perform the reasoning tasks of these

approaches would be of prime importance.
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The approach of summarizing ABox [28] could be adopted to produce efficient algo-

rithms for our non-monotonic extensions of DLs. The idea of summarization, is to com-

press the size of the set of all the instances in the knowledge base by replacing it with a

much smaller set of representative individuals. This results in a considerable amount of

compression in the ABox. As discussed earlier, the larger the size of the ABox, the rea-

soning tasks become more time intensive. Therefore, shrinking the ABox would be useful

in practice. The algorithms presented in [6], could also be used as inspiration to find the

minimal/maximal models for the non-monotonic extensions. In [6], the authors present

an algorithm to identify minimal inconsistent and maximal consistent sets of individuals.

They employ a modified version of the tableaux procedure ofALC to compute the maximal

consistent ABox to identify extensions of terminological default theories. The algorithm

presented in this paper could, in fact, be adopted to implement an efficient procedure for

grounded circumscription as well as for free defaults. It would be even more interesting to

analyze the performance when we combine the summarization techniques and the maximal

consistency algorithms to solve the reasoning problems for grounded circumscription and

free defaults.

For the default logic based mapping language, algorithmic improvements could be

achieved by understanding the sets of axioms that are mutually in conflict. For example,

consider that we have two default mapping axioms, C vd D and A vd B, for ontologies

O1 and O2. Now, if O2 |= D u B v ⊥, then the same individual a cannot be carried over

through both the defaults at the same time, as it would cause an inconsistency. In other

words (O1,O2, δ) 6|= D(a) and (O1,O2, δ) 6|= B(a). We would then consider these two

mapping axioms to be in mutual conflict. Therefore, if we could possibly identify the set of

all mutually conflicting axioms as a pre-processing step, it would allow us to eliminate a lot

of combinations without actually testing for inconsistency, thereby, improving the overall

performance.

Of course, a solid implementation of the efficient algorithms could also be a part of
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further future work. The implementation would allow the use of the approaches discussed

in this dissertation for practical applications.

In this dissertation, we provided a default logic based mapping language, which does

not place any restrictions on the application of the defaults to named or unknown individu-

als. We do so for the tractable fragments of DLs, however, with the restriction of one-way

mappings from a set of ontologies to one over-arching ontology. The results of this work

could be extended by investigating the decidability of this approach when the restriction of

one-way mappings is lifted. The results would provide a significant understanding of the

extent to which default logic can be integrated with DLs.

We have shown in this work, that there are still a lot of questions to be answered with

regards to the integration of default logic with DLs. Indeed, we showed in the results of

free defaults that there is scope in developing less restrictive approaches to deal with de-

fault logic in DLs. The major research question that needs to be looked at, is finding the

maximal combination of DLs and default logic, which is decidable. Indeed, the answer to

this question at the moment is that we do not know. The complications that arise when

trying to prove the decidability/undecidability of the integration of default logic with DLs

are the interplay between default rules and dealing with unknowns. We were able to show

decidability results for the tractable fragments of DLs, as they have the property that lets

us reuse the unknowns as role fillers for existentials on the right hand side of GCIs, with-

out losing any logical consequences. However, this is not the case for expressive DLs,

therefore, proving the decidability/undecidability is a rather complicated task.

There is also a possibility of investigating the relationship of the default logic integra-

tions presented here with other related approaches that deal with defeasibility in description

logics, including [31, 18, 16, 17]. The analysis could include a thorough comparison of the

logical consequences obtained by these approaches, this would lead to a better understand-

ing of relationships among these approaches.

The aim of this research work, was to provide a way to facilitate data interchange of
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heterogeneous data sources. We provided, a default logic based mapping language that

takes an alternative approach than the traditional ontology mappings. Instead of using

description logic axioms to map and merge the ontologies, we make use of mappings as

default rules that provide a bridge between various data sources. We carry over individuals

from one knowledge base to other using these rules, such that inconsistency is avoided

and, at the same time, sensible logical consequences are derived. We believe, that this

lays a solid foundation for future research work in the area and the above remarks provide

interesting and valuable research tasks to pursue.
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A Appendix

Ontologies for Experiment on Marriage Example

Marriage Ontology 1 in OWL Functional Syntax

Prefix(:=<http://daselab.org/ontologies/marriage2#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)

Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)

Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Prefix(marriage2:=<http://daselab.org/example/marriage2#>)

Ontology(<http://daselab.org/example/marriage2>

Declaration(Class(marriage2:Female))

Declaration(Class(marriage2:Male))

Declaration(ObjectProperty(marriage2:hasSpouse))

Declaration(NamedIndividual(marriage2:david))

ClassAssertion(marriage2:Male marriage2:david)

ObjectPropertyAssertion(marriage2:hasSpouse marriage2:david marriage2:mike)

Declaration(NamedIndividual(marriage2:jacob))

ClassAssertion(marriage2:Male marriage2:jacob)

ObjectPropertyAssertion(marriage2:hasSpouse marriage2:jacob marriage2:jane)
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Declaration(NamedIndividual(marriage2:jane))

ClassAssertion(marriage2:Female marriage2:jane)

Declaration(NamedIndividual(marriage2:julie))

ClassAssertion(marriage2:Female marriage2:julie)

Declaration(NamedIndividual(marriage2:mark))

ClassAssertion(marriage2:Male marriage2:mark)

ObjectPropertyAssertion(marriage2:hasSpouse marriage2:mark marriage2:julie)

Declaration(NamedIndividual(marriage2:mike))

ClassAssertion(marriage2:Male marriage2:mike)

)

Marriage Ontology 2 in OWL Functional Syntax

Prefix(:=<http://www.semanticweb.org/kunal/ontologies/2015/6/marriage1#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)

Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)

Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Ontology(<http://www.daselab.org/example/marriage1>

Declaration(Class(:Female))

DisjointClasses(:Female :Male)

Declaration(Class(:FemaleSpouse))

EquivalentClasses(:FemaleSpouse ObjectSomeValuesFrom(:hasSpouse :Female))

SubClassOf(:FemaleSpouse :Male)

Declaration(Class(:Male))

DisjointClasses(:Male :Female)

Declaration(Class(:MaleSpouse))
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EquivalentClasses(:MaleSpouse ObjectSomeValuesFrom(:hasSpouse :Male))

SubClassOf(:MaleSpouse :Female)

Declaration(ObjectProperty(:hasSpouse))

Declaration(NamedIndividual(:john))

ClassAssertion(:Male :john)

ObjectPropertyAssertion(:hasSpouse :john :mary)

Declaration(NamedIndividual(:mary))

ClassAssertion(:Female :mary)

)

Output of Experiment 2 - Biomedical Ontologies

Printing all instances of class Space of compartment of trunk>

<ind1101>

<ind1100>

Printing all instances of class Parenchymatous organ>

<ind1000>

Printing all instances of class Cardinal organ part>

<ind1103>

<ind1102>

Printing all instances of class Material anatomical entity>

<ind1102>

<ind1000>

<ind1103>

Printing all instances of class Membrane>

<ind1103>

<ind1102>

Printing all instances of class Anatomical structure>
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<ind1000>

<ind1102>

<ind1103>

Printing all instances of class Physical anatomical entity>

<ind1101>

<ind1100>

<ind1102>

<ind1000>

<ind1103>

Printing all instances of class Anatomical entity template>

<ind1100>

<ind1102>

<ind1000>

<ind1101>

<ind1103>

Printing all instances of class General anatomical term>

<ind1103>

<ind1102>

Printing all instances of class Anatomical compartment space>

<ind1101>

<ind1100>

Printing all instances of class Attribute entity>

<ind1102>

<ind1103>

Printing all instances of class Set of organs>

<ind1000>

Printing all instances of class Set of viscera>
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<ind1000>

Printing all instances of class Organ>

<ind1000>

Printing all instances of class Lobular organ>

<ind1000>

Printing all instances of class Anatomical entity>

<ind1103>

<ind1000>

<ind1101>

<ind1100>

<ind1102>

Printing all instances of class Anatomical space>

<ind1101>

<ind1100>

Printing all instances of class Solid organ>

<ind1000>

Printing all instances of class Lung>

<ind1000>

Printing all instances of class Thoracic cavity>

<ind1101>

<ind1100>

Printing all instances of class Immaterial anatomical entity>

<ind1100>

<ind1101>

Printing all instances of class Standard FMA class>

<ind1000>

<ind1101>
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<ind1100>

<ind1102>

<ind1103>

Printing all instances of class Anatomical set>

<ind1000>

Printing all instances of class Miscellaneous term>

<ind1103>

<ind1102>

Printing all instances of class Pair of lungs>

<ind1000>

Printing all instances of class Body cavity subdivision>

<ind1101>

<ind1100>
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