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Knowledge graphs are a novel paradigm for the representation, retrieval, and
integration of data from highly heterogeneous sources. Within just a few years,
knowledge graphs and their supporting technologies have become a core component
of modern search engines, intelligent personal assistants, business intelligence, and
so on. Interestingly, despite large-scale data availability, they have yet to be as
successful in the realm of environmental data and environmental intelligence. In
this paper, we will explain why spatial data requires special treatment, and how
and when to semantically lift environmental data to a knowledge graph. We will
present our KnowWhereGraph that contains a wide range of integrated datasets
at the human-environment interface, introduce our application areas, and discuss
geospatial enrichment services on top of our graph. Jointly, the graph and services
will provide answers to questions such as ‘what is here’, ‘what happened here
before’, and ‘how does this region compare to . . . ‘ for any region on earth within
seconds.
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Introduction and Motivation

Successful decision-makers have strong
situational awareness. They have a
comprehensive understanding of the context
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in which their actions will play out. In our
global, fast-paced, and densely interconnected
world, this context stems from a wide
range of heterogeneous resources that
span the physical and social sciences. For
instance, decision-makers at humanitarian
relief organizations need an immediate
understanding of physical perils and the
regions they affect. When a hurricane causes
a disaster, getting supplies to the local
population at the right time and location is
key. Relief coordinators also need information
about previous events such as cholera
outbreaks that may have affected the region
before the hurricane makes landfall and
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Figure 1. : A layer-wise depiction of the architecture of KnowWhereGraph and the services
and use-cases that it supports (as of August 2021).

experts on the ground who can coordinate
relief.

Similarly, the agricultural sector, including
government agencies, food industry
associations, individual farmers, and retailers,
requires immediate access to data about
food safety, wildfires, floods, air pollution,
worker health, supply chain disruptions, and
transportation networks. For instance, our
partners at the Food Industry Association
(FMI) want to understand how a wildfire at
one place may impact leafy greens, grapes,
and the health of workers at another place
100 miles away due to heavy smoke and ashes.
Making decisions based on such data is called
Environmental Intelligence and is gaining
traction due to increased environmental stress,
correlated shocks, just-in-time supply chains,
and a growing interest in Environmental,
Social, and Corporate governance (ESG).

Unfortunately, for practical data-driven
decision-making and data science, the first
stages of gaining situational awareness
consume 80% of a project’s resources, be
it funds, time, or person power. This
leaves merely 20% of the resources for the
actual analysis that determines the quality
of the decisions. More concretely, most
resources are spent on data retrieval, cleaning,
and integration rather than on deriving
insights from data. This puts data-driven
decision-making out of range for many tasks.
Several solutions to this well-known data
acquisition bottleneck have been proposed,
both in industry and academia. Most either
target the retrieval problem by envisioning
one-stop data portals or aim at cloud-based
access and processing of data.

In the realm of Geographic Information
Systems (GIS), one partial solution are

geo-enrichment services. For instance, Esri’s
GeoEnrichment service enables analysts to
enrich their local data on-demand with a
range of up-to-date demographic variables
apportioned to their area of concern and need.
This has a number of advantages: (1) In
theory, data is always up-to-date and does not
age on the analyst’s hard disk; (2) In times
of misinformation and information overload,
the data comes from a trusted resource; (3)
the data is tailored (apportioned) to the
analyst’s study area; and finally, (4) the data
is GIS-ready in the sense that it can be directly
processed, analyzed, and displayed. While
current geo-enrichment services are valuable,
they also face four key limitations: (1) They
only serve data for a small set of predefined
categories, such as demographic data. (2)
They are closed data silos that encode just
one domain/cultural perspective. (3) Because
they are centrally maintained, scalability and
timely updates become bottlenecks when those
services try to incorporate more (diverse) data.
(4) They do not have an integration layer that
enables follow-up queries over the enriched
data. Consequently, a new approach is needed
that combines the strength of geo-enrichment
services, i.e., seamless access to contextual
information for an analyst’s areas of concern,
with a technology that provides open, densely
integrated, cross-domain data across a wide
range of perspectives (Janowicz (2021)).

For these challenges, knowledge graphs
(KGs) promise to provide a solution (Noy et
al. (2019); Hogan et al. (2020)). They are
a combination of technologies, specifications,
and data cultures for densely interconnecting
(Web-scale) data across domains in a human
and machine readable and reasonable way.
They are a novel approach to publishing,
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representing, integrating, and interlinking
individual data (not merely datasets) by
concentrating on connections among places,
people, events, and entities instead of their
properties. More formally, a KG (as a set
of node-edge-node statements called triples)
can be thought of as a node and edge
labeled directed multigraph. While the term
knowledge graph itself does not prescribe
any particular technology stack, the largest
publicly available KG is the Linked Data cloud
based on the RDF/Semantic Web technology
stack (Bizer, Heath, and Berners-Lee (2011)).
Interconnected statements can be of the form
ThomasFire → affected → SantaBarbara
and SantaBarbara → partOf → California.
Together with schemata (ontologies) specified
in knowledge representation languages, these
triples would entail a third triple, namely that
the Thomas Fire happened in California. As
these ontologies encode the semantics of the
used terminology, they foster interoperability
without restricting semantic heterogeneity
(Janowicz et al. (2015); Hitzler (2021)).

Inspired by open knowledge graphs such
as DBpedia (Lehmann et al. (2015)) and
Wikidata (Vrandečić and Krötzsch (2014))
and services such as GeoEnrichment, our
KnowWhereGraph provides a densely
connected, cross-domain knowledge graph
and geo-enrichment services for a wide range
of applications in environmental intelligence
by giving decision-makers and data analysts
on-demand access to area briefings at a
high spatial and temporal resolution for
any location on the surface of the earth.
To do so, we translate data about extreme
events, administrative boundaries, soils, crops,
climate, transportation, and so on, into a KG
and pre-integrate them to provide answers
to questions such as ‘what is here’, ‘what
happened here before’, ‘how does this region
compare to . . . ‘. While DBpedia and Wikidata
contain only rudimentary information about
places/regions, such as their populations, we
give rapid access to information such as the
wildfires that have affected an area, the major
transportation axis crossing a certain region,
and the type of crops and soils present in a
given region.

Technological Approach

KnowWhereGraph is quickly and continuously
growing as new data silos are identified, and

subsequently integrated into our graph, based
on the needs of our users and application
scenarios. We have developed a number of
techniques and ontologies to aid in growing
and maintaining KnowWhereGraph. Figure 1
shows a layer-wise view of KnowWhereGraph,
as well as the services and use-cases it supports,
which directly correspond to many of our
techniques.

First and foremost, many of our data
sources naturally overlap in space and
time and we need to manage a vast
amount of heterogeneous spatial data. To
do so, we partially depart from traditional
linked data approaches that often represent
spatial regions as points or polygons on
the earth’s surface. Instead, we utilize a
Discrete Global Grid (Bondaruk, Roberts,
and Robertson (2020)) called the ‘‘S2 Grid
System’’. This lays a hierarchical grid over
the earth’s surface; each grid cell in a level
is comprised of four subcells of increasing
spatial resolution. KnowWhereGraph serves
data at least at S2 Level 11 (about 20
km2 per cell) for the USA. However, some
regions may have a substantially higher
resolution based on data availability, rates of
change, and application needs. This approach
provides a compromise between data precision
and access speed in such a way that it
does not preempt downstream, finer-grained
topological investigations of the original
geometries. Figure 2 depicts selected triples
from KnowWhereGraph about regions affected
by a hurricane, the impacts, and experts
on storm-related topics. In addition to grid
cells, we serve many other region identifiers
with globally unique IDs so that users can
request information about them or interlink
and thereby enrich their own data. Examples
include, FIPS codes, ZIP codes, media market
areas, national weather zones, administrative
areas, and gazetteer features, and so on.

Using the S2 grid system as a base, we
developed a design pattern1 for easily relating
how features and regions may interact
throughout the hierarchy. Additionally, we
have adopted a number of open standards
such as GeoSPARQL2 and the Sensors,
Observations, Sample, Actuator (SOSA)
ontology3 and its extension (Zhu et al. (2021)),
as well as other frequently used ontologies

1
https://github.com/KnowWhereGraph/hierarchical-cell-features

2
https://www.ogc.org/standards/geosparq

3
https://www.w3.org/TR/vocab-ssn/

https://github.com/KnowWhereGraph/hierarchical-cell-features
https://www.ogc.org/standards/geosparq
https://www.w3.org/TR/vocab-ssn/
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Figure 2. : Triples from KnowWhereGraph about a hurricane, impacted areas, impacts, and
experts on relevant topics.

such as QUDT 4. Modelling all data from
a sensor & observation perspective eases
querying, connecting data to the geographic
features they describe, and also enables us to
link data about events with human experts
and research results. Finally, we also worked
on connectivity and coverage of our graph. In
particular, we provide
• enriched representations of regions, such as

climate divisions or counties, and link them
to entities from Wikidata or the Geographic
Names Information System, where possible,
giving instant access to a wide range of broad
contextual information such as population
density, previous extreme events, soil health,
and so on;

• topological relations (e.g., RCC8) among
regions for flexible inference and triple
compression; and

• link together events and places through
causal relationships and provenance (Shimizu
et al. (2021)). For instance, we model where
a fire took place, which events it triggered,
and which regions have been affected, e.g.,
by heavy smoke.

Altogether, this allows domain scientists
to represent geospatial objects, which are
traditionally represented as vector geometries,
as a collection of S2 cells at various hierarchical
grid levels and instantly have tight integration

4
http://www.qudt.org/

with any other dataset in KnowWhereGraph.
In Figure 2, for example, we focus on named
places such as counties, but users may request
storm damage for any collection of S2 grid
cells. The level of S2 cells is not uniform across
regions but depends on data layers and (in the
future) also on the underlying variation within
these layers across space.

Challenges and Relation to Artificial
Intelligence

Knowledge graph technology is to a substantial
part based on Knowledge Representation
(KR) methods and thus on the corresponding
subfield of Artificial Intelligence (Hitzler
(2021)). In particular, the central W3C
standards RDF (Resource Description
Framework Cyganiak, Wood, and Lanthaler
(2014)) and OWL (Web Ontology Language
(Hitzler et al. (2012))) for representing graphs
and their schemas (known as ontologies), are
formal logics in the tradition of the KR field
(Hitzler, Krötzsch, and Rudolph (2010)).

However, in contrast to traditional lines
of KR research, recent developments in
knowledge graph data management shift
the focus to pragmatics, in particular how
to make knowledge representation work in
practice--at industrial scale, functionality, and
stability levels--for data management. While

http://www.qudt.org/
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traditional academic literature on KR has a
heavy focus on developing KR languages and
provably correct and theoretically analyzed
algorithms, pragmatic aspects such as the
question which KR approach works the best
in which situation, or how to apply a KR
framework or representation language to an
industry scale problem, have played a minor
role in academic outlets. Similar questions such
as how to lift individual data to the graph,
when to do so, at which resolution (e.g., level
of granularity), and how to balance schema
complexity between optimizing for use versus
re-use remain largely unanswered.

KnowWhereGraph focuses on this
transition gap between theoretical results and
applicability in practice. In particular, it is
about the general question of how to achieve
practically relevant levels of scale and speed
based on real high-volume heterogeneous
data from diverse sources, and how to do
this without an undue compromise of the
quality in representation and solutions that
come out of the KR field. In other words,
KnowWhereGraph is about finding the right
trade-off between principled approaches and
rapid, scalable development. It is about
finding the sweet spot between theory and
practice. In case of KnowWhereGraph, this
happens in the context of a multidisciplinary
setting that requires rapid convergence across
topics such as climate forecasts, extreme
events, health, supply chains, and even the
spatio-temporal bounds of human expertise
for our pilot in disaster relief. Integrating
these datasets also requires solutions that can
handle noisy and missing (and contradictory)
data, as well as changes in perspective as they
relate to different schema, and services that
enable data exploration using similarity-based
search. To handle real-world and noisy data,
our work combines symbolic and sub-symbolic
methods for representation and reasoning.

Particular challenges related to Artificial
Intelligence that we address are (1) bringing
principled KG methods to a level of maturity
sufficient for transfer to industrial practice, (2)
scaling up of methods and processes for our
applications for which we currently project a
required knowledge graph containing about
10 billion triples, and (3) knowledge graph
methods and tools development that is aimed
at maximum flexibility for future growth,
extension, and reuse.

Specific innovations within the
KnowWhereGraph work that are relevant for
Artificial Intelligence include:
• In terms of representation of spatial

knowledge, we have combined hierarchical
grids with standard region boundaries
and Region Connection Calculus methods
(Zalewski, Hitzler, and Janowicz (2021)),
in what we believe is a novel approach
for knowledge graphs to meet scale and
uniformity requirements.

• In terms of access to large-scale spatial
data, we are integrating knowledge graph
and GIS technology by offering graph-based
geo-enrichment and n-degree property path
queries from within a GIS.

• With respect to knowledge representation
methods, we are combining top-down and
bottom-up ontology engineering processes
with a principled modular approach to
knowledge graph schema development to
balance between quality of the graph model
and speed of development and integration.

Current Status

While KnowWhereGraph can serve a wide
range of domains and use cases that require
spatial data and spatial question answering,
we have three initial pilots:
• Humanitarian relief: Together with Direct

Relief we demonstrate how our technologies
can inform humanitarian supply chains and
help identify and match domain experts to
the needs of an emerging crisis.

• Farm to Table Supply Chain &
Sustainability: In collaboration with the
Food Industry Association, we demonstrate
how knowledge graphs can enhance the
sustainability, efficiency, and safety of
consumer food supply with a focus on the
impact of wildfires on agriculture and food
security.

• Land Valuation and Risk of Default:
This new pilot is a joint research with
farm credit associations concerned with
driver-based land potential assessment for
model based valuation and risk assessment
for agricultural credit applications and loan
portfolio monitoring.
To date we have included 27 different

data layers from 16 major data sources that
extensively cover the topics discussed in the
domain application areas (e.g., climate hazard,
wildfire, and air quality). At the time of
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writing, KnowWhereGraph already consists of
about 4.9B triples, and we expect it to grow
to as many as 10-20B triples over the next
years as we ingest additional data. We will also
provide area briefings at even higher S2 cell
resolution, achieve global coverage (beyond
our mostly US-centric data), as well as mine
new and more complex relationships across the
described places and events.

Built upon the KnowWhereGraph, our
geo-enrichment services provide a set of
toolboxes which support domain scientists
to explore environment-related knowledge
from within a GIS in various ways such
as region-based spatial data retrieval (e.g.,
soil polygons can be retrieved based on a
user-defined study area as shown in Figure 3a),
property enrichment for geographic entities
(e.g., querying a crop productivity index for
each of millions of soil polygons), direct
relation exploration among geographic entities
(e.g., querying for landslides on soils previously
affected by wildfires as shown in Figure
3b), and n-degree relation identification (e.g.,
SoilPolygonA → affectedBy → ThomasFire
→ causedEvent DebirsFlowX).

We have also developed a range of additional
services tailored to our vertical applications.
For example, the KnowWhereGraph enables
disaster relief specialists to explore knowledge
about experts and their areas of expertise,
as related to specific disasters. To achieve
this, we provide a similarity search interface
and a follow-your-nose interface, which are
shown in Figure 4. In case of the similarity
interface, users can type in an expert name
into the search box and the system will return
the top 15 experts who are most similar.
The similarity score is computed using a
combination of Doc2Vec and knowledge graph
embedding techniques (Le and Mikolov (2014);
Mai, Janowicz, and Yan (2018)), which are
computed based on the particular expert’s
three most cited papers, three most recent
papers, and their relation to other experts in
the graph. Figure 4 (left) shows an example
of the similarity search. From there, users can
directly search information about the experts,
their area of expertise, and events that they
have worked on. Conversely, users can start by
selecting a certain event or a geographic region,
learn about previous events, their impacts, and
the relevant experts that could be contacted.
In fact, this ability to seamlessly navigate
between physical events, areas of expertise,

(a) Retrieving soil polygons

(b) Retrieve wildfires that affected soil polygons

Figure 3. : Our Knowledge Graph b ased
geo-enrichment toolbox collections for ArcGIS
Pro. (a) The GeoSPARQL Query toolbox (b)
The Property Enrichment toolbox.

affected regions, and people is one of the key
strengths of our knowledge graph.

Figure 4. : Left: Similarity interface for
experts. Right: Follow-your-nose interface for
previous disasters.

In terms of our food safety work,
KnowWhereGraph is used to enhance
assessment and strategic planning during near
real-time hazard events affecting the food
supply chain by providing online analysis,
forecasting, and alerts that are enriched with
location and context-specific intelligence,
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to ensure key stakeholders throughout the
supply chain are ready with backup strategies
to keep products moving. It also allows
farmers and growers to identify how they
can be better prepared to mitigate and build
resilience in the face of such events. Currently,
our graph serves pre-integrated data about
wildfires, smoke plumes, and crop locations,
together with topological information about
the affected areas. In one implementation
for FMI, a custom front-end web interface
(Figure 5) and API enables decision-makers
to process a series of queries important to
assessing the impact of ongoing wildfires,
smoke plumes, and ashes on key food (crop)
supply chains. Users can progress through
these queries without any experience in using
complex GIS software or the specific data
and analysis techniques necessary, seeing
visualizations of the results at each step.
Despite the simplicity of this system, the
interface is dynamically generating SPARQL
queries based on the user inputs (e.g., defining
a region of interest, selecting multiple crop
types), sending these queries to the graph via
an API and receiving/displaying the results,
all within a matter of seconds. This system
highlights the ease with which new bespoke
end-user applications can be developed from
the core resources of the KnowWhereGraph,
enabling a multitude of use cases at the
human-environment interface.

Figure 5. : Wildfire crop impacts interface
displaying a smoke plume (yellow shape) from
July 4, 2018 associated with the County Fire
(red outlined shape). Within this plume we
have queried for areas with high densities of
grapes to identify areas where the crop may
be affected by smoke taint.

Future Plans

In this work, we have introduced the
KnowWhereGraph, a densely connected,
cross-domain knowledge graph together with
geo-enrichment services to support a variety
of application areas that benefit from
environmental intelligence. Our graph delivers
area briefings for any place on earth within
seconds to answer questions such as ‘what
is here’ or ‘what happened here before’. For
instance, decision-makers and data scientists
can easily retrieve all extreme events (e.g.,
previous storms, fires, cholera outbreaks) that
have impacted an area that is predicted to
be in the path of an approaching hurricane.
Most importantly, we do not only serve data
layers, but also connections across them. For
instance, graph hubs such as Wikidata or
DBpedia contain information about Santa
Barbara, the Thomas Fire, highway 101, and
the 2018 debris flow in Southern California.
However, they do not locate the fire nor
the debris flow and most importantly do not
contain facts such that the fire affected Santa
Barbara and that the fire and a massive storm
caused a debris flow that killed 23 people
and disrupted transportation for weeks as it
blocked highway 101. This is exactly the type
of relationships that we are most interested in.
We also do not just serve data at predefined
levels, e.g., counties, but deliver a variety of
regions identifiers thereby making KWG a
gazetteer of gazetteers. I addition, we also
serve data registered to fine-grained global grid
cells. So far, the KnowWhereGraph largely
contains information about the US due to
easy access to high-quality, well-documented
governmental data, as many of our use cases
revolve around the US, and to keep the
graph size at bay. In the future, we will
increase global coverage, add more data layers,
enable geo-enrichment for open source GIS
and spatial statistics packages in general, and
mine more (complex) relationship across our
entities with the ultimate goal of creating a
global knowledge graph of environmental and
geographic information.
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