
A Functional API for OWL

Aaron Eberhart[0000−0003−3007−5460] and Pascal Hitzler[0000−0001−6192−3472]

Data Semantics Lab, Kansas State University, USA
{aaroneberhart, hitzler}@ksu.edu

Abstract. We present (f OWL), a minimalistic, functional program-
ming style ontology editor that is based directly on the OWL 2 Struc-
tural Specification. (f OWL) is written from scratch, entirely in Clojure,
having no other dependencies. Ontologies in (f OWL) are implemented
as standalone and homogeneous data structures, which means that the
same exact functions written for single axioms or expressions often work
identically on any part of an ontology, even the entire ontology itself.
The lazy functional style of Clojure also allows for intuitive and simple
ontology creation and modification with a minimal memory footprint.
All of this is possible without ever needing to use a single class, except
of course in the Ontologies one creates!

1 Motivation

The semantic web community has widely adopted the OWL API [2] for ontology
creation and development. Many researchers and programmers find this software
very useful and enjoy its Object-Oriented style. Other APIs for OWL have also
been written in imperative languages like Owlready [3] in Python. However, some
developers prefer to program in functional languages and find that the imperative
style APIs are more of a hindrance than a help when dealing with ontologies.
There has been work towards providing functional style programming for OWL,
like Tawny-OWL [4], but this is fundamentally dependent on the OWL API so it
is cosmetically functional but not obviously compatible with many of the unique
features and optimizations of the functional style. In order to support other
styles of programming for ontologies we have developed (f OWL), a functional
perspective on ontology development.

2 (f OWL)

As an original standalone piece of software, (f OWL) is not a wrapper for the
OWL API. It starts again at the beginning and is truly functional from the
ground up. (f OWL) was written with Clojure because it is a functional lan-
guage that compiles with the Java Virtual Machine, and thus will have a broad
compatibility with any machine that can run Java. Clojure has the added benefit

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Eberhart A. and Hitzler P.

Functional Lisp-like syntax
No dependencies Requires only Clojure
No classes Objects can be created and manipulated directly
Ontology data structure Homogeneous and uniform: can be traversed
Lightweight Supports OWL 2, no unnecessary baggage
Clojure Efficiency Lazy functions and optimizable recursion
Concise function names Avoids verbose unhelpful Java conventions

Table 1. Features of (f OWL)

of intuitive native laziness, so writing efficient programs to create and manip-
ulate ontologies is not a challenge. To ensure that the semantics are correct, (f
OWL) directly implements the grammar of the OWL 2 Structural Specification
[5]. And because it is entirely original, (f OWL) is divorced from any historical
dependencies and commitments that clutter other software.

(f OWL) includes many novel optimizations that streamline ontology devel-
opment. True to the functional paradigm (f OWL) uses functions and shuns
classes. Indeed all OWL ontology objects can be created directly with (f OWL)
functions. And since these functions are not bound up in an arbitrary class hier-
archy, they can operate on independent data structures that are internally typed
to represent OWL semantics. A (f OWL) ontology itself is simply another data
structure made of collections of smaller similar structures. This means that in
most cases an expression, an axiom, even an ontology can be traversed recur-
sively as-is without writing more functions. (f OWL) also simplifies many of the
unhelpful, highly verbose Java-style function names that occur in other programs
and instead adopts a concise functional naming scheme.

(f OWL) is built and tested using Leiningen1 and the source code can be
found on GitHub.2 During testing, it efficiently reads and writes copies of over
260 different functional syntax ontologies from various domains, including the
massive Gene ontology [1], with no errors being detected. It is available on the
Clojars3 repository so that users can easily import it into their own Clojure
projects. ClojureDoc4 for (f OWL) is available, and documentation is also acces-
sible in the read–eval–print loop (REPL) for individual functions while writing
programs.

2.1 Examples from the REPL

– Create an axiom

fowl.core=> (ont/implies (ont/exists "r" "a") "b")

SubClassOf(ObjectSomeValuesFrom(r a) b)

1 https://leiningen.org/
2 https://github.com/aaronEberhart/fOWL
3 https://clojars.org/onto.aaroneberhart/fowl
4 https://cljdoc.org/d/onto.aaroneberhart/fowl/0.0.1-SNAPSHOT/doc/readme

A Functional API for OWL

– Show the documentation for a function
fowl.core=> (doc ont/makeOWLFile)

ontology.core/makeOWLFile
([ontology filename & fileType])

Writes an owl file of the ontology with the supplied file name.
Optional argument allows choice of file type. No option defaults to functional syntax.
(Currently only functional syntax defined)

– Make an ontology with a Clojure threading expression
fowl.core=> (-> ont/emptyOntologyFile

(ont/setOntologyIRI "http://www.test.iri")
(ont/addAnnotations (ont/annotation "annotations" "are fun"))
(ont/addPrefixes (ont/prefix "" "http://www.test.iri/")

(ont/prefix "prefix" "http://www.prefix.iri/"))
(ont/addAxioms (ont/implies "a" (ont/IRI "prefix" "b"))

(ont/implies (ont/or "d" "g") "a")
(ont/implies (ont/inverseRole "r") "s")
(ont/fact "a" "i")
(ont/fact "r" "j" "i")))

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)
Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)
Prefix(prefix:=<http://www.prefix.iri/>)
Prefix(:=<http://www.test.iri/>)
Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Ontology(<http://www.test.iri>

Annotation(:annotations "are fun")

ObjectPropertyAssertion(:r :j :i)
SubObjectPropertyOf(ObjectInverseOf(:r) :s)
SubClassOf(ObjectUnionOf(:d :g) :a)
SubClassOf(:a prefix:b)
ClassAssertion(:a :i)
)

– Add every third axiom from a vector into a set with a tail recursive loop
fowl.core=> (loop [counter 0

axiomSet #{}
axioms [(ont/implies (ont/exists "r" "a") "b")

(ont/implies (ont/or "b" "c") (ont/not (ont/or "d" "e")))
(ont/implies (ont/roleChain "r" (ont/inverseRole "s")) "t")
(ont/fact (ont/inverseRole "s") "i" "j")
(ont/fact "a" "i")
(ont/fact "d" "i" (ont/stringLiteral "l"))
(ont/implies (ont/roleChain "s" "q") "t")]]

(if (empty? axioms) ; are there no axioms left?

axiomSet ; return axiom set

(recur ; else recurse with new values

(inc counter) ; counter + 1

(if (= 0 (mod counter 3)) ; is counter mod 3 == 0?
(conj axiomSet (first axioms)) ; add first axiom to set
axiomSet) ; else keep current axiom set

(rest axioms)))) ; remove first axiom

#{ObjectPropertyAssertion(ObjectInverseOf(s) i j)
SubClassOf(ObjectSomeValuesFrom(r a) b)
SubObjectPropertyOf(ObjectPropertyChain(s q) t)}

Eberhart A. and Hitzler P.

– Use a partial function and a list comprehension to make axioms for a class

fowl.core=> (let [aImplies (partial ont/implies "a")]
(for [b ["c" (ont/all "r" "d") (ont/and "e" "f" "g")]] (aImplies b)))

(SubClassOf(a c)
SubClassOf(a ObjectAllValuesFrom(r d))
SubClassOf(a ObjectIntersectionOf(e f g)))

More examples are available on the project GitHub page.

3 Evaluation

As a preliminary benchmark, we choose a few operations in (f OWL) that are
commonly used and have near equivalent counterparts in the OWL API: read
an ontology, write an ontology, get the NNF of all class axioms. Table 2 shows
the average time to complete a task, and Table 3 shows the average times when
they are each scaled by the number of axioms in the ontology. As expected,
the performance of (f OWL) with respect to the OWL API closely parallels the
difference between native Java and Clojure. Though it is usually faster when
reading files, as indicated by the scaled times, (f OWL) is slowed down while
reading large files by the need to construct many immutable objects for the
ontology, which is typical for Clojure programs. However, even a large (f OWL)
ontology can be accessed and traversed in a very efficient manner. This allows
(f OWL) to write files quickly. And it can get the NNF of all class axioms
significantly faster than even optimized stream functions.

All testing was done on a computer running Ubuntu 20.04.1 64-bit with an
Intel Core i7-9700K CPU@3.60GHz x 8, 47.1 GiB DDR4, and a GeForce GTX
1060 6GB/PCIe/SSE2.

Read File Write File Get NNF

OWL API 167.1696 91.61577 23.737692

(f OWL) 1275.384 68.87327 13.186410

Table 2. Average of times in milliseconds for tested ontologies

Read File Write File Get NNF

OWL API 85.367181 8.82415379 1.8501445

(f OWL) 60.724610 6.01522460 0.6555225

Table 3. Average times in nanoseconds scaled by number of axioms

A Functional API for OWL

4 Conclusion

(f OWL) provides a lightweight functional alternative for OWL ontology devel-
opment. It has numerous benefits that will doubtless increase as development
finalizes and it matures. (f OWL) is highly practical for developers who prefer
a functional language, it supports all of OWL 2, and provides unique functional
methods for structuring and manipulating ontology data.

5 Future Work

There are two major efforts in progress to improve this project. The first is
writing and testing new functions to allow the parsing of XML and RDF OWL
files. This capability is integrated into the current project framework but it is
incomplete and takes a fair amount of time to test and debug. Additionally,
because OWL files are frequently in XML and RDF format we have delayed
the implementation of ontology imports until after these file types can be read.
Once the imports are implemented (f OWL) should support at least as much
semantics for standard OWL ontology development as other APIs. A custom
reasoner is also in the early stages of development for (f OWL). We hope that
this will streamline reasoning over (f OWL) ontologies by running while they are
created.

Acknowledgement This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-18-1-0386.

References

1. Gene Ontology Consortium: The Gene Ontology (GO) database and informatics
resource. Nucleic Acids Research 32(Database-Issue), 258–261 (2004)

2. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. Se-
mantic Web 2(1), 11–21 (2011)

3. Lamy, J.B.: Owlready: Ontology-oriented programming in python with automatic
classification and high level constructs for biomedical ontologies. Artificial intelli-
gence in medicine 80, 11–28 (2017)

4. Lord, P.: The semantic web takes wing: Programming ontologies with tawny-owl. In:
Rodriguez-Muro, M., Jupp, S., Srinivas, K. (eds.) Proceedings of the 10th Interna-
tional Workshop on OWL: Experiences and Directions (OWLED 2013) co-located
with 10th Extended Semantic Web Conference (ESWC 2013), Montpellier, France,
May 26-27, 2013. CEUR Workshop Proceedings, vol. 1080. CEUR-WS.org (2013),
http://ceur-ws.org/Vol-1080/owled2013_16.pdf

5. Parsia, B., Patel-Schneider, P., Motik, B.: OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (Second Edition). W3C rec-
ommendation, W3C (Dec 2012), http://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/

