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Abstract. One of the current key challenges in Explainable AI is in cor-
rectly interpreting activations of hidden neurons. It seems evident that
accurate interpretations thereof would provide insights into the ques-
tion what a deep learning system has internally detected as relevant on
the input, thus lifting some of the black box character of deep learning
systems.
The state of the art on this front indicates that hidden node activations
appear to be interpretable in a way that makes sense to humans, at least
in some cases. Yet, systematic automated methods that would be able
to first hypothesize an interpretation of hidden neuron activations, and
then verify it, are mostly missing.
In this paper, we provide such a method and demonstrate that it provides
meaningful interpretations. It is based on using large-scale background
knowledge – a class hierarchy of approx. 2 million classes curated from
the Wikipedia Concept Hierarchy – together with a symbolic reasoning
approach called concept induction based on description logics that was
originally developed for applications in the Semantic Web field.
Our results show that we can automatically attach meaningful labels
from the background knowledge to individual neurons in the dense layer
of a Convolutional Neural Network through a hypothesis and verification
process.

1 Introduction

The origins of Artificial Intelligence trace back several decades ago, and AI has
been successfully applied to multiple complex tasks such as image classification
[25], speech recognition [11], language translation [2], drug design [31], treatment
diagnosis [9], and climate sciences [21], as an instance for just a few. Artificially
intelligent machines reach exceptional performance levels in learning to solve
more and more complex computational problems by possessing the capabilities
of learning, thinking, and adapting – mimicking human behavior to some extent,
making them crucial for future development.

Despite their success in a wide variety of tasks, there is a general distrust
of their results. Powerful AI machines particularly Deep Neural Networks, are
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hard to explain and are often referred to as ”Black Boxes” simply because there
are no clear human-understandable explanations as to why the network gave the
particular output. Many cases have been reported; for example, In 2019 Apple
co-founder Steve Wozniak accused Apple Card of gender discrimination, claiming
that the card gave him a credit limit that was ten times higher than that of his
wife, even though the couple shares all property.3. In CEO image search, while
27% of US CEOs were women, only 11% of the top image results for “CEOs”
were featured as women.4 In continuation to the mentioned observation, the
output of a network’s classification can be altered by introducing Adversarial
examples [6], and there are many more attack techniques. It becomes a need to
understand the reasoning behind how a system behaves and generates an output
in a human-interpretable way, especially since the popularity of these systems
has grown to such an extent that these systems are responsible for decisions
previously taken by human beings in safety-critical situations, for example like
self-driving cars [8], drug discovery and treatment recommendations [27,12].

Explainable AI has been pursued for several years already, and the quest for
efficient algorithms to generate human-understandable explanations has led to
a significant number of contributions based on different approaches. or internal
unit summarizing [36,6]. Improvements in deep learning show that neurons in
the hidden layer of the neural network can detect human-interpretable concepts
that were not explicitly taught to the network, such as objects, parts, gender,
context, sentiment etc [4,18,24].

In our approach which we present in this paper, we make central use of
concept induction [20], which has been developed for use in the Semantic Web
field and is based on deductive reasoning over description logics, i.e., over logics
relevant to ontologies, knowledge graphs and generally the Semantic Web field
[17,16]. In a nutshell – and more details are given below – a concept induction
system accepts three inputs, a set of positive examples P , a set of negative
examples N , and a knowledge base (or ontology) K, all expressed as description
logic theories, and where we have x occurring as instances (constants) in K
for all x ∈ P ∪ N . It then returns description logic class expressions E such
that K |= E(p) for all p ∈ P and K ̸|= E(q) for all q ∈ N . If no such class
expressions exist, then it returns approximations for E together with a number
of accuracy measures. In this paper, for scalability reasons, we use the heuristic
concept induction system ECII [28] together with a background knowledge base
that consists only of a class hierarchy, however with approximately 2 million
classes, as presented in [29]. Given a hidden neuron, P is a set of inputs to the
deep learning system that activate the neuron, and N is a set of inputs that do
not activate the neuron. Inputs are annotated with classes from the background
knowledge for concept induction, however these annotations and the background
knowledge are not part of the input to the deep learning system.

3 https://worldline.com/en/home/knowledgehub/blog/2021/january/ever-heard-of-
the-aI-black-box-problem.html

4 https://www.mckinsey.com/featured-insights/artificial-intelligence/tackling-bias-
in-artificial-intelligence-and-in-humans
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As we will see below, this approach is able to provide meaningful explanations
for hidden neuron activation.

The rest of this paper is organized as follows. Section 2 discusses relevant
work in the filed of generating explanations using knowledge graph. Sections 3
present our study design and Section 4 discusses the results of our study along
with the findings and their implications. Finally, Section 5 sums up the paper
and proposes some possibilities for future research.

2 Related Work

Explainable AI has been intensively studied since the 1970s [22]; and the model’s
explainability can be translated in many ways - interpretable, understandable,
justified, and evaluable.

The segment of explainable AI methods focuses on interpreting the inner
workings of black box models, such as identifying input features by training
explanation networks that generate human-readable explanations [15] or create
models alternatives to summarize the behavior of a complex network [26]. Other
approaches include such as the use of salience maps where the explanations
summarize the contribution of each pixel to predictions [3] or visual cues [35,32]
or counterfactuals [7].

The literature demonstrates that combinations of neurons can encode mean-
ingful and insightful information [19,5].Justifying the result of a neural net-
work requires a defined language that incorporate elements of reasoning that use
knowledge bases to create human-understandable, yet unbiased explanations[10].

Knowledge graphs and the structured web represent a valuable form of ma-
chine – readable, domain – specific knowledge; available connected datasets can
serve as a knowledge base for an AI system to explain its decisions to its users
in a better way. The Web Ontology Language (OWL) provides a basis for ver-
bose descriptions of entities and their relationships through description logics
[1]. Deep deductive reasoning can be described as one of generating complex
description logic class expressions over the knowledge graph and is based on rich
concept hierarchies that play an important role in generating human – readable
satisfactory explanations. We briefly discussed some recent works doing logical
reasoning using deep networks.

[37,19,36], methods have been proposed and demonstrated that adding se-
mantic annotations to label objects that activate neurons in the hidden layers of
common CNN architectures provides human-readable explanations. Nonetheless,
these approaches need to improve in terms of producing deeper explanations gen-
erated over more expressive background knowledge. [23] follows the effort of [30],
by semi-automating the DL Learner tool, which provides explanations to ML al-
gorithms using semantic background knowledge. However, while DL-Learner is
a very useful system in producing theoretically correct results has significant
performance issues in some scenarios, such as a single run of DL-Learner can
easily take over two hours; in contrast the scenario easily necessitates thousands
of such runs.
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(a) Examples of images collected for
neuron-5 from google using the lists of con-
cepts for Case-1.

(b) Images that didn’t activate the
neuron-5 for Case-1.

(c) Images that activate the neuron-5
for Case-1.

Fig. 1: Case - I

The main motivation of the proposed work is to automate the assignment of
human-interpretable explanations for the activations of neurons in the hidden
– dense layer of CNNs; Using Wikipedia’s rich class hierarchy of around 2 mil-
lion classes with an improved concept induction approach (in terms of running
time by 1-2 orders of magnitude while maintaining accuracy of results products)
known as ECII.

3 Research Method

This work includes the implementation of explaining the activation pattern of
neurons in hidden layers of CNN i.e. dense layer in this case, using Resnet50V2
architecture and ECII – concept induction explanation generation algorithm.
We also tested other architectures to achieve better accuracy and found that
Resnet50V2 gives the highest accuracy. The subsections discuss the steps fol-
lowed for implementing the system in a more detailed manner.

3.1 Training Convolutional Neural Network

Dataset 1) The ADE20K [38] semantic segmentation dataset from the Mas-
sachusetts Institute of Technology contains more than 27K scene-based images
from the SUN and Places databases, extensively annotated with pixel-level ob-
jects and object part labels. There are 150 semantic categories including sky,
road, grass, and discrete objects like person, car, and bed. The current version
of the dataset contains the following:

– 25,574 for training and 2,000 for testing from 365 scenes.
– 707,868 unique object along with their WordNet definition and hierarchy.
– 193,238 parts of annotated objects and parts of parts.
– Polygon annotations with attributes, annotation time, and depth order.
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(a) Examples of images collected for
neuron-5 from google using the lists of con-
cepts for Case-2.

(b) Images that activate the neuron-5
for Case-2.

(c) Images that didn’t activate the
neuron-5 for Case-2.

Fig. 2: Case - II

We only considered the subset of scenes in the ADE20k Dataset; the classes that
were considered for this work are ten classes with the highest number of images
– bathroom, bedroom, building facade, conference room, dining room, highway,
kitchen, living room, skyscraper, and street.

2) For verification purposes of the activation pattern of each neuron in cor-
responding to identified concepts for that respective neuron, we used Google
images – simply because the system should be easy to use for any user. It should
be able to detect concepts and give us the reasoning for its classification category
of any random image from the largest crawling search engine.

Tested Networks We analyzed many Convolutional neural network (CNN) ar-
chitectures to achieve better and higher accuracy such as Vgg16 [33], InceptionV3
[34]; in Resnet we tried different versions like – Resnet50, and Resnet50V2,
Resnet101, Resnet152V2 architecture [13,14].

Each neural network was fine-tuned with a dataset of 6187 images (training
and validation set) of size 224*224 for 20 epochs to classify images into 10 scene
categories using the ADE20K dataset. The optimization algorithm used was
Adam, with a categorical cross-entropy loss function and a learning rate of 0.001.
The accuracy achieved by each architecture along with validation accuracy is
summarized in table 1.

Clearly, ResNet50V2 achieved the highest accuracy – 92.47% on the training
dataset and 87.50% on the validation dataset, proving to be the best network
out of all.
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Architectures Training acc Validation acc

Vgg16 80.05% 46.22%
InceptionV3 89.02% 51.43%
Resnet50 35.01% 26.56%
Resnet50V2 92.47% 87.50%
Resnet101 53.97% 53.57%
Resnet152V2 94.53% 51.04%

Table 1: Performance of different architectures on ADE20K dataset

Activations of Trained Network We tested the Resnet50V2 with 1370 im-
ages and retrieved the activations of the dense layer, i.e., the layer before the
output layer. Though technically, the layer before the output layer is the dropout
layer, we chose not to analyze the activations of the dropout layer since the
dropout layer is a mask that negates the contribution of some neurons towards
the next layer and leaves all others unmodified.

The activations of 1370 images for the dense layer comprise 64 neurons con-
tributing to the final decision of classifying each image as one of 10 classes.

Candidate Set of Neurons Next, out of 64 neurons, we chose some candidate
sets of neurons based on the following criteria – only the neuron having more than
50% of activation values > 0 i.e., the neuron should have at least 680 values (=
1370/2, 1370 being total images) that are greater than 0. Choosing such neurons
would simply mean that these are frequently activated nodes, which would be
a good choice to analyze before exploring any other possibilities. Following the
idea, the neurons selected for analysis were neuron numbers – 4, 5, 6, 7, 9, 11,
12, 13, 15, 16, 22, 23, 27, 29, 34, 35, 36, 37, 39, 45, 52, 54, 55, 56, 58, 59, 60, 62,
63.

ECII - Preliminaries As mentioned concept induction is an explanation gen-
eration algorithm over description logic which takes in three inputs – a positive
set of images, a negative set of images and a knowledge base. For our approach,
we use ECII –improved on DL Learner by the magnitude of order 2.

For a given neuron, a positive set of images that activates the said neuron,
and a negative set of images that do not activate the given neuron. How do we
decide that an image activates a neuron and therefore that image is positive,
and in the same way for negative set of images. To decide on activation, we
considered and analyzed – a threshold value around the activation values with
the following three different criteria:-

– CASE-I – positive set will have images with >= 50% activation of the highest
value, lets say if the highest activation value is 12 for neuron x then all images
(1370, is the total number) having an activation value of 6 or more than 6
will be positive set and so negative set will have images that were < 50% i.e
all the images with less than 6 including 0.
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– CASE-II – positive set will have images with >= 50% activation of the
highest activation value and negative set as the images that were just zero,
i.e excluding images that are 0 < images < 50%.

– CASE-III – positive set will have images with anything > zero i.e this will
include all images that are 0 < images <= highest value and negative set as
the images that were just zero, i.e excluding images that are 0 < images.

For the knowledge base, we mapped all the 1370 images with Wikipedia’s
rich class hierarchy of 2 million classes.

ECII - Analysis Now that we have a knowledge base and a set of positive
and negative images based on three cases, we run ECII with all three inputs
from each case defined above for all chosen candidate sets of the neurons. ECII
returns a list of class expressions such that it best describes the positive set of
images while excluding all negative images, sorted by coverage score.

Coverage score can be formulated using the following formula:

coverage(E) =
|P ∩ Z1|+ |N ∩ Z2|

|P ∪N |

Where,

Z1 = K |= E(p) for all p ∈ P ,
Z2 = K ̸|= E(n) for all n ∈ N ,

P is the set of all positive instances,
N is the set of all negative instances, and

K is the knowledge base provided to ECII as input.

We chose to look at the first 50 expressions out of all returned by ECII in
text format, simply because the list of expressions could have many duplicate
concepts.

Example 1. An example of the – explanation ECII came up with looks like
solution 1 ∃ imageContains.((WN Table) ⊓ (Bed))
solution 3 ∃ imageContains.(:WN Table)

indicating the presence of a table and bed in one of the images from the
positive set. We collected all distinctive keywords as concepts(in this case –
Table and Bed) from the list since solutions could have overlapping concepts,
resulting in a reduced list of concepts.

This returned list of concepts for each neuron would give us the intuition of
what contributes towards the activation of the respective neuron.

Example 2. As an example lets see the the list of class expression returned by
ECII for neuron 5 and its corresponding reduced list of concepts.

solution 1: ∃ :imageContains.(:WN Table)
solution 2: ∃ :imageContains.(:Floor)
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solution 3: ∃ :imageContains.(:WN Floor)
solution 4: ∃ :imageContains.(:WN Flooring)
solution 5: ∃ :imageContains.(:Window)
solution 6: ∃ :imageContains.(:WN Window)
solution 7: ∃ :imageContains.((:WN Flooring) ⊓ (:Window))
solution 8: ∃ :imageContains.((:Window) ⊓ (:Floor))
solution 9: ∃ :imageContains.((:WN Flooring) ⊓ (:Floor))
solution 10: ∃ :imageContains.((:Ceiling) ⊓ (:WN Table))
solution 11: ∃ :imageContains.(:Ceiling)
solution 12: ∃ :imageContains.(:WN Ceiling)
solution 13: ∃ :imageContains.(:WN Windowpane)
solution 14: ∃ :imageContains.(:WN Leg)
solution 15: ∃ :imageContains.(:Picture)
solution 16: ∃ :imageContains.(:WN Painting)
solution 17: ∃ :imageContains.(:WN Picture)
solution 18: ∃ :imageContains.(:Leg)
solution 19: ∃ :imageContains.((:WN Table) ⊓ (:Leg))
solution 20: ∃ :imageContains.((:WN Painting) ⊓ (:WN Ceiling))
solution 21: ∃ :imageContains.((:WN Leg) ⊓ (:WN Window))
solution 22: ∃ :imageContains.(:Chair)
solution 23: ∃ :imageContains.(:WN Chair)
solution 24: ∃ :imageContains.(:WN Lamp)
solution 25: ∃ :imageContains.((:WN Lamp) ⊓ (:WN Floor))
solution 26: ∃ :imageContains.((:WN Windowpane) ⊓ (:WN Painting))
solution 27: ∃ :imageContains.(:Back)
solution 28: ∃ :imageContains.(:WN Back)
solution 29: ∃ :imageContains.((:Back) ⊓ (:WN Flooring))
solution 30: ∃ :imageContains.((:WN Floor) ⊓ (:WN Back))
solution 31: ∃ :imageContains.((:WN Windowpane) ⊓ (:WN Ceiling))
solution 32: ∃ :imageContains.((:Ceiling) ⊓ (:Leg))
solution 33: ∃ :imageContains.((:Floor) ⊓ (:Table))
solution 34: ∃ :imageContains.(:Table)
solution 35: ∃ :imageContains.((:WN Back) ⊓ (:WN Windowpane))
solution 36: ∃ :imageContains.((:Chair) ⊓ (:Ceiling))
solution 37: ∃ :imageContains.(:Arm)
solution 38: ∃ :imageContains.(:WN Arm)
solution 39: ∃ :imageContains.((:WN Window) ⊓ (:WN Lamp))
solution 40: ∃ :imageContains.((:Back) ⊓ (:Window))
solution 41: ∃ :imageContains.((:WN Floor) ⊓ (:WN Windowpane))
solution 42: ∃ :imageContains.((:Back) ⊓ (:Floor))
solution 43: ∃ :imageContains.((:WN Window) ⊓ (:WN Floor))
solution 44: ∃ :imageContains.((:Chair) ⊓ (:WN Table))
solution 45: ∃ :imageContains.(:Top)
solution 46: ∃ :imageContains.(:WN Top)
solution 47: ∃ :imageContains.((:Table) ⊓ (:WN Chair))
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solution 48: ∃ :imageContains.((:Floor) ⊓ (:WN Chair))
solution 49: ∃ :imageContains.((:Leg) ⊓ (:Picture))
solution 50: ∃ :imageContains.(:WN Cabinet)

And after eliminating duplicate concepts from the above class expressions,
we get a reduced list of concepts as –

arm, back, cabinet, ceiling, chair, floor, flooring, lamp, leg, paint-
ing, picture, table, top, window, windowpane

The next step would be to verify the activation of neurons by collecting some
more data that is more generic and could serve as solid verification and test it
through the model and see if we get the same activations for the neurons; we
collected google images corresponding to the resultant keywords of the list for
each neuron. In this case – collect images of arm, back, cabinet, ceiling, chair,
floor, flooring, lamp, leg, painting, picture, table, top, window, and windowpane
from the google search engine.

Collection of Google Images We used a python script to download Google
images for each keyword in the list. For each keyword, it collects the first 200
images that appear in the google search. After that, we manually checked for
duplicates and removed them. After cleaning the duplicates we have at least
140 images for each keyword. For example, for the keyword, ’base’ google search
comes up with all kinds of images including bed frames to military bases. How-
ever, some search for keywords like ’edifice’ collects images of a particular model
of watch named edifice, which in this case is not what we wanted. But we take
the google results as it appears and evaluate our model on them.

Activations on Google Images Once we have the dataset from google ready
for all neurons (29 being total as chosen candidate set), we test this new dataset
for each neuron through our trained model – Resnet50V2 and get the activations
of the dense layer.

4 Results and Discussion

We analyzed three different criteria as mentioned in subsection 3.1 – ECII-
Preliminaries, to see what we could call the best scenario for the activation
of the neuron –

– CASE-I – positive set will have images with >= 50% activation of the highest
value, and the negative set will have images that were < 50%.

– CASE-II – positive set will have images with >= 50% activation of the
highest activation value and negative set as the images that were just zero.

– CASE-III – positive set will have images with anything > zero and negative
set as the images that were just zero.
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(a) Examples of images collected for
neuron-5 from google using the lists of con-
cepts for Case-3.

(b) Images that activate the neuron-5
for Case-3.

(c) Images that didn’t activate the
neuron-5 for Case-3.

Fig. 3: Case - III

ECII was run for all neurons taking each case at a time along with Wikipedia
as a Knowledge base; in total we did 29*3 = 87 ECII analysis.

From each ECII analysis, we got a list of class expressions sorted by coverage
score for the respective neuron – looked at the first 50 expressions, and reduced it
to a shorter list by eliminating any duplicate keywords. These keywords indicate
the activation of neurons by the presence of these concepts. Table 2 lists the
concepts we got from ECII corresponding to each case, representing the neuron’s
activation for neuron number 5.

To verify if these concepts actually play a role for neurons in deciding the
output for the network, collected google images corresponding to the reduced
list of concepts for each neuron.

In case of neuron number 5 CASE–I, google images were collected corre-
sponding to arm, back, cabinet, ceiling, chair, floor, flooring, lamp, leg,
painting, picture, table, top, window, windowpane.

For CASE–II, google images were collected corresponding to arm, back,
cabinet, ceiling, chair, floor, flooring, lamp, leg, painting, picture, ta-
ble, wall, windowpane.

For CASE–III, google images were collected corresponding to cabinet, ceil-
ing, chair, curtain, cushion, drapery, floor, flooring, lamp, leg, paint-
ing, picture, shade, table, table lamp, wall, windowpane.
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Case-I Case-II Case-III

arm arm cabinet
back back ceiling
cabinet cabinet chair
ceiling ceiling curtain
chair chair cushion
floor floor drapery
flooring flooring floor
lamp lamp flooring
leg leg lamp
painting painting leg
picture picture painting
table table picture
top wall shade
window windowpane table
windowpane table lamp

wall
windowpane

Table 2: List of concepts activating neuron 5 for case I, II, III

Around 200 images were collected for each concept in the list, making a total
of around 4000-5000 images for each neuron. In total 4000*87 = 348000 images
were collected.

The new google image dataset was divided into 80-20 ratio and 80% of them
were tested by the trained model for verification and activations of the dense
layer (n-1 layer) were analyzed for each neuron. In total there were 87 dense layer
activations; each dense layer activation consists of 64 neurons; we only look for
the activation value of the desired neuron number. The activation percentage for
each neuron is summarized case–wise in table 3. The figure shows the examples
of the google image dataset collected for neuron 5 in each case, along with images
that activated the neuron and those that didn’t activate the neuron.

Some observations from the table –

– 11 neurons – neuron number 4, 9, 11, 12, 15, 16, 23, 27, 60, 62, and 63 got
activated by more than 90% activations in all the three cases.

– 10 neurons – neuron numbers 6, 13, 29, 36, 37, 39, 45, 52, 54, 59 were below
1% activations in all three cases.

– the rest activations are in the range of 1 – 56.52%.

We can say that the criteria we chose for deciding the activation for the
positive and negative set of images – as two inputs for ECII, doesn’t have much
impact on the activation percentage of the neurons as there is a slight difference
in the percentage value of Ist, IInd and IIIrd Case.

Table 4 shows the evaluation of 29 neurons for the remaining 20% of the
Google Image Dataset. The activation percentage for each neuron is listed for
all three cases.
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Case-I Case-II Case-III

neuron4 100% 100% 100%
neuron5 35.01% 36.84% 38.38%
neuron6 0.44% 0.40% 0.24%
neuron7 6.31% 7.48% 5.71%
neuron9 99.90% 100% 99.97%
neuron11 99.00% 99.00% 99.00%
neuron12 95.20% 95.20% 95.20%
neuron13 0.05% 0.06% 0.05%
neuron15 99.93% 99.96% 100%
neuron16 99.94% 99.97% 99.97%
neuron22 37.32% 26.00% 26.24%
neuron23 100% 100% 100%
neuron27 99.64% 99.65% 99.60%
neuron29 0.67% 0.67% 0.67%
neuron34 56.46% 56.46% 57.58%
neuron35 16.32% 16.31% 9.25%
neuron36 0% 0% 0%
neuron37 0% 0% 0%
neuron39 0.24% 0.20% 0.63%
neuron45 0% 0.09% 0%
neuron52 0.18% 0.24% 0.17%
neuron54 0% 0% 0%
neuron55 53.81% 47.88% 38.36%
neuron56 4.16% 4.06% 2.22%
neuron58 1.80% 1.80% 1.68%
neuron59 0% 0% 0%
neuron60 100% 99.96% 100%
neuron62 100% 100% 100%
neuron63 100% 100% 100%

Table 3: Activation percentage for each neuron with Google Images for all three
cases.
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At this point, we can say that by our hypothesis and our verification process
– neurons get activated by the presence of concepts and concepts plays a role in
deciding the output given by the network.

Case-I Case-II Case-III

neuron4 100% 100% 100%
neuron5 34.49% 37.79% 38.10%
neuron6 0.5% 0.53% 0.19%
neuron7 0.14% 0.19% 0.20%
neuron9 100% 100% 100%
neuron11 98.83% 98.83% 98.83%
neuron12 94% 94% 94%
neuron13 0.20% 0.22% 0.20%
neuron15 100% 99.85% 100%
neuron16 100% 100% 100%
neuron22 35.13% 23.06% 25.62%
neuron23 100% 100% 100%
neuron27 99.74% 99.45% 99.77%
neuron29 1 % 1% 1%
neuron34 56.74% 56.74% 58.17%
neuron35 14.29% 17.62% 9.55%
neuron36 0.14% 0.14% 0.22%
neuron37 0.18% 0.20% 0.13%
neuron39 0.58% 0.39% 0.5%
neuron45 0.12% 0.27% 0.19%
neuron52 0.36% 0.19% 0.33%
neuron54 0.19% 0.22% 0.12%
neuron55 55.37% 46.27% 35.39%
neuron56 4.82% 4.32% 2.17%
neuron58 1.33% 1.33% 1.40%
neuron59 0.12% 0.14% 0.22%
neuron60 99.88% 100% 99.84%
neuron62 100% 100% 100%
neuron63 100% 100% 100%

Table 4: Activation percentage after doing evaluation for each neuron with
Google Images for all three cases.

5 Conclusion and Future Work

This paper is an effort toward recognizing the activation pattern of neurons in the
hidden layer of CNN architecture with the presence of abstract concepts. A novel
approach using ECII as an explanation generation algorithm and Wikipedia as
background knowledge was shown to quantify how well a concept is recognized



14 Dalal, A., Sarker, M., Barua, A, and Hitzler, P.

across the latest convolutional layer (specifically the dense layer) of a CNN.
Through our verification and evaluation using Google Images, we have also re-
ported on promising activation percentages to support our hypothesis.

Future work will incorporate the studying of the remaining neurons and will
study the effect of the different thresholds for activation of the neuron. We
will need to automate the whole process of getting the human-understandable
explanation for the output of the network; given the classification of the network
(output of the network) as an input, it should output the activation concepts
for the neurons to limit the human-intervention and explain the decision of the
network efficiently.
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merce, National Science Foundation, under award number 2033521.
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