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Abstract

Modular ontology engineering is a methodology for producing highly reusable knowledge

graph schema. Over the course of this dissertation, we outline a number of contributions

that have improved the process to what we see today. These contributions fall within four

categories: conveying meaning through schema diagrams, the composition of a modular

ontology, the modular ontology engineering methodology, and modular graphical modeling.

First, we created an improved method and tool for generating schema diagrams similar

to those manually generated by humans and show that most of OWL, as it is used in real

world ontologies, are expressible in this format.

Next, we examined and improved the ontology design pattern development process. This

was accomplished through the development of both patterns and modules, extensions to

the ontology design pattern representation language, and a tool that significantly improves

the usability of these annotations. This work culminated in MODL: a modular ontology

design library, which is a distributable set of curated, well-documented ODPs, both novel

and drawn from the ontology design pattern portal.

These advances were combined, and building upon the state of the art, to create the Com-

prehensive Modular Ontology Design IDE (CoModIDE), which is a plugin for the industry-

standard ontology editor, Protégé.

Finally, as a culmination of the tool and the methodology, we evaluated CoModIDE,

where it was shown to significantly improve outcomes for experienced and new ontology

developers when developing modular ontologies.

Altogether, these research topics, resulted in a methodology, that when executed, pro-

duced actually reusable, extendable, and adaptable ontologies.
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Chapter 1

Introduction

1.1 The Semantic Web and Data

The Semantic Web is both an active, growing area of research, as well as an expansive

ecosystem for the delivery and linkage of machine-readable knowledge.

As a field of research, it has an immense breadth and depth of activity that draws from

many different fields. This seems fitting for a field focused on the efficient representation

of knowledge from any domain. The Semantic Web, as an artifact, is closely related to the

World Wide Web (WWW). This is ultimately unsurprising as they share the same goal:

to proliferate knowledge in a widely accessible manner. They simply differ for whom they

emphasize accessibility. Just as the WWW is an ecosystem of technologies and standards

for sharing data amongst its human users, the Semantic Web, both artifact and research

field together, is an analogous ecosystem for machines. Fundamentally, the Semantic Web

is a way to ascribe to web content meaning. That is, to carefully describe the semantics

of the content in a machine-readable way. Consequently, this enables programmatic access,

interpretation, and evaluation of knowledge previously encoded in an only human-readable

format.

Ultimately, the Semantic Web, as a both field and artifact, drives how knowledge is

linked, published, reused, and analyzed. One important, contemporary tool for doing so, is
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the knowledge graph. While a more in-depth description is deferred to the next section, it is

useful to also have a historical perspective of their origin: what standards constitute them

and what is the context of their evolution.

As mentioned previously, the Semantic Web is concerned with the meaning of data. Over

the years, there have been many different ways for accomplishing such attribution. Perhaps

most prominently, and still in wide use today, is the Resource Description Framework (RDF).

RDF is a W3C standard that allows for the annotation of data in a structured way.

One common way of annotating data is through the use of a vocabulary. This allows

researchers and developers to connect their data to a standardized set of concepts or rela-

tionships that span domains. Some examples are VOID,1 DCAT,2, the Dublin Core,3 and

Schema.org. By agreeing on the meaning of these terms, applications can then parse through

datasets and begin to understand the data by leveraging the annotations. This begets an

interesting phenomenon: datasets linked through these vocabularies in a massive cloud of

datasets spanning a myriad of domains.

Further building on top of RDF are so-called ontologies, which are “explicit specifications

of conceptualizations” [8] which can be authored using an ontology language. For this

dissertation, however, we focus on another W3C Standard, the Web Ontology Language

(OWL) [16].4

OWL comes in several profiles, or species, that indicate its level of expressivity. OWL–

Full, for example, is very expressive, but can be computationally intractable. Overall, the

contributions of this dissertation focus on OWL–DL, which retains a high level of expressivity,

but remains computationally tractable. More generally, OWL can be used model complex

concepts in terms of simpler concepts. These simpler concepts are used as building blocks

and are heavily enriched with meta-data that relate them to each other. In this way, we

can represent a highly abstract and complex concept in a way that a machine can easily

interpret.

1See https://www.w3.org/TR/void/.
2See https://www.w3.org/TR/vocab-dcat-2/.
3See https://dublincore.org/.
4This focus is, in turn, a result of the focus on OWL as a Semantic Web language.
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The process by which an ontology is developed is called a methodology. Over the decades,

several methodologies have been developed. The historical basis for modular ontology engi-

neering, as discussed later in the dissertation, is founded in the eXtreme Design methodology,

which is a pattern-based approach to ontology development [26, 3], which itself stems from

the task-oriented, scenario-based, NeOn methodology [41].

An ontology provides structure to data, showing how it may be related and used, thus

allowing to constrain properties, check for the consistency of the dataset, or derive new

data. Linked Data shows how data may be reused across domains. Together, linked data

and ontologies have paved the way for a new term: the knowledge graph.

1.2 Knowledge Graphs & Ontologies

A knowledge graph is a way of organizing information using a graph structure. In practice,

there are many different sorts of graph structures, such as RDF graphs or labeled property

graphs. For this dissertation we focus on RDF graphs, or at least RDF serializations of OWL.

However, it is possible to move between these representations through modeling techniques

or through reification. By choosing RDF graphs we have the added benefit of utilizing

another W3C standard, SPARQL, for efficiently querying the graph. RDF graphs can be

expressed using sets of triples. That is, a subject-predicate-object statement that captures

some perception of a limited facet of reality. In contemporary Google search results, there

are frequently “infoboxes” that appear on the right-hand side of the screen. Figure 1.1 shows

how one could imagine the a knowledge graph constructed from this sort of data. Figure 1.2

provides the actual graph view.

Due to their inherently flexible nature, knowledge graphs are posed to be a significant

disruptor in both the public and private sectors [25]. They have quickly become a ma-

jor paradigm for data integration, communication, and visualization, supported by long-

established W3C standards and recommendations [16, 4, 1, 21]. For Linked Data [2, 24]

alone, which is but one form of a knowledge graph, a 2017 count showed more than 35 bil-

lion node-edge-node information triples freely available on the Web [23]. Schema.org data,
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Figure 1.1: Google Infocards. We can extract pertinent information from these infocards
and construct a graph-like structure.

which also constitutes a massive knowledge graph already in 2015, shows that over 30% of

Web pages had corresponding markup [9]. As a repository of both declarative and procedu-

ral knowledge, a knowledge graph can be considered to be more than just a resource, but

instead could be considered to be a platform upon which to build. However, the development

of a such a knowledge graph, as with any complex system, is a costly endeavor, especially

with respect to time and expertise. For small firms, building and maintaining a knowledge

graph can be untenable.

Recently, there has been an emphasis on FAIR data principles (Findable, Accessible,

Interoperable, and Reusable) [42]. Each of the above facets have a large impact on reducing

the costs across the entire knowledge graph ecosystem by supporting the infrastructure of

the ecosystem, as well as reducing the barrier of entry to engaging with the ecosystem.

To some extent, it is reasonable to group together, as complementary pairs, Findability

and Accessibility; and Interoperability and Reusability, each speaking to half of the journey.

An easily findable resource is worth little if it is inordinately difficult to reuse, and the per-

fectly reusable resource is hardly that if it cannot be found. The latter pair, interoperability
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and reusability, is largely dictated by the knowledge graph’s schema (assuming, of course,

that the described data is of sufficient quality). As published in [42], interoperable and

reusable have specific meanings:

• Interoperable – interoperates with applications or workflows for analysis, storage, and

processing.

• Reusable – metadata and data should be well-described so that they can be replicated

and/or combined in different settings.

However, the Reusability principle, and its corollaries, do not go far enough when applied

to knowledge graphs. The reusability of a knowledge graph is more than its metadata on

provenance or licensing. One of the biggest impediments to reusing a knowledge graph lies

with the design of its schema [19, 27] – the commitments made as part of such a schema are

sometimes referred to as ontological commitments. In addition to those principles outlined

in [42], we append the following.

• Reusable – the design of the schema is amenable to adaptation, evolution, and follows

best practices as outlined by the domain of interest.

Unfortunately, many knowledge graphs are not reusable in this sense [19, 27]. Large, mono-

lithic knowledge graphs, designed with very strong – or very weak – ontological commitments

in their schema are very difficult to reuse across the same domain, let alone across different

domains. Strong ontological commitments lead to over-specification, to ontologies essentially

being only fit for the singular purpose for which they were originally designed. Conversely,

weak ones lead to ambiguity of the model, sometimes to the extent that is hard to grasp

what is actually being modeled [17].

Ontologies, which may constitute a schema for a knowledge graph, are used at a large

scale for many purposes. The schema is a mechanism by which the data can be organized:

it can inform constraints on the data, and thus the shape of the graph; and provide a vehicle

for exploring and navigating its contents. A schema may also act as built-in documentation

for the knowledge graph, in the sense that it disambiguates meaning [14]. As such, having a

schema is useful for nearly any use-case of a knowledge graph.

We posit that one effective way to obtain ontologies which are easier to reuse, especially
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Figure 1.2: An Example (Tiny) Knowledge Graph and its Schema. The raw data can be
seen in Figure 1.1.

with respect to the above definition of Reusability, is to build them in a modular fashion.

A sufficiently modularized ontology is designed such that individual users can easily adapt

an ontology to their use cases, while maintaining integration and relationships with other

versions of the ontology [22]. Briefly, a modular ontology is constructed by piecing together

so-called ontology modules. Ontology modules are created by adapting ontology design

patterns to the domain and use-case [12]. Additional information can be found in Section

4.1. The process by which this is accomplished is eponymous: modular ontology engineering.

This methodology is a pattern-based approach that stems from previous methodologies.

The current form of the methodology can be found in Figure 1.3. The methodology is

addressed in detail in Chapter 4.

This dissertation describes the efforts made to mature this methodology, and focused on

two primary tasks.

1. Improve the approachability of the methodology by improving tool support and infras-

tructure, as well as maturing the methodology and providing real-world examples of

its execution.

2. Show that modular ontology engineering results in highly, reusable knowledge graphs

by providing real world examples of its execution.
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Step 1. Define use case or scope of use cases.

Step 2. Make competency questions while looking at possible data sources and continue scoping
the problem and use-case(s).

Step 3. Identify key notions from the data and the use case and identify which pattern should
be used for each. Use “stubs” as necessary.

Step 4. Instantiate these key notions from the pattern templates, then adapt the result as
needed, to create modules. Develop the remaining modules from scratch.

Step 5. Systematically add axioms for each module.

Step 6. Assemble the modules and add axioms which involve several modules.

Step 7. Reflect on all entity names and possibly improve them. Check module axioms whether
they are still appropriate after putting all modules together.

Step 8. Create OWL files.

Figure 1.3: The Modular Ontology Engineering Methodology.

The outline of the particular topics researched to accomplish these is provided in the next

section.

1.3 Outline

This document is a cumulative dissertation that details the foundational research towards

advancing the modular ontology engineering methodology. As mentioned in the above intro-

duction, this is done to facilitate the development and usage of highly reusable knowledge

graphs, in particular, through the use of modular ontologies as their schema. This work can

be divided into four concrete research topics that incrementally build towards this goal. The

remainder of this dissertation is outlined as follows:

Chapter 2 presents the first research topic: conveying meaning through schema diagrams.

It provides the key research questions that this topic addresses, with discussion. The primary

contributions referenced in this section are

• A method for automatically generating schema diagrams for OWL ontologies [31] and
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• Most of OWL is rarely needed [5].

Chapter 3 discusses the usage of ontology design patterns and their history and role in

the knowledge engineering community, as well as their development, documentation, and

usage. Then, we will discuss the state of the art, as it pertains to their use and development.

Finally, we present contributions to ontology design pattern community and refer to the

respective use-cases and publications. These contributions are as follows:

• An ontology design pattern for microblog entries [30]

• Ontology design patterns for Winston’s taxonomy of part-whole relations [37]

• Towards a pattern-based ontology for chemical laboratory procedures [39]

• A Protégé plugin for annotating OWL ontologies with OPLa [34]

• Extensions to the ontology design pattern representation language [11]

• MODL: a modular ontology design library [35]

Chapter 4 focuses on modular ontology engineering as a methodology for developing

highly reusable knowledge graphs. First, we will relate it to earlier methodologies: how it

differs from and improves upon the state of the art. Then, we present real-world examples

of their use, alongside their respective publications. They are:

• Modular ontologies as a bridge between human conceptualization and data [17]

• Modular ontology modeling: a tutorial [38]

• The Enslaved Ontology: peoples of the historic slave trade [36]

Chapter 5 presents the conceptual next step from modular ontology engineering through

the use of advanced tooling infrastructure: modular graphical modeling. We present the

tool, CoModIDE, and its respective publications, as follows:

• Towards a comprehensive modular ontology IDE and tool suite [29]

8



• CoModIDE–the Comprehensive Modular Ontology Engineering IDE [32]

• Modular Graphical Modeling Evaluated [33]

Chapter 6 presents concluding remarks through a brief summary that highlights the overall

contributions and how they fit together, especially with respect to the state of the art.

Additionally, I provide an outlook on immediate, and further, future work.

9



Chapter 2

Conveying Meaning through Schema

Diagrams

2.1 Overview

Communication between knowledge engineers or ontologists and domain experts is important

during the development of an ontology. It is also a key component for determining the

reusability of an ontology—an ontology that is poorly documented makes it difficult to

understand its commitments and will thus likely not be reused. A popular mechanism for

quickly conveying meaning or structure of an ontology is the schema diagram.

Definition 2.1.1. A Schema Diagram is an informal, but intuitive, graphical representation

that depicts how classes in an ontology may be related. Figure 2.1 shows an example of a

schema diagram that uses a visual syntax we have adapted for modular ontologies. Orange

boxes indicate classes. Dashed blue boxes indicate classes which are part of another module.

White-headed arrows indicate subclass relationships, while black arrows are object or data

properties. Purple dashed boxes indicate the presence of a controlled vocabulary. Finally,

yellow ovals denote datatypes. Titled, gray dashed boxes indicate that the enclosed items

are part of a module.

However, schema diagrams are ambiguous by nature. That is, any particular node-edge-

10



Figure 2.1: The Provenance module for the Enslaved Ontology [36] ontology design pattern.
The visual syntax for this schema diagram is detailed in Definition 2.1.1.

node in the diagram can have one or more axiomatic meanings. Thus, when translating

between OWL files containing the formally conceptualized knowledge and the schema dia-

gram (or vice versa) can be an error prone process. As schema diagrams are the primary

method of conveying meaning during the modular ontology engineering process, it is impor-

tant to determine how they may be improved themselves, or by reducing the error rate in

the generation process.

For this topic, I formulated the following research questions considering these concerns

and are addressed in the next section.

Q1. Can we develop and implement an algorithm for generating schema diagrams similar

in form to those manually generated by unguided humans?

Q2. How can we reduce ambiguity in schema diagrams, but retain their intuitive traits?

2.2 Contributions

This section connects the individual contributions to the above research questions.

[31] Cogan Shimizu, Aaron Eberhart, Nazifa Karima, Quinn Hirt, Adila Krisnadhi, and Pas-

cal Hitzler. A method for automatically generating schema diagrams for OWL ontologies.

In Boris Villazón-Terrazas and Yusniel Hidalgo-Delgado, editors, Knowledge Graphs and

Semantic Web - First Iberoamerican Conference, KGSWC 2019, Villa Clara, Cuba, June

11



23-30, 2019, Proceedings, volume 1029 of Communications in Computer and Information

Science, pages 149–161. Springer, 2019

This contribution addresses Research Question Q1 and describes such a tool and its use

in checking if the formal knowledge in an OWL file mirrors the informal schema diagram

through a principle of schematic equivalence. The implemented tool was found to produce

significantly more accurate schema diagrams than other tools in the state of the art.

The original algorithm for generating a schema diagram was outlined by Nazifa Karima

in [20]. In A method for automatically generating schema diagrams for OWL ontologies

[31], Cogan Shimizu improved the algorithm, re-implemented it, conducted the program-

matic evaluation, and analysis. Aaron Eberhart and Quinn Hirt assisted with creating the

ground truth dataset from the Ontology Design Patterns portal for a significantly expanded

evaluation. Adila Krisnadhi and Pascal Hitzler provided feedback.

[5] Aaron Eberhart, Cogan Shimizu, Sulogna Chowdhury, Md. Kamruzzaman Sarker, and

Pascal Hitzler. Most of OWL is rarely needed. In 19th International Semantic Web

Conference, 2020. Under review

In the second publication, Most of OWL is rarely needed [5], Aaron Eberhart took the

lead in implementation of the analysis software and evaluation. Cogan Shimizu assisted

with the software and both he and Pascal Hitzler assisted with the evaluation design and

results analysis. Sulogna Chowdury and Md. Kamruzzaman Sarker provided feedback. This

contribution begins to address Research Question Q2 in determining how certain simple

axioms, strictly those that can be represented using an individual node-edge-node construct

in a schema diagram, are already used in existing ontologies. The evaluation was conducted

on a sample of 280 ontologies from a variety of domains (e.g. bio-ontology and patterns). The

results show that over 90% of axioms in the sample are expressible using a schema diagram.

Indeed, the great majority are simple subclass, range, and domain axioms. This analysis will

help to make future improvements to our graphical syntax and improve current and future

tools that graphically represent axioms, but also reinforces that the schema diagram is a

useful tool for expressing the structure and meaning of an ontology, at a broad level.

12



Chapter 3

The Composition of a Modular

Ontology

3.1 Overview

In order to begin improving the modular ontology engineering methodology, it was important

to understand the existing components that comprised a modular ontology. As stated in the

introduction, modular ontologies are composed of modules, which are instantiated from

ontology design patterns.

Definition 3.1.1. An Ontology Design Pattern (ODP) is a tiny, self-contained ontology

that solves a domain-invariant modeling problem that draw on community-identified best

practices.

They draw their inspiration from Software engineering design patterns, such as Factories

or Model-View-Controller. Essentially, many different domains have similar conceptual-

izations for concepts. ODPs leverage this to improve reusability by preventing ontology

engineers from “reinventing the wheel” for common modeling tasks. Figure 3.1 shows and

example ontology design pattern: the trajectory pattern [18]. The trajectory design pattern

aims to model things that move discretely move through a physical or conceptual space.

13



Figure 3.1: The Semantic Trajectory [18] ontology design pattern. The visual syntax for
this schema diagram is detailed in Definition 2.1.1.

As such, the modular ontology engineering methodology promotes the use of ontology

design patterns whenever possible. In particular, in Step 3 of the methodology (Figure 1.3),

an ontology design pattern should be selected for each identified key notion. Ontology design

patterns, however, are rarely immediately in a usable state. This means that they need to

be modified in some way, in order to fit what is actually being modeled. This modification

process is called template-based instantiation and results in a module.

Definition 3.1.2. An Ontology Module is a pattern that has been instantiated via template-

based instantiation.

Template-based instantiation is the act of replacing class and property names in the

general pattern with labels more applicable to the chosen domain [10]. This is a departure

from other pattern usage techniques, where a developer may choose to view the ontology

design pattern as an upper ontology and use subclass and subproperty axioms to connect

the pattern to the domain ontology. Figure 3.2 is an example of this process. The Chemical

Laboratory Procedure module (right) has been instantiated by using the State Transition

Pattern (left), which in turn is a specialization of the Trajectory pattern (Figure 3.1).

Indeed, tracking this provenance for both modules and patterns is beneficial. In the case

of patterns, it allows for attribution or, perhaps, metadata on how to utilize the pattern or

the design considerations for it. To annotate patterns and modules as such, the use of the

Ontology Design Pattern Representation Language (OPLa) is recommended. An indepth

examination of OPLa and it’s extensions can be found in [13, 11].
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Figure 3.2: The chemical laboratory procedure module (right) [39] next to the State Tran-
sition ontology design pattern (left), which is, in turn, a pattern derived from the Trajectory
pattern (3.1). The visual syntax for this schema diagram is detailed in Definition 2.1.1.

Thus, a modular ontology is composed of modules, that patterns from which they were

instantiated, and the annotations that interrelate them. As such, this research topic is

concerned with the following questions.

Q3 . What are ontology design patterns and how are they developed?

Q4 . How are ontology design patterns (re)used and how can we improve this process?

3.2 Contributions

The first three contributions, below, all correspond to efforts in answering Research Question

Q3. Essentially, in order to understand what ODPs are and how they are developed, it was

necessary to work closely with domain experts and attempt to create relevant patterns.

These culminated in the below publications. However, and perhaps more importantly, they

provided valuable insight into the creation process, which in turn allowed us to advance

additional collaborative efforts, such as VoCamps.1

To be clear, RQ3 is very broad and can be attempted to be answered in many ways. For

the purposes of this dissertation, the corresponding efforts below all lent towards gaining

hands on experience in the development of the ODPs. This resulted in many lessons learnt,

1See http://vocamp.org/wiki/Main_Page.
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both in terms of development and modeling expertise (e.g. how are axioms used and anno-

tated) as well as soft knowledge (e.g. how can formal knowledge be communicated between

parties or what are useful ways of iterating over schema diagrams). The former informs the

rest of the dissertation, especially the tooling implementations and improvements. The latter

is not often mentioned in the below contributions, yet it was a critical aspect for enabling

downstream research and increasing productivity.

[30] Cogan Shimizu and Michelle Cheatham. An ontology design pattern for microblog

entries. In Eva Blomqvist, Óscar Corcho, Matthew Horridge, David Carral, and Rinke

Hoekstra, editors, Proceedings of the 8th Workshop on Ontology Design and Patterns

(WOP 2017) co-located with the 16th International Semantic Web Conference (ISWC

2017), Vienna, Austria, October 21, 2017, volume 2043 of CEUR Workshop Proceedings.

CEUR-WS.org, 2017

[37] Cogan Shimizu, Pascal Hitzler, and Clare Paul. Ontology design patterns for Winston’s

taxonomy of part-whole relations. In Elena Demidova, Amrapali Zaveri, and Elena Sim-

perl, editors, Emerging Topics in Semantic Technologies – ISWC 2018 Satellite Events

[best papers from 13 of the workshops co-located with the ISWC 2018 conference], vol-

ume 36 of Studies on the Semantic Web, pages 119–129. IOS Press, 2018

[39] Cogan Shimizu, Leah McEwen, and Quinn Hirt. Towards a pattern-based ontology for

chemical laboratory procedures. In Martin G. Skjæveland, Yingjie Hu, Karl Hammar,

Vojtech Svátek, and Agnieszka Lawrynowicz, editors, Proceedings of the 9th Workshop

on Ontology Design and Patterns (WOP 2018) co-located with 17th International Se-

mantic Web Conference (ISWC 2018), Monterey, USA, October 9th, 2018, volume 2195

of CEUR Workshop Proceedings, pages 40–51. CEUR-WS.org, 2018

In the first publication, An ontology design pattern for microblog entries [30], the con-

ceptual modeling was performed by Cogan Shimizu with feedback from Michelle Cheatham.

In Ontology design patterns for Winston’s taxonomy of part-whole relations [37], the con-

ceptual modeling was done by both Cogan Shimizu and Pascal Hitzler. A use-case in the

materials science domain was provided by Clare Paul. In the third publication, Towards

a pattern-based ontology for chemical laboratory procedures [39], the conceptual modeling
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was performed by Cogan Shimizu, with significant feedback from Leah McEwen, who also

provided the chemical laboratory procedures for explicit use cases. Quinn Hirt provided the

implementation and accompanying annotations.

The next two contributions address both research questions. The former is a tool that

assists users in annotating their patterns (or modules and ontologies) with annotations from

the OPLa. The latter is a contribution that extends the usefulness of OPLa so that discov-

ering users can gain further insight into descriptions, use-cases, and the scenarios that drove

the pattern’s or module’s development.

[34] Cogan Shimizu, Quinn Hirt, and Pascal Hitzler. A Protégé plug-in for annotating OWL

ontologies with OPLa. In Aldo Gangemi, Anna Lisa Gentile, Andrea Giovanni Nuzzolese,

Sebastian Rudolph, Maria Maleshkova, Heiko Paulheim, Jeff Z. Pan, and Mehwish Alam,

editors, The Semantic Web: ESWC 2018 Satellite Events - ESWC 2018 Satellite Events,

Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers, volume 11155 of Lec-

ture Notes in Computer Science, pages 23–27. Springer, 2018

[11] Quinn Hirt, Cogan Shimizu, and Pascal Hitzler. Extensions to the ontology design pat-

tern representation language. In Krzysztof Janowicz, Adila Alfa Krisnadhi, Maŕıa Poveda

Villalón, Karl Hammar, and Cogan Shimizu, editors, Proceedings of the 10th Workshop

on Ontology Design and Patterns (WOP 2019) co-located with 18th International Seman-

tic Web Conference (ISWC 2019), Auckland, New Zealand, October 27, 2019, volume

2459 of CEUR Workshop Proceedings, pages 76–75. CEUR-WS.org, 2019

In the first publication, A Protégé plug-in for annotating OWL ontologies with OPLa [34],

Cogan Shimizu designed and implemented the annotation software. Quinn Hirt assisted with

implementation and Pascal Hitzler provided feedback. The second publication, Extensions

to the ontology design pattern representation language was authored by Quinn Hirt with

feedback from Cogan Shimizu and Pascal Hitzler.

The culmination of this research was the development and release of MODL: A Modular

ontology design library. The library is a distributable artifact that contains some of the

most frequently used patterns. Their documentation and diagrams were updated with the

visual schema diagram syntax from Section 2.1 and were all annotated with OPLa. It also
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contains two novel patterns for solving spatial and temporal patterns. Ultimately, the goal

is to enhance discovery and trust of ontology design patterns.

[35] Cogan Shimizu, Quinn Hirt, and Pascal Hitzler. MODL: A modular ontology design

library. In Krzysztof Janowicz, Adila Alfa Krisnadhi, Maŕıa Poveda Villalón, Karl Ham-

mar, and Cogan Shimizu, editors, Proceedings of the 10th Workshop on Ontology Design

and Patterns (WOP 2019) co-located with 18th International Semantic Web Conference

(ISWC 2019), Auckland, New Zealand, October 27, 2019, volume 2459 of CEUR Work-

shop Proceedings, pages 47–58. CEUR-WS.org, 2019

The patterns in MODL: a modular ontology design library were collected, curated, and

documented by Cogan Shimizu. Quinn Hirt assisted with annotating the patterns. Pascal

Hitzler provided feedback.
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Chapter 4

Modular Ontology Engineering

4.1 Overview

After taking the time to learn and understand the component pieces of the methodology,

as outlined in the previous chapters, it was then time to execute the methodology in its

entirety. The methodology’s steps are shown in Figure 1.3. An in-depth examination of the

methodology can be found in [38], which is based off of [15, 22]. Briefly, these are some the

key attributes.

Modular ontology engineering is use-case driven and assumes an empirical or data reality.

This ultimately means that we assume that we have an understanding of how the knowledge

graph will be used, as well as what sort of data we will have available (or will be collected)

that the knowledge graph will capture.

Modular ontologies are pattern-based, as described in the previous chapter. That is, we

generally try to re-use, as frequently as possible, so-called ontology design patterns during our

ontology engineering process. By using these patterns as templates, we can create modules,

which we then, in turn, hook together to create an Modular ontology.

By examining the process itself, as well as its outcomes, with respect to advancing the

methodology, we obtain the following research questions.

Q5 . What steps of the methodology are ambiguous or difficult to follow?
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Q6 . Does the methodology, when executed, produce a reusable knowledge graph?

4.2 Contribution

[17] Pascal Hitzler and Cogan Shimizu. Modular ontologies as a bridge between human

conceptualization and data. In Peter Chapman, Dominik Endres, and Nathalie Pernelle,

editors, Graph-Based Representation and Reasoning - 23rd International Conference on

Conceptual Structures, ICCS 2018, Edinburgh, UK, June 20-22, 2018, Proceedings, vol-

ume 10872 of Lecture Notes in Computer Science, pages 3–6. Springer, 2018

[38] Cogan Shimizu, Adila Krisnadhi, and Pascal Hitzler. Modular ontology modeling: a

tutorial. In Giuseppe Cota, Marilena Daquino, and Gian Luca Pozzato, editors, Ap-

plications and Practices in Ontology Design, Extraction, and Reasoning, Studies on the

Semantic Web. IOS Press, 2020. Under review

[36] Cogan Shimizu, Pascal Hitzler, Quinn Hirt, Dean Rehberger, Seila Gonzalez Estrecha,

Catherine Foley, Alicia M. Sheill, Walter Hawthorne, Jeff Mixter, Ethan Watrall, Ryan

Carty, and Duncan Tarr. The Enslaved Ontology: Peoples of the historic slave trade.

Journal of Web Semantics, 63:100567, 2020

In the first publication, Modular ontologies as a bridge between human conceptualization

and data, Pascal Hitzler and Cogan Shimizu put forward the position for using modular

ontologies as schema for highly reusable knowledge graphs. This contribution frames the

answer space for research question Q6.

The second publication, Modular Ontology Modeling: a Tutorial [38], was written by

Cogan Shimizu based off material and feedback from Adila Krisnadhi and Pascal Hitzler.

This contribution addresses Research Question Q5, in particular. By closely examinining

each step in the methodology and attempting to present it in a salient and cogent manner,

we reduce the ambiguity of the steps, while also providing an in-depth tutorial for new

developers to follow.

In the third publication, The Enslaved Ontology: Peoples of the historic slave trade [36],

Cogan Shimizu drove the conceptual modeling, with significant feedback from Pascal Hitzler.
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Quinn Hirt provided documentation and annotation assistance. The following authors: Dean

Rehberger, Seila Gonzalez Estrecha, Catherine Foley, Alicia M. Sheill, Walter Hawthorne,

Ethan Watrall, Ryan Carty, and Duncan Tarr served as the domain experts, which were

close collaborators for the document. Jeff Mixter consulted on infrastructure and content.

This contribution describes a full implementation of the modular ontology methodology

that resulted in a modular ontology that is used in the real-world; in post-publication, it has

been found to be adaptable, extensible, and reusable. Since its conception, we have further

worked to extend its provenance module and evolve its place module, which will result in

forthcoming version 2.0 documents.1 It is also being successfully adapted to the WikiBase

schema for the Enslaved Hub knowledge graph. This contribution fully addresses Research

Question Q6.

1See https://enslaved.org/docs/.
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Chapter 5

Modular Graphical Modeling

5.1 Overview

Modular graphical modeling is the conceptual next step with respect to the modular ontology

engineering methodology. By realizing the potential of the methodology through increased

tool support, we posit that we can improve outcomes for both experienced and new ontology

developers. That is, we ask the following research questions.

Q7 . Does the use of graphical tools improve outcomes of modular ontology development?

Q8 . Does modular graphical modeling improve accessibility to modular ontology engineer-

ing?

This effort culminated in a tool called the Comprehensive Modular Ontology Design

IDE, which is a plugin for an industry standard ontology editor, Proteǵé. Figure 5.1 shows

a screenshot of version 1.0 of the tool. CoModide was initially described in [29] and the

preliminary implementation results are presented in [29].

Through the use CoModIDE, we did find that our hypothesis held true, after controlling

for a number of variables, thus addressing Research Questions Q7 and Q8. A thorough

analysis and comparison to the state of the art, description of the experiment design, with

discussion of the results can be found in the contribution [33].
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Figure 5.1: A screenshot of CoModIDE. The area marked (1) is the palette where the
visual primitives may be selected. (2) is the graphical canvas where developers may construct
schema diagrams. (3) is a pattern library from which a user may drag-and-drop ODPs from
MODL onto the graphical canvas.

5.2 Contribution

[29] Cogan Shimizu. Towards a comprehensive modular ontology IDE and tool suite. In

Sabrina Kirrane and Lalana Kagal, editors, Proceedings of the Doctoral Consortium at

ISWC 2018 co-located with 17th International Semantic Web Conference (ISWC 2018),

Monterey, USA, October 8th–12th, 2018, volume 2181 of CEUR Workshop Proceedings,

pages 65–72. CEUR-WS.org, 2018

[32] Cogan Shimizu and Karl Hammar. CoModIDE – the Comprehensive Modular Ontology

Engineering IDE. In Mari Carmen Suárez-Figueroa, Gong Cheng, Anna Lisa Gentile,

Christophe Guéret, C. Maria Keet, and Abraham Bernstein, editors, Proceedings of the

ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and Outrageous Ideas)

co-located with 18th International Semantic Web Conference (ISWC 2019), Auckland,
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New Zealand, October 26-30, 2019, volume 2456 of CEUR Workshop Proceedings, pages

249–252. CEUR-WS.org, 2019

[33] Cogan Shimizu, Karl Hammar, and Pascal Hitzler. Modular graphical ontology engineer-

ing evaluated. In Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko

Paulheim, Anisa Rula, Anna Lisa Gentile, Peter Haase, and Michael Cochez, editors, The

Semantic Web – 17th International Conference, ESWC 2020, Heraklion, Crete, Greece,

May 31-June 4, 2020, Proceedings, volume 12123 of Lecture Notes in Computer Science,

pages 20–35. Springer, 2020

In the first publication, Towards a comprehensive modular ontology IDE and tool suite

[29], Cogan Shimizu puts forward a comprehensive description of the CoModIDE vision. As

it was a doctoral consortium paper, it necessitated a single author requirement of the PhD

candidate. The second publication, CoModIDE – the comprehensive modular ontology engi-

neering IDE [32], is a demonstration paper that put forward the first version of CoModIDE.

Cogan Shimizu and Karl Hammar co-developed the software platform.

In this final publication, Modular graphical modeling evaluated [33], CoModIDE and the

methodology were evaluated. Cogan Shimizu designed the experiment, conducted a local

instance of the experiment, and provided the experiment analysis. Karl Hammar provided

related work, software description, and also conducted a local experiment. Pascal Hitzler

provided feedback over the course of the work, in particular, the experiment design.
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Chapter 6

Conclusion

6.1 Summary

Modular ontology engineering is a methodology for producing highly reusable knowledge

graph schema. Over the course of this dissertation, we have outlined a number of contribu-

tions that have improved the process to what we see today.

First, we created an improved method and tool for generating schema diagrams similar to

those manually generated by humans [31]. We furthermore show that over 80% of all axioms

in a set of 280 real-world ontologies are expressible using this graphical representation.

Next, we examined and improved the ontology design pattern development process. This

was accomplished through the development of relevant ODPs [30, 39, 37]. We furthermore

developed extensions to OPLa [11] and a tool that significantly improves the usability of

these annotations [34]. This work culminated in MODL: a modular ontology design library,

which is a distributable set of curated, well-documented ODPs, both novel and drawn from

the ontology design pattern portal [35].

These advances were combined, with inspiration from [28], to create the Comprehensive

Modular Ontology Design IDE (CoModIDE), which is a plugin for the industry-standard

ontology editor, Protégé [29, 32]. This tool was shown to significantly improve outcomes for

experienced and new ontology developers when developing modular ontologies [33].
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Altogether, these research topics, resulted in result in an actually reusable, extendable,

and adaptable ontologies, in the forms of the The Enslaved Ontology [36] and the Domain

Ontology for Task Instructions [6].

6.2 Future Work

There are two immediate next steps to address.

1. How can modular ontologies be leveraged in other subfields of knowledge representation

and reasoning?

2. How can CoModIDE be improved as both a research and development platform?

Two examples of how modular ontologies may be leveraged elsewhere are the tasks of

complex ontology alignment and ontology learning.

Ontology alignment is the science of finding correspondences between two different on-

tologies that may be conceptualizing the same concepts, albeit differently [7]. Complex

ontology alignment (COA) is an extension of that, but examining more complex correspon-

dences than, e.g., string matching concept names [44]. We have reason to believe that the

modular structure of a modular ontology could assist in this task. By leveraging the embed-

ded patterning information, we have more information on how individual axioms contribute

to a module, thus providing insight to a COA system on possible complex correspondences.

With respect to ontology learning, we envision a more principled approach to pattern-

mediated ontology learning. Our advances in understanding patterns and modules coupled

with recent advances in natural language processing, we have reason to believe that new

ground can be broken.

For Question 2, CoModIDE has potential to spur additional development of tooling

infrastructure for modular ontology development. Recent updates to the software have seen

the inclusion of telemetry software, which can be used to improve user-workflows, as well

as more rapid detection and fixing of bugs in the platform. Furthermore, it has its own
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underlying message bus that other developers may code against. Thus, CoModIDE is open

to be improved or enhanced through the efforts of others outside of the current developers.

For example, we foresee collaboration with different pattern communities (e.g. OTTR [40])

or other tools (e.g. ODPReco [43]).

All in all, modular ontologies have a healthy outlook and can have a considerable impact

on the state of the art, moving forward.
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Vojtech Svátek, and Agnieszka Lawrynowicz, editors, Proceedings of the 9th Workshop

on Ontology Design and Patterns (WOP 2018) co-located with 17th International Se-

mantic Web Conference (ISWC 2018), Monterey, USA, October 9th, 2018, volume 2195

of CEUR Workshop Proceedings, pages 40–51. CEUR-WS.org, 2018.

[40] Martin G. Skjæveland, Daniel P. Lupp, Leif Harald Karlsen, and Henrik Forssell. Prac-

tical ontology pattern instantiation, discovery, and maintenance with reasonable ontol-

ogy templates. In Denny Vrandecic, Kalina Bontcheva, Mari Carmen Suárez-Figueroa,
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Abstract. Interest in Semantic Web technologies, including knowledge
graphs and ontologies, is increasing rapidly in industry and academics.
Developing large onlologies is a difficult task that is often aided by mod-
ular development practices. Our method for generating schema diagrams
supports ontology engineers working with this strategy. In order to eval-
uate this method, we provide a prototype tool, SDOnt, and examine its
ability to generate schema diagrams similar to manually drawn schema
diagrams and show that it outperforms the popular tools VOWL and
OWLGrEd.

1 Introduction

Modular ontology development presents unique challenges to visualization that
commonly-used software does not satisfy. Along with other types small ontolo-
gies, like ontology design patterns, the information necessary for understanding
these models is often a fraction of what is required for a larger ontology with
a complete diagram. Sometimes the over-inclusion of information can lead to
densely unreadable or even subtly incorrect representations. Modular ontologies
are and often changed, reworked, or otherwise re-positioned in reference to static
superstructure during development. These and other reasons demonstrate that a
different type of visualization is necessary to adequately capture the fundamental
semantics of modular ontologies.

We present a novel algorithm that is designed to satisfy the specific require-
ments of modular ontologies. In particular, we show that in modular development
often the most effective representation strategy is that of a schema diagram. A
schema diagram is a widespread and invaluable tool for both understanding and
developing ontologies. A survey we conducted shows that it ranks among the
most important components in the documentation of an ontology [11]. Schema
diagrams provide a view, albeit limited, of the structure of the relationships
between concepts of an ontology. Frequently, a schema diagram is generated
manually during the design phase of the engineering process. At that time, the
diagram is a mutable, living document. After the schema diagram has been
created, the OWL file is created in the likeness of the diagram by means of
OWL axioms which precisely capture the underlying intention of the possibly
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ambiguous diagram. We may call this a diagram-informed OWL file. As we see
in Section 5, this can lead to unforeseen problems, such as whether the OWL file
truly represents the diagram. Thus, one possible, beneficial side effect of having
a tool that can generate a schema diagram programmatically is that it allows
ontology engineers to create an OWL-informed diagram. Additionally, it would
provide a mechanism by which schema diagrams may be easily updated in the
case of a newer versioned OWL file.

In this paper, we demonstrate our technique for automatically generating
schema diagrams that are most helpful for development according to the strate-
gies we outline. Next we evaluate our strategy in comparison with author-drawn
diagrams as well as the popular OWL visualization tools WebVOWL and OWL-
GrEd. For the limited scope of this paper, we focus only on evaluations of se-
mantic content and avoid discussions of layout, position, size, aesthetics, etc.
These are important concerns which we intend to explore in future work.

The rest of the paper proceeds as follows. Section 2 describes existing visual-
ization tools and how they differ from our method and tool. Section 3 describes
the process of schema diagram generation. Section 4 gives a very brief description
of our implementation and our method. Section 5 evaluates our method, details
possible points of improvement, and discusses the results. Finally, in Section 6
we conclude and outline our next steps and future work.

2 Related Work

Visualization is a critical aspect to understanding the purpose (and content) of
an ontology [4, 5, 11]. There are many tools that offer visualization capabilities.
We are interested in how meaningfully they construct a visualization, rather
than the details of their implementations. For example, many of these tools offer
some sort of interactivity, such as drag and drop construction and manipulation
or folding for dynamic exploration. This differs from our intent: to provide a
method for constructing a diagram that portrays the relations between concepts.
Additionally, our approach does not provide specific support for visualizing an
ABox, as our emphasis is on supporting the creation and use of schemas.

Below, we have selected for comparison a few tools that are representative
in their functionality. For a more complete survey, see [6]. As we have chosen
VOWL (as implemented using the WebVOWL tool) and OWLGrEd for direct
evaluation against our method, we describe them in Section 5.

NavigOWL3 is a plugin for the popular tool Protégé4. NavigOWL provides a
graph representation of the loaded ontology, such that the representation follows
a power-law distribution, which is a type of force-directed graph representation.
It also provides a mechanism for filtering out different relational edges while
exploring an ontology [1]. This tool is not supported in the current version of

3 http://home.deib.polimi.it/hussain/navigowl/
4 https://protege.stanford.edu/
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Protégé.5 It is particularly well suited to visualizing the ABox, which is outside
the scope of our intent and method.

OWLviz is also a Protégé plugin. It generates an IS-A hierarchy for the loaded
ontology rooted with the concept owl:Thing. That is, OWLviz displays only sub-
class relations between concepts and does not extract properties from those
axioms. Hovering over the nodes in the graph representation provides axioms re-
lated to the class represented by that node. This plugin is not supported by the
current version of Protégé. The lack of relational specificity per edge is non-ideal
for our purposes. Furthermore, information accessible only through interactivity
is non-ideal for a reference diagram.

TopBraid Composer is a standalone tool similar in functionality to Protégé
if it were augmented with OWLviz; it is developed, maintained, and sold by
TopQuadrant, Inc.6 There is no version for academic purposes.

OntoTrack is a standalone tool for visualizing the subsumption hierarchy of
an ontology rooted at owl:Thing. Properties are not extracted from axioms and
used to label edges. Further, the tool only supports ontologies in the deprecated
OWL-Lite− and automatically augments the visualization with subsumptions
found with the reasoner RACER7 [13]. Between the limitations on OWL and
the interactivity, this tool is not strictly suitable for creating schema diagrams.

MEMO GRAPH was developed to be a memory prosthesis for users suffering
from dementia [6]. As such, it is particularly focused on representing the relations
between family members. It is not currently available for public use.

RDF Gravity is a standalone tool that provides a visualization for an ontology
via graph metrics. The tool generates a force-directed graph representation of
the underlying ontology. We could not find any data on how it handles blank
nodes, represents class disjointness, and other non-graph metrics, as, at time
of this writing, the tool is unavailable, no publication on its method can be
found, and it seems to be survived only by screenshots. We include this entry
for the sake of completeness. In these, we note that there are many tools for
visualizing ontologies, however many are no longer supported or only provide
limited support past graph-metric data.

Finally, we discuss the strategy as outlined in [18]. The authors describe a
methodology similar in process and result to ours presented in the next section.
Their method creates a so-called navigation graph by projecting an ontology
into a graph-space. The navigation graph is a labelled graph that they purport
to aid in end user understanding. This work was done in parallel to ours [10]
and we were not aware of their line of work. While their proposed technique is
very similar to ours, as detailed in the next section, they did not provide an
implementation or evaluation of their method.

5 https://protegewiki.stanford.edu/wiki/NavigOWL
6 https://www.topquadrant.com/products/
7 https://www.ifis.uni-luebeck.de/index.php?id=385
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3 Method

A schema diagram does not necessarily aim to represent all information encoded
in an ontology. As mentioned in Section 2, there are several tools that attempt
to do so, in particular, VOWL and OWLGrEd. However, our ontology modeling
experiences, with domain experts across wildly different fields, show that it is
necessary to strike a good balance between complexity and understandability.

In fact, in these collaborations we gravitate towards diagrams that merely
capture classes and the relationships between them. This omits most semantic
aspects such as whether a relationship between classes does or does not indicate
domain or range restrictions or even more complex logical axioms. We find that
the exact semantics are better conveyed using either natural language sentences
or logical axioms (preferably in the form of rules [16]) in conjunction with a very
simplified diagram.

Typically, we create modular ontologies by first drawing schema diagrams
with domain experts and then capturing the exact logical axioms that constitute
the ontology. In this paper we reverse the process: start with the logical axioms
and automatically derive the schema diagrams. We do this to help us to deal
with ontologies constructed by others for which no suitable schema diagrams are
provided. As we will see later in Section 5, our visualization approach can also
be helpful in finding errors in OWL files or in manually drawn schema diagrams.

To maximize information and minimize clutter we define some guidelines:

– All classes inherit from owl:Thing, so it is unhelpful to clutter a diagram with
subclass edges from concepts to owl:Thing.

– We do not represent any logical connectives or complex axioms, other than
direct subClass relationships between named classes, since in our experience
this type of information is better conveyed non-visually.

– Disjointness of classes does not need explicit graphical representation. In
most cases, disjointness is immediately clear for a human with some knowl-
edge about the domain.

– Inverse relations are not represented, as they are syntactic sugar for any
relation.

– The ABox is disregarded; instances of classes are not represented.

With these assumptions in mind, we detail our method using the rules below:
Steps 3 and 4 may be omitted if there are no direct domain or range restric-

tions given. However, because there are multiple ways of expressing the same
information in OWL, domain and range may appear in the declarations of the
Object or the Datatype Properties.

In Step 5 it is important to note the differences between logical and schematic
equivalence. Schematic equivalence between two ontologies means they share the
same graphical representation. Consider, for example, the definitions for scoped
domain and range restrictions:

∃R.B v A (1)

A v ∀R.B (2)
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1. Create a node for each class in the ontology’s signature.
2. Create a node for each datatype in the ontology’s signature.
3. Generate a directed edge for each Object Property based on its domain and

range restrictions, if such are given. The source of the edge is the Property’s
domain and the target of the edge is the Property’s range.

4. Generate a directed edge for each Datatype Property, in the same manner as
for an Object Property, if domain and range restrictions are present.

5. For each other axiom in the TBox:
– Case 1: if the subclass and superclass are atomic, generate a subclass edge

between them.
– Case 2: if the axiom is of the forms presented in (1) and (2) below, generate

the associated directed edge.
– Case 3: apply rules (3) to (6), as listed below, recursively until the resulting

axiom sets can be handled by Cases 1 and 2.
6. Display.

Fig. 1: The algorithm for generating a schema diagram.

Logically, (1) and (2) convey two different meanings. Schematically, though, they

may be represented by the same artifact in a graph: A
R−→ B. Thus we consider

them schematically equivalent. We may also break down more complex axioms
using the rules defined in (3) through (6). These rules hold for both intersection
(u) and union (t). We list only the union versions. Note that not all of these
are logically equivalent transformations.

A v ∀R.(B t C t · · · )⇒





A v ∀R.B

A v ∀R.C
...

(3)

and

∃R.(B t C t · · · ) v A⇒





∃R.B v A

∃R.C v A
...

(4)
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(5) and (6) are used only in the union case as shown here. (5) is not a logically
equivalent transformation.

B t C t · · · v A⇒





B v A

C v A
...

(5)

A v B t C t · · · ⇒





A v B

A v C
...

(6)

We may recursively apply (3) through (6) for non-atomic concepts A,B, · · · until
we have reached axioms of the form (1) and (2) or atomic subclass relationships.

The time complexity for this process is minimal. If c is the maximum num-
ber of concepts and datatypes in any axiom in the ontology then there are at
most

(
c
2

)
so-called “simple” axioms that together are schematically equivalent

to the “complex axiom.” Thus, there are at most
(
c
2

)
· n edges to parse per on-

tology, where n is the number of axioms in the TBox, giving our method a time
complexity of O(n). This calculation ignores algorithms for the graph layout.

Because the goal of our approach is to generate static schema diagrams, there
are practical limitations on the size of an ontology the program uses. Any schema
diagram becomes essentially unreadable if it gets too large. Indeed, our approach
is primarily meant for smaller OWL files such as ontology design patterns [7] or
ontology modules [12]. Larger projects would first have to be broken down into
modules to create separate smaller schema diagrams. In fact, this would likely
result in a better engineered ontology [9].

4 Implementation

For the purposes of our evaluation, we have developed a prototype implementa-
tion. SDOnt is a three-part pipeline consisting of a GUI, a parser module, and
a rendering module. SDOnt is developed in Java and provided as an executable
JAR file. Ontology manipulations are done using the OWLAPI.8 We provide the
source code for SDOnt online, along with our test set, evaluation results, and a
brief tutorial for the tool’s use.9

The GUI is implemented using Java Swing and serves as an interface for
navigating and loading ontologies into the program. The Ontology Parser is an
implementation of our algorithm as described in Section 3. The parser provides
a set of nodes to the rendering module that represent the classes and datatypes
in the ontology’s signature and the node-edge-node artifacts that represent their
properties, domains, and ranges for the visualization.

8 https://github.com/owlcs/owlapi
9 http://dase.cs.wright.edu/content/sdont
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The rendering module takes those node-edge-node artifacts and the node set
and combines them to create the visualization and render it to the screen. The
rendering module utilizes the library JGraphX10 for generating, laying out, and
displaying the schema diagram. JGraphX is an open source library written in
Java for displaying and manipulating graphs. However, the SDOnt code-base has
been written in such a way that any visualization library may be used; that is,
an external developer may code against the SDOnt code-base with no changes
necessary to the method.

5 Evaluation

In this evaluation we describe the closest alternatives to SDOnt and their meth-
ods in Section 5.1, the method by which we conduct our evaluation in Section
5.2, our choice of test set in Section 5.3, and discuss the results of our evaluation
in Section 5.4.

5.1 Compared Tools

We evaluate SDOnt by comparison with author supplied visualizations, Web-
VOWL, and OWLGrEd.

Each of the ontologies in our test set, which is outlined in Section 5.3, has a
general visualization provided by the authors. We use these diagrams as a base-
line against which the tools can be judged and assume that these represent the
authors’ best attempt to generalize the semantics of the ontology. However, there
may be some irregularities in the methodologies different authors use to produce
these visualizations. Indeed, some of the methodologies are very distinct–some
are very minimal; others take inspiration from UML. Some of the diagrams ap-
pear to be created automatically from Protégéor some other automated tool,
while others are manually draw using a variety of graphing utilities. The varia-
tions in these sources may be partially responsible for suboptimal results, espe-
cially as none of the three compared tools use a UML-style visualization.

VOWL is a graphical notation tool for OWL. The specification can be viewed
in detail in [14]. VOWL represents ontologies using detailed force-directed graphs.
We use the web implementation WebVOWL11 to generate visualizations of our
ontologies. The website application has a high degree of potential customization.
In the settings, we choose to filter out only class disjointness axioms and set the
degree of collapsing to 0 since we use smaller ontologies.

WebVOWL is able to quickly produce a visualization for every valid OWL
file that we analyze. Usually the output animation clearly represents the intent
of the ontology. Occasionally, however, the result contains incomplete or missing
information. In our experience WebVOWL is often ambiguous when it tries to
display complex statements, which could be the cause of this.

10 https://github.com/jgraph/jgraphx
11 http://www.visualdataweb.de/webvowl/
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OWLGrEd is a Graphical Ontology Editor that allows for interactive, drag-
and-drop creation of ontologies [2]. It utilizes UML-like visualizations for dis-
playing axioms associated to a class. In addition, it provides Manchester Syntax
translations of axioms. OWLGrEd displays all axioms, sometimes as additional
nodes. The visualization is hierarchical, so there is a subClass edge between an
owl:Thing node and every un-subsumed concept in the ontology’s signature. At
the time of writing the web version of the OWLGrEd used in our study is not
loading, though the desktop application is still available.

5.2 Comparison Scheme

The method for constructing schema diagrams for ontology patterns and mod-
ules, as introduced in the previous section, results in a diagram most similar to
published reference diagrams which follow the visualization paradigm which we
found most useful in interactive modeling sessions with domain experts. In order
to provide a meaningful evaluation, we use as gold-standard reference the manu-
ally drawn diagrams which have been published in the papers or on the websites
where the corresponding ontologies have been discussed by their authors. I.e.,
these diagrams have been designed with human understandability in mind, and
their creation pre-dates our automated diagram generation method.

We will compare the diagrams generated by SDOnt, VOWL and OWLGrEd
with the gold-standard diagrams taken from the respective publications.

In order to have some useful terminology, we say a node represents a class or
concept. An edge represents a relationship or role, where the source of the edge is
the relationship’s domain and the head of the edge represents the relationship’s
codomain – domain and codomain are here not meant to be formal technical
terms in the sense of OWL restrictions or RDFS domain/range declarations,
but rather intuitive notions which are as ambiguous as a schema diagram: An
edge from class A to class B in the diagram indicates that A is (informally) in the
domain of the relation, and B is in the codomain of the relation. However, there
may also be an edge with the same role label between two different classes C and
D elsewhere in the diagram, without making the classes A and C (or B and D)
identical, as would happen if these were formal domain or range declarations.

All three visualization tools generate directed edges. To conduct this com-
parison, we evaluate the following criterion for node-edge-node artifacts:

For every node-edge-node artifact in the generated diagram, does it appear
in the reference diagram, and vice-versa?

We state the results of each comparison as an F1-score in Table ?? using the
criteria below.

– True Positive: the artifact appears in both generated and reference diagrams
– False Positive: the artifact appears in the generated diagram, but not the

reference diagram.
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– False Negative: the artifact does not appear in the generated diagram, but
does appear in the reference diagram.

5.3 Test Set

In order to test our process, we constructed a test set of ontology design patterns.
Our process for selecting the patterns was simply searching the main publishing
outlets and ontologydesignpatterns.org and choosing those patterns that
had published diagrams, as well as unbroken links to their OWL files. All test
data and the complete set of ontologies we used for our evaluation can be found
on our tool’s website.12

In some cases, it was necessary to make minor changes to the OWL files
during this evaluation. Both OWLGrEd and WebVOWL produced errors on
importing certain external resources.13 Whenever removing an import allowed
us to continue with the analysis we did so, using the new OWL file for both
tools, even if the file worked for the others tools initially. However, there were
still some patterns that failed to work for any tool. Our results report only on
those OWL files that could be successfully processed by each of the compared
tools. After these criteria were met, our test set contains 63 ontology design
patterns.

5.4 Results & Discussion

The results of our evaluation are summarized in Tables 1 and 2. The node-edge-
node triple sets are determined manually. During this process we take care to
use a consistent naming format. This allows us to conduct our comparison pro-
grammatically. The code utilized for this comparison, with some documentation
for its use, is also available in the online portal.

We see that in Table 1, the F1–measures are very low. SDOnt has an F1–
measure of 0.465, OWLGrEd has an F1–measure of 0.269, and WebVOWL has
an F1–measure of 0.163. However, we also note that there are many stylistic
differences in the generation of diagrams. Many of the reference diagrams are
presented in UML-esque manner. Comparing these to a force directed graph,
such as those produced by WebVOWL would, of course, perform very poorly.

In this evaluation we do not encounter any false positives that are a misrep-
resentation of an axiom. Instead, false positives are strictly caused by the OWL
file containing more information than expected. The exact reasons for this seem
to vary from case to case. We speculate that in some cases the reason may be
that the diagram may look more elegant or the name of a concept may imply its

12 http://www.dase.cs.wright.edu/content/sdont
13 We note that there has been an update to both of these web application since we

conducted our evaluation. However, due to time constraints, we were unable to go
back and re-run the evaluation. Fortunately, we do not punish any tool for being
unable to render a document; we only compare performance against the subset of
patterns that every tool successfully processed.
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F1–Measure

SDOnt 0.465
OWLGrEd 0.269
WebVOWL 0.163

Table 1: F1–Measure for each of the tool’s performance.

Table 2: Significance of Pairwise comparison of the tools using the Wilcoxon
signed rank test.

SDOnt vs OWLGrEd SDOnt vs WebVOWL OWLGrEd vs WebVOWL

p < 0.001 p < 0.001 0.05 < p < 0.0114

natural superclass. For example, in the Hazardous Event pattern [3], Hazardou-
sEvent is a subclass to Event, but this is not indicated in the reference diagram,
leading to a false positive. In other cases, the OWL file could be malformed.

To formally compare the performances we run three Wilcoxon signed rank
tests, with null hypothesis that there are no difference in performance. Our tests
show that SDOnt performs significantly better than OWLGrEd (p < 0.001), and
WebVOWL (p < 0.001). As well as that OWLGrEd performs significantly better
than WebVOWL (0.05 < p < 0.01)

There are also motivating cases for using schema diagrams as error check-
ers during modular ontology development. The tools do poorly on many of the
diagrams simply because the respective OWL files do not actually contain the
information the diagram implies. This may mean that they contain more infor-
mation (e.g. alignments to different patterns) or lack information (e.g. errors).

VOWL and OWLGrEd consistently performed worse than SDOnt for two
reasons. First, WebVOWL had many duplicated edges for different functional
properties, even after adjusting settings in an attempt to prevent them. Secondly,
both OWLGrEd and VOWL had trouble extracting properties from complex
axioms. For OWLGrEd these axioms were represented as anonymous nodes,
leading to false positive artifacts. Set operation nodes in WebVOWL also lead
to additional false positive artifacts.

6 Conclusions

Our results are promising even if they do not present as such. A lack of a con-
sistent visual notation for diagrams in our test set and poor quality control in
the OWL files definitely contribute to a poor, raw showing. However, we note
that even given our low F1–measures the results are consistent. And we see that
SDOnt performs significantly better than both OWLGrEd and WebVOWL for
generating schema diagrams that are most similar to the reference diagrams.
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To be fair, the test set against which we evaluated contained many UML-
esque diagrams, to which none of the evaluated tools are well-suited. VOWL and
OWLGrEd were used for comparison simply because they are the current state-
of-the-art for generalized ontology visualization and they are the tools which
produced the most similar diagrams to the desired ones. Our results do not
invalidate VOWL or OWLGrEd: they simply serve other purposes.

There are still many ways to improve our method and its implementation.
Firstly, we see in many diagrams that namespaces are frequently color coded,
as well as providing different node styles for external patterns. As ontology en-
gineering practices mature, we expect to see these distinctions to be formally
encoded in the ontology, e.g., according to the Ontology Design Pattern Rep-
resentation Language (OPLa) as described in [8]. As such, once the necessary
tooling support for OPLa has been realized, SDOnt will be able to leverage the
annotations and inform style and placement of nodes for increased clarity in the
schema diagram. We will also explore different styles of incorporating UML-like
visualizations for datatypes. The manually created reference diagrams are falli-
ble or simply unclear from the perspective of the OWL file which information is
necessary to convey. We believe incorporating OPLa and augmenting SDOnt to
account for these annotations will also help in this regard.

Secondly, we intend to investigate the most effective ways of creating a good
layout beyond force-directed graphs and will explore the option of providing our
work as an additional rendering capability for the OWLAPI.

Finally, we will integrate SDOnt with other existing Protégé plugins devel-
oped in our lab, including ROWL,15 OWLax,16 and OWL2DL17 [15–17], in order
to work towards a well-rounded ontology engineering suite which supports the
Modular Ontology Modeling paradigm.

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
Graduate Studies Institute (DAGSI).
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Most of OWL Is Rarely Needed

Abstract. The high expressivity of the Web Ontology Language (OWL)
is a boon, in that it makes it possible to describe complex relationships
between classes, properties, and individuals in an ontology. At the same
time, however, this high expressivity can be an obstacle to correct usage
and wide adoption. Past attempts to ameliorate this have included the
development of specific, presumably human-friendly syntaxes, such as
the Manchester syntax or graphical interfaces for OWL axioms, albeit
with limited success. If modelers want to develop suitable OWL axioms
it is important to study why managing ontology complexity is a difficult
issue.

In this paper, we adopt an idea from the Protégé plug-in, OWLAx, which
provides a simple, clickable interface to automatically input a very lim-
ited number of axioms of very limited expressivity. In particular, each
of these axioms contains at most three classes or roles. We hypothesized
that most of the axioms in existing ontologies can be expressed in terms
of simple axiom patterns like these.

Our findings, based on an analysis of 280 ontologies from five public
ontology repositories, confirm this hypothesis: Over 90% of class axioms
are indeed expressible in this way. We provide a detailed analysis of our
findings, and are also able to further reduce the number of axiom types
which are needed to obtain coverage of this magnitude.

1 Introduction

Knowledge graph schema are complex artifacts that can be difficult and expen-
sive to produce and maintain. This is perhaps especially true when encoding
them in OWL (the Web Ontology Language) as ontologies. The high expres-
sivity of OWL is a boon, in that it makes it possible to describe relationships
between classes, properties, and individuals in an ontology. At the same time,
however, this high expressivity is often an obstacle to its correct usage, which,
in turn limits wide adoption. Past attempts to ameliorate this have included
the development of specific, presumably human-friendly syntaxes, such as the
Manchester syntax [9], or graphical interfaces for OWL axioms, albeit with lim-
ited success [14]. Additionally, certain engineering paradigms, or methodologies,
have been developed, such as eXtreme Design [3] or Modular Ontology Modeling
[6,17], that attempt to simplify the modeling process.

In general, these methodologies aim to guide ontology developers through
the complex modeling process by either abstracting the complexity away (e.g.
through the use of Ontology Design Patterns), or by limiting the scope of a
complex landscape to something more immediately applicable and understand-
able. In this paper we are particularly interested in the latter, especially during
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the axiomatization process. We believe that it is important to investigate new
avenues for simplifying the creation of suitable OWL axioms.

One of the core tenets of the Modular Ontology Modeling methodology is
to produce schema diagrams and then systematically axiomatize them, with
the input of domain experts. This systematic axiomatization is inspired by the
OWLAx plugin for Protégé,1 which provides a simple, clickable interface to au-
tomatically input a very limited number of axioms of very limited expressivity
[15]. In particular, each of these axioms contains at most three classes or roles.
In [15], it was posited (but left unproven) that the 17 axiom patterns provided
by the interface were sufficient for most modeling purposes.

In this paper, we test that hypothesis by analyzing 280 ontologies from five
public ontology repositories. Concretely, we show the following:

H1. Almost all axioms in OWL ontologies are covered by the set of simple axiom
patterns found in Table 1.

And indeed, as we will see, it holds for over 90% of class axioms using our rela-
tively straightforward analysis. With a more thorough analysis, the percentage
may even be higher.

The rest of this paper is organized as follows. In Section 2 we briefly describe
literature related to our analysis. Section 3 presents our research method and
then Section 4 presents our evaluation. The results are discussed in Section 5.
Finally, in Section 6 we conclude.

2 Related Work

We are aware of only a very limited amount of research that specifically concerns
the ideas addressed in this paper. Zhang et al. [22] look at ways to measure the
design complexity of ontologies. Their work is focused more on ontology quality
evaluation than ontology composition. Some have also attempted to measure
the effect that axioms like existential quantifiers have on reasoning time, such
as Kang et al. [10], although it is only tangentially related to the work that we
are presenting.

There are also, as previously mentioned, tools that attempt to simplify OWL
ontology development, such as Manchester Syntax [9], WebVOWL [12], CoMo-
dIDE [16], Graffoo [4], and ROWLTab [14]. However, these tools merely simplify
the development process and do not measure whether OWL axioms actually are
complex in everyday usage. It could very well be the case that OWL is neces-
sarily complex and these tools are needed to deal with this complexity, although
we believe our work demonstrates that this is usually not the case.

3 Methodology

Our hypothesis is that most ontologies either are, or could be expressed mostly
with, simple axioms. In this section, we will define what we mean by simple

1 See https://protege.stanford.edu/.
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Most of OWL Is Rarely Needed 3

axioms, then give an example of a set of simple axioms, such as those used in the
Protégé plugin, OWLAx. Following that, we will show how to determine simple
axiom coverage for an ontology, and then describe some basic normalizations
that can produce accurate coverage results.

3.1 Simple Axioms

The simple axioms we study in this paper are defined below. We consider de-
scription logic syntax for OWL DL, that is, we identify it with the description
logic SROIQ(D) [7].

Definition 1. A Simple Axiom is any axiom that contains at most three
atomic concepts or roles, and is not a syntactic shortcut for a larger axiom.
Any axiom which is not simple is a Complex Axiom.

Our set of axiom patterns matches class axioms, so we restrict our focus to
class axioms in the evaluation, although, in principle, the notion of a simple
axiom could apply to the role axioms as well. The limitation of three atoms for
simple axioms is an intuitive threshold, in terms of size, because it means that
nesting in the expression is limited to at most one quantifier, yet the axiom can
still participate in complex inferences in combination with other simple axioms.
This would not be the case for axioms limited to size two, where one could only
express A v B for concepts, or R v S for roles, which would radically limit the
expressivity of the ontology. Axioms with more than three atomic concepts or
roles may be more expressive, but are often equivalent through normalization to
smaller axioms, so they do not make not good candidates for simple axioms.

3.2 OWLAx

OWLAx [15] is a Protégé plugin that allows users to automatically generate
certain simple OWL axioms using a graphical interface. The set of axioms we
study in this paper are fashioned after the axioms that OWLAx can create, and
they are listed in Table 1.

Subclass A v B Functional > v 61R.>
Disjoint Classes A u B v ⊥ Qualified Functional > v 61R.B
Domain ∃R.> v B Scoped Functional A v 61R.>
Scoped Domain ∃R.A v B Qualified Scoped Functional A v 61R.B
Range > v ∀R.B Inverse Functional > v 61R−.>
Scoped Range A v ∀R.B Inverse Qualified Functional > v 61R−.B
Existential A v ∃R.B Inverse Scoped Functional A v 61R−.>
Inverse Existential A v ∃R−.B Inverse Qualified Scoped Functional A v 61R−.B

Structural Tautology A v >0R.B

Table 1: OWLAx Axiom Patterns
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The actual implementation details of the OWLAx plugin are not pertinent to
what we want to discuss. Rather, we are interested in what it happens to contain:
a set of only simple axioms. Since it was designed specifically to help create
ontologies, we speculate that such axioms will appear in ontologies frequently.
We now show how the axiom patterns, like those used in OWLAx, can be matched
with axioms in an ontology. If a high percentage of axioms in an ontology are
covered by the patterns from our table, then it must contain a high number of
simple axioms, since the axioms in Table 1 are simple.

3.3 Coverage

To study whether axioms in an ontology match an axiom pattern, we require
a precise definition of what axiom pattern coverage means. First, we define the
term axiom pattern and then show what an evaluation of that axiom pattern’s
coverage looks like.

Definition 2. An Axiom Pattern is a generic axiom that is structurally com-
plete but may have uninstantiated terms that are used as variables in an axiom
generator or pattern matching program.

For example, the axiom pattern A v ∃R.B for an existential axiom from Ta-
ble 1, where A, B, R are pattern matching terms, matches the axiom Dog v
∃chases.Squirrel, where Dog and Squirrel are concepts and chases is a role.

Definition 3. The Axiom Coverage is the number of times an axiom in an
ontology O is matched by an Axiom Pattern p as its most specific match, written
acp(O). We say most specific because it is possible for axioms to cover multiple
patterns at once. If an axiom covers multiple patterns, the covered pattern is the
pattern with the fewest variable terms for the axiom (i.e., the most specific of
the covered axioms).

A functional role axiom > v 61S.>, for instance, technically matches all of
the functional patterns, because > is a class. However its most specific match is
the functional pattern because there are fewer variable terms for the functional
pattern than the scoped functional, qualified functional, and scoped qualified
functional patterns. A range axiom matches the scoped range pattern for the
same reason, but the range pattern has fewer variable terms, so the range pattern
is its match, and so on.

Definition 4. The Ontology Coverage for an ontology O and set of axiom
patterns P is the sum of all of its Axiom Coverages divided by the number of
axioms it contains |O|.

ocP(O) =
1

|O|
∑

p∈P
acp(O)

Because Axiom Coverage in acP(O) matches only the most specific pattern, the
sum of the number of matches and non-matches is equal to the number of axioms
(there are no duplicate matches).

And naturally we can define averages for these measures
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Definition 5. For a set of n ontologies O the Average Ontology Coverage,
ocP(O), is given by

ocP(O) =
1

n

∑

O∈O
ocP(O)

and the Average Axiom Coverage, acP(O), is given by

acP(O) =

∑

O∈O

∑

p∈P
acp(O)

∑

O∈O
|O|

,

where |O| denotes the number of axioms in O.

Though they are nearly the same and certainly related, it is important to
note that the Average Ontology Coverage measures a set of ontologies, and
the Average Axiom Coverage measures all the Axioms in a set of ontologies.
Because the axiom measurement has fewer groupings it is in certain respects
more precise, however we cannot produce a standard deviation since it simply
has a single value.

It is also important to emphasize that the axiom patterns we use may have
multiple matches, but in every case where there are multiple there is always
a match with more instantiated terms than the others, constituting its most
specific match. It might be possible in a different study to expand this definition
for a more complex analysis, but for the purposes of this paper it is sufficient.

3.4 Normalization

We have discussed a method to evaluate coverage for an ontology. However,
there remains an issue that ontologies may have been written for completely
different purposes and at differing levels of complexity. For example, some on-
tologies are developed for complex reasoning applications, while others are used
for more straightforward data integration. Even within a single ontology, differ-
ent authors may express equivalent statements in non-equivalent ways based on
personal preference or style. In order to evaluate a large number of ontologies
uniformly, we therefore need at least a minimal normalization strategy taken
from community standards that allows us to compare disparate sources without
biasing the evaluation in favor of any particular style. For this, we use multiple
strategies derived from common OWL tools and resources.

Our normalization begins by filtering out all axioms except class axioms and
role axioms. This is necessary because there are many OWL axioms for which
our pattern study will not apply. Included in this are assertion (ABox) axioms,
since the notion of an axiom pattern has little relevance for a fact, but also axiom
types such as annotation axioms, declaration axioms, and datatype definitions,
that carry no or few formal semantics. The remaining class and role axioms are
then transformed according to the following procedures.
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The first transformation that we perform is an equivalence transformation
based on the syntactic shortcuts defined in the OWL Structural Specification
[13]. Whenever an axiom is found that has one of the forms in Column 1 of Table
2, we perform the designated substitution. This transformation is performed
because we need a way to translate the axioms that OWLAPI [8] identifies as role
axioms, but which are actually syntactic shortcuts for class axioms, into forms
the program can match with. It is also possible that other simple transformations
of class axioms according to the equivalences in the structural specification could
reduce false negative matches. Thus for EquivalentClasses, DisjointClasses, and
DisjointUnion we use the OWLAPI builtin transformations to obtain SubClass
axioms.

Ontology Axiom Substituted Axiom

ReflexiveObjectProperty(R) > v ∃R.Self
IrreflexiveObjectProperty(R) ∃R.Self v ⊥
FunctionalObjectProperty(R) > v 6 1R.>
FunctionalDataProperty(S) > v 6 1S.>
InverseFunctionalObjectProperty(R) > v 6 1R−.>
ObjectPropertyRange(R C) > v ∀R.C
DataPropertyRange(S D) > v ∀S.D
ObjectPropertyDomain(R C) ∃R.> v C
DataPropertyDomain(S C) ∃S.> v C

where R is a Role, S is a Data Property, C is a Concept, and D is a Data Range
Table 2: Axiom Transformations

The second transformation that we use is the application of OWLAPI builtin
functions to obtain negation normal form (NNF) on all class axioms in an on-
tology. By using the standard OWLAPI NNF functions we can transform all of
the class axioms in an ontology into simple forms that are stripped of seman-
tically unnecessary information that might be due to coincidence rather than
equivalence.

The last transformation we apply is splitting SubClass axioms with conjunc-
tions in the consequent, or disjunctions in the antecedent, into separate axioms.
This is a standard procedure in many normalizations, and we simply use the
default functions in OWLAPI to add a set of axioms formed from the conjuncts
or disjuncts whenever an axiom of this type is found. There is a special case
which occurs only when the consequent is an ExactCardinality expression whose
value is equal to 1. In this case, we do not use a MinCardinality 1 substitution
but instead add an existential, since that is equivalent, and it is a more compact
expression.
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4 Evaluation

We analyze a set of 280 ontologies from various sources, normalizing them, and
testing them for axiom pattern coverage according to the principles described in
the previous section. Ontologies were selected from diverse sources with unique
design requirements: benchmark ontologies, Ontology Design Patterns (ODPs),
as well as medical domain ontologies. Average statistics about the original on-
tologies gathered before processing can be found in Table 3.

All Ontologies Hydrography Anatomy Conference ODP Ontobee Misc

classes 616,912 495 6,048 498 594 528,481 80,796
roles 12,320 168 5 226 621 10,765 535
axioms 1,286,947 6,054 16,383 2,153 3,295 986,728 272,334
ontologies 280 5 2 7 87 175 5

Table 3: Ontology Statistics

In this section, we report the result for all ontologies we tested, then go
into details about each source, reporting a separate evaluation for each. Then
we break down the results by profile and report the numbers for those as well.
In all cases, the coverage numbers are reported for All Axioms, Class Axioms,
and Simple Axioms. Our axiom patterns can only match simple axioms, thus the
values for Class Axioms and All Axioms are a reflection of the number of complex
class axioms and the number of role axioms in ontologies that have no chance
at matching. The last value we report, which is a byproduct of calculations that
produce coverage numbers, is the percent subclass and percent existential, as
well as their combination. By this we mean, what percent of all of the axioms
in an ontology are matching the axiom patterns subclass, existential, or both.
It will turn out in nearly every case that a surprisingly high proportion of most
ontologies are expressible with just these two axiom patterns.

Resources that were used to produce the data and the code that performed
the evaluation can be requested through the program chairs, as some files are
very large and difficult to distribute in an anonymous fashion.

4.1 Overall Coverage

The average axiom coverage and the average ontology coverage for our simple
axioms over all ontologies is included in Table 4, as well as the standard deviation
for the ontology coverages.

For each ontology analyzed, Figure 1 shows the overall percent of axioms
that are expressible as each pattern for the entire collection of ontologies. Simple
subclass is 55.5%, and existential is 25.0%, totaling 80.5%. This is almost the
same as the axiom coverage value for all axioms. A more detailed view of axiom
type distributions can be found in the next section in Figure 2.
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Axiom Coverage Ontology Coverage StdDev Ont. Cov.

All Axioms 82.4% 81.0% 0.184
Class Axioms 83.4% 90.3% 0.136
Simple Class Axioms 99.8% 97.9% 0.109

Table 4: Average Overall Coverage

Fig. 1: Overall Axiom Percent

4.2 Source Coverage

As they are all from very different domains, each source was analyzed inde-
pendently from the whole. We obtained benchmark ontologies that are used for
ontology alignment evaluation. There are 5 ontologies from Hydrography, 2 from
Anatomy, and 7 from the Conference domains, and each appear in their own col-
umn in Tables 5, 6, and 7. We also obtained and evaluated 87 ODPs2 [18], as
well as a collection of 175 OWL files that are mainly from the medical domain
from the ontobee3 [21] website. Additionally, we gathered some ontologies that
did not fall neatly into any of these categories but nonetheless seemed better
to include in the overall result than omit. These ontologies are General Formal
Ontology [5], GeoLink Modular Ontology [11], Gene Ontology [1], GeoLink base
ontology [11], and The Enslaved Ontology [19], and their average is labeled Misc
in the tables.

The Gene Ontology tends to dominate the other sources in Misc due to its
extremely large size. It also contains a much higher percentage of complex class
axioms than any other ontology we tested, which likely accounts for the difference
in Misc between simple class coverage and class coverage.

2 http://ontologydesignpatterns.org.
3 http://ontobee.org.
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Hydrography Anatomy Conference ODP Ontobee Misc

All Axioms 75.0% 99.9% 89.2% 85.2% 88.6% 62.4%
Class Axioms 81.6% 100% 96.1% 97.2% 89.8% 62.5%
Simple Class Axioms 95.2% 100% 99.1% 99.0% 99.8% 99.9%

Table 5: Average Axiom Coverage By Source

Hydrography Anatomy Conference ODP Ontobee Misc

All Axioms 73.5% 99.9% 86.9% 74.6% 84.5% 64.0%
Class Axioms 84.5% 100% 95.3% 94.9% 88.0% 80.6%
Simple Class Axioms 98.8% 100% 98.8% 97.6% 97.9% 99.3%

Table 6: Average Ontology Coverage By Source

In Table 8, we see the range of percent subclass and existential among sources.
Anatomy, Ontobee, and Misc all contain medical domain ontologies, which may
account for the increase in percent existential if they contain more ontologies in
the EL profile. Except for the Anatomy Benchmarks, which is actually only two
ontologies so a disproportionately small sample size, it does not appear to be
the case that any sources are entirely existential and subclass. Neither are any
sources completely lacking the two axiom patterns. When we break the results
down by profile in the next section, things will look quite a bit different.

In Figure 2, the previously mentioned high percentage of complex class ax-
ioms for Misc can be seen in the third column. Some other interesting percentage
patterns also appear on close inspection. The two ontology sources with the high-
est percent subclass and existential are Anatomy and Ontobee, both medical type
ontology sources. If we move farther down the chart to the less common axiom
patterns, the larger ontology sources are less prevalent and now the benchmarks
and ODPs start to dominate. The last three axiom patterns were never matched
by our program. For the inverse functional axiom patterns it is conceivable that
no-one had occasion to write axioms like this. Disjoint classes may seem sur-
prising, however we speculate that, even though our pattern, A u B v ⊥, is
expressible in profiles that do not contain negation, authors are using Protégé
or OWLAPI to state disjoint classes axioms, which will normalize to a subclass
axiom containing negation. This can cause disjoint classes to match the subclass
pattern, so it is not a false negative, but it is a misclassification due to our
differing terminologies.
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Hydrography Anatomy Conference ODP Ontobee Misc

All Axioms 0.119 0.0 0.063 0.183 0.175 0.155
Class Axioms 0.112 0.0 0.030 0.077 0.158 0.154
Simple Class Axioms 0.039 0.0 0.013 0.067 0.130 0.008

Table 7: Average Ontology Coverage Standard Deviation By Source

Hydrography Anatomy Conference ODP Ontobee Misc

Subclass 40.1% 66.8% 57.6% 55.4% 60.0% 41.1%
Existential 07.4% 33.1% 06.7% 05.7% 26.4% 20.7%
Subclass + Existential 47.6% 99.9% 64.3% 61.1% 86.4% 61.8%

Table 8: Percent Subclass and Existential By Source

Fig. 2: Average Ontology Axiom Percent

Figure 3 shows the actual counts of each axiom pattern match in logarithmic
scale. In this chart we can see how sources like Ontobee and Misc do contain
some of the less common patterns. They are just so large that smaller sources,
like ODPs and benchmarks, tend to have higher percentages.
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Fig. 3: Axiom Counts, Log Scale

4.3 Profile Coverage

During the analysis we also tested each ontology to see if it was in the OWL
profiles EL, QL, RL, or DL, and computed the coverage information for each
profile. In Tables 9, 10, and 11 we also reproduce the overall results in the column
Full, since all ontologies will be in OWL Full. There were 8 ontologies that could
be loaded, but the OWLAPI could not test their profile; these ontologies were
not included in the profile results. Interestingly, for the EL, QL, and RL profiles
we see around a ten percent coverage boost over the overall result. All three
also have perfect coverage for simple class axioms, and nearly perfect coverage
for all class axioms. The coverage numbers for OWL DL are also slightly higher
than the overall numbers, though significantly less so than for the other profiles.

EL QL RL DL Full

All Axioms 98.7% 99.7% 99.1% 84.7% 82.4%
Class Axioms 98.8% 100% 100% 85.7% 83.4%
Simple Class Axioms 100% 100% 100% 99.8% 99.8%

Table 9: Average Axiom Coverage By Profile

Unlike the different sources, where the percent subclass and existential num-
bers were mostly near the average, we get a much more skewed result when we
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EL QL RL DL Full

All Axioms 96.6% 90.1% 92.2% 84.4% 81.0%
Class Axioms 99.4% 100% 100% 93.7% 90.3%
Simple Class Axioms 100% 100% 100% 98.1% 97.9%

Table 10: Average Ontology Coverage By Profile

EL QL RL DL Full

All Axioms 0.121 0.182 0.113 0.171 0.184
Class Axioms 0.022 0.0 0.0 0.112 0.136
Simple Class Axioms 0.0 0.0 0.0 0.094 0.109

Table 11: Average Ontology Coverage Standard Deviation By Profile

break the ontologies down by profile in Table 12. EL and DL ontologies seem
to be expressible with a similar percent of subclass axioms as the overall re-
sult, though EL has many more existential expressions. QL ontologies, on the
other hand, are eighty percent expressible as simple subclass. And the RL profile
ontologies are almost entirely expressible as simple subclass axioms. It is no sur-
prise, then, that EL, QL, and RL ontologies have such high coverage numbers,
since subclass and existential are matched patterns.

EL QL RL DL Full

Subclass 54.2% 80.5% 98.2% 56.8% 55.5%
Existential 44.5% 18.9% 0% 25.9% 25.7%
Subclass + Existential 98.7% 99.5% 98.2% 82.8% 80.5%

Table 12: Percent Subclass and Existential By Profile

In Table 13, we mark which of our axiom patterns are expressible in each
profile with an X symbol, using the OWL 2 Profiles [20] document as a reference.
Comparing the different profiles with the coverage numbers, we can see how close
their sums are, even though the expressible axioms are rather different. For
instance, RL coverage is almost entirely subclass, and the existential pattern
is inexpressible in that profile so the 0.0 value from Table 12 makes sense. EL
seems to be evenly divided between subclass and existential, which again aligns
with the types of statements permitted in the language. The DL profile allows
all the types of expressions and it understandably has a similar result to the
overall average.

For the EL profile we can also observe a unique result, because our axiom
patterns have almost complete overlap with the 4 normal form class axioms
defined for EL++ in [2], as shown in Table 14. The only exception is conjunction,
which can only match our disjoint classes axiom pattern when the consequent is
equal to ⊥. If we were to define a conjunction axiom pattern, it might be possible
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Most of OWL Is Rarely Needed 13

EL QL RL DL

A v B X X X X
A u B v ⊥ X X X
∃R.> v B X X X X

∃R.A v B X X X
> v ∀R.B X
A v ∀R.B X X

A v ∃R.B X X X
A v ∃R−.B X X
> v 61R.> X

> v 61R.B X
A v 61R.> X X
A v 61R.B X X

> v 61R−.> X
> v 61R−.B X
A v 61R−.> X X

A v 61R−.B X X
A v >0R.B X

Table 13: Profile Expressibility

to completely cover this profile for normalized class axioms. This could also be
done for class axioms in the QL profile, where our axiom patterns would cover
all simple axioms, and could cover any set of QL axioms that was normalized
to remove nested quantifiers. Simple class axioms for the RL profile could be
covered in much the same way as EL, missing only conjunction axioms that
do not have ⊥ in the consequent. With the addition of a conjunction pattern
and by normalizing nested quantifiers we could also obtain complete class axiom
coverage for RL.

Axiom Pattern EL++ Normal Class Axiom

A v B A v B
A u B v ⊥ A u B v C, when C = ⊥
∃R.> v B ∃R.A v B, when A = >
∃R.A v B ∃R.A v B
A v ∃R.B A v ∃R.B

Table 14: EL++ Coverage

5 Discussion

Our motivation for this study is that we believe simple axioms, in general, are
easier for non-logicians (e.g. domain experts) to understand and utilize for mod-
eling. Alongside improved comprehension, they come with a number of added
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benefits: attempting to measure the non-local effects of ontological commitments
may be easier, they can be easily and automatically created by tools that al-
low users to specify statements in a graphical interface without a deep technical
understanding of the inner-workings of OWL, and simple axioms often do not
require normalization before being input to a reasoner. To support this, we de-
termine the current usage characteristics of axioms in existing ontologies that
are expressible as simple axioms, as well as how well this relates to the different
OWL profiles.

To be specific, 120 of the ontologies we analyze are exclusively in the OWL
Full profile, yet collectively they have a class axiom ontology coverage above
90% for our axiom patterns. There are exceptions, of course. Some ontologies
have many more complex axioms than usual, such as the Gene Ontology, or
consist primarily role axioms, so they are coverage outliers. However, in general,
if even these more complex ontologies are for the most part expressible as simple
axioms, then efforts to improve the modeling process should start with the simple
axioms.

5.1 Future Work

In the future there are potentially many things we could do to improve on this
study. One interesting approach would be to test different sets of simple axioms
and see how the coverage numbers compare between them. OWLAx was a good
basis to create a set of simple axioms but there are some obvious common ones
that it lacks, for instance conjunction, disjunction, negation, as well as multiple
variations on cardinality and role axioms.

We also admit that our definition of coverage is quite simple, intentionally
kept this way for clarity. However it may be possible with some more compre-
hensive statistical tools that a better understanding of axiom usage in ontologies
is possible. In a future study we may look into different evaluations besides cov-
erage, perhaps it will be informative to compare.

Our method did normalize many axioms, however it is likely that complex
axioms existed in the ontologies we studied that could have been normalized
but weren’t because our method only obtained NNF and then split up appro-
priate conjunction and disjunction axioms. By introducing new terms we might
be able to even further increase the matching capability. Though, as previously
mentioned, this would require the addition of new terms, so it would be equiv-
alent but would also contain more entities, so the comparison would be less
obviously appropriate.

Ultimately, though, we pursued this study to understand ontology axioma-
tization choices in practice. As such, this work can be built upon for improving
ontology engineering tools, by providing particular support or focus on simple
axioms.
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Most of OWL Is Rarely Needed 15

6 Conclusion

In this paper we demonstrate that most class axioms in OWL ontologies are
expressible with a small set of simple axioms. This has implications for how
we can approach ontology management and development. If most ontologies
are primarily simple then focusing on supporting and explaining these types
of axioms can lead to easier adoption and maintenance. Complex axioms will
of course always be a part of OWL, but we can improve our ontologies most
easily by first making sure that the simple axioms are well understood and used
correctly.
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An Ontology Design Pattern for Microblog
Entries

Cogan Shimizu and Michelle Cheatham

Data Semantics Laboratory, Wright State University, Dayton, OH, USA

Abstract. Due to the exponential growth of the Internet of Things and
use of Social Media Platforms, observers have an unprecedented level
of detailed information available on the behavior of communities. How-
ever, due to the highly heterogeneous nature and the immense volume
of the data, a composite view is difficult to generate. Such a compos-
ite view would be exceptionally useful in the realms of insider threat
detection, after-action forensics, and hazardous situation detection and
avoidance. The Semantic Web, via ontology modeling, offers a powerful
tool for fusing the disparate data sources and formats. To this end, we
have created an ontology design pattern (ODP) for the modeling of a
simple microblog entry. This ODP is intended to fit within an ecosystem
for fusing social media, support advanced visualization, and provide a
preliminary framework for trust assessment.

1 Motivation & Scope

In recent years, access to data has become increasingly trivial as Social Media
Platforms and the Internet of Things (IoT) continue to grow. However, important
latent or implicit information runs the risk of obfuscation simply by the sheer
volume of collected data. Further, the data is presented and accessed via highly
disparate vectors (e.g. microblog entries, visual media, and geotagged textual
data). Thus, it is increasingly necessary to identify and develop methods for
seamless fusion and visualization of information extracted from heterogeneous
social media data.

Such methods are especially important for obtaining an accurate and com-
prehensive view of a crisis theater or battlespace (e.g. formulating a “Common
Operating Picture”1). For these use cases, it is also important to take into ac-
count the provenance and trustworthiness of the acquired data and for any con-
clusions drawn from such data. To support the fusion of such heterogeneous data
and the capture of its metadata, we will build an ecosystem of ontology design
patterns [6]. ODPs enable sophisticated visualizations that leverage the inherent
concept hierarchy, such as models displaying varying levels of granularity and
interconnectedness. Figure 1, provides two examples of possible visualization
methods that the microblog entry (MBE) will help support. We are currently

1 A Common Operating Picture is a single identical display of relevant operational
information on materiel shared by more than one Command. This term is frequently
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investigating other visualizations in collaboration with domain experts from the
United States Air Force. In this paper, we describe a pattern for a MBE as an
entry point into developing the ecosystem.

The MBE pattern is important for a number of reasons. First, microblog en-
tries are representative of a fairly large subset of publicly available social media
data. For example, Twitter2 the popular, public-facing microblogging platform,
allows a Tweet’s payload to contain text, hyperlinks, images, or video. The en-
tries may also be geotagged and may explicitly refer to other users. Additionally,
there are many existing datasets that capture Tweets during natural disasters
and humanitarian crises (e.g. CrisisLex3).

By definition and intent, microtext4 is simple; its model is relatively straight-
forward and requires little of the complexity that OWL brings to the table. Re-
gardless, it is important to note that this pattern is a fundamental building block
of the intended ODP ecosystem. However, due to its simplicity, it is relatively
straightforward to fit with many existing patterns. Specifically, we foresee easy
integration with the ModifiedHazardousSituation Design Pattern [4] and Re-
portingEvent [7]. As the ecosystem matures, we also foresee including existing
patterns regarding maps, climate, and public infrastructure.

Finally, the MBE pattern has some components that allow for interesting
interaction: spatiotemporal extent and author trustworthiness. Spatiotemporal
extent of information is of particular interest to the modeling community as there
are still many open questions on its handling. However, it is an integral part of
any sort of response or intelligence operation. In a perfect world, we could assume
that any author neither seeks to mislead nor propagate lies. However, in light of
recent events, as well as the ODP’s relevance to crisis and operational intelligence
management, it is necessary to include a component for the trustworthiness of
an author. Thus, the model for the microblog entry seeks to answer, at least,
the following competency questions. Due to the strong emphasis on geospatial
and temporal components of the fused data, we assume that these queries will
be executed using geoSPARQL5.

1. Who is the author of entry x?
2. What are all the entries authored by y?
3. What entries from time A to time B originate from region of interest C with

radius D?
4. What is the trust value v for author y?
5. What is the trust value v for entry x?
6. What entries from authors with a trust value greater than v originate from

a region of C with radius D?
7. What entries relate to topic T?

2 https://twitter.com
3 http://crisislex.org/
4 Microtext is any sufficiently short parcel of information in natural language. An

MBE is an instance of microtext.
5 http://www.opengeospatial.org/standards/geosparql
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(a) A Circle Packing visualization
generated by D36. Smaller circles
are related to the superimposed
circle via subsumption and prox-
imity in the same level of circle de-
notes a short semantic distance.

(b) A standard view of geographic
information: pins on a map back-
ground. This visualization can be
updated in real-time and allows
the user to see incoming data.

Fig. 1: Both visualizations will utilize the MBE pattern at the most granular
level (i.e. smallest circles and map pins).

Microtext is a valuable resource in the Semantic Web Community, as evi-
denced by [2, 9, 10, 8]. However, to our knowledge this is the first attempt at
modeling an MBE as an entity, instead of only modeling extracted information.

The rest of the paper is organized as follows. Section 2 will address the design
decisions in the structure of the pattern and accompanying axioms. Section 3
provides a motivating example and interaction with real data. Section 4 addresses
future work and collaborations.

2 Pattern Overview

This pattern was directly informed by the competency questions in the preced-
ing section; the competency questions are fairly straightforward and have a one
to one correspondence with the concepts in the pattern. As such, the microblog
entry pattern must capture both the entry’s payload and its provenance. In ad-
dition, it must capture any information extracted from the payload and analysis
of the author, such as answers to the questions: “To what is the microblog entry
referring?” or “How trusted is the author by their peers?”

We will discuss the main design aspects of this pattern by referring its class
diagram as depicted in Figure 2. Yellow boxes indicate datatypes, light blue
boxes with dashed borders indicate external patterns. Purple is used for external

6 Circle Packing is an arrangement of circles on a surface so that all circles touch one
another. D3 is a powerful JavaScript library used for generating visualizations.
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Fig. 2: A graphical representation of the microblog entry design pattern. Yellow
boxes indicate datatypes, light blue boxes with dashed borders indicate external
patterns. Purple is used for external classes belonging to PROV-O [5]. Green
is used for external classes belonging to [7]. White arrowheads represent the
owl:SubclassOf relation.

classes belonging to PROV-O [5]. Green depicts external classes belonging to [7].
White arrowheads represent the owl:SubclassOf relation.

By indicating several of the classes as “external,” we intend to convey that
the models for said classes are not indicative of the functionality of the Mi-
croblogEntry pattern. For example, in our implementation7 the light blue boxes
are currently wrappers for datatypes. However, it is not hard to imagine increas-
ingly complex models for each class. Below, we will discuss our implementation
and future iterations. We will consider the pattern in the context of our use-case:
event detection during a crisis. Furthermore, we assume that any microblog en-
try populating the ontology occurs within the time-frame and are shown to be
relevant to the crisis situation.

MicroblogEntry The MicroblogEntry is the core class. Here, we will describe
a few limitations placed upon its relations.

7 The OWL file can be found at https://raw.githubusercontent.com/

cogan-shimizu-wsu/MicroblogEntryOWL/master/MicroblogEntry.owl
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MicroblogEntry v =1hasPayload.Payload (1)

MicroblogEntry v =1hasAuthor.Author (2)

MicroblogEntry v ≤1hasLocation.Location (3)

1. A MicroblogEntry may only have one Payload.
2. A MicroblogEntry may only have one Author.
3. A MicroblogEntry might not have a location attached to it.

ReportingEvent The ReportingEvent pattern is documented in [7]. This es-
tablished pattern provides for a lot of interplay with MicroblogEntry, as well as
providing structure for how information is shared.

As ReportingEvent is itself a subclass of Situation, it will be reasonably straight-
forward to integrate the ModifiedHazardousSituation [4] pattern to the Microblo-
gEntry. Additionally, ReportingEvent provides a framework for connecting the
“report” to an ActualEvent; thus, along with Topic, ground the MicroblogEntry
in reality. Finally, the fact that a ReportingEvent isBasedOn a Source, provides
us a vehicle for capturing the fact that a MicroblogEntry has been re-Tweeted or
shared (without modification).

Media The Media class allows us to represent the platform on which the Mi-
croblogEntry was posted. In the case of our example in the next section, this
would be Twitter. However, it is also conceivable that Media may represent
CNN, Fox News, BBC, and so on. Obviously, these establishments are fairly
complex in their own right.

Media is also drawn from [7], though is largely left for others to implement.
Monitoring different Media will be very important in our use case scenario, es-
pecially when considering the TrustMetric for provenance and author. To this
point, it seems reasonable to expect the trustworthiness of the platform and
corporation to effect the trustworthiness of the reported data.

Payload The Payload is the content of the MicroblogEntry. In Figure 3, this is the
content in Box 2. For the general pattern, we opted to leave this as an external
pattern due to the expected heterogeneity of MBEs of different platforms and
even high variance of content on the same platform. That is, Twitter allows for
many different payloads: text, hyperlinks, images, and videos. Facebook, on the
other hand, offers a superset of content types and no length restriction on text
payloads.

In addition, we see the Payload playing a large role in defining how MBEs will
interact with each other. In the case of Tweets, a Tweet may be “Retweeted,”
thus embedding a Tweet inside of a Payload. Furthermore, a Payload may “men-
tion” another user or author. Our next steps will include ways to more accurately
model these relationships between Authors, Payloads, and MicroblogEntries.
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For our initial implementation, as our test sets do not include Tweets with
pictures or hyperlinks, Payload wraps an xsd:string. Additionally, relevant Mi-
croblogEntries must have a relevant Payload. That is, the Payload must refer to
some Topic relevant to the crisis situation.

Topic In some cases, it may make sense to have Topic include a targeted list
of terms from a controlled vocabulary. Or, instead, to have the Topic act as a
category. For example, in [3], Tweets were partitioned into the following cate-
gories: affected individuals, infrastructures and utilities, donations and volun-
teer, caution and advice, sympathy and emotional support, useful information
and unknown.

Our implementation currently wraps an xsd:string. This allows us to dynam-
ically generate a Topic as Tweets are encountered. As the intended ODP ecosys-
tem matures, it is conceivable that this Topic sub-pattern will be more fully
fleshed out, allowing for more interesting interaction between MicroblogEntries
referencing the same Topic.

Location There are many methods for representing location, e.g. the POI:Place
[1] pattern or using WellKnownText (WKT) from OpenGIS, among others. To
promote reusability, we do not constrain the top-level pattern to use one or
another. In our implementation, however, we opted to use a WKT literal for
simplicity’s sake. In the future, we expect to be able to augment this part of the
model by including relevant descriptors, such as the name of the location taken
from a gazetteer.

TrustMetric The TrustMetric sub-pattern has the potential to be the most
complex due to its far reaching effects on the interplay between Author, Payload,
and Media. In addition, the actual metric for trust will need its own provenance
and uncertainty measures. Until the system is actually implemented, it will be
difficult to completely model. Thus, in our implementation, we assume we are
getting a value between 0 and 1 from some black-box system. As such, we wrap
xsd:double.

3 Example Triples

Figure 3 shows an example Tweet. The relevant data that will be extracted has
been boxed in red.

kast:CarAccident ## Extracted from Box 2

rdf:type t:Topic;

t:hasName "Car Accident"^^xsd:string;

.

kast:Evacuation ## Extracted from Box 2
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Fig. 3: An example Tweet with extracted data highlighted in red. Note, this
example does not have a geolocation.

rdf:type t:Topic;

t:hasName "Evacuation"^^xsd:string;

.

kast:examplepayload ## Extracted from Box 2

rdf:type pl:Payload;

kast:hasvalue "There is a car accident on 4th and

Main. Be careful out there!

#evac"^^xsd:string;

kast:referencesTopic kast:CarAccident, kast:Evacuation;

.

kast:cogantm ## Note here that there are two trust metrics.

rdf:type tm:TrustMetric;

tm:hasValue .99^^xsd:double;

.

kast:mbetm ## As trust in author is distinct from trust in the MBE.

rdf:type tm:TrustMetric;

tm:hasValue .89^^xsd:double;

.

kast:CoganShimizu ## Extracted from Box 1

a prov:Person, prov:Agent;

foaf:givenName "Cogan Shimizu"^^xsd:string;

kast:hasTrustMetric kast:cogantm;

.

kast:Twitter

rdf:type pz:Media, prov:Entity;

.
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kast:examplets ## Extracted from Box 3

rdf:type time:Instant;

time:inXSDDateTimeStamp "2017-07-12T10:01:00-5:00"^^xsd:dateTimeStamp;

.

And finally,

kast:exampletweet

rdf:type kast:MicroblogEntry, pz:ReportingEvent;

kast:hasPayload kast:examplepayload;

kast:writtenBy kast:CoganShimizu;

kast:presentedon kast:Twitter;

kast:hasTrustMetric kast:mbetm;

kast:kastTimestamp kast:examplets;

.

4 Conclusions and Future Work

The Microblog Entry Ontology Design Pattern is a useful model for a very com-
monplace structure, especially as the amount of social media data available for
inspection continues to increase. The potential applications of this pattern are
widespread, from determining public sentiment, measuring affect, or investigat-
ing community formation and evolution on social media networks.

The Microblog Entry pattern is foundational. On its own, it is not particularly
remarkable. However, in the ecosystem it plays a fundamental role. In similar
systems, it is analogous to entity extraction. Knowing the entities in play is
important, but ultimately provides only a small facet of a crisis situation. The
Microblog Entry pattern serves a similar role. It provides the threads to weave
a more comprehensive picture. At this time, the pattern heavily relies on many
external patterns, though many of them can be implemented as simple wrappers
for datatypes. Future work will be focused on developing the ecosystem of ODPs
for building a Common Operating Picture for a crisis situation. We will also
investigate how the different visualizations can be effected by the trust metric.
As the work progresses, we will be working closely with domain experts in the
United States Air Force.
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Abstract. There is an increasing expectation in the academic sector
for chemistry researchers to conduct risk assessment during experimen-
tal planning. However, information concerning laboratory scale chemi-
cal reactivity hazards can be difficult to parse despite ongoing efforts
to compile from reported incidents. Laboratory procedures do not al-
ways directly flag possible incompatibilities among constituents or other
process factors. In this paper, we present a pattern-based ontology for
capturing multiple factors involved in laboratory procedures, including
chemical properties, states, conditions, actions, and associated hazard
classifications.

1 Motivation

Developing chemical safety risk assessment tools useful for the academic sector
will necessitate tapping into digitally curated data in ways that are relevant to
the decision-making processes of research chemists, safety professionals, institu-
tional administration, and other stakeholders. For example, a researcher might
be looking at two known chemicals in a proposed reaction scheme and want to
know of any conditions that might trigger an adverse outcome, if there are any
known procedures for minimizing the likelihood of these conditions, and how
to mitigate potential harm if something untoward did occur. The relevant data
and information may come from a diverse set of sources covering physical prop-
erties,3 synthesis protocols,4 and previously reviewed incidents,5 among other
information.

Some of the most relevant information for analyzing risk appears in reports
of incidents where safe control was exceeded, and the influence of reactivity and
process factors can be considered in retrospect. However, such reports are not
the focus of normal research practice and tend to be exceedingly brief mentions
found sporadically in letters to editors of journals,6 or as news items,7 or occa-
sionally rephrased as caution statements in vetted procedures.8 Some of these

3 https://pubchem.ncbi.nlm.nih.gov
4 https://www.orgsyn.org
5 https://www.csb.gov/investigations
6 http://pubs.acs.org/cen/safety
7 https://dchas.org/the-dchas-l-list
8 http://cenblog.org/the-safety-zone/2016/02/oprds-safety-notables-from-

the-literature
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reports have been collected into reference sources such as Bretherick’s Handbook
of Reactive Chemical Hazards, and the Pistoia Chemical Safety Library.9 Much
of this content has been further compiled into an API-processable data stream
within the PubChem database, dynamically presented in the Laboratory Chem-
ical Safety Summaries format (LCSS)10 described by the US National Research
Council (NRC) [3]. However, the meaning remains “locked” in unstructured text
and not easily parsed for incorporation into digital information workflows.

The ability to make this information discoverable at the time of need will de-
pend in part on more systematic description of these hazard scenarios. There are
many factors at play in conducting a laboratory procedure that may contribute
to the potential risk of a given situation. There is a body of research dedicated to
analyzing the operations and conditions of large scale chemical processes in in-
dustrial settings, where these processes are well-defined and carefully specified as
part of the planning process [11].11 However, such analyses are rarely conducted
for chemical procedures developed iteratively at the laboratory level as defined
by OSHA regulations in the United States. Analyzing procedures and coupling
these with incident data can potentially bring to light incompatible combinations
and problematic operations, as well as aid in planning for adjustments to exper-
imental parameters. Domain terminology that describes key factors can enable
the systematic analysis of relationships, such as combinations of chemicals, or
substances under different conditions. Such approaches have been used for single
analysis of M/SDS documents,12 and chemical procedures.13 Developing ontol-
ogy patterns for chemical processes can more systematically represent potential
intersections with hazardous situations [10].

Chemical information is predominantly organized by chemical entity, which
is a limited perspective for discerning relationships among multiple process fac-
tors. The safety literature is no exception, focusing on hazard-related properties
of individual chemicals or substances without reference to specific experimental
context or to the surrounding laboratory conditions. Scale, concentration, tem-
perature, pressure, flow rate, and many other chemical, process, operator, and
environmental factors have the potential to trigger “runaway” hazardous situ-
ations.14 A more complete risk assessment process, as described by the RAMP
model, involves a holistic, laboratory level approach to managing risks beyond
hazard identification [13]. Complementing the “object-based” index of specific
chemical entities with “process-based” modeling could help surface information
and data buried in the published literature on how these chemicals are being
used under various conditions and combinations, and the potential for subse-
quent unintentional interactions to arise [9].

9 http://www.pistoiaalliance.org/projects/chemical-safety-library
10 https://pubchem.ncbi.nlm.nih.gov/lcss
11 www.acs.org/hazardassessment
12 www.ilpi.com/msds/ref/demystify
13 http://chemicaltagger.ch.cam.ac.uk
14 https://dchas.org/2017/04/05/information-flow-in-environmental-health-

safety
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As such, we have begun the construction of a pattern ecosystem for capturing
these chemical interactions and laboratory procedures. The foundational pattern
is a chemical process pattern, which has been adapted from the State Transition
pattern, which, in turn, is a generalization of the Semantic Trajectory pattern
[7]. With the pattern, we hope to answer the following competency questions.

1. What substances appear in a particular action, together?
2. What substances are ever in the same container?
3. What temperatures or pressures are associated with these substances (con-

ditions and/or changes)?
4. What apparatus or equipment is involved and associated with which sub-

stances (eg. glassware, stir-bars, glove-box)
5. What substances are co-located after some particular action?

2 Chemical Process Pattern

In this section, we detail the Chemical Process Pattern. A graphical overview of
the pattern can be seen in Figure 1.

2.1 State Transition Pattern

The State Transition Pattern is a novel adaptation or modularization [5] of the
Semantic Trajectory Pattern [7]. We provide a graphical representation of the
pattern in Figure 1a.

The State Transition Pattern is a generalization of the Semantic Trajectory
Pattern. The Semantic Trajectory deals with some Thing that moves through
time and space which are captured as Fixes. In the State Transition Pattern, we
have abstracted time and location to be Conditions of some State.

However, for our use case, we must further modularize the State Transition
Pattern. At this time, the alignment is a set of subclass relations between the
patterns, as follows.

ChemicalSystem v >
ChemicalActivity v StateTransition

ChemicalProcess v Process

Graphically, we see the results of these equivalences in Figure 1b.

2.2 Patterns Overview

Scoped Domain and Range. One of the primary goals of modelling with
ontology design pattern is to lower the number of required ontological commit-
ments required of an ontology engineer adopting the ontology. As such, we scope
or guard many of the range and domain restrictions [6].

A v ∀R.B (1)

∃R.B v A (2)
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(a) A graphical representation of the
State Transition Ontology Design Pat-
tern.

(b) We modularize the State Transition
ODP to construct the Chemical Pro-
cess pattern.

Fig. 1: These two figures illustrate the modularization of the State Transition
Pattern to Chemical Process Pattern.

Axiom (1) is a scoped range restriction. This allows us to say “when we relate A
to something via R, that something must be a B.” Axiom (2) follows the same
for scoped domain restriction.

Structural Tautologies. These axioms are intended for human consumption;
they do not add anything to the ontology. Essentially, these axioms, taking the
below form, simply inform the reader of the intended use of a property [6].

A v ≥0R.B

OPLa Annotations. The provided OWL file is annotated with the appropriate
OPLa annoations [5]. We note, in particular, the classes marked as opla:ExternalClass:
Action, Condition, and State. ChemicalActivity and EntityWithProvenance are de-
fined later in the paper. The annotations were generated with the OPLa plugin
for Protégé [12].

Standard Disjointness. In the following sections, all classes which are not in
direct or inferred subclass relationship are declared to be mutually disjoint.

2.3 Action

Additionally, we provide graphical representations of the Stir Action and Heat
Action subpatterns, as well as an expanded view of the Action Pattern in Figure
2. In the diagram, we use MethodTypes.txt and Apparatus.txt to denote that these
values are individuals from a controlled vocabulary. An individual appearing the
controlled vocabulary is an individual of type MethodType or Apparatus, for
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Fig. 2: Graphical overviews of the Action sub-patterns.

Fig. 3: Graphical overview of the Simultaneous Action Pattern.

example. The Simultaneous Action is shown in Figure 3.

Action v =1triggers.ChemicalActivity (1)

Action v =1actsOn.State (2)

> v ∀occursOver.TemporalExtent (3)

Action v =1occursOver.TemporalExtent (4)

> v ∀usesApparatus.Apparatus (5)

Action v ≥1usesApparatus.Apparatus (6)

> v ∀hasApparatusType.ApparatusType (7)

∀hasApparatusType.> v ApparatusType (8)

Action v =1provides.AgentRole (9)

> v ∀involvesSubstance.Substance (10)

Action v ≥1involvesSubstance.Substance (11)

> v ∀hasSubstanceType.PubChem (12)

∀hasSubstanceType.> v Substance (13)
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1. An Action triggers exactly one ChemicalActivity. However, we currently leave
it to the ontology engineer to specify the exact complexity of a ChemicalAc-
tivity.

2. An Action acts on exactly one state.

3. The range of occursOver is strictly limited to TemporalExtent.

4. An Action occurs over exactly one TemporalExtent.

5. The range of usesApparatus is strictly limited to Apparatus.

6. An Action uses at least one Apparatus.

7. The range of hasApparatusType is strictly limited to ApparatusType.

8. The domain of hasApparatusType is strictly limited to Apparatus.

9. An Action provides exactly one AgentRole.

10. The range of involvesSubstance is strictly limited to Substance.

11. An Action always involves at least one Substance.

12. The range of hasSubstanceType is strictly limited to SubstanceType.

13. The domain of hasSubstanceType is strictly limited to Substance.

StirAction

StirAction v Action (14)

> v ∀withMethod.Method (15)

StirAction v =1withMethod.Method (16)

> v ∀hasMethodType.MethodType (17)

∀hasMethodType.> v Method (18)

14. All StirActions are Actions.

15. The range of withMethod is strictly limited to Method.

16. A StirAction is completed with exactly one Method.

17. The range of hasMethodType is strictly limited to MethodType.

18. The domain of hasMethodType is strictly limited to Method.

HeatAction

HeatAction v Action (19)

HeatAction v =1untilTemperature.Temperature (20)

> v ∀hasValue.Value (21)

Temperature v =1hasValue.Value (22)

19. All HeatActions are Actions.

20. A HeatAction has exactly one limiting Temperature.

21. The range of hasValue is strictly limited to Value.

22. A Temperature has exactly one Value.
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SimultaneousAction

SimultaneousAction v Action (23)

> v ∀hasSimultaneousAction.Action
(24)

> v ∀hasSimultaneousAction.¬SimultaneousAction
(25)

∀hasSimultaneousAction.> v SimultaneousAction (26)

hasSimultaneousAction ◦ occursOver v occursOver (27)

hasSimultaneousAction ◦ involvesSubstance v involvesSubstance (28)

23. All SimultaneousActions are Actions
24. The range of hasSimultaneousAction is strictly limited to Action.
25. A SimultaneousAction may not have another SimultaneousAction as a simul-

taneous action.
26. The domain of hasSimultaneousAction is strictly limited to SimultaneousAc-

tion.
27. The Actions that co-occur must, in fact, occur simultaneously.
28. Any Substance that is involved in a “subaction” is involved in the Simulta-

neousAction.

2.4 ChemicalActivity

ChemicalActivity v =1startsFrom.State (1)

ChemicalActivity v =1endsAt.State (2)

> v ∀startsFrom.State (3)

> v ∀endsAt.State (4)

(5)

1. A ChemicalActivity always begins in some State and results in some State.
2. supra.
3. The range of startsFrom is strictly limited to States.
4. The range of endsAt is strictly limited to States.

2.5 ChemicalProcess

> v ∀hasAction.Action (1)

> v ∀hasChemicalActivity.ChemicalActivity (2)

ChemicalProcess v ≥1hasAction.Action (3)

ChemicalProcess v ≥1hasChemicalActivity.ChemicalActivity (4)

ChemicalProcess v ≥1hasState.State (5)
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1. The range of hasAction is strictly limited to Activity.

2. The range of hasChemicalActivity is strictly limited to ChemicalActivity.

3. A ChemicalProcess must have at least one Action.

4. A ChemicalProcess must have at least one ChemialActivity.

5. A ChemicalProcess must have at least one State.

2.6 ChemicalSystem

ChemicalSystem v ≥1hasState.State (1)

> v ∀hasState.State (2)

State v ≤1hasState−.> (3)

1. A ChemicalSystem always has at least one State.

2. The range of hasState is strictly limited to State.

3. Any State is associated with exactly one Thing.

2.7 Condition

Condition v EntitywithProvenance (1)

> v ∀hasCondition.Condition (2)

(3)

1. All Conditions must have provenance. In this use-case this is reasonable as
every condition is measured by someone or some device.

2. The range of hasCondition is strictly limited to Conditions.

2.8 EntityWithProvenance

The EntityWithProvenance Pattern is extracted from the PROV-O ontology. At
the pattern level, we do not want to make the ontological committment to a full-
blown ontology. It suffices to align a sub-pattern to the core of PROV-O. Further
discussion on the EntityWithProvenance pattern, as well as its specification (as
below) in an OWL file may be found on the online portal.15

15 https://ontologydesignpatterns.org/wiki/Submissions:

EntityWithProvenance
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EntityWithProvenance v ∀wasDerivedFrom.EntityWithProvenance (1)

∀attributedTo.Agent v EntityWithProvenance (2)

EntityWithProvenance v ∀attributedTo.Agent (3)

∀generatedBy.ProvenanceActivity v EntityWithProvenance (4)

EntityWithProvenance v ∀generatedBy.ProvenanceActivity (5)

∀used.EntityWithProvenance v ProvenanceActivity (6)

ProvenanceActivity v ∀used.EntityWithProvenance (7)

∀performedBy.Agent v ProvenanceActivity (8)

ProvenanceActivity v ∀performedBy.Agent (9)

1. The scoped range of wasDerivedFrom, scoped by EntityWithProvenance, is
EntityWithProvenance.

2. The scoped domain of attributedTo, scoped by Agent, is EntityWithProve-
nance.

3. The scoped range of attributedTo, scoped by EntityWithProvenance, is Agent.
4. The scoped domain of generatedBy, scoped by ProvenanceActivity, is Enti-

tyWithProvenance.
5. The scoped range of generatedBy, scoped by EntityWithProvenance, is Prove-

nanceActivity.
6. The scoped domain of used, scoped by EntityWithProvenance, is Prove-

nanceActivity
7. The scoped range of used, scoped by ProvenananceActivity, is EntityWith-

Provenance.
8. The scoped domain of performedBy, scoped by Agent, is ProvenanceActivity.
9. The scoped range of performedBy, scoped by ProvenanceActivity, is Agent.

2.9 State

> v ∀hasNextState.State (1)

State @ ≤1hasNextState.State (2)

1. The range of hasNextState is strictly limited to State.
2. A State will always follow at most one State.

3 Worked Example

The following incident report is extracted from [4, 1]. Formatting and language
have been modified in order to make it clear exactly how the information was
obtained. In the interest of brevity, we have used a simple incident report. How-
ever, even such a simple application of the pattern requires a high level of de-
tail from the report. Thus, in our worked example, we aim to provide an il-
lustration of the foundational concepts of our ontological ecosystem and note
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certain aspects will be addressed in future work. In the following, we use the
cpp: namespace as an abbreviation for “Chemical Process Pattern” in the URI
https://daselab.org/chemicalprocesspattern/.

The Incident Report.

5-ethyl-2-methyl-pyridine and 70% nitric acid were placed in

a small auto-clave.

They were heated and stirred for 40 minutes.

The emergency vent was opened due to a sudden pressure rise.

A violent explosion occurred 90 seconds later.

From the first statement, we extract the following triples regarding the sub-
stances and apparatus. The placement of the chemicals will also constitute an
Action subclass, as it is developed.

cpp:sub1 rdf:type cpp:Substance

cpp:asText "5-ethyl-2-methyl-pyridine" .

cpp:sub2 rdf:type cpp:Substance

cpp:asText "70% nitric acid" .

cpp:ap1 rdf:type cpp:Apparatus

cpp:hasApparatusType "auto-clave" .

From the next sentence we extract the StirAction and HeatAction. In order to
capture their simultaneity, we use the SimultaneousAction.

cpp:te1 rdf:type cpp:TemporalExtent .

cpp:sa1 rdf:type cpp:StirAction .

cpp:ha1 rdf:type cpp:HeatAction .

cpp:sim1 rdf:type cpp:SimultaneousAction

cpp:hasSimultaneousAction cpp:sa1

cpp:hasSimultaneousAction cpp:ha1

cpp:occursOver cpp:te1 .

From the next sentence, we extract the apparatus and resulting state of the
action. The Condition is provided an asText property for illustrative purposes.

cpp:ap2 rdf:type cpp:Apparatus

cpp:hasApparatusType "fume hood" .

cpp:c1 rdf:type cpp:Condition

ewp:isAttributedTo cpp:ap2 .

cpp:asText "high pressure" .

cpp:s2 rdf:type cpp:State .

cpp:s1 rdf:type cpp:State

cpp:hasNextState cpp:s2 .

84



cpp:ca1 rdf:type cpp:ChemicalActivity

cpp:startsFrom cpp:s1

cpp:endsAt cpp:s2 .

cpp:sim1 cpp:actsOn cpp:s1

cpp:triggers cpp:ca1 .

In the last step, we note that a hazardous state has been entered. However, the
development of this part of the ontological ecosystem is still planned in future
work. We note possible integration the Modified Hazardous Material Pattern [2]
to help model this aspect. Finally, we may wrap it all together into the Chemical
Process.

cpp:cp1 rdf:type cpp:ChemicalProcess

cpp:hasAction cpp:sa1

cpp:hasAction cpp:ha1

cpp:hasAction cpp:sim1

cpp:hasChemicalActivity cpp:ca1

cpp:hasState cpp:s1

cpp:hasState cpp:s2 .

4 Conclusions

In this paper, we have described a foundational pattern to building a ontology
design pattern ecosystem for modelling chemical processes. The core pattern
is based on the State Transition Pattern, which in turn, is adapted from the
Semantic Trajectory Pattern. The intent of this pattern and the surrounding
ecosystem is to provide chemists–and their students– with a resource for analyz-
ing experiments and potentially finding unforeseen interactions that can result
in hazardous states, events, or situations.

A sufficiently populated ontology of chemical processes can also be used as
background knowledge for training a more sophisticated learning model or could
be used to explain the decisions made by such a system (deep learning models
and explainable AI, respectively).

In the future, we expect to integrate more closely with the large chemistry
based datasets, such as PubChem and M/SDS. In addition, there are existing
patterns that may be integrated to enhance the functionality of the core pattern
and complete other pieces, such as QUDT16 for measurements and units, the
ModifiedHazardous Material Pattern [2] for modelling hazardous states, and the
Material Transformation [8] for extending ChemicalActivity.

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
Graduate Studies Institute (DAGSI).

16 https://qudt.org/

85



References

1. Nitric acid. National Center for Biotechnology Information. PubChem Compound
Database; CID=944, datasheet=lcss. Accessed May 30th, 2018.

2. M. Cheatham, H. Ferguson, C. Vardeman, and C. Shimizu. A modification to the
hazardous situation ODP to support risk assessment and mitigation. In K. Hammar
et al., editors, Advances in Ontology Design and Patterns, volume 32 of Studies on
the Semantic Web, pages 97–104. IOS Press, 2017.

3. N. R. Council. Prudent Practices in the Laboratory: Handling and Management of
Chemical Hazards, Updated Version. The National Academies Press, Washington,
DC, 2011.

4. R. L. Frank. volume 30:, pages 33–48. 1952.
5. P. Hitzler, A. Gangemi, K. Janowicz, A. A. Krisnadhi, and V. Presutti. Towards a

simple but useful ontology design pattern representation language. In E. Blomqvist
et al., editors, Proceedings of the 8th Workshop on Ontology Design and Patterns
(WOP 2017) Vienna, Austria, October 21, 2017, volume 2043 of CEUR Workshop
Proceedings. CEUR-WS.org, 2017.

6. P. Hitzler and A. Krisnadhi. On the roles of logical axiomatizations for ontologies.
In P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors, On-
tology Engineering with Ontology Design Patterns - Foundations and Applications,
volume 25 of Studies on the Semantic Web, pages 73–80. IOS Press, 2016.

7. Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-Cross, P. Hitzler,
M. Dean, and D. Kolas. A geo-ontology design pattern for semantic trajectories.
In T. Tenbrink, J. G. Stell, A. Galton, and Z. Wood, editors, Spatial Information
Theory - 11th International Conference, COSIT 2013, Scarborough, UK, September
2-6, 2013. Proceedings, volume 8116 of Lecture Notes in Computer Science, pages
438–456. Springer, 2013.

8. C. F. V. II, A. A. Krisnadhi, M. Cheatham, K. Janowicz, H. Ferguson, P. Hitzler,
and A. P. C. Buccellato. An ontology design pattern and its use case for modeling
material transformation. Semantic Web, 8(5):719–731, 2017.

9. M. Leah. ci, volume 39, chapter Chemical Health and Safety Data Management,
page 31. 2018 2017. 3.

10. L. McEwen and R. Stuart. Meeting the google expectation for chemical safety
information. Chemistry International, 37(5-6):12–16, 2015.

11. M. B. Mulcahy, C. Boylan, S. Sigmann, and R. Stuart. Using bowtie methodol-
ogy to support laboratory hazard identification, risk management, and incident
analysis. Journal of Chemical Health and Safety, 24(3):14 – 20, 2017.

12. C. Shimizu, Q. Hirt, and P. Hitzler. A protégé plugin for annotating OWL ontolo-
gies with opla. ESWC 2018, June 2018. To Appear.

13. R. B. Stuart and L. R. McEwen. The safety “use case”: Co-developing chem-
ical information management and laboratory safety skills. Journal of Chemical
Education, 93(3):516–526, 2016.

86



Ontology Design Patterns for Winston’s
Taxonomy Of Part-Whole Relations?

Cogan Shimizu, Pascal Hitzler, and Clare Paul

1 Data Semantics (DaSe) Laboratory, Wright State University, OH, USA
2 Air Force Research Laboratory, Dayton, Ohio, USA

Abstract. While the formal modeling of part-whole relationships has
been of interest, and studied, in many fields including ontology modeling,
as of yet there has been no dedicated ontology design pattern which goes
beyond the modeling of an absolute minimum. We correct this by pro-
viding two patterns based on Winston’s landmark paper, “A Taxonomy
of Part-Whole Relations.”

1 Introduction

Part-whole relations are of fundamental importance for how we organize con-
cepts. Consequently, they have been studied in philosophy [1,20,19], linguistics
[3,4] geographical information systems (GIS) [2,9,18], to name just a few. Cor-
responding partonomies or meronomies, i.e. hierarchies built from part-whole
relations, are therefore a recurring theme in ontology modeling.

Despite this, however, we have been unable to find a readily available or
documented ontology design pattern for part-whole relationships, other than
some very minimalistic proposals in the ontologydesignpatterns.org portal. In
this paper we want to rectify this by providing such a pattern, together with
a contextualized version of it. Our approach to this is to keep things as simple
as possible, yet to make sure that the resulting patterns are comprehensive yet
general enough to be applied in many contexts.

Concretely, we will follow an approach laid out by Winston in his 1987 land-
mark paper on “A Taxonomy of Part-Whole Relations” [20].3 While this paper
was based on linguistic considerations, it also provided for logical characteriza-
tions and axiomatics, which will inform our pattern. As such we do not claim
much novelty, other than that we cast previous observations by us and others
into reuseable ontology design patterns. In fact, the technical content of Sec-
tion 3 is adapted from [8] by carrying it over to the context of ontology design
patterns.

? This work will be published as part of the book “Emerging Topics in Semantic
Technologies. ISWC 2018 Satellite Events. E. Demidova, A.J. Zaveri, E. Simperl
(Eds.), ISBN: 978-3-89838-736-1, 2018, AKA Verlag Berlin.”

3 A discussion of different such theories in the context of logical knowledge represen-
tation for ontology engineering can be found in [10].
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Relation Type funct. hom. sep. Example

component-integral object yes no yes handle and cup
feature-activity yes no no paying and shopping
portion-mass no yes yes slice and pie
place-area no yes no everglades and florida
member-collection no no yes tree and forest
stuff-object no no no gin and martini

Table 1. Types of part-whole relations according to Winston. funct. stands for func-
tional, hom. stands for homeomerous, sep. stands for separable.

The rest of the paper is organized as follows: In Section 2 we briefly review
Winston’s approach to lay the ground for the technical contributions. In Sec-
tion 3 we provide the basic Winston-Part-Whole Pattern. In Section 4 we provide
the Contextualized Winston-Part-Whole Pattern as an extention of the one pre-
sented in Section 3. In Section 5 we describe a usage scenario. In Section 6 we
briefly discuss a provenance pattern as an example for contextualization, which
is essentially adapted from the core of the PROV-O ontology. Section 7 contains
additional release information for the patterns, and Section 8 concludes.

2 Winston’s Approach

Winston in [20] distinguishes six different types of part-whole relationships. His
categorization is based on the following three aspects, a different selection of
which holds for each of the types.

separable (versus inseparable): Parts can in principle be physically discon-
nected from the whole.

functional (versus non-funcational): Parts are in specific spatial and tem-
poral position relative to each other which supports their functional role as
parts of the whole.

homeomerous (versus non-homeomerous): Parts are similar to each other
and to the whole.

The six types distinguished by Winston are listed in Table 1. The table
also lists which of the just mentioned three aspects holds for each type, and an
example from each, taken from [20].

Winston furthermore provides a discussion of logical properties for each type
of part-whole relation. E.g., he observes that each type of relation is transi-
tive, however if you mix types, transitivity generally does not hold. E.g., if you
have two relations which are both of the component-integral object type, then
transitivity holds, as in toe being part of the foot, foot being part of the leg,
therefore toe is part of the leg. If you mix types, though, e.g. by mixing a
component-integral object relation such as “Derek’s nose is part of Derek” and
a member-collection relation such as “Derek is part of the Department faculty,”
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then transitivity would result in the nonsensical “Derek’s nose is part of the
Department faculty.”

Rather than going through Winston’s observations in detail, let us refer here
to the axiomatization which we have drawn from it, and which we give in the
next section.

3 The Winston-Part-Whole Pattern

We are now going to cast Winston’s part-whole types into a part-whole ontol-
ogy design pattern, and that will include the capturing, in OWL, of the logical
relationships identified by Winston.

We will use the OWL property names

– component-integral object: po-component
– member-collection: po-member
– potion-mass: po-portion
– stuff-object: po-stuff
– feature-activity: po-feature
– place-area: po-place

and we will refer to these as the specific part-whole relations. We also use some
other, related, relations identified and discussed by Winston. These are, in patic-
ular, spatially-located-in as the spatial (topological) located-in relation and part-of
as the generic part-whole relation of which the specific ones listed above are spe-
cializations (i.e., subProperties).

From [20] we can now draw the axioms which together constitute the pattern.
They are listed in Figure 1.

Axioms (1) through (12) declare transitivity and asymmetry for each of the
specific part-whole relations. According to Winston, however, we would also need
to declare irreflexivity for each of the specific part-whole relations, which would
render each of them a strict partial order. However this is not allowed in OWL
2 DL: according to [15, Section 11] a property cannot be both transitive (and,
therefore, non-simple) and irreflexive.4

We believe that dropping the irreflexivity axioms should usually not cause
any problems in terms of logical reasoning over the pattern, however as usual
it is difficult to formally assess this. A formal declaration of irreflexivity may
sometimes be helpful for ontology debugging or data curation, and of course
some (correct) inferences will be missed through OWL 2 DL reasoning if the
axiom is omitted. Note, though, that due to the open world assumption all
inferences drawn from the OWL 2 ontology are still correct with respect to the
complete theory (i.e., the one including irreflexivity).

Winston lists a number of additional axioms, however as discussed in [8]
they are in fact tautologies, and while they may be informative for a linguistic

4 Alternatively, we could also have dropped the transitivity axoims, but that seems less
appealing. As discussed in [8], a third option would be to employ nominal schemas
[12,14] and provide weaker forms of some of the axioms.

89



4 Cogan Shimizu, Pascal Hitzler, Clare Paul

po-component ◦ po-component v po-component (1)

po-member ◦ po-member v po-member (2)

po-portion ◦ po-portion v po-portion (3)

po-stuff ◦ po-stuff v po-stuff (4)

po-feature ◦ po-feature v po-feature (5)

po-place ◦ po-place v po-place (6)

AsymmetricObjectProperty(po-component) (7)

AsymmetricObjectProperty(po-member) (8)

AsymmetricObjectProperty(po-portion) (9)

AsymmetricObjectProperty(po-stuff) (10)

AsymmetricObjectProperty(po-feature) (11)

AsymmetricObjectProperty(po-place) (12)

po-component v part-of (13)

po-member v part-of (14)

po-portion v part-of (15)

po-stuff v part-of (16)

po-feature v part-of (17)

po-place v part-of (18)

spatially-located-in ◦ spatially-located-in v spatially-located-in (19)

ReflexiveObjectProperty(spatially-located-in) (20)

po-component ◦ spatially-located-in v spatially-located-in (21)

spatially-located-in ◦ po-component v spatially-located-in (22)

po-member ◦ spatially-located-in v spatially-located-in (23)

spatially-located-in ◦ po-member v spatially-located-in (24)

po-portion ◦ spatially-located-in v spatially-located-in (25)

spatially-located-in ◦ po-portion v spatially-located-in (26)

po-stuff ◦ spatially-located-in v spatially-located-in (27)

spatially-located-in ◦ po-stuff v spatially-located-in (28)

po-feature ◦ spatially-located-in v spatially-located-in (29)

spatially-located-in ◦ po-feature v spatially-located-in (30)

po-place ◦ spatially-located-in v spatially-located-in (31)

spatially-located-in ◦ po-place v spatially-located-in (32)

Fig. 1. Pattern axioms for the first pattern variant from Section 3.
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Fig. 2. Schema Diagram for the Contextualized Winston-Part-Whole Pattern. The
dashed box on the right hand side lists seven different subclasses of PartWholeType.
The subproperties of part-of from Section 3 are also used. Further explanations can be
found in the text.

discussion, they do not really contribute to ontology modeling, and we do not
want to include them in the pattern.

Please note that we do not provide a schema diagram for this pattern, as the
pattern exists of related properties only.

4 A Pattern Extension Accounting for Provenance And
Other Context Information

Some usages of the Winston-Part-Whole Pattern, such as the one from [8] on
which this pattern is based, suggest that it would be helpful to store context
information for the part-of relationship. We conceive that this would mostly be
in the form of provenance information. For example, in the case of [8], part-of
relationships of the various types defined by Winston were generated automati-
cally using Hearst patterns over Web text corpora. In such a case, one may want
to store confidence values, or even pointers to the exact algorithm used in each
case.

In order to store this information, we now provide a contextualized version
of the pattern described in Section 3; it is essentially obtained by “reifying” the
properties. It is a known technique, and one could also refer to it as “lifting” or
as “typecasting” of properties into classes following [13].

To explain, consider the schema diagram in Figure 2. A triple which according
to the pattern in Section 3 would simply be stated as

:everglades po:po-place :florida .

would now be expressed using the following set of four triples—note that the
original triple is still included. We use cpo as namespace, for “contextualized
part-of.”

:everglades cpo:po-place :florida ;

cpo:isPartOf :everglades-po-place-florida .
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:everglades-po-place-florida rdf:type cpo:PO-Place-Type ;

cpo:hasWhole :florida .

Additional context information, such as provenance information can then be
attached to :everglades-po-place-florida, and we will further elaborate on this in
Section 6.

We now show how to derive the axiomatization for the Contextualized Winston-
Part-Whole Pattern. First of all, note that all axioms from Figure 1 are fully
adopted (with adjusted namespace of course). In the following, let R denote any
one of po-component, po-member, po-portion, po-stuff, po-feature, po-place, and
CR be the corresponding PO-Component-Type, . . . , PO-Place-Type from Figure
2.

Po-Component-Type v RelationInstance (33)

Po-Member-Type v RelationInstance (34)

Po-Portion-Type v RelationInstance (35)

Po-Stuff-Type v RelationInstance (36)

Po-Feature-Type v RelationInstance (37)

Po-Place-Type v RelationInstance (38)

Po-Part-Of-Type v RelationInstance (39)

Spatially-Located-In-Type v RelationInstance (40)

Then we would like to have all of the following axioms, which are here expressed
using rules.

isPartOf(x, y) ∧ CR(y) ∧ hasWhole(y, z)→ R(x, z)

This rule actually constitutes a generalized role chain which can be cast into
OWL using the rolification5 technique described in [12]. The resulting OWL
axioms are as follows (please note the lowercase cR, which is the result of type-
casting the class CR into a property).

CR ≡ ∃cR.Self (41)

isPartOf ◦ cR ◦ hasWhole v R (42)

The same axioms would be added for spatially-located-inin place of R.
Note that instead of axioms (42), we would actually have preferred to use

isPartOf ◦ cR ◦ hasWhole ≡ R,

however this is not expressible in OWL. According to [13] use of the latter
axiom would be proper typecasting between properties and classes, however this
requires right-hand-side property chains, which if added to OWL DL would cause

5 The name rolification comes from the fact that properties are called roles in descrip-
tion logics [7].
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undecidability and are therefore not included in the standard. Please see [13] for
a further discussion of this matter. For similar reasons, we are not able to lift
most axioms from Figure 1 fully to the contextualized pattern, as they would
also result in right-hand-side property chains. In fact, in addtition to the 14
axioms above we have six axioms

R v part-of,

which correspond to axioms (13) through (18). The asymmetry declarations from
Figure 1 cannot be fully lifted to the contextualized version: to the best of our
abilities, they cannot be expressed in OWL, and the same holds for the reflexivity
axiom. For axioms (1) to (6), (21) through (32), and (19), partial liftings could
be given. However, they would be redundant, i.e., inferrable through OWL DL
reasoning from the axioms already given. We thus refrain from adding them.

> v ∀isPartOf.RelationInstance (43)

∀hasWhole.RelationInstance v > (44)

Finally, we give the range and domain for isPartOf and hasWhole, (43) and (44),
respectively. In total, we have 32 axioms inherited from the non-contextualized
pattern, plus 30 new ones, for a total of 62 axioms for the Contextualised
Winston-Part-Whole Pattern.

5 Usage Scenario

We give a usage scenario for the presented patterns, from the domain of Mate-
rials Science. Materials Science is an interdisciplinary field which focuses on the
discovery and design of new or enhanced materials. Of central importance to the
field is the determination of materials properties using experiment or modeling
and simulation. Examples of such properties include ultimate tensile strength
and crack growth rate. More data than ever is being generated as the materials
science and engineering domain seeks to enhance throughput through the au-
tomation of sequential experiments and greater use of modeling and simulation
[16]. At the same time, there is no widely accepted ontology we are aware of to
facilitate the digital exchange and integration of data in this fast-growing and
very active discipline. To start filling this gap, we have begun to investigate core
ontology design patterns needed for such an ontology, and this in fact prompted
our development of the Winston Part-Whole Patterns based on earlier mentioned
work.

The important role of part-whole relations in this context comes from the
fact that engineered products are usually created by combining previously cre-
ated engineered products—and that includes engineered materials. For example,
fiberglass and epoxy (glue) are part of a composite material.

Product designers seek materials which possess specific properties (e.g. color,
strength) to enable a function (e.g. be atheistically pleasing, resist deformation
due to mechanical loads). These properties are established by combining specific
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materials in a particular way to achieve a certain microstructure. Once the pro-
cessing is complete, the characteristic properties of the material are ”locked-in.”
If the composition and structure of a material are described completely, a unique
set of properties can be inferred. Additionally, since the processing can be asso-
ciated with the composition and microstructure, it can also be associated with
the unique set of properties. Thus, the recording of the parts or components of
an engineered material is of importance.

Eventually, one would like to record the whole Part-Whole chain from a
complex engineered product down to a very fine granularity. Examples for such
relations could be the following.

– A radar system is part of a boat. – component-integral object

– An antennae radome is part of a radar system. – component-integral object

– Some composite material is part of an antennae radome. – stuff-object

– Epoxy is part of this composite material. – stuff-object

– Glass fiber is part of this composite material. – stuff-object

– Some composite material cure is part of some composite manufactoring. –
feature-activity

– Some damaged area is part of some composite material surface. – place-area

– Some broken fiber is part of this damaged area. – component-integral object

It becomes apparent from these examples, that a naive approach, i.e., encod-
ing all of these relationships using part-of only, is inferior to using a model based
on Winston’s work. E.g., in the former it would be incorrect, as duscussed, to
declare part-of to be transitive, while our Winston Part-Whole Pattern allows
for corresponding inferences where appropriate, e.g., from the above we could
infer that An antennae radome is part of a boat (component-integral object)
and that Glass fiber is part of an antennae radome (stuff-object).

6 A Provenance Pattern Derived From PROV-O

Provenance information is arguably among the most prominent types of context
information for all kinds of data. We show in the following, how the Contextual-
ized Winston-Part-Whole Pattern can be extended using a Provenance pattern
which is derived from the core of PROV-O [5]. In a very similar way, other
context information such as confidence values could be added.

The three core classes of PROV-O are Entity, Activity, and Agent. Briefly, an
Entity is simply an item that has provenance. Entities are generated by Activities,
which are the execution of some algorithm or method. The Activity or Entity
may be performed by or attributed to some Agent which may be, for examples,
a person or a script.

However, for use in the context of pattern-based modular ontology modeling
[11], it is more convenient to have a dedicated pattern—rather than a full-blown
ontology—at our disposal, although the pattern we provide is, essentially, the
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Fig. 3. Schema Diagram for the Contextualized Winston Part-Whole Pattern extended
by a Provenance pattern following PROV-O.

core of PROV-O. We very simply align our extracted pattern to PROV-O via
the following equivalences.

EntityWithProvenance ≡ Entity

ProvenanceActivity ≡ Activity

Figure 3 provides a graphical overview of this subpattern and how it may extend
the Winston-Part-Whole Pattern. The following axioms specify the behavior of
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this subpattern.

EntityWithProvenance v ∀wasDerivedFrom.EntityWithProvenance

∀attributedTo.Agent v EntityWithProvenance

EntityWithProvenance v ∀attributedTo.Agent

∀generatedBy.ProvenanceActivity v EntityWithProvenance

EntityWithProvenance v ∀generatedBy.ProvenanceActivity

∀used.EntityWithProvenance v ProvenanceActivity

ProvenanceActivity v ∀used.EntityWithProvenance

∀performedBy.Agent v ProvenanceActivity

ProvenanceActivity v ∀performedBy.Agent

We add some explanations of these axioms, they follow the standard tem-
plates of scoped domain and range restrictions.

1. The scoped range of wasDerivedFrom, scoped by EntityWithProvenance, is
EntityWithProvenance.

2. The scoped domain of attributedTo, scoped by Agent, is EntityWithProve-
nance.

3. The scoped range of attributedTo, scoped by EntityWithProvenance, is Agent.
4. The scoped domain of generatedBy, scoped by ProvenanceActivity, is En-

titWithProvenance.
5. The scoped range of generatedBy, scoped by EntityWithProvenance, is Prove-

nanceActivity.
6. The scoped domain of used, scoped by EntityWithProvenance, is Prove-

nanceActivity
7. The scoped range of used, scoped by ProvenananceActivity, is EntityWith-

Provenance.
8. The scoped domain of performedBy, scoped by Agent, is ProvenanceActivity.
9. The scoped range of performedBy, scoped by ProvenanceActivity, is Agent.

Of course, pairs of different entities with provenance, or different agents, or
different provenance activities, may in turn carry part-whole relationships, which
could be expressed using Contextualized Winston-Part-Whole Pattern.

7 Pattern Release Information

We have released the Winston-Part-Whole Pattern,6 the Contextualized Winston-
Part-Whole Pattern, 7, and the Provenance Pattern8 in OWL/XML syntax on
the ontologydesignpatterns.org portal.

6 https://ontologydesignpatterns.org/wiki/Submissions:WinstonPartWhole
7 https://ontologydesignpatterns.org/wiki/Submissions:

ContextualizedWinstonPartWhole
8 http://ontologydesignpatterns.org/wiki/Submissions:Provenance
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In addition, we have annotated the patterns with the appropriate annotations
following the OPLa ontology which serves as ontology design pattern represen-
tation language [6]. The annotations were generated using the OPLa plugin for
Protégé [17].

8 Conclusion

Part-whole relations are omnipresent and are fundamental to how we organize
information and perceive the world. Thus, it is necessary to have a firm under-
standing of how to model these partonomies or meronomies. To do so, we have
followed Winston’s approach, as discussed in [20] and as a result, have developed
two patterns: the Winston-Part-Whole Pattern and the Contextualized Winston-
Part-Whole Pattern. Additionally, we provide a mechanism for augmenting the
pattern with provenance.

Acknowledgements. Cogan Shimizu acknowledges funding from the Dayton Area
Graduate Studies Institute.
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Abstract. Recently, modular ontology modeling has become a more
popular ontology engineering paradigm. With it, the need for additional
metadata associated with ontology design patterns has grown. The On-
tology Pattern Language (OPLa) was developed to facilitate annotating
ontologies with useful metadata, as well as supporting tooling infrastruc-
ture. In this paper, we detail three extensions to OPLa into a reorganized
namespace: OPLa-core, containing the original annotations; OPLa-SD,
for use in detailing schema diagrams; and OPLa-CP, an adaptation of
the content-pattern annotation schema.

1 Introduction

As the pattern-based, modular ontology engineering methodology has matured,
it has become apparent that additional metadata describing that patterns and
modules that compose the modular ontology is necessary. Indeed, we have seen
that the documentation of an ODP has three facets which are espeically useful
during development: structural and provenance, content and usage, and visual-
ization.

Structural and provenance documentation refers to those annotations that
describe how patterns and modules may interact with each other, as well as
related patterns, how they connect, or their most general form. Recently, [2]
presented the Ontology Design Pattern Representation Language (OPLa) to
cover this use case.

Content and usage has been historically covered by the cp-annotation-schema;
these metadata annotations are critical for the discovery, reuse, and interoper-
ability with existing patterns. When a pattern is submitted to the ontology
design patterns web portal3, the form requires that the pattern be annotated
with the cp-annotation-schema.4 This schema includes a number of annotation
properties that allow a developer to express certain usage characteristics of their
content ontology design pattern. However, it is not always clear how to use these
annotations and may pose as an obstacle for advanced querying.

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

3 http://ontologydesignpatterns.org
4 url2cp-annotation.owl
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Table 1: The prefixes and namespaces for the reorganized OPLa.

Prefix Namespace

opla-core: http://ontologydesignpatterns.org/opla-core#
opla-cp: http://ontologydesignpatterns.org/opla-cp#

opla-sd: http://ontologydesignpatterns.org/opla-sd#

Furthermore, we have seen that schema diagrams are an important tool for
understanding the purpose, content, and structure of an ontology design pat-
tern or module [6, 3]. A schema diagram is a graph-based visual diagram that
gives a human understandable view of the stucture that concepts, properties,
and datatypes create within the onotlogy. Further, it does not aim to represent
the full logical implications of each axiom in the ontology; instead, it focuses
on representing simple relationships between concepts in an ontology. Graphical
ontology modelling is not a new paradigm, but with increasing accessibility of
multimodal input devices, as well as increased adoption in non-ontologists, it
has recently become more prevalent [8, 1, 4]. Modular ontology modelling seems
to be an excellent complement to graphical ontology modelling, given that its
“plug-and-play” nature may easily correspond to “drag-and-drop.” Metadata de-
scribing best-practices for visualizing a pattern, or set of patterns, will certainly
be of benefit to developers of tooling infrastructure. While only three annotations
have been specified in OPLa-sd, defined in a later section, additional annotations
to support future tooling applications and infrastructure will be added.

To support these needs, this paper describes the extension and slight re-
organization of OPLa into three distinct sub-namespaces. Table 1 shows these
new namespaces. Thus, we enable a simplified documentation process, as well
as provide multiple dimensions for pattern discovery. The contributions are as
follows.

1. OPLa-Core: the new namespace of the original OPLa ontology and the an-
notations therein remain unchanged.

2. OPLa-CP: contains the annotation properties describing a number of non-
technical facets on the usage of a particular ontology design pattern or mod-
ule. These annotation properties are adapted from the cp-annotation-schema.

3. OPLa-SD: the foundational positional axioms used for expressing visual lo-
cation of an entity on a canvas.

2 Extending OPLa

As mentioned in the previous section, there are three distinct representations of
a pattern that we wish OPLa to cover. Furthermore, we wish to have each of
the annotations to support discoverability, as such, some disambiguation of the
uses of the annotations was necessary. In the next sections we briefly discuss the
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usage characteristics of the new OPLa-cp annotations and two annotations from
OPLa-core. The updated OWL file for these OPLa extensions (as well as the
original specification) is available online.5

2.1 OPLa-core

In this section, we merely disambiguate some common questions pertaining to
two original OPLa annotations and a new core annotation, as adapted from cp-
annotation-schema. While some of these annotations were in the original specifi-
cations for OPLa, their use-cases were not explicit.

opla-core:isNativeTo should be used to express the provenance of some ontological
entity. This annotation is not functional, e.g. some entity may be native to more
than one pattern, e.g. the Agent may belong to both AgentRole and Provenance
patterns.

opla-core:ofExternalType should be used to indicate that another pattern may
hook into this entity. For example, a hook might indicate that the pattern de-
veloper acknowledges a certain concept is out of scope of the particular pattern.

opla-core:extractedFrom is adapted from cp-annotation-schema This annotation
should be used to indicate that a pattern has been created from where one
originally did not exist. Otherwise, opla-core:derivedFrom should be used.

2.2 OPLa-cp

The adaptation of cp-annotation-schema is the primary contribution in this pa-
per. The purpose of the cp-annotation-schema is to describe many aspects per-
taining to the usage of an ontology design pattern, thus we have adapted many
of the annotations for use in OPLa. However, not all of the annotations in cp-
annotation-schema were necessary to be included, as their purposes were covered
by existing OPLa annotations. Additionally, few of the original annotations im-
plied that their payload was plural, e.g. hasConsequences. However, in order to
aid in discovery and minimze complicated text-processing, we felt that it was
more natural to have singular natural language payloads, i.e. hasConsequence.

opla-cp:hasConsequence Describes a potential gain and drawback when using the
annotated module or pattern. For example, it may be used to express the impact
of an ontological commitment.

opla-cp:coversRequirement Should point to a blank node, wherein a competency
question and SPARQL query should be paired. This pair should pretain to a
question answerable by the original pattern itself without being instantiated for
a specific usecase.

opla-cp:hasCompetencyQuestion Points to an example competency question that
can be evaluated against the annotated ontology, as expressed in natural lan-
guage.

5 https://github.com/cogan-shimizu-wsu/Extended-OPLa/
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:Agent rdf:type owl:Class ;

opla-sd:entityPosition

[ opla-sd:entityPositionX "19.608958656638492"^^xsd:double ;

opla-sd:entityPositionY "89.84401282241834"^^xsd:double ;

rdfs:comment "This is an entity positioning annotation

generated by CoModIDE (https://comodide.com/). Removing

this annotation will break rendering the CoModIDE

schema diagram view."@en

] .

Fig. 1: An excerpt of the AgentRole pattern showcasing the opla-sd position an-
notations.

opla-cp:hasUnitTest Points to an example SPARQL query that can be evaluated
against the content of the annotated ontology. It should be paired with a natural
language description, e.g. Competency Question.

opla-cp:addressesScenario Describes a potential or existing usecase or instantia-
tion of the ontology design pattern. It should describe the commitments nece-
sarry to make the instantiation possible.

2.3 OPLa-sd

OPLa-SD includes a set of annotations specifically for tooling software to query
and utilize. Currently, there are only three annotations belong to OPLa-SD,
as detailed below. Figure 1 shows an excerpted opla-sd:EntityPosition from the
annotated version of the AgentRole pattern in [7]. These annotations are not
meant to be manipulated directly by a user and doing so can cause tools to
break.

opla-sd:entityPosition This property has a blank node as its target. This blank
node is intended to “encapsulate” all other position related annotations.

opla-sd:entityPositionX This property specifies the X coordinate (expressed as a
double) of a node in a schema diagram.

opla-sd:entityPositionY This property specifies the Y coordinate (expressed as a
double) of a node in a schema diagram.

3 Conclusions

This paper describes the reorganization of the OPLa namespace into three
new sub-namespaces, OPLa-core, OPLa-CP, and OPLa-SD. This reorganization,
and the population of the new sub-namespaces, supports the documentation of
ODPs, in three critical facets, as well providing descriptions to annotations pre-
viously without documentation. Each namespace has a set of annotations for
specialized roles and functionality.
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These new OPLa annotations can be seen in two ongoing projects: MODL: a
modular ontology design library [7], where it is used to index design patterns for
use; and the Comprehensive Modular Ontology IDE (CoModIDE6 [5]), which
leverages both MODL and its index to enable pattern-based modular ontology
engineering and uses the OPLa-SD annotation properties in order to keep a
consistent rendering of the ontology across sessions.
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A Protégé Plug-In for Annotating OWL
Ontologies with OPLa

Cogan Shimizu, Quinn Hirt, and Pascal Hitzler

Data Semantics Laboratory, Wright State University, Dayton, OH, USA

Abstract. The Ontology Engineering community has recognized needs
for both a simple, exstensible representation language for patterns and
tools that support such workflows. In this demonstration, we describe
a Protégé plugin that guides a user in documenting the loaded OWL
ontology and its entities with annotations from the Ontology Design
Pattern Representation Language (OPLa).

1 Motivation

The use of ontology design patterns (ODP) has established itself as an ontology
engineering paradigm [3]. There are, however, a number of open challenges to be
considered by researchers concerning the future of ODPs and modular ontology
engineering. In this demonstration, we are particularly interested in both rec-
ognizing the substantial need for a robust pattern representation language and
increasing the availability of easy-to-use, supporting tools. For a more thorough
examination of these challenges and others, please see [2].

Utilizing a pattern representation language is an important piece for improv-
ing the development process, as it begins to address a perennial challenge in
the Semantic Web community: ontology sharing and reuse; and as it applies to
the ontology engineer: ontology design pattern sharing and reuse. A commonly
used pattern representation language is immediately impactful by allowing the
ontology engineer to more explicitly express

– how to use a pattern (e.g. what are natural “hooks” into the ODP)
– which other ODPs have been adapted or reused to create the pattern
– from where an ontology module was derived

Together, these examples can enable a so-called “smart” repository. Such a
repository will allow an ontology engineer to more easily navigate and explore
patterns and modules, thus realizing a centralized mechanism for the sharing,
reuse, or adaptation of ODPs. As such, it is in the best interest of the community
to utilize the pattern language.

As a first step in addressing this challenge, [4] presented the Ontology Design
Pattern Representation Language (OPLa). OPLa annotations are fully compat-
ible with OWL and its semantics are formally described. For each of our moti-
vating examples we provide some concrete examples that illustrate exactly how
OPLa can be used to formally describing those relationships.

The MicroblogEntry pattern may contain the following triples:
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mbe:Location opla:ofExternalType opla:externalClass .

mbe:Media opla:reusesPatternAsTemplate nre:Media .

The first triple indicates that the Location is a “hook” for other engineers to
use. The second triple indicates that the MicroblogEntry pattern has adapted
the Media class from another ODP, in this case the NewsReportingEvent ODP
[7, 5]. Additionally, the ModifiedHazardousSituation ODP may contain the triple

mhs: opla:derivedFromPattern hs: .

which states that ModifiedHazardousSituation is derived from the HazardousSit-
uation ODP [1, 6]. Figure 1 provides a graphical overview for the other OPLa
annotations.

However, like many forms of documentation, it is a tedious task to exhaus-
tively perform. The key to adding complexity to any engineering process is mak-
ing the change trivial to the end-user. As such, sufficient, easy-to-use tooling is
necessary for facilitating process adoption. To address this, we have developed
a Protégé plug-in that has been optimized for walking an ontology engineer
through annotating their ontology, module, or pattern with the correct OPLa
annotations.

2 Implementation

Our plugin, the OPLaTab (Figure 2), is implemented for Protégé 5. At the time
of this writing, plugin registration through the Protégéwiki1 is ongoing. We
provide a portal online2 for a more detailed examination of the plugin’s source
code and .JAR file, and closer view of the interface and its use and installation.

The purpose of the OPLaTab plugin is to guide the user through the con-
struction of a valid OPLa annotation. As such, it is optimized for annotating the
ontology itself and its entities with only those annotations explicitly outlined in
Figure 1 and [4]. Thus, the interface is purposefully minimalist and restricted: it
condenses all annotation functionality to a single screen and reduces the number
of choices a user needs to make in order to insert an annotation into the ontology.

The tab’s only silent behavior is to add the OPLa namespace to the ontology.3

All other changes to the ontology are done via the “Save” and “Remove” buttons.
The interface is separated into three parts: navigation, construction, and

view/remove. The plugin currently supports the annotation of the Ontology,
Classes, Individuals, Object Properties, Data Properties, Datatypes and Anno-
tations. By selecting one of these options, the construction area will be populated
with the appropriate entities. Further, the list of annotation properties will up-
date to display only those properties that are valid for the selected entity. Finally,
the view/remove area will display only OPLa annotations so that it is easy to
identify which entities have yet to be annotated.

1 https://protegewiki.stanford.edu/wiki/Main_Page
2 http://dase.cs.wright.edu/content/oplatab
3 http://ontologydesignpatterns.org/opla/
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Fig. 1: A graphical overview of the Ontology Design Pattter Representation Lan-
guage (OPLa) [4].

Currently, the annotation value for the annotation is user-dependent, in the
absence of a standardized controlled vocabulary or repository. We briefly describe
a sample workflow:

1. Select the ontology itself or an ontological entity.
2. Select the appropriate annotation property.
3. Enter the annotation value.
4. Save the annotation.

At this time, the bottom portion of the screen will update with the new anno-
tation. The annotation may be removed by selecting the appropriate button.

3 Conclusions, Future Work, & Demonstration

OPLaTab is a useful tool for constructing OPLa annotations. There is currently
an ongiong intention to develop a comprehensive tool suite for modular ontology
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Fig. 2: A view of OPLaTab’s interface. This view shows an example annotation
be added to the loaded ontology.

engineering. We see OPLa becoming a central component of this tool suite. From
visualization and interactive browsing to a smart repository, each will need some
way of communicating to a user exactly how ontologies and ODPs relate to each
other. As we provide more sophisticated tools in this realm, there are several
foreseeable next steps.

While some of these next steps will require extensions to OPLa, OPLa was
purposefully developed to be easily extendable. For example, it may be possible
to embed visualization information into annotations, allowing software to de-
termine which properties are visible at different levels of granularity. The same
principle can be extended for interactive browsing. Perhaps most importantly,
however, is the ability to connect to a machine-readable repository of ontology
design patterns and modules. This “smart” repository can act as a dynamically
updated controlled vocabulary of namespaces, thus allowing an ontology engineer
to select the appropriate namespace when constructing their OPLa annotations.

Additionally, we will work to improve the user experience and look to more
appropriately match the Protégé workspace.
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Demonstration

The demonstration will consist of a live walkthrough of annotating a loaded
ontology. In the interest of space, we have outlined in more detail a step-by-step
walkthrough in our online portal.4

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
Graduate Studies Institute (DAGSI).
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MODL: A Modular Ontology Design Library?
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Abstract. Pattern-based, modular ontologies have several beneficial
properties that lend themselves to FAIR data practices, especially as
it pertains to Interoperability and Reusability. However, developing such
ontologies has a high upfront cost, e.g. reusing a pattern is predicated
upon being aware of its existence in the first place. Thus, to help over-
come these barriers, we have developed MODL: a modular ontology de-
sign library. MODL is a curated collection of well-documented ontology
design patterns, drawn from a wide variety of interdisciplinary use-cases.
In this paper we present MODL as a useful resource for the development
of high-quality, modular ontologies, discuss its use, and provide some
examples of its contents.

1 Introduction

The Information Age is an apt description for these modern times; between
the World Wide Web and the Internet of Things an unfathomable amount of
information is accessible to humans and machines, but the sheer volume and
heterogeneity of the data have their drawbacks. Humans have difficulty drawing
meaning from large amounts of data. Machines can parse the data, but do not
understand it. Thus, in order to bridge this gap, data would need to be organized
in such a way that some critical part of the human conceptualization is preserved.
Ontologies are a natural fit for this role, as they may act as a vehicle for the
sharing of understanding [5].

Unfortunately, published ontologies have infrequently lived up to such a
promise, hence the recent emphasis on FAIR (Findable, Accessible, Interopera-
ble, and Reusable) data practices [24]. More specifically, many ontologies are not
interoperable or reusable. This is usually due to incompatible ontological com-
mitments: strong—or very weak—ontological committments lead to an ontology
that is really only useful for a specific use-case, or to an ambiguous model that
is almost meaningless by itself.

To combat this, we have developed a methodology for developing so-called
modular ontologies [14]. In particular, we are especially interested in pattern-
based modules [11]. A modularized ontology is an ontology that individual users
can easily adapt to their own use-cases, while still preserving relations with other

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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versions of the ontology; that is, keeping it interoperable with other ontologies.
Such ontologies may be so adapted due to their “plug-and-play” nature; that is,
one module may be swapped out for another developed from the same pattern.

An ontology design pattern is, essentially, a small self-contained ontology that
addresses a general problem that has been observed to be invariant over different
domains or applications [9]. By tailoring a pattern to a more specific use-case, an
ontology engineer has developed a module. This modelling paradigm moves much
of the cost away from the formalization of a conceptualization (i.e. the logical
axiomatization). Instead, pattern-based modular ontolody design (PBMOD) is
predicated upon knowledge of available patterns, as well as being aware of the
use-cases it addresses and its ontological commitments.

Thus, in order to address the findability and accessibility aspects of PB-
MOD, we have developed MODL: a modular ontology design library. MODL is
a curated collection of well-documented ontology design patterns. The particular
research contribution is both the curation and documentation. Some of the pat-
terns are novel, but many more have been extracted from existing ontologies and
streamlined for use in a general manner. MODL, as an artefact, is distributed
online as a collection of annotated OWL files and a technical report containing
schema diagrams and explanations of each OWL axiom.3

The rest of the paper is organized as follows. Section 2 discusses the relevance
of this work. Section 3 presents our Modular Ontology Design Library in detail
and in Section 4 we conclude and discuss future work.

2 Relevance

Pattern-based modular ontology development is not a conceptually new idea—
instead, it is a continuation of an already established paradigm. Both modular-
ization of ontologies [17] and pattern-based modelling [4] have been identified as
improvements to the ontology engineering process. These concepts have culim-
inated in mature paradigms (e.g. MOM [14, 11] and eXtreme Design [16, 1]),
both having been used in large-scale projects (e.g. GeoLink [15] and VALCRI
[3]). However, the ontology engineering community, especially those that utilize
patterns, have indicated an increased need for better tooling support [7, 2], of
which there are two complementary aspects: a dedicated development environ-
ment and a critical mass of Ontology Design Patterns (or ODPs for short).4

There is already a prototype that begins to address the need for a dedicated
development environment for pattern-based ontologies [6]. It also provides a set
of hard-coded patterns that were extracted (at the time of development) from
the ODP Portal.5 However, having the pattern library tightly coupled with the

3 https://dase.cs.wright.edu/content/modl-modular-ontology-design-library
4 Anecdotally, one of the more pervasive themes at both the 2018 and 2019 United

States Semantic Technologies Symposia (https://us2ts.org/) was a call from on-
tology engineers in both academia and industry for better tooling support.

5 http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
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tool is disadvantageous for future development. Indeed, decoupling the tool is
desirable, for a number of reasons, as follows.

– Remove the onus of pattern development and upkeep off of the tool devel-
oper.

– Enable community driven improvements and tailoring of the library to the
end-users use-cases.

– Enable plug-and-play pattern libraries for different domains, etc.

On the other hand, MODL also addresses the crucial need for a critical mass
of ODPs. One may argue that this critical mass exists in the form of the ODP
portal. Unfortunately, though, it has suffered under the weight of its own mission.
Community enforced quality control has not succeeded in providing a ready-to-
use suite of quality patterns for use across multiple domains.

Furthermore, while the quality of a set of patterns is largely subjective,
MODL strives for consistency in documentation, uses best practices [13, 10],
and limited ontological commitments. In some cases this required polishing ex-
tant documentation, writing it from scratch, and tweaking or detecting errors
in the formalization. We also include all new schema diagrams [12] following a
single paradigm and style.

MODL therefore addresses, in some fashion, both aspects of improving tool-
ing support. In turn, we expect this to lower the barrier of entry to PBMOD,
which in turn lowers the barrier of entry for wider adoption semantic web tech-
nologies in application areas.

3 A Modular Ontology Design Library

In this section, we present in detail MODL. Section 3.1 explains our methodology
and the organization of MODL, Section 3.2 provides a brief overview on the
anticipated usecases of MODL, Section 3.3 provides an example pattern that has
been excerpted from the documentation (some of the language and structure,
e.g. subsections, have been adapted to fit this paper format), and finally, Section
3.4 provides information pertaining to accessibility, sustainability, and more.

3.1 MODL’s Methodology

MODL is a curated collection of well-documented ontology design patterns.
MODL, itself, can be considered to be the combination of two artifacts, the
collection of patterns, specified in OWL, and the accompanying documentation.
The separation is a little fuzzy, as the OWL serialization is also heavily anno-
tated for convenience. The mission of MODL is to make patterns both findable
and accessible. Therefore, it is of utmost importance that every pattern therein
is thoroughly documented. One drawback of the ODP Portal is that there are no
guidelines provided for documenting the patterns and, during submission, a form
is provided with many optional, ill-defined fields. That is not to say all of the
patterns documented therein are poorly documented—some patterns did indeed
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have thorough documentation. Indeed, we would like to emphasize that the main
contribution of MODL is not the patterns in and of themselves. The ODP portal
and many of the included patterns are well-known, well-used, and grounded in
literature. Where possible, we preserved these efforts, from either the portal or
associated publication, and corresponding credit is given in the MODL docu-
mentation. Links to ancestor patterns are included in both the annotations and
documentation.

However, for many of the patterns included in MODL, we needed to fill some
gaps. For this we have elected to follow the guidelines set forth in [13]. These
guidelines are a result of a community wide survey that ranks the perceived im-
portance of ten different components of ODP documentation. For our purposes,
we have chosen to include the top seven. They are Schema Diagram, Example
of Pattern Instantiation, Compentency Questions, Axiomatization, OWL File,
Pointers to Related Patterns, and Metadata. The remaining three components
(Set of Example SPARQL Queries, Examples of Available Datasets for Popula-
tion, and Constraints Using ShEx 6) are being considered for future versions of
MODL.7

The schema diagrams for our documentation were manually created using
the algorithm found in [12, 21]. We elected to use a simplified visual syntax that
conveyed relations between concepts and also contains visual cues for identifying
concepts that should be used as hooks into the ODP. In this case, a “hook” is
some concept that is not fully fleshed out by the pattern, but recognizes that
there is some relation at some level. This hook can be another pattern, a module,
or a stub (described in more detail later).

The provided OWL files for each of the patterns are annotated with the
Extended Ontology Design Pattern Representation Language (OPLa)8 [10]. This
allows us to embed provenance metadata (e.g. where did this pattern originate?)
or provide pointers to related patterns (e.g. generalizations or specializations of
the pattern) in annotations.

Finally, each pattern uses the namespace associated with the persistent URI
for this resource9. However, the patterns contained inside of MODL are intended
to be used as templates [8]. Further, the patterns in a MODL-like pattern library
are meant to be local and the collection bespoke to the domain. MODL itself is
meant as both example and seed. As such, the pattern URIs are not intended
to be resolvable. By instantiating a pattern or making a module, the original
pattern namespace becomes inconsequential. However, we acknowledge that this
may be a perspective that runs counter to some established view points; thus,
as MODL matures, we intend to include redirects to landing pages (e.g. using

6 http://shex.io/
7 Furthermore, there is some community indecision on embracing ShEx or SHACL, a

newer W3C recommendation. More information can be found at https://www.w3.

org/TR/shacl/.
8 https://github.com/cogan-shimizu-wsu/Extended-OPLa
9 https://archive.org/services/purl/purl/modular_ontology_design_library
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Category Patterns

Metapatterns

Explicit Typing
Property Reification
Stubs

Organization of Data

Aggregation, Bag, Collection
Sequence, List
Tree

Space, Time, and Movement
Spatiotemporal Extent
Spatial Extent
Temporal Extent
Trajectory
Event

Agents and Roles
AgentRole
ParticipantRole
Name Stub

Description and Details

Quantities and Units
Partonymy/Meronymy
Provenance
Identifier

Table 1: This table contains the patterns included in MODL. They have been
partitioned into five categories (metapatterns; organization of data; space, time,
and movement; agents and roles; and description and details) which are loosely
defined by their general use-cases.

WiDoCo or similar) in the purl service via content negotiation, as it will certainly
further improve usability.

Table 1 lists the patterns included in MODL. They have been loosely orga-
nized into five categories: metapatterns; organization of data; space, time, and
movement; agents and roles; and description and details.

Metapatterns This category contains patterns that can be considered to be
“patterns for patterns.” In other literature, notably [4], they may be called struc-
tural ontology design patterns, as they are independent of any specific context, i.e.
they are content-independent. This is particularly true for the metapattern for
property reification, which, while a modelling strategy, is also a workaround for
the lack of n-ary relationships in OWL. The other metapatterns address struc-
tural design choices frequently encountered when working with domain experts.
They present a best practice to non-ontologists for addressing language specific
limitations. In general, these patterns are not meant to be truly instantiated.
One use of these patterns would be to utilize their axioms as a guide.

Organization of Data This category contains patterns that pertain to how
data might be organized. These patterns are necessarily highly abstract, as they
are ontological reflections of common data structures in computer science. The
pattern for aggregation, bag, or collection is a simple model for connecting many
concepts to a single concept. Analogously, for the list and tree pattterns, which
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aim to capture ordinality and acyclicity, as well. More so than other patterns in
this library, these patterns provide an axiomatization as a high-level framework
that must be specialized (or modularized) to be truly useful.
Space, Time, and Movement This category contains patterns that model
the movement of a thing through a space or spaces and a general event pattern.
The semantic trajectory pattern is a more general pattern for modelling the
discrete movements along some dimensions. The spatiotemporal extent pattern
is a trajectory along the familiar dimensions of time and space. Both patterns
are included for convenience.
Agents and Roles This category contains patterns that pertain to agents in-
teracting with things. Here, we consider an agent to be anything that performs
some action or role. This is important, as it decouples the role of an agent from
the agent itself. For example, a Person may be Husband and Widower at some
point, but should not be both simultaneously. These patterns enable the capture
of this data. In fact, the agent role and participante role patterns are convenient
specializations of property reification that have evolved into a modelling practice
writ large. In this category, we also include the name stub, which is a convenient
instantiation of the stub metapattern; it allows us to acknowledge that a name is
a complicated thing, but sometimes we only really need the string representation.
Description and Details This category contains patterns that model the de-
scription of things. These patterns are relatively straightforward, models for
capturing “how much?” and “what kind?” for a particular thing; patterns that
are derived from Winston’s part-whole taxonomy [23]; a pattern extracted from
PROV-O [18], perhaps to be used to answer “where did this data come from?”;
and a pattern for associating an identifier with something.

3.2 Using MODL

There are two different ways to use MODL—for use in ontology modelling and
for use in tools. In both cases, MODL is distributed as a ZIP archive of the pat-
terns’ OWL files and accompanying documentation. In the case of the Ontology
Engineer, it is simply used as a resource while building an ontology, perhaps
by using Modular Ontology Modelling or eXtreme Design methodologies. For
the tool developer, we also supply an ontology consisting of exactly the OPLa
annotations from each pattern that pertain to OntologicalCollection. As OPLa
is fully specified in OWL, these annotations make up an ontology of patterns
and their relations. One particular use-case that we foresee is a tool developer
querying the ontology for which patterns are related to the current pattern, or
looking for a pattern based on keywords or similarity to competency questions.

3.3 Excerpt from Pattern Documentation

Summary
Figure 1 depicts the schema diagram for the Provenance pattern, as included
in MODL. The EntityWithProvenance Pattern is extracted from the PROV-O
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Fig. 1: This figure depicts the schema diagram for the EntityWithProvenance Pat-
tern which is essentially the core of the Provenance Ontology (PROV-O). Yellow
boxes are concepts. Light blue boxes with a dashed border are external to both
the pattern and MODL that the developer may want to also make into a module.

ontology. At the pattern level, we do not want to make the ontological committ-
ment to a full-blown ontology. It suffices to align a sub-pattern to the core of
PROV-O. [18]

The EntityWithProvenance class is any item of interest to which a developer
would like to attach provenance information. That is they are interested in cap-
turing, who or what created that item, what was used to derive it, and what
method was used to do so. The “who or what” is captured by using the Agent
class. The property, wasDerivedFrom is eponymous—it denotes that some set of
resources was used during the ProvenanceActivity to generate the EntityWith-
Provenance.

Axiomatization10

∃attributedTo.Agent v EntityWithProvenance (1)

EntityWithProvenance v ∀attributedTo.Agent (2)

∃generatedBy.ProvenanceActivity v EntityWithProvenance (3)

EntityWithProvenance v ∀generatedBy.ProvenanceActivity (4)

∃used.EntityWithProvenance v ProvenanceActivity (5)

ProvenanceActivity v ∀used.EntityWithProvenance (6)

∃performedBy.Agent v ProvenanceActivity (7)

ProvenanceActivity v ∀performedBy.Agent (8)

Axiom Explanations

10 Axiomatization is extensive while avoiding undesirably strong ontological commit-
ments. Most axioms for the MODL patterns follow the template of the OWLAx
Protégé plug-in [19].
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1. Scoped Domain:The scoped domain of attributedTo, scoped by Agent, is En-
tityWithProvenance.

2. Scoped Range: The scoped range of attributedTo, scoped by EntityWithProve-
nance, is Agent.

3. Scoped Domain:The scoped domain of generatedBy, scoped by Provenance-
Activity, is EntityWithProvenance.

4. Scoped Range: The scoped range of generatedBy, scoped by EntityWithProve-
nance, is ProvenanceActivity.

5. Scoped Domain:The scoped domain of used, scoped by EntityWithProve-
nance, is ProvenanceActivity

6. Scoped Range: The scoped range of used, scoped by ProvenananceActivity, is
EntityWithProvenance.

7. Scoped Domain:The scoped domain of performedBy, scoped by Agent, is
ProvenanceActivity.

8. Scoped Range: The scoped range of performedBy, scoped by ProvenanceAc-
tivity, is Agent.

Competency Questions

CQ1. Who are the contributors to this Wikidata page?
CQ2. From which database is this entry taken?
CQ3. Which method was used to generate this chart and from which spreadsheet

did the data originate?
CQ4. Who provided this research result?

3.4 Details

Persistent URI The persistent URI for this resource is https://archive.

org/services/purl/purl/modular_ontology_design_library. The Version
1.0 snapshot and its documentation may be found there. Additionally, it provides
helpful links to a technical report and the living data on GitHub, as discussed
below. We emphasize that this should not be considered to be a migration of the
ODP portal to GitHub, instead, simply where this resource lives, and as such is
not meant to supercede or replace the ODP portal.

Canonical Citation The canonical citation for this resource may be found on
arXiv [22]. The first version of the release has a DOI through Zenodo11

Documentation In addition to this document, we provide in-depth documen-
tation on the library. This documenation contains a primer on ontology design
patterns, as a concept, as well as common techniques used in their formalization.
Most importantly, for each pattern it provides a schema diagram, its axioma-
tization, and explanations for each of those axioms. As mentioned in Section
3.1, each pattern is thoroughly annotated with OPLa which provides further
documentation on its use and provenance.

11 10.5281/zenodo.3228128
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Sustainability & Maintenance MODL straddles the realms of dataset and soft-
ware library; the resource is essentially a snapshot of data that lives. Due to this
potential for change, we intend to maintain MODL analogously to a software
project. Indeed, while the snapshots will be distributed as ZIP archives, the liv-
ing data is (at the time of this writing) hosted on GitHub.12 The Data Semantics
Laboratory13 will host MODL’s snapshots and appropriate documentation in-
definitely. The authors plan to drive further development of needed or requested
patterns. Furthermore, by using Git14 we inherit mechanisms for tracking is-
sues and versions and incorporating such community contributions into future
releases.

License Information This resource is released under the Creative Commons
Attribution 4.0 International Public License the details of which can be found
online.15 A copy of license text is included in the repository.

4 Conclusions

MODL is a curated collection of well-documented ontology design patterns. We
have created this resource to meet a community-recognized need for tooling in-
frastructure for ontology engineering. In particular, this resource makes ontology
design patterns both findable and accessible, shows how they are interoperable,
and promotes their reuse. Furthermore, we posit that future ontologies reusing
these patterns will promote their interoperability and reuse.

4.1 Next Steps

The next steps are many, as MODL is a multifacted, foundational resource. We
have identified several patterns that we deem necessary for covering additional
frequently encountered modelling needs, e.g. a process pattern or patterns. In
addition, there are many alternative patterns that could be considered for fu-
ture releases. As mentioned in Section 3.1, we also want to further flesh out the
documentation with respect to [13], as well as provide individual landing pages
describing the ODPs. One future use case that we foresee for this resource is the
mapping of competency questions to example SPARQL queries, which maybe
could be used as a gold-standard training set for an automated translator. Also
mentioned in Section 3.1, we intend to work closely with the digital humanities
community for their knowledge representation needs. Finally, we have noted the
extreme importance of working closely with tool developers; there is ongoing
work to create a Protégé plug-in that utilizes MODL as a base for modular
ontology modelling, as inspired by [6, 20]. Furthermore, we wish to explore au-
tomating the creation of a MODL-like resource. That is, provide a set of scripts

12 https://github.com/cogan-shimizu-wsu/modular-ontology-design-library
13 http://daselab.org/
14 https://git-scm.com/
15 https://creativecommons.org/licenses/by/4.0/legalcode
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or instructions that allow developers to create their own local repository of their
own frequently used patterns. Finally, we wish to layout a template for describ-
ing MODL-like resources using the Data Catalog Vocabulary16 and Schema.org’s
Dataset.17

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
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Air Force Office of Scientific Research under award number FA9550-18-1-0386.

References

1. E. Blomqvist, K. Hammar, and V. Presutti. Engineering ontologies with pat-
terns - the eXtreme Design methodology. In P. Hitzler, A. Gangemi, K. Janowicz,
A. Krisnadhi, and V. Presutti, editors, Ontology Engineering with Ontology Design
Patterns - Foundations and Applications, volume 25 of Studies on the Semantic
Web, pages 23–50. IOS Press, 2016.

2. P. A. Bonatti, S. Decker, A. Polleres, and V. Presutti. Knowledge Graphs: New
Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar
18371). Dagstuhl Reports, 8(9):29–111, 2019.

3. Z. Dragisic, P. Lambrix, and E. Blomqvist. Integrating ontology debugging and
matching into the extreme design methodology. In E. Blomqvist, P. Hitzler,
A. Krisnadhi, T. Narock, and M. Solanki, editors, Proceedings of the 6th Work-
shop on Ontology and Semantic Web Patterns (WOP 2015) co-located with the
14th International Semantic Web Conference (ISWC 2015), Bethlehem, Pensyl-
vania, USA, October 11, 2015., volume 1461 of CEUR Workshop Proceedings.
CEUR-WS.org, 2015.

4. A. Gangemi and V. Presutti. Ontology design patterns. In S. Staab and R. Studer,
editors, Handbook on Ontologies, International Handbooks on Information Sys-
tems, pages 221–243. Springer, 2009.

5. T. R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge acquisition, 5(2):199–220, 1993.

6. K. Hammar. Ontology design patterns in WebProtégé. In S. Villata, J. Z. Pan,
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M. Solanki, and V. Svátek. Collected research questions concerning ontology design
patterns. In P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti,
editors, Ontology Engineering with Ontology Design Patterns - Foundations and
Applications, volume 25 of Studies on the Semantic Web, pages 189–198. IOS Press,
2016.

8. K. Hammar and V. Presutti. Template-based content ODP instantiation. In
K. Hammar, P. Hitzler, A. Krisnadhi, A. Lawrynowicz, A. G. Nuzzolese, and
M. Solanki, editors, Advances in Ontology Design and Patterns [revised and ex-
tended versions of the papers presented at the 7th edition of the Workshop on

16 https://www.w3.org/TR/vocab-dcat/
17 https://schema.org/Dataset

118



Ontology and Semantic Web Patterns, WOP@ISWC 2016, Kobe, Japan, 18th Oc-
tober 2016], volume 32 of Studies on the Semantic Web, pages 1–13. IOS Press,
2016.

9. P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors. On-
tology Engineering with Ontology Design Patterns – Foundations and Applications,
volume 25 of Studies on the Semantic Web. IOS Press, 2016.

10. P. Hitzler, A. Gangemi, K. Janowicz, A. A. Krisnadhi, and V. Presutti. Towards a
simple but useful ontology design pattern representation language. In E. Blomqvist,
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Modular Ontologies As A Bridge Between
Human Conceptualization and Data

Pascal Hitzler and Cogan Shimizu

Data Semantics Laboratory, Wright State University, Dayton, OH, USA

Abstract. Ontologies can be viewed as the middle layer between pure
human conceptualization and machine readability. However, they have
not lived up to their promises so far. Most ontologies are too tailored to
specific data and use-cases. By making sometimes strong, or sometimes
too weak, ontological commitments, many existing ontologies do not ad-
equatly reflect human conceptualizations. As a result, sharing and reuse
of ontologies is greatly inhibited. In order to more effectively preserve
this notion of human conceptualization, an ontology should be designed
with modularity and extensibility in mind. A modular ontology thus may
act as a bridge between human conceptualization and data.

1 The Case for Modular Ontologies

The Internet is the single largest repository of knowledge to have ever existed
and continues to grow every second. The amount of data continuously generated
by both humans and machines defies comprehension: from second-by-second me-
teorological data gathered by sensors to academic articles written by scientists to
communications on social media networks to collaborative articles on Wikipedia.
How can we represent and link these disparate forms of data together in order
to generate an understandable gestalt? We would require a way to organize ac-
quired data such that some critical part of the human conceptualization of each
piece is preserved.

Ontologies, as “explicit specifications of conceptualizations,” seem like a nat-
ural fit for the role [2]. With the explosive growth of the Semantic Web in the
last decade, it would seem that they have seen no small success for that purpose.
Ontologies offer a human accessible organization of immense amounts of data
and act as a vehicle for the sharing and reuse of knowledge.

Unfortunately, published ontologies have often not lived up to these promises.
Large, monolithic ontologies, designed with very strong – or very weak – onto-
logical commitments are very difficult to reuse across the same domain, let alone
different domains. Strong ontological commitments lead to overspecification, to
ontologies essentially being only fit for the singular purpose for which they were
originally designed. Weak ones lead to ambiguity of the model, sometimes to the
extent that is hard to grasp what is actually being modeled.

We posit that one effective way to obtain ontologies which are easier to reuse,
is to build them in a modular fashion. A sufficiently modularized ontology [9]
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Fig. 1: This is a graphical view of the MicroblogEntry ODP [12]. Yellow boxes in-
dicate datatypes, light blue boxes with dashed borders indicate external patterns.
Purple is used for external classes belonging to PROV-O [1]. Green is used for
external classes belonging to [8]. White arrowheads represent the owl:SubclassOf
relation.

is designed such that individual users can easily adapt an ontology to their
use cases, while maintaining integration and relationships with other versions of
the ontology. A modular ontology is constructed by piecing together so-called
ontology modules. Ontology modules are created by adapting Ontology Design
Patterns to the domain and use-case [4, 5].

2 Ontology Design Patterns

In general, patterns are invariances that may be observed over different media
(e.g. data or processes). Ontology Design Patterns (ODP) are the recognition of
conceptual patterns that occur across different domains. Modeling with ODPs
has established itself as an ontology engineering paradigm [5].

The Semantic Trajectory ODP [7] is a classic example of a recurring pattern.
However, patterns are designed to be sufficiently general as to apply to many
different cases as possible. Thus, it is necessary to create a module from them by
adapting the pattern to the specific domain and use-case in mind. The Seman-
tic Trajectory ODP has been successfully modularized a number of times; two
prominent examples are the CruiseTrajectory ODP [11] and the Spatiotempo-
ralExtent ODP [10]. For a thorough tutorial on creating modules out of patterns,
see [9].

As another example, Figure 1 shows a graphical representation of the Mi-
croblogEntry ODP [12]. This ODP clearly demonstrates pattern reuse and how

122



adequate ontological commitment eases of modularization. This ODP was engi-
neered to leverage as much existing work as possible. For example, the Media
and ReportingEvent concepts are defined in [8]. The concepts Entity and Agent
come from the popular PROV Ontology that express provenence data [1]. Fur-
ther, this ODP avoids overly strong ontological commitments, allowing it to be
easily modularized to represent specific microblogs (e.g. Twitter vs. Facebook
vs. Instagram).

3 The Future of Modular Ontology Engineering

The promise of modular ontologies is still being realized. There are yet open
questions concerning ontology design patterns, their usage, and the surrounding
supporting tools and infrastructure. For a more thorough examination of these
questions and challenges, see [3]. That is not to say that there are no efforts
underway; here, we briefly identify some of these ongoing efforts.

Perhaps the most fundamental purpose of the Semantic Web is to enable the
sharing and reuse of knowledge. Certainly, a pattern is knowledge in and of itself.
Thus, it is only reasonable that there needs to be a way to enable the sharing
and reuse of patterns, as well. To do so, we are working towards the development
of a “smart,” central repository. Such a repository would be initially populated
with a critical mass of fundamental ODPs. That is, a collection of ODPs with
sufficient breadth and generalization such that their combination covers any
complex conceptualization.

In addition, these patterns will be annotated in a systematic and rigorous
way. Answering questions such as

– How do patterns interact with each other?
– Do they import other patterns?
– Which pattern did this module reuse as a template?

Recently, [6] introduced the Ontology Design Pattern Representation Language
(OPLa) as a way to address those questions, and others. The smart repository
would use these OPLa annotations in order to inform an ontology engineer on
available patterns, especially those related to their domain and use-cases.

Between the central repository and OPLa, the next step will be to create a
graphical interface for the assembly and modularization of ontologies. This will
be a combination of different visualization strategies and a plug-and-play system
for ODPs.

And finally, as we learn how to most help humans create ontologies, can
we attempt to also automate these processes? That is, automatically create an
ontology from a dataset and present it as a “first draft” to the ontology engineer
for editing?

Acknowledgement. Cogan Shimizu acknowledges support by the Dayton Area
Graduate Studies Institute (DAGSI).
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Abstract

We present the Enslaved Ontology (V1.0) which was developed for integrating data about the historic slave trade from diverse
sources in a use case driven by historians. Ontology development followed modular ontology design principles as derived from
ontology design pattern application best practices and the eXtreme Design Methodology. Ontology content focuses on data about
historic persons and the event records from which this data can be taken. It also incorporates provenance modeling and some tem-
poral and spatial aspects. The ontology is available as serialized in the Web Ontology Language OWL, and carries modularization
annotations using the Ontology Pattern Language (OPLa). It is available under the Creative Commons CC BY 4.0 license.

Keywords: digital humanities, modular ontology, data integration, ontology design patterns, history of the slave trade

1. Introduction

The scourge of African enslavement was fundamental to the
making of Europe, Africa, the Americas, and Middle East and
parts of the Asian subcontinent. The enduring legacies of black
bondage shape the moral questions of humanity in our times.
We have seen in the past decade a growth in interest in the sub-
ject in film, on television, and in historical fiction. Historians
have spilled much ink writing monographs aimed primarily at
other scholars. At the same time, however, it is a worthy goal
to expand the production of scholarly output and to bring what
historians do to the general public. This aims to shed light on
questions such as: How can we more effectively answer impor-
tant moral questions? How can we make those questions part of
a broader public discourse? What sources are available? How
can we give broad access to them? And how in the decades to
come will scholars answer questions about black bondage and
its legacies when much valuable source material is deteriorating
due to inattention, siloed scholarly activities, and underfunded
archives?

During the past two decades there has been a significant shift in
perceptions about what we can know about enslaved Africans,
their descendants, and those who asserted ownership over them
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throughout the world. Those on the cutting edge of the digital
humanities and social sciences have set about identifying, digi-
tizing, analyzing, and making these resources available on inno-
vative public history and cultural heritage websites. As a result,
a growing number of collections of scanned original manuscript
documents, digitized material culture, and databases, that orga-
nize and make sense of records of enslavement, are free and
readily accessible for scholarly and public consumption.

Online databases about African slavery and the slave trade have
a history that stretches back to the late 1990s and early 2000s,
first provided on CD-ROMs, then on the World Wide Web as
time progressed – and we provide key references in the related
work section. Over time, a plethora of projects and teams gen-
erated a wide variety of databases with different foci and spe-
cializations. So, although this data is available through these
data silos, this proliferation of different projects and databases
presents scholars, students, and the interested public with a
number of challenges:

• Most of these databases focus on the individuals of the
slave trade, but data is often limited to the focus of the
project. Further, the task of disambiguating (or merging)
individuals across multiple datasets is nearly impossible
given the current, siloed nature of all databases about slav-
ery and the enslaved;

• There is no central, universally recognized clearinghouse
for slave data. As such, it is difficult to find projects and
databases;

• Individual projects and databases are isolated, preventing
federated and cross project searching, browsing, and quan-
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titative analysis;

• There are no best practices for digital data creation collec-
tively agreed upon by the scholarly community;

• Important data is often lost or remain locked away in
scholars’ files, completely inaccessible to other scholars,
students, descent communities, and the general public;

• Project participants rarely get scholarly credit for the work
that goes into creating and releasing digital data;

• Humanists have little incentive to deposit datasets.

To address these challenges, the Enslaved project, funded by
The Andrew W. Mellon Foundation and led by Michigan State
University, is currently underway, and it is set to pioneer a new
model for humanities scholarship. Enslaved brings together
programmers, project managers, archivists, librarians, and his-
torians in a collective endeavor and, over the years, with an
expanding consortium of contributors. This collaborative ap-
proach, which is made possible by the World Wide Web, is set
to challenge humanists to broaden their thinking about the pro-
duction of knowledge; the sharing, as opposed to guarding, of
research materials; and the benefits of collaboration. In sum,
the model of Enslaved promises to disrupt conventions of hu-
manities scholarship in much the way it would disrupt – for
the better – historical perspectives on slavery and the individual
lives of those enslaved.

The technical goal of Enslaved is thus to establish what we
call the Enslaved Hub,1 a website that provides one-stop query-
ing and inspection capabilities for integrated historic data on
the slave trade, originating from a diverse set of data sources
and contributors, thereby allowing students, researchers and the
general public to search over numerous databases to understand
and reconstruct the lives of individuals who were part of the his-
torical slave trade. To address the underlying data integration
issues, Enslaved opted to follow the state of the art by establish-
ing a knowledge graph, expressed in RDF, with an underlying
schema in form of an OWL ontology. We call this the Enslaved
Ontology; our modeling approach and its core concepts com-
prise the core of this paper.

The Enslaved Ontology expresses metadata record types and
core fields that the Enslaved research team identified as fre-
quently occuring in historic slave trade data projects. Af-
ter months of evaluating datasets from the domain of slav-
ery studies, Enslaved standardized metadata fields and devel-
oped controlled vocabularies for four types of records regularly
found in these data collections: EVENT, PERSON, PLACE,
and SOURCE. There are 43 Enslaved fields: 9 EVENT fields;
19 PERSON fields; 9 PLACE fields; and 6 SOURCE fields.
Enslaved defined controlled vocabulary terms that standard-
ize data in nine Enslaved fields. Documentation for En-
slaved Metadata and Controlled Vocabularies is available at
https://docs.enslaved.org/

1Eventually to be located at http://enslaved.org/

Like the metadata from which it originates, the Enslaved On-
tology is the shared language that allows the Enslaved Hub to
search over numerous disperate datasets to understand and re-
construct the lives of individuals who were part of the historical
slave trade. Without a data model based on the records, fields,
and terms included in the metadata and controlled vocabularies,
it would be impossible for machine processing to make sense of
all of the data available to the system.

The rest of this paper is structured as follows. In Section 2
we briefly describe our modeling approach. In Section 3 we
provide a description of the ontology’s key modules and their
relationships. In Section 4 we briefly discuss the intended usage
of the ontology. In Section 5 we discuss related work and in
Section 6 we conclude.

The ontology is available at https://docs.enslaved.org/.
Its detailed technical documentation is available from the same
site and from [27].

2. Ontology Modeling Approach

We follow a modular ontology modeling approach based on on-
tology design patterns [3, 5, 6], as it will produce an ontology
with desirable traits. Such a methodology is designed to ensure
high quality and reuseability of the ontology, as well as cater
to future expansions, both in terms of scope and in terms of
granularity. These will allow the Enslaved Ontology to evolve
as needs evolve and the number of collaborators increase. The
modular ontology modeling approach and its rationale has been
described in [16], and it is closely related to the eXtreme Design
approach [2].

Following this methodology as laid out in [16] and further de-
tailed in [9], we took the following subsequent steps.

Step 1: Define use case or scope of use cases.

The use case, including its anticipated future trajectory, was laid
out in the Introduction, Section 1.

Step 2: Collect competency questions while looking at possi-
ble data sources and scoping the problem, i.e., decide on what
should be modeled now, and what should be left for a possible
later extension.

Competency questions were assembled from various sources.
In January 2018, the Enslaved project team solicited search
questions from the eight partner projects, seeking expert in-
put from historians actively engaged in slavery studies and
databasing. Over a four-week period, partners shared thoughts
about potential audiences for the Enslaved project and how dif-
ferent audiences would have different search expectations and
needs. Specific search suggestions focused on categories such
as names, events, relationships, and place and time constraints.
The Matrix team summarized this input.2 Then the Enslaved

2The summary is available from https://docs.enslaved.org/
competencyquestions/v1/enslavedcompetencyquestions-v1.pdf.
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• Public 5: List the enslaved people in Reed County, NC, in the
second half of the eighteenth century.

• Public 12: Who were the godparents of my great-great grand-
mother, Beatriz of the Ambaca nation, baptized at São José
church in Rio de Janeiro on April 12, 1840.

• K12 1: Who did Thomas Jefferson enslave at Monticello?

• K12 9: How many enslaved children lived in Boston when Phillis
Wheatley lived there?

• Pro 4: What were the gender ratios of enslaved people identified
as being of XXXX ethnicity?

• Pro 6: In what records does the enslaved person named XXXX
appear? What were XXXX’s professions? What places did he
live? Who were his/her children and childrens children? Who
did he marry?

• Pro 9: I am researching an enslaved person named Mohammed
who was a new arrival from West Africa in Charleston in 1776.
Is there data about what slave ship he might have been on?

• Pro 20: What ever happened to Bernarda Angola, a Free African
who ran away from her mistress Maria dos Santos Pereira, in
June 1845?

Figure 1: Sample competency questions.

team invited four project partners to draft competency ques-
tions, queries about the data but formulated in natural language.
These scholars created 17 questions from a Public user per-
spective, 14 questions from students and teachers in primary
through secondary school (K12), and 24 questions from a pro-
fessional scholarly user.3 Example competency questions are
listed in Figure 1.

The collected competency questions span the scope of an ex-
panded Enslaved Hub, which goes significantly beyond the first
stage of modeling and demonstration which we – and the on-
tology in the current version – needed to focus on. The his-
torians in the team thus designed a suitable scope for a first
stage of the effort, based on the competency questions and the
availability of data sources. From the plethora of potential data
sources, some of which are presented in the related work sec-
tion, eight were selected, namely African Origins,4 Voyages:
The Trans-Atlantic Slave Trade Database,5 Slave Societies Dig-
ital Archive,6 Dictionary of Caribbean and Afro-Latin Ameri-
can Biography, Dictionary of African Biography and African
American National Biography,7 Freedom Narratives,8 Legacies
of British Slave-ownership,9 The Liberated Africans Project10

and Slave Biographies.11 These sources were selected as they

3The full list of competency questions is available from
https://docs.enslaved.org/competencyquestions/v2/
enslavedcompetencyquestions-v2.pdf.

4http://www.african-origins.org/
5http://www.slavevoyages.org/
6http://www.vanderbilt.edu/esss/
7https://hutchinscenter.fas.harvard.edu/AANB
8http://freedomnarratives.org/
9http://www.ucl.ac.uk/lbs/

10http://liberatedafricans.org
11http://slavebiographies.org/

provided a range of different kinds of data and seemed repre-
sentative as a starting point.

Enslaved used the eight original datasets as the foundation for
the Ontology. Many of the underlying data points are the same
across the data collections, for example Names of individuals,
Gender, Race/Color, and freedom status (enslaved, owner, freed
person). However, historians tend to be idiosyncratic in their
data collection practices. Some copy verbatim from sources
while others may have complex coding practices. Field names
and values can vary in spelling, language and use antiquated
and contemporary terms. Categorization also tends to be non-
standardized. Therefore there are some challenges mapping
disparate datasets to the data model. The original datasets were
selected for the project because they included a wide range of
challenges that needed to be addressed. For example, a dataset
focused on biographies combines agent and event data in the
single row while another dataset captured all agent data in one
table and connected it to event data in another table using an En-
slaved property. Despite these divergences, Enslaved has found
that robust metadata documentation for legacy datasets and En-
slaved has allowed coherent mapping the data model. To date
Enslaved has mapped all eight original datasets to the Enslaved
Ontology. From the outset, Enslaved intended to include only a
subset of the data points in these datasets, those that commonly
recur across historical slave trade data collections.

Step 3: Identify key notions from the data and the use case and
identify which pattern should be used for each. Construct a set
of modules from these.

The list of key notions was quickly finalized during the first in-
person modeling meeting in summer 2018, where about a dozen
researchers, including historians, data experts, and ontology en-
gineers, met to draft the modules and the overall ontology. As
an ontology for historic data, time, place, and provenance play
a necessary role. The content focus of the ontology is on per-
sons and key biographical or person data, more precisely name,
age, sex, occupation, status (e.g. enslaved or freed), race, eth-
nolinguistic and/or geographical origin, participation in events,
and relationships to other persons or organizations such as fam-
ily relations or ownership relations. Events play a particular
role in the data, as relevant historic records usually originate
from specific events such as estate inventories. As further mod-
ules it seemed necessary to have a generic way of providing
descriptions and external references, as well as a way to refer
to specific research projects contributing data.

As for identifying ontology design patterns as a basis for corre-
sponding modules, some were obvious choices, such as using
the core of PROV-O [21] for provenance; using agent instead
of person to include organizations or groups when needed; an
agent roles pattern [15] for participations in events and for inter-
agent relationships. Some person data, such as sex, occupation,
enslaved/freed status, race, and origin seemed to be best cap-
tured by using controlled vocabularies, as were age categories,
though numeric age also seemed desirable. It also seemed op-
portune to defer a complex modeling of names from different
ethnic and linguistic origins and instead to go for a simple name
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Figure 2: Schema Diagram for the AgentRecord module. Orange boxes in-
dicate classes. Dashed blue boxes indicate classes which are part of another
module. White-headed arrows indicate subclass relationships.

stub [18]. The usage of time was also rather restricted, so for
the first stage a decision was made to develop a relatively sim-
ple placeholder module which could be refined later. A com-
prehensive treatment of historic places was clearly out of scope
for the project, and since others pursue historic gazetteers in a
principled way12 we took a limited approach compatible with
these efforts.

Since the focus is on historic data, and on historic persons,
as reported by various (and possibly conflicting) sources, it
was also obvious that the modeling, and the resulting knowl-
edge graph, would contain possibly conflicting data as reported,
rather than anything resembling a base truth. This is of course
obvious from a historian’s perspective, but is sometimes less
prominently modeled in current approaches to knowledge graph
schema design. In the Enslaved Ontology, we make this explicit
by primarily speaking about the records of agents (so-called
AgentRecords) as they pertain to different Agents.

Step 4: Put the modules together and add axioms which involve
several modules.

We defer this discussion to the description of the modules and
the ontology, in Section 3.

Step 5: Create OWL files.

OWL files were created using Protégé [23], and the OPLa An-
notator, presented in [26], for adding additional metadata using
the Ontology Design Pattern Representation Language (OPLa)
[7].

3. Description of the Enslaved Ontology

As discussed previously, the focus of the Enslaved Ontology is
on the records of historic agents. In this paper, we do not intend
to replicate the comprehensive documentation, which can be
found at [27]. Thus, we provide a broad overview, discuss key
modeling choices, and give a few more detailed examples.

The key notion of our model is that of an agent record. Fig-
ure 2 shows the corresponding schema diagram. Note the use

12http://whgazetteer.org/

of temporal and provenance information, which are described
in separate modules, and of the Event module: In this historic
context, agent records were usually recorded at some historic
events. We will discuss provenance in more detail below.

The schema diagram, of course, is just a simplified visualiza-
tion of the module. In terms of formal model, it consists of the
OWL axioms listed in Figure 3.13 Here and elsewhere in the on-
tology, the primary purpose of the formal axiomatization is to
disambiguate the model, i.e., we were striving for as complete
an axiomatization as possible, while avoiding ontological over-
commitments. Each axiom was discussed in detail between the
ontology engineers and the historians on the team. The axiom-
atization is expresssed using the OWL 2 DL profile. Note that
while it is not currently our primary goal to do formal reasoning
over the ontology [8], we do not want to rule out such goals in
the future (e.g. the use of reasoning for consistency checking).
Furthermore, in order to fully encode the knowledge as deter-
mined to be important by stakeholders and domain experts, we
make use of a number of features only expressible in OWL 2
DL, e.g. right-hand disjunctions appearing in Axiom 7 in the
formalization of AgentRecord or Axiom 2 in the formalization
of ExternalReference. These axioms, and others, may be found
in more detail in the full documentation [27].

AgentRecord v EntityWithProvenance (1)
PersonRecord v AgentRecord (2)
AgentRecord v =1hasAgentRecord−.Agent (3)

PersonRecord v =1hasPersonRecord−.Person (4)
AgentRecord v =1hasTemporalExtent.TemporalExtent (5)
AgentRecord v ≤1recordedAt.Event (6)
AgentRecord v ≤1isDirectlyBasedOn.EntityWithProvenance

(7)

hasPersonRecord v hasAgentRecord (8)
Person v ≥0hasPersonRecord.PersonRecord (9)

Figure 3: OWL axioms for the AgentRecord module.

Systematically speaking, most of the axiomatization follows the
template laid out for the OWLAx Protégé plug-in [25, 9], i.e.,
axioms were selected from those available in OWLAx, which
– consistent with our previous modeling experiences – suffices
for most modeling requirements. Indeed, all of the axioms in
Figure 3, except for the last two, follow the OWLAx template.
(1) and (2) are subclass relationships, (3) and (4) are combined
existentials and inverse functionalities, (5) is a combined exis-
tential and functionality, (6) and (7) are functionalities, (8) is
a subproperty relationship. (9) is an axiom which is actually
a tautology, but is included for the benefit of humans trying to
understand the ontology: it indicates that a person may have
person records.

13A primer on description logic and the notation can be found in [1].
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Figure 4: Schema Diagram for the OriginRecord module, color and shape us-
age is the same as in the previous diagram. Purple dashed boxes indicate a
controlled vocabulary, i.e., all URIs of type ECVO (Ethnolinguistic Controlled
Vocabulary of Origin) should be considered part of a controlled vocabulary.

Several agent and person record modules are part of the En-
slaved ontology; they are used for place of origin and ethnolin-
guistic origin of a person, for race, age, sex, occupation, name,
and freedom status. They are also used for recording relation-
ships between agents, and participations in events. We will now
discuss a few of them.

The OriginRecord module is rather similar in structure to most
of the other AgentRecord submodules, and so we use it to serve
as a typical example. Its schema diagram can be found in Fig-
ure 4. We see that OriginRecord is a subclass of PersonRecord.
A record of origin can be recorded in three ways, either by indi-
cating a place (refering to the Place module), or by reference to
a controlled vocabulary, the ECVO, which is being designed by
Enslaved historians, or finally by referring to one ECVO and a
place of origin. The OWL axiomatization which constitutes the
module disambiguates the usage of this module: It prescribes
that each OriginRecord can have at most one ECVO, and that
each OriginRecord refers to at least one Place and/or at least
one ECVO. Note that several places are allowed (as two places
together again constitute a place, conceptually this may be con-
sidered the union of those places), and that there is no required
relationship between place and ECVO, in case both are listed.
The reasons for the latter are that, on the one hand, such rela-
tionships are rather controversial among historians, and that, on
the other hand, such spatial information could be made part of
the controlled vocabulary if desired. We anticipate that a refine-
ment of this module (and of most others) may have to be done
as usage of the ontology expands.

Records for inter-agent relationships, such as family or own-
ership relations, follow a standard relationship reification (or
n-ary relation) pattern [11], with the addition of a controlled
vocabulary for relationship types. The corresponding schema
diagram can be found in Figure 5. The axiomatization, which
we do not replicate here, follows the OWLAx templates. Note,
though, that due to the reification it is not possible, in OWL
DL, to specify that no agent can be in an InterAgentRelation-
ship with itself, as non-simple OWL DL properties must not be
irreflexive [22, 10].

Let us briefly pause to discuss the use of controlled vocabularies

Figure 5: Schema Diagram for the InterAgentRelationshipRecord module,
color and shape usage is the same as in the previous diagrams.

in our context. They are used in the Enslaved Ontology when-
ever a crisp categorization made sense from the domain experts’
point of view, e.g., to enable efficient end-user querying of the
data. The competency questions showed that queries for spe-
cific family relations or ethnolinguistic origins should occur fre-
quently. In some cases, such as that for inter agent relationships,
the controlled vocabulary entities act as types (in this case, for
individuals belonging to InterAgentRelationshipRecord), and it
could be argued that they should be modeled as subclasses of
the InterAgentRelationshipRecord class, rather than as individ-
uals. There are several reasons why we did not do that. (1) The
controlled vocabulary is likely to change more rapidly than the
rest of the ontology, and adding (or even removing) individu-
als appears to be less invasive rearding the ontology. That is,
adding an individual of a class adds relatively little additional
complexity as opposed to adding a new class, which could ne-
cessitate additional axiomatization. Indeed, we can now con-
sider the controlled vocabularies to be seperate entities, with
separate versioning, which can be updated without releasing a
new version of the ontology. (2) In some cases, such as for
the OriginRecord, it seems conceptually questionable to use the
controlled vocabulary for classes. Thus, with all controlled vo-
cabularies being individuals, the ontology has more coherence.
(3) If needed, e.g., to establish formal relationships, expressed
by OWL axioms, between controlled vocabulary items, then
it is possible, in OWL DL, to map between these individual
and corresponding class identifiers – this is a form of typecast-
ing, laid out in detail in [20]. We acknowledge, though, that it
could have been done differently; since typecasting is possible,
though, the choice does not seem to make a huge difference.

Records for event participation, such as a baptism or a slave
rebellion, follow a standard agent role pattern [15], which is a
reification pattern. We again make use of controlled vocabular-
ies for role types. The corresponding schema diagram can be
found in Figure 6. Axiomatization is relatively straightforward
following the OWLAx templates.

Event is a key module in the Enslaved ontology, as the creation
of historical records usually happens at certain events, such as
baptisms. While there are existing ontologies to capture event,
such as the Simple Event Model [31], they did not fit our pur-
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Figure 6: Schema Diagram for the ParticipantRoleRecord module, color and
shape usage is the same as in the previous diagrams.

Figure 7: Schema Diagram for the Event module, color and shape usage is the
same as in the previous diagrams. Yellow oval nodes indicate data types.

poses, mostly because they were much more detailed than re-
quired at this time. We thus derived our event module from a
very simple event pattern [17] with appropriate modifications.
E.g., at this stage there was no need for full-fledged spatiotem-
poral extents, and we added a controlled vocabulary to record
event types, always keeping in mind that the module may have
to be replaced by a module with finer granularity in the future.
A schema diagram can be found in Figure 7.

For the axiomatization, which mainly follows the OWLAx tem-
plates, we required to express that, if an agent record is recorded
at an event, then that agent record also reports on this event.
This can be expressed as a (first order predicate logic) rule as

AgentRecord(x)∧recordedAt(x, y)∧Event(y)→ reportsOn(x,y).

Using a technique known as rolification [19, 24], this rule can

Figure 8: Schema Diagram for the Provenance module, color and shape usage
is the same as in the previous diagrams.

be converted to OWL DL as the following three axioms.

AgentRecord v ∃agentRecordSelfProperty.Self
Event v ∃eventSelfProperty.Self

agentRecordSelfProperty ◦ recordedAt◦
eventSelfProperty v reportsOn

For provenance information, we borrowed the core pattern from
PROV-O [21, 28] as a template, and added controlled vocabu-
laries for license information and document types of the orig-
inal source, which is important for Enslaved use case scenar-
ios. We also added the option to record from where an entity is
available (e.g., which database) together with a reference URI
pointing to the exact database entry. This module’s schema di-
agram can be found in Figure 8. The axiomatization follows
mainly OWLAx templates. We record, in addition, that the
original source type of an entity with provenance is the same
as that of the entity with provenance it is directly based on, and
vice-versa, which can be expressed as property chain axioms,
as follows.

isDirectlyBasedOn◦hasOriginalSourceType
v hasOriginalSourceType

isDirectlyBasedOn−◦hasOriginalSourceType
v hasOriginalSourceType

The ontology has additional modules, in particular preliminary
ones for place and time, which we do not discuss in more de-
tail. However, we provide an overview schema diagram for the
whole ontology in Figure 9. Further details can of course be
found in the referenced technical report.

Modular ontologies are one way of addressing the maintenance,
interoperability, extensibility, and reusability of ontologies. To
do so, each module is annotated using the Ontology Design
Pattern Representation Language (OPLa) [7] using the OPLa
Annotator plugin [26] for Protégé [23]. These annotations al-
low us to fully describe the structure of a modular ontology
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Figure 9: Overview schema Diagram for the Enslaved ontology, color and shape usage is the same as in the previous diagrams. The gray frames indicate (some of
the) modules.
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in a machine-readable way. Briefly, OPLa shows how the mod-
ules that comprise a modular ontology are interrelated and from
which patterns those modules were derived. This, in turn,
makes it easier to replace or modify modules as the ontology
evolves.

The Enslaved Ontology is available from the Enslaved Hub14

and is available under the Creative Commons Attribution Li-
cense CC BY 4.0,15 which permits unrestricted reuse, distri-
bution, and reproduction in any medium, provided the original
work is properly cited.

4. Intended Usage

The Enslaved project aims to connect the different communi-
ties pertaining to the historic slave trade. The nature of this en-
deavor calls for a bootstrapping approach, where a demonstra-
tor hub would first be limited in scope, diversity, and number of
datasets integrated, however with the expectation that it would
grow significantly once under way, as additional collaborators
and contributors start sharing their data for the integration. The
Enslaved Ontology, due to its modular nature, has the capacity
to expand and evolve alongside the Enslaved Hub.

Additionally, we wish to enable community driven population
of the knowledge graph. Currently, the Enslaved Ontology
serves as the underlying schema for the Enslaved knowledge
graph. The axiomatizations provided in earlier sections and in
[27] are a way for disambiguating the model—at this time, there
is no intent to do formal, deductive reasoning over the ontology.
Instead, the ontology is meant for human consumption, and for
informing the knowledge graph structure.

The Enslaved Ontology is also used to inform the population
interface; it has been completely mapped into a Wikibase in-
stallation, the same technology that which underlies Wikidata
[32]. This enables compatibility with the greater data and soft-
ware ecosystem, for example the Wikimedia Foundation’s16

Wikipedia,17 while maintaining a different path for the curation
of the data. Blazegraph18 is used as the underlying triplestore.
Classes, properties, and individuals (instances) may be queried
through a SPARQL query endpoint.

5. Related Work

5.1. Databases About the Slave Trade

Online databases about African slavery and the slave trade have
a history that stretches back to the late 1990s and early 2000s.
Then three projects were trailblazing. First, in 1993 Edward

14https://docs.enslaved.org/
15http://creativecommons.org/licenses/by/4.0/
16https://en.wikipedia.org/wiki/Wikimedia_Foundation
17https://en.wikipedia.org/wiki/Wikipedia:About
18https://blazegraph.com/

L. Ayres and William Thomas launched Valley of the Shadows
at the Virginia Center for Digital History.19 The site is a digi-
tal archive of primary sources centered on the lives of people,
both black and white, in Virginia and Pennsylvania during the
era of the American Civil War. It allows readers to take multi-
ple pathways through documentation from the period and, in so
doing, to build a variety of narratives that tell history in a way
that a book cannot. Second, in March 2000, Gwendolyn Midlo
Hall published a CD-ROM with the Louisiana State University
Press. The CD had information about over 100,000 slaves who
labored in colonial Louisiana. In 2001, Hall launched much of
the same information on a website sponsored by University of
North Carolina and I-Biblio, Afro-Louisiana History and Ge-
nealogy.20 An update and revision of the dataset would later
be incorporated into Slave Biographies.21 Third, in 1999 David
Eltis, Stephen D. Brehrendt, David Richardson, and Herbert S.
Klein published The Trans-Atlantic Slave Trade: A Database
on CD-ROM with Cambridge University Press. The CD had in-
formation about 27,233 Atlantic slave ship voyages from 1595
to 1866. In 2006, the team launched Voyages: The Trans-
Atlantic Slave Trade Database.22 The Voyages site has grown,
currently holding information about almost 36,000 slave voy-
ages. For both Afro-Louisiana and Voyages, the advantages of
the World Wide Web over a CD-ROM were obvious: audiences
grew, information was available at no cost to anyone with Inter-
net access, and data could be updated.

Other projects followed and were housed on the Internet. Slave
Biographies: The Atlantic Database Network, which is home to
updated data from Hall’s I-Biblio site and to other datasets, is a
digital project hosted by Michigan State University and Matrix:
The Center for Digital Humanities and Social Sciences. It pro-
vides open-source demographic information, including names,
ethnicities, skills, occupations, and illnesses, about individual
slaves in colonial Louisiana and Maranhão, Brazil. In addition,
there is Cornell University’s Freedom on the Move,23 Emory
University and Harvard University’s W.E.B. Du Bois Institute’s
African Origins.24 and Vanderbilt University’s Slave Societies
Digital Archive.25 Still other projects are supported at universi-
ties and heritage institutions both within and outside the United
States. Among them are the Liberated Africans Project,26 Digi-
tal Archaeological Archive of Comparative Slavery,27 Legacies
of British Slave-ownership,28 Marronnage in Saint-Domingue,
Haiti,29 Baptismal Records Database for Slave Societies,30 and
Studies in the History of the African Diaspora.31

19http://valley.lib.virginia.edu/
20http://www.ibiblio.org/laslave/
21http://www.slavebiographies.org/
22http://www.slavevoyages.org/
23http://freedomonthemove.org/
24http://www.african-origins.org/
25http://www.vanderbilt.edu/esss/
26http://www.liberatedafricans.org/
27http://www.daacs.org/
28http://www.ucl.ac.uk/lbs/
29http://www.marronnage.info/en/index.html
30http://bardss.matrix.msu.edu/
31http://tubman.info.yorku.ca/publications/shadd/
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5.2. Related Digital Humanities Ontologies

To the best of our knowledge, there is no other ontology that
aims to model the lives, times, and movements of peoples in
the historic slave trade. However, there is an active commu-
nity of historians and digital humanitarians utilizing Semantic
Web technologies. We discuss a few such efforts in the dig-
ital humanities to provide context for our work. These cho-
sen works are intended to be representative of a fairly extensive
body of literature. We selected them based on relevance, shared
vision, and recency, as well as attempting to choose representa-
tive types of topics.

dataLegend [12] is a platform for linking historical data, first
published in 2015. Essentially, it allows for a researcher to up-
load their data, link it to other’s data, and view the results of
their mapping. This project is similar in vision to the Enslaved
Hub, but with broader scope. In particular, the Enslaved project
focuses on those people involved in the historic slave trade,
where as dataLegend allows for the mapping of arbitrary histor-
ical data. While this is not undesirable, it is outside the scope of
our work to be similarly comprehensive. However, dataLegend
does remain a source of inspiration as Enslaved grows.

Europeana32 is a massive in scope, digital archive with over
58 million metadata records of various media, first launched in
2008. Europeana acts as a discovery portal; it redirects users to
different institutions’ datasets. This work is similar in vision to
the Enslaved Hub, but has a much more relaxed semantics for
interrelating datasets, using Schema.org annotations.

Semantic National Biography of Finland33 [14, 13] (Biogra-
phySampo) is a collection of short biographies of historic peo-
ples that have been extracted from large biographical collec-
tions published in 2017. BiographySampo uses a combination
of different vocabularies and models to represent historic peo-
ples and the events and roles that connected them. This has
similar goals as the Enslaved Ontology (e.g. the tracking of
historical peoples); we see multiple points for alignment and
inspiration as the ontology evolves.

Historical Ecology and Recipes from Newspapers [29, 30]
are two projects, first published in 2018, that attempt to extract
ecological and recipe information from historical newspapers.
This approach is somehow similar to ours, in the sense that it
is about extracting records of items of interest from historical
documents and tracking how they change over time.

Additionally, we identify two upper ontologies that have been
used in the digital humanities.

The Simple Event Model 34 (SEM) is an upper ontology for de-
scribing events, in particular those relating to history, cultural
heritage, geography and multimedia. It captures some spatial
and temporal data and different ways of describing how people,

32https://www.europeana.eu/portal/en
33https://seco.cs.aalto.fi/projects/biografiasampo/en/
34https://semanticweb.cs.vu.nl/2009/11/sem/

places, and objects interact. The SEM is a rather finely granu-
lar, complex, and robust model, but exceeds our current model-
ing needs. As the Enslaved Ontology is a modular ontology, it
would be possible to use SEM instead of our Event module. In
the future, as the Enslaved Ontology evolves, we may consider
replacing the current Event module with an adaptation of the
SEM.

The International Committee for Documentation’s Concep-
tual Reference Model (CIDOC-CRM) is an upper ontology for
“describing the implicit and explicit concepts and relationships
used in cultural heritage documentation.”35 In the same manner
that SEM provides a more heavyweight and more finely gran-
ular model, so does CIDOC-CRM. As such, we developed the
Enslaved Ontology independently, but due to its modular na-
ture, as the ontology evolves and needs change, an adaptation
of the relevant portions of CIDOC-CRM will be considered.

5.3. Considerations on External Ontologies and Modules

During the development of the Enslaved Ontology, we also con-
sidered a number of external ontologies for use. We discuss a
representative selection of them here. Furthermore, we may in-
clude alignments from our developed modules to these external
ontologies in subsequent versions of the Enslaved Ontology.

OWL-Time is an ontology of temporal concepts encoded in
OWL 2 DL [4]. The Time ontology is as robust as it is com-
plex. Our modeling needs were met by simply using some basic
temporal relationships and the XML schema datatypes, so we
felt it unnecessary to import OWL-Time.

Geonames Ontology36 is a geographical database containing
the names and locations of over ten million places. However, it
is not sufficient for our purposes as we are dealing, primarily,
with historical places.

6. Conclusions

In this paper, we have presented the Enslaved Ontology (V1.0)
which has been developed for use in integrating a wide vari-
ety of heterogeneous data sources found in the historian re-
search communities. The ontology was developed in a modular
fashion, thus facilitating future maintenance and extensibility—
critical and beneficial design aspects, as the expected growth of
the Enslaved Hub must be matched by the Enslaved Ontology.
The ontology incorporates modules for capturing the spatial,
temporal, and provenance aspects of historic events and agents
(i.e., organizations or persons). The Enslaved Ontology is se-
rialized in OWL and is equipped with annotations describing
the modular structure, further improving its reusability in the
future. It may be found online at https://docs.enslaved.
org/.

35http://www.cidoc-crm.org/
36https://www.geonames.org/
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Abstract. Knowledge graphs and ontologies represent information in a
variety of different applications. One use case, the Intelligence, Surveil-
lance, & Reconnaissance: Mutli-Attribute Task Battery (ISR-MATB),
comes from Cognitive Science, where researchers use interdisciplinary
methods to understand the mind and cognition. The ISR-MATB is a set
of tasks that a cognitive or human agent perform which test visual, au-
ditory, and memory capabilities. An ontology can represent a cognitive
agent’s background knowledge of the task it was instructed to perform
and act as an interchange format between different Cognitive Agent tasks
similar to ISR-MATB. We present several modular patterns for repre-
senting ISR-MATB task instructions, as well as a unified diagram that
links them together.

1 Introduction

Knowledge graphs facilitate data integration across highly heterogeneous sources
in a semantically useful way. Knowledge graphs may be equipped with a schema,
frequently an ontology, that combines the associative power of the knowledge
graph with the semantics of the ontology. Due to this, they are uniquely suited
to support research in cognitive science, where it is often necessary to incor-
porate information from fields like computer science, psychology, neuroscience,
philosophy, and more.

Cognitive agents are a sub-field of cognitive science and an application of
the more broad study of cognitive architectures. Cognitive architectures, like
ACT-R[?] for example, are an approach to understanding intelligent behavior
and cognition that grew out of the idea of Unified Theories of Cognition[?].
These systems have their roots in AI production systems and some types use
rules-based cognition. Many in Computer Science are familiar with inductive
themes from a different type, called Connectionism, due to its historic ties with
artificial neural networks. Symbolic cognitive architectures, by contrast, are less
widely known outside of cognitive science, and are abstracted and explicit like
logic programming.
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Both ontologies and cognitive architectures deal with symbolic knowledge.
Symbolic cognitive architectures typically focus on the plausibility of knowledge
and the way in which that knowledge is translated into human behavior within
a specific task. Ontologies offer a set of robust mechanisms for reasoning over
complex knowledge bases and could help cognitive architectures adapt to tasks
in novel environments. One way the two may be integrated is by leveraging the
ontology to reduce the specificity of a cognitive agent.

In general, cognitive agents are often specialized, or differentiated, to perform
a specific task or set of tasks. An undifferentiated agent is one that has no
specialization. The purpose of such an agent is to be adaptable to new tasks
as needed. As part of initial work to develop such an undifferentiated cognitive
agent, we have developed a modular ontology that captures instructions for a
specific cognitive agent task called ISR-MATB. We discuss this platform in more
detail in the next section.

Currently, the ontology supports the memory of a cognitive agent by adding
structure to its knowledge and providing new varieties of query-like recall. And
due to design methodology used during the modeling process, the ontology is
general enough that it could model other cognitive agent experiments, which
could then be evaluated against each other in a structured way. This allows
the ontology to act as an invaluable interchange format between researchers
developing cognitive agents.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of the use-case: ISR-MATB. Section 3 provides an in-depth examination
of the ontology. Finally, in Section 4, we briefly conclude and discuss next steps.

2 ISR-MATB

ISR-MATB is a series of cognitive tasks that could be completed by a Cognitive
Agent or a human[?]. A trial starts with one very simple task, the evaluation
then branches into two sub-tasks that relate back to the first task. After the two
sub-tasks are complete the agent completes one final task requiring integration
of remembered information from all previous tasks. The final task is made more
difficult by the possibility of incorrect feedback as the agent learns. ISR-MATB is
intended to be repeated for a fixed time so that researchers can observe changes
in the agent’s response time and develop better computational cognitive agents.

2.1 Psychomotor Vigilance Test

The Psychomotor Vigilance Test is one of the more basic cognitive tasks[?]. In
this task, there is an area of the screen where a letter could appear. When the
letter does appear an agent must press a button that acknowledges they have
seen it. If the agent pushes the button too soon a false start is recorded and the
task continues normally. If too much time passes before the agent pushes the
button then the task will continue with the letter unacknowledged. The next
two tasks reference this letter, so the agent is instructed to remember it.
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Fig. 1: An example depicting the four ISR-MATB tasks in a single interface.

2.2 Visual Search

The Visual Search task requires that the agent determine if the original letter is
among a group of many letters that appear on the screen[?]. The other letters
are distractors, and may be the same letter as the target with a different color,
or the same color as the target with a different letter, or both color and letter
different. The target may or may not appear among the distractors, and only
ever appears once if at all. The agent pushes a button to indicate whether the
the letter is present or absent.

2.3 Auditory Search

The Auditory Search task is very similar to the Visual Search, except of course
that the agent must listen instead of look. In this task there are between one and
four audio messages that each include a spoken color and letter. If one of the
messages is the same as as the first task the agent pushes a button to indicate
that it is present, otherwise they indicate that it is absent.

2.4 Decision Making

The final task, Decision Making, requires agents to infer a relationship between
the outcomes of the Visual and Auditory Search tasks together with a new binary
piece of information called “Intelligence” that appears after choosing whether to
hypothetically allocate sensors or not. The rule the agent must guess is not too
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hard, but it is complex enough that it must be learned by trial-and-error over
multiple attempts. Learning the rule is made more difficult by the unlikely but
not impossible event that the program responds incorrectly even when a correct
answer is given. Responding ‘yes’ or ‘no’ to this sub-task ends one ISR-MATB
trial.

3 Ontology Description

In this section we present the Instruction Ontology, a domain ontology built
for use with the ISR-MATB experiment platform. This ontology was produced
by following the Modular Ontology Modeling (MOM) methodology, outlined in
[?,?] MOM is designed to ensure the high quality and reusability of the resulting
ontology, both in terms of scope and in terms of granularity, which is a desired
outcome.

The ontology consists of six modules: ISR-MATB Experiment, Instruction,
SituationDescription, ItemRole, Action, and Affordance. For each module, we
describe its purpose, provide a schema diagram,4 and state its axiomatization
in both description logic syntax and natural language. The OWL file for this
ontology can be found online.5 Figure 5 shows the schema diagram for the entire
ontology.

3.1 ISR-MATB Experiment.

The ISR-MATB Experiment module is the core module for the ontology. The two
main classes are ISR-MATB Experiment and ISR-MATB Task. As noted in Section
2, an experiment consists of up to four tasks that may require that information
be carried between them, where each Task resides in a specific quadrant of
the interface. Each Task provides roles to different Items, as well as a set of
Instructions for the agent to carry out. We discuss these classes in more detail in
their respective Module sections. The schema diagram for this module is shown
in Figure 2c.

Axiomatization:

> v ∀affords.Affordance (1)

ISR-MATBTask v ≥1 hasInstruction.Instruction (2)

ISR-MATBExperiment v ≤4 hasTask.ISR-MATBTask (3)

> v ∀hasLocation.Location (4)

> v ∀hasName.xsd:string (5)

4 A schema diagram is an informal, but intuitive way for conveying information about
the structure and contents of an ontology. We use a consistent visual syntax for
convenience, detailed in Figure 2.

5 See https://raw.githubusercontent.com/undiffagents/uagent/develop/

ontology/uagent.owl.
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ISR-MATBTask v =1 hasName.xsd:string (6)

ISR-MATBTask v ∀providesRole.ItemRole (7)

ISR-MATBTask v ∀informs.ISR-MATBTask (8)

Explanation of axioms above:

1. Range. The range of affords is Affordance.
2. Minimum Cardinality. An ISR-MATBTask has at least one Instruction.
3. Maximum Cardinality. An ISR-MATBExperiment consists of at most four

ISR-MATBTasks.
4. Range. The range of hasLocation is Location.
5. Range. The range of hasName is xsd:string.
6. Scoped Range. The range of providesRole is ItemRole when the domain is

ISR-MATBTask.
7. Scoped Range. The range of informs is ISR-MATBTask when the domain is

ISR-MATBTask.

3.2 Action

The Action module is an instantiation of the Explicit Typing meta-pattern de-
scribed in [?].6

In this case, we use a class, ActionType, to represent a controlled vocabulary.
We believe that using a controlled vocabulary to represent this type information
is less invasive to the ontology. This way, adding or removing types of actions
from the controlled vocabulary does not actually change the ontology. Some
instances of the controlled vocabulary are listed in Figure 5.

An Action, in this context, is the physical, actual action that takes place to
transition between different states of the experiment, e.g. ‘the action of clicking
a button.’ The schema diagram for this module is shown in Figure 2a.

Axiomatization:

Action v =1ofType.ActionType (1)

Explanation of axioms above:

1. Exact Cardinality. An Action has exactly one ActionType.

3.3 Affordance

The Affordance module is also instantiated from the Explicit Typing meta-pattern,
explained in more detail in Section 3.2 and [?]. An Affordance is essentially some
quality of an Item that indicates that “something” may be done with it. Familiar
examples might include clickable buttons or text highlighted in blue (perhaps
indicating that it’s a hyperlink). Instances of the AffordanceType can be found
in Figure 5. The schema diagram for this module is shown in Figure 2b.

6 [?] is a modular ontology design library; it contains a set of frequently used patterns
and respective documentation.
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(a) The schema diagram for the Action
module.

(b) The schema diagram for the Affor-
dance module.

(c) The schema diagram for the ISR-
MATB Experiment module.

(d) The schema diagram for the Item-
Role module.

Fig. 2: Orange boxes are classes and indicate that they are central to the diagram.
Blue dashed boxes indicate a reference to another diagram, pattern, or module.
Gray frames with a dashed outline contain modules. Arrows depict relations and
open arrows represent subclass relations. Yellow ovals indicate data types (and
necessarily, arrows pointing to a datatype are data properties). Finally, purple
boxes represent controlled vocabularies. That is, they represent a controlled set
of IRIs that are of that type.

Axiomatization:

Affordance v =1hasAffordanceType.AffordanceType (1)

Explanation of axioms above:

1. Exact cardinality. An Affordance has exactly one AffordanceType.

3.4 ItemRole

The ItemRole module is an instantiation of the AgentRole pattern, which may
also be found in [?]. We also equip it with an explicit type, in the same manner
as Action and Affordance.
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A Domain Ontology for Task Instructions 7

Each ISR-MATB Task may provide roles to Items. That is, certain items may
be a target or distractor, but not always. This allows us to assign certain roles
to items that may, if they were qualities, be ontologically disjoint. The schema
diagram for this module is shown in Figure 2d.

Axiomatization:

ISR-MATBTask v ∀providesRole.ItemRole (1)

> v ∀hasItemRoleType.ItemRoleType (2)

ItemRole v ∀assumedBy.Item (3)

ItemRole v ∃assumedBy.Item (4)

Explanation of axioms above:

1. Scoped Range. The range of providesRole is ItemRole when the domain is
ISR-MATBTask.

2. Range. The range of hasItemRoleType is ItemRoleType.
3. Scoped Range. ItemRoles are assumedBy Items.
4. Existential. Every ItemRole is assumedBy an Item.

3.5 SituationDescription

For this module, we opted to use the Situation and Description approach. We
chose to use this conceptualization due to the non-linear nature of the instruc-
tions.7 That is, an ISR-MATB Task is not a sequence of instructions, but a
collection of directions or descriptions.

An Instruction, is a description of a way to transition between two states. In
order to follow out an instruction the state described in the the pre-SituationDescription
would need to be met. Following through would result in a new state, the Post-
Situtation Description.

Furthermore, the SituationDescription will indicate the presence, or absence,
of an item, as well as its description. Descriptions, in this case, are relegated to
controlled vocabularies in the same manner as Affordance or Action. We call this
an ItemDescription because it is inherent to the Instruction and not the Item,
itself.

The schema diagram for this module is shown in Figure 3.

Axiomatization:

SituationDescription v ∀hasCurrentCondition.(RelativeCondition t ItemDescription)
(1)

SituationDescription v ∀hasEarlierCondition.ItemDescription (2)

7 For a deeper discussion on Descriptions, Situations, and Plans, see [?].
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Fig. 3: The schema diagram for the SchemaDiagram module. Color and shape
usage is the same as in previous diagrams.

> v ∀hasRelativeConditionType.RelativeConditionType
(3)

RelativeCondition v ∀hasFirstItem.ItemDescription (4)

RelativeCondition v ∀hasSecondItem.ItemDescription (5)

ItemDescription v ∀ofItem.Item (6)

ItemDescription v =1 isPresent.xsd:boolean (7)

> v ∀refersToItemLocation.LocationType (8)

> v ∀refersToItemColor.ColorType (9)

> v ∀refersToShapeType.ShapeType (10)

> v ∀refersToItemType.ItemType (11)

ItemDescription v ≥0 refersToItemLocation.LocationType (12)

ItemDescription v ≥0 refersToItemColor.ColorType (13)

ItemDescription v ≥0 refersToItemShape.ShapeType (14)

ItemDescription v ≥0 refersToItemType.ItemType (15)

> v ∀hasItemName.xsd:string (16)

∃hasItemName.> v Item (17)

Explanation of axioms above:

1. Scoped Range. The range of hasCurrentCondition is a RelativeCondition or
ItemDescription when the domain is SituationDescription.

2. Scoped Range. The range of hasEarlierCondition is ItemDescription when
the domain is SituationDescription.

3. Range. The range of hasRelativeConditionType is RelativeConditionType.
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4. Scoped Range. The range of hasFirstItem is ItemDescription when the do-
main is RelativeCondition.

5. Scoped Range. The range of hasSecondItem is ItemDescription when the
domain is RelativeCondition.

6. Scoped Range. The range of ofItem is Item when the domain is ItemDescrip-
tion.

7. Scoped Range. An ItemDescription has exactly one Boolean flag indicating
whether or not it is present.

8. Range. The range of refersToItemLocation is LocationType.
9. Range. The range of refersToItemColor is ColorType.

10. Range. The range of refersToItemShape is ShapeType.
11. Range. The range of refersToItemType is ItemType.
12. Structural Tautology. An ItemDescription may refer to a LocationType.
13. Structural Tautology. An ItemDescription may refer to a ColorType.
14. Structural Tautology. An ItemDescription may refer to a ShapeType.
15. Structural Tautology. An ItemDescription may refer to an ItemType.
16. Range. The range of hasItemName is xsd:string.
17. Domain Restriction. The domain of hasItemName is restricted to Items.

3.6 Instruction

Instructions are the atomic units of a task. They come in two varieties: descrip-
tions and actions. The former are instructions that are prescriptive or descrip-
tive. They are statements that indicate information about the environment or
the task. They may, in natural language, take such form as “There is a button
named ‘Present’.” The latter type of instruction instructs when or where to do
something. For example, “Press the button if a high-pitched tone is heard.” An
Action-Instruction prescribes some transition between descriptions of situations,
whereas Description-Instructions directly contribute to said SituationDescrip-
tion. The module also uses a data property to capture the natural language
formulation of the Instruction. The schema diagram for this module is shown in
Figure 4.

Axiomatization:

ActionInstruction v Instruction (1)

ActionInstruction v ∀prescribes.TransitionDescription (2)

> v ∀asString.xsd:string (3)

Instruction v ≥0 asString.xsd:string (4)

DescriptionInstruction v Instruction (5)

DescriptionInstruction v ∀contributesTo.SituationDescription (6)

> v ∀hasPreSituationDescription.SituationDescription
(7)

> v ∀hasPostSituationDescription.SituationDescription
(8)
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Fig. 4: The schema diagram for the Instruction module. Color and shape usage
is the same as in previous diagrams.

Explanation of axioms above:

1. Subclass. Every ActionInstruction is an Instruction.
2. Scoped Range. The range of prescribes is TransitionDescription when the

domain is ActionInstruction.
3. Range. The range of asString is xsd:string.
4. Structural Tautology. An Instruction may have a string representation.
5. Subclass. Every DescriptionInstruction is an Instruction.
6. Scoped Range. The range of contributesTo is SituationDescription when the

domain is DescriptionInstruction.
7. Range. The range of hasPreSituationDescription is SituationDescription.
8. Range. The range of hasPostSituationDescription is SituationDescription.

4 Conclusion

In this paper we have presented an ontology for modeling the ISR-MATB cogni-
tive agent task instructions. This ontology can be used, as we have, to directly
support the memory of a cognitive agent performing tasks. It also could support
experiment design, irrespective of any agent, by providing a structured basis
for evaluating similar tasks. The modular structure facilitates adapting the on-
tology to other use cases and scenarios by replacing or adapting the existing
modules. It is also possible to create new modules from the referenced patterns
via template-based instantiation[?].

4.1 Future Work

In the future we plan to extend this ontology so that it can support a fully
undifferentiated agent. This will include tasks like ISR-MATB, but also many
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Fig. 5: The schema diagram for the entire ontology. Note that the SituationDe-
scription module is nested in the Instruction Module. Color and shape usage is
the same as in previous diagrams.
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others that could be very different. One such task is supporting materials sci-
ence research that uses the Autonomous Research System (ARES) framework.
An undifferentiated cognitive agent could operate a robotic system that per-
forms research, using software like ARES, saving materials researchers hours of
potentially hazardous lab work.

Acknowledgement This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-18-1-0386.
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Abstract. Published ontologies frequently fall short of their promises
to enable knowledge sharing and reuse. This may be due to too strong
or too weak ontological commitments; one way to prevent this is to en-
gineer the ontology to be modular, thus allowing users to more easily
adapt ontologies to their own individual use-cases. In order to enable
this engineering paradigm, there is a distinct need for developing more
supporting tools and infrastructure. This increased support can be im-
mediately impactful in a number of ways: guides engineers through best
practices and promote ontology design pattern discovery, sharing, and
reuse. To meet these needs, this PhD project explores the development
of a comprehensive modular ontology IDE and tool suite.

1 Problem Statement

One of the central tenets of the Semantic Web is to enable the sharing and
reuse of knowledge. Unfortunately, published ontologies infrequently live up to
these promises, as they are not developed with best practices in mind, such as
modularization, documentation, and annotation.

Ontologies with too strong or too weak ontological commitments are un-
desirable. Strong ontological commitments lead to overspecialization; this may
constrain ontologies to be useful only for the single usecases for which the on-
tologies were developed. Conversely, weak commitments lead to overly ambigious
models, thus making it difficult to understand how to use the ontology, at all.
In order to combat this, during development an ontology should be sufficiently
modularized. Such ontologies [6] are designed so that engineers may adapt them
to individual use-cases, yet still maintain compatibility and integration with
other versions of the ontology [7].

Furthermore, it is necessary to properly document and annotate the devel-
oped ontology. In order to exhibit and promote the use of the ontology among
a domain, other engineers must understand how to use or adapt the ontology,
as well as understand the nature of certain ontological commitments or other
design decisions [5]. In addition, annotations made with a pattern representation
language allow engineers to understand how an existing ontology made use of
or relates to another ontology [4]. Finally, both documentation and annotation
allow content providers or data publishers utilize these models.

However, developing an ontology, while following these best practices, is a
very difficult and time-consuming process, especially without proper tooling and
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supporting infrastructure. As such, this PhD project explores the development of
a comprehensive, modular ontology integrated development environment (IDE)
in order to address the needs for ontology design pattern (ODP) discovery and
modularization and engineering ontologies with best practices.

2 Relevancy

As described in the previous section, designing modular ontologies is an answer
to some of the problems facing the Semantic Web community, namely those
regarding the sharing and reuse of knowledge [3]. Thus, it seems particularly
prudent to incentivize the adoption of this engineering paradigm.

Recently, there have been many attempts to do so, ranging from new visu-
alizations, improved methodologies, and more accessible modeling tools. Unfor-
tunately, these attempts are largely uncoordinated; each individual attempt is
focused on improving a single aspect of the process. For example, they all do
not share the same unifying platform nor necessarily work well together (and
sometimes even at cross purposes). Further, some improvements may be strictly
theoretical or methodological with no usable implementation.

In summary, there is currently no comprehensive nor integrated approach
for developing modular ontologies according to best practices. However, there
is now a critical mass of individual, tools with specialized functionalities. We
believe the best approach for moving forward is to increase the support (e.g.
tooling and infrastructure) available to ontology engineers by fusing together
existing support. Thus, developing a comprehensive, modular ontology IDE will
help increase the adoption of the modular ontology engineering paradigm and is
thus very relevant to the Semantic Web community.

3 Research Questions

There are a number of open research questions regarding the future of modular
ontology development, especially regarding tooling and infrastructure, as out-
lined by the Semantic Web community in [3]. We discuss the most relevant of
them: “Which kind of tools are needed and best suited for ODP development
and use?”

As a first approximation, Hammar et al. describe the need for a “pattern-
capable ontology IDE.” That is, an ontology IDE that is capable of using ontol-
ogy design patterns as primitives, as well as having some mechanism for pattern
discovery. A modular ontology IDE takes this concept a step further and would
allow users to import and modularize ODPs to also be used as primitives. Thus,
we seek to answer the following questions.

RQ1. What foundational support is needed to realize such an IDE?
RQ2. How can new and existing tools be combined to form a cohesive and useful

whole, while still leaving room for extensibility?

Our attempts to answer RQ1 are described in Section 6. For RQ2, we describe
some existing tools and methods in Section 5.
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4 Hypotheses

In line with the previous section, we also want to show that a comprehensive,
modular ontology IDE is, in fact, effective. Thus, we will attempt to confirm the
following hypotheses.

A comprehensive, modular ontology IDE will allow an ontology engineer to
develop ontologies

1. more quickly than when not using such an IDE.
2. that adhere to best practices for modularity, documentation, and anno-

tation.

How we will acheive this and how we determine success are discussed in
Sections 6 and 7, respectively.

5 Related Work

Overall, there are many existing tools and methods for helping develop ontolo-
gies. As this PhD project is specifically concerned with modular ontology en-
gineering, we most carefully consider those related tools and methods. In this
section, we provide broad descriptions of related work that this PhD project will
expand, adapt, or otherwise utilize. We may partition the related works into
three categories, based on how they intersect with the ontology engineering pro-
cess: Methodology, Visualization and Rendering, and Tools and Infrastructure.

Methodology

By methodology, we refer to those related works that deal with guidelines and
principles for engineering ontologies. Of particular interest is the eXtreme Design
(XD) Methodology and methods for documenting ontology design patterns.

The eXtreme Design (XD) Methodology is a “family of methods and associ-
ated tools... for for solving ontology development issues” [1]. The XD Method-
ology is in many ways the core methodology for modular ontology design and
development. It outlines how to identify the need for patterns, how to utilize
content information, and guidelines for different modelling approaches. We do
not intend to replace XD, but instead use its principles. For example, we ma use
its different design approaches to inform different content pattern suggestions
during development.

Karima et al. give a thorough walkthrough on how to document ontology
design patterns [5]. It provides key components of patterns that should be doc-
umented as well as criteria for measuring how well an ontology is documented.
Thus, we may leverage these guidlines in order to provide tooling that prompts
users to “document as they go,” ultimately reducing documentation overhead.
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Visualization & Rendering

This category refers to those tools and methods that facilitate alternative views
of an ontology. For example, functional syntax for OWL or Turtle or Manchester
Syntax are alternate renderings of the same information. As the semantic web
community more deeply and consistently interacts with domain experts, it is
very important to find vehicles for representing an ontology that is easy for
people to intuit. Below, we describe two recent tools for doing this. As part of
the evaluation of this PhD project, we will also evaluate the efficacy of presenting
ontological information in this manner.

OWL2Rules is an augmentation1 to the OWLAPI’s LATEX rendering framework.
This tool is capable of representing the axioms of an ontology as First Order
Predicate Logic Existential Disjunctive Rules. It also incorporates the improved
LATEX formatting from [10].

SDont is a tool2 for creating the schema diagrams for ontologies. While there
are other visualization tools (e.g. OWLgred and VOWL), SDont has been en-
gineered to generate schema diagrams that are maximally similar to human
curated schema diagrams. We intend to incorporate this tool in order to provide
a more comfortable vehicle for representing the structure of a TBox.

Tools & Infrastructure

Tools and Infrastructure refers to the tools and methods that assist in the ontol-
ogy engineering process. On their own, each of these tools is enormously helpful.
However, a platform utilizing them will be greater than the sum of its compo-
nents.

OPLa is an Ontology Design Pattern Representation Language [4]. This will en-
able ontology engineers to leverage OWL annotations to describe the ontological
entities within a patern. That is, the annotations can be used to show from where
properties are inherited, show which patterns were used to create modules, or
show which concepts in the pattern can be used as hooks for external patterns.
There is an existing plugin3 that guides users through annotating an ontology
design pattern.

ROWL & OWLAx are Protégé plugins [8, 9]. RowlTab is used for creating owl
axioms (or the appropriate SWRL rule) from first order predicate logic rules.
OWLAx is a graphical tool that generates the owl axiom (or appropriate SWRL
rule) from schema diagram like representations. As well as generating the scoped
domain and range axioms, and disjointness axioms.

1 https://github.com/cogan-shimizu-wsu/Logician
2 https://github.com/cogan-shimizu-wsu/SDont
3 https://github.com/cogan-shimizu-wsu/OPLaPlugin
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XD for Protégé is a first approximation of a pattern-capable ontology IDE im-
plemented in WebProtégé [2]. Among other XD motivated functionalities, the
following are of particular note: composite search engine, ODP specialization
stragety importing, and ODP specialization alignment suggestions. This tool is
the main source of inspiration for this PhD project and will act as a foundation
upon which to build a CoModIDE.

6 Approach

In aggregate, our approach is to tie together multiple existing tools (e.g. XD
for WebProtégé and OWLAx), develop or enhance new tools (e.g. SDont) and
combine them into a comprehensive, modular ontology IDE (CoModIDE– pro-
nounced ‘commodity’). In addition, CoModIDE would be tightly integrated with
a central, “smart” repository that will facilitate ODP discovery and importing.
To address our research questions, we have split the approach into two distinct
phases: foundational work and IDE development.

Phase I: Foundational Work

This phase largely addresses RQ1: “What foundational support is needed to
realize CoModIDE?” Phase I will have the following trajectory.

Step 1: Functionality Solicitation.
We must first determine exactly which functionalities are most useful
and helpful to the Semantic Web community. For this step, we will solicit
suggestions from the community. In addition, we will use the suggestions
from [3].

Step 2: Discovery of Existing Tools.
For those functionalities that have been determined to be integral to the
community, we will need to discover any tools that already implement
that functionality. If we cannot find an existing tool that covers that
functionality, then a new tool or method will need to be developed to
cover that gap.

Step 3: Individual Tool Evaluation.
Now, for each of the discovered or developed tools, there must be an
individual evaluation in order to determine efficacy and correctness of
the tool.

Step 4: Extend and Enhance the Repository.
Currently, www.ontologydesignpatterns.org is the central repository
for ODP sharing and reuse. With the recent development of OPLa [4],
we may further enhance the functionality of the site. In addition, we
will need to ensure that there is a so-called critical mass of usable, well-
documented, and thoroughly annotated ODPs available for the commu-
nity to use.
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Phase II: IDE Development

After we have identified, developed, evaluated individual useful tools, what re-
mains is to integrate them into a comprehensive, modular ontology IDE; we call
it CoModIDE. Overall, we foresee the trajectory to be as follows.

Step 1: Choose a Platform.
We will need to choose a platform upon which to build the IDE. At
the time of this writing, we believe that Desktop Protégé is the best
choice. It offers built-in plugin support and very tight integration with
the OWLAPI.

Step 2: Integrate Tools.
Once a platform has been chosen, we may need to re-implement the
functionality of existing tools for that platform. For example, XD for
WebProtégé is only implemented for WebProtégé and itself has several
pieces of our desired functionality.

Step 3: Evaluate CoModIDE.
After all the tools have been integrated so that they work together, we
must evaluate whether or not the CoModIDE is achieving the desired
purpose, i.e. does it help users design better ontologies more quickly?
We describe this step in more detail in the next section.

Additionally, we must consider overall design.

– UX and Workflow: There are some functionalities that can only be con-
sidered once the IDE has been developed, such as determining the best way
to guide users to document and annotate the ontology as its being designed.
Additionally, we would like to implement a graphical plug’n’play interface.
That is, using ODPs as primitives (similar to puzzle-pieces), connect the
ODPs to form a first-pass ontology.

– Extensibility: The “modular” in CoModIDE need not only apply to the
ontology design. In fact, it would behoove us to ensure that the IDE itself
is modular, in order to continue adding functionality as modular ontology
design evolves in the future.

– Repo interfacing: It is completely necessary that the IDE support inter-
facing with a central repository and a pattern representation language. At
this time, we expect that to be ontologydesignpatterns.org and OPLa, re-
spectively.

7 Evaluation Plan

We have posited that a comprehensive, modular ontology IDE will allow en-
gineers to more quickly design ontologies, while following best practices. To
determine if we have successfully done so, we will conduct evaluations in two
parts.

First, each individual functionality of the IDE must be tested. For some of
these tools (e.g. ROWL [8], OWLax [9], XD for WebProtégé[2]), these tools
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have already been evaluated; their evaluations are available in the respective
references. However, for those tools we have not yet written, or need to discover,
their evaluations will necessarily be tailored to the functionality and cannot be
described here.

After all the tools and desired functionalities have been implemented and
evaluated, we will evaluate the sum-total: CoModIDE. This will necessarily be
a user evaluation.

We will have a test group and control group. Each group will be given a
moderately compex modeling task. The test group will be asked to design the
ontology using CoModIDE; the control group will not. We will then measure
the amount of time it took to complete the design task, measure its efficacy
at providing answers to pre-selected compentency questions, and identify if the
ontology has been designed modularly and with best practices, as according to
[1, 5, 6].

8 Preliminary Results

At the time of this writing, we have only implemented the very beginning stages
of our proposed approach and do not have any results to report. However, for
the established tools (e.g. ROWL or XD for WebProtégé), see their respective
references.

9 Reflections

It is not that others have failed, but that there is finally a critical mass in success-
ful, existing tools and methods for modular ontology design. Thus, we believe
that unifying them will result in a better tool for producing better ontologies.

By unifying the tools, we believe that we will decrease the time spent switch-
ing between tools, formats, and the like. The ability to communicate with a
central repository, such as ontologydesignpatterns.org will greatly facilitate
pattern discovery and utilizing a standardized pattern representation language,
such as OPLa, will allow engineers to make better decisions more quickly.

Acknowledgement. The author acknowledges funding from the Dayton Area
Graduate Studies Institute (DAGSI) and thanks Pascal Hitzler for his signif-
icant input.
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1 Introduction

Ontology engineering is a complex and time-consuming process, requiring an
intimate knowledge of description logic and predicting non-local effects of differ-
ent ontological commitments. Acquiring such expertise is a major hurdle in the
adoption of semantic web technologies. As proliferating our techniques and tech-
nologies is a major goal of the semantic web community [4], there have been many
attempts to improve the accessibility of ontology engineering through intuitive
methodologies and robust tooling. Pattern-based modular ontology engineering
coupled with a graphical modelling paradigm can help bridge this gap [6,9].

A pattern-based modular ontology is an ontology that retains the patterning
metadata associated with the modules that comprise it. An ontology design pat-
tern (ODP) is a small, reusable set of concepts and axioms that solve a problem
that is invariant across many domains. To create such ontologies, some method-
ologies have been developed (e.g. Extreme Design [2,3] and the eponymous Mod-
ular Ontology Modelling [5]). Unfortunately, neither methodology focuses on the
retention of pattern metadata, but how to identify and instantiate patterns.

Over the years, there have been various approaches for representing ontolo-
gies visually and enabling their development through a graphical modelling in-
terface, e.g., VOWL, the visual syntax for OWL and its WebVOWL editor [7,11];
OWLGrEd, a graph editor that displays a UML inspired subsumption hierarchy
[1]; Gra.fo3, an online, collaborative platform that supports ontology develop-
ment via lightweight semantics and a modified VOWL syntax.; and OWLAx
[8] and SDOnt [10], Protégé plugins that enable axiom generation from schema
diagrams, and diagram generation from axioms, respectively. However, none of
these tools offer any support for graphical pattern discovery or instantiation.

To combine pattern-based modular ontology engineering with the graphical
modelling paradigm, we have developed the Comprehensive Modular Ontology
IDE (CoModIDE, pronounced ‘commodity’), a plug-in for the Protégé platform.

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

3 https://gra.fo/
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2 System Design and Features

CoModIDE was designed to simplify ontology engineering for users who are not
ontology experts. Our experience indicates that such non-experts rarely need or
want to make use of the full set of language constructs that OWL 2 provides;
instead, they typically, at least at the outset, want to model rather simple se-
mantics. Our experience also indicates that such users (and, indeed also more
advanced users) prefer to do initial modeling graphically – whether that be on
whiteboards, in vector drawing software, or even on paper. Finally, our experi-
ence indicates that while this category of users are generally enthusiastic about
the idea of reusing design patterns, they are quickly turned off of the idea when
they are faced with patterns that lack documentation or that exhibit link rot4.

These experiences led directly to the design criteria for CoModIDE:

– CoModIDE should support visual-first ontology engineering, based on a
graph representation of classes, properties, and datatypes. This graphical
rendering of an ontology built using CoModIDE should be consistent across
restarts, machines, and operating system or Protégé versions.

– CoModIDE should support the type of OWL 2 constructs that can be easily
and intuitively understood when rendered as a schema diagram. To model
more advanced constructs (unions and intersections in property domains or
ranges, the subsumption hierarchy, property chains, etc), the user can drop
back into the standard Protégé tabs.

– CoModIDE should embed an ODP repository. Each included ODP should
be free-standing and completely documented. There should be no external
dependency on anything outside of the user’s machine. If the user wishes,
they should be able to load a separately downloaded ODP repository, to
replace or complement the built-in one.

– CoModIDE should support simple composition of ODPs; patterns should
snap together like Lego blocks, ideally with potential connection points be-
tween the patterns lighting up while dragging compatible patterns. A pattern
or ontology interface concept will need be developed to support this.

CoModIDE is developed as a plugin to the versatile and well-established
Protégé ontology engineering environment. The plugin provides three Protégé
views, and a tab that hosts these views (see Figure 1). The schema editor view
provides an a graphical overview of an ontology’s structure, including the classes
in the ontology, their subclass relations, and the object and datatype properties
in the ontology that relate these classes to one another and to datatypes. All of
these entities can be manipulated graphically through dragging and dropping.
The pattern library view provides a set of built-in ontology design patterns,
sourced from various projects and from the ODP community wiki5. A user can
drag and drop design patterns from the pattern library onto the canvas to in-
stantiate those patterns as modules in their ontology. The configuration view lets

4 Typically patterns that depend on other patterns which no longer resolve.
5 http://ontologydesignpatterns.org/

157



CoModIDE – The Comprehensive Modular Ontology Engineering IDE 3

the user configure the behavior of the other CoModIDE views and their compo-
nents. For a detailed description, we refer the reader to the video walkthrough
on the CoModIDE webpage6. We also invite the reader to download and install
CoModIDE themselves, from that same site.

Fig. 1. CoModIDE User Interface featuring 1) the schema editor, 2) the pattern library,
and 3) the configuration view.

When a pattern is dragged onto the canvas, the constructs in that pattern
are copied into the ontology (optionally having their IRIs updated to corre-
spond with the target ontology namespace), but they are also annotated using
the OPLa vocabulary, to indicate 1) that they belong to a certain pattern-based
module, and 2) what pattern that module implements. In this way module prove-
nance is maintained, and modules can, provided that tool support exists (see
Section 3) be manipulated (folded, unfolded, removed, annotated) as needed.

3 Discussion and Future Work

CoModIDE is under active development and is not yet feature-complete. Specif-
ically, during the autumn of 2019 we will implement the following features:

– Wrapping instantiated modules (e.g., in dashed-line boxes) to indicate cohe-
sion and to allow module folding/unfolding.

6 https://comodide.com
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– An interface feature, allowing design patterns to express how they can be
connected to one another; and adding support for this to the canvas, lighting
up potential connection points as the user drags a pattern.

– Support for custom pattern libraries; and vocabulary specifications indicat-
ing hos pattern libraries should be annotated to be useful with CoModIDE.

To evaluate the viability of our approach to ontology engineering, and the
usability of the CoModIDE tool, we will be deploying CoModIDE in two research
projects with non-ontologist domain experts.
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Abstract. Ontology engineering is traditionally a complex and time-
consuming process, requiring an intimate knowledge of description logic
and predicting non-local effects of different ontological commitments.
Pattern-based modular ontology engineering, coupled with a graphical
modeling paradigm, can help make ontology engineering accessible to
modellers with limited ontology expertise. We have developed CoMo-
dIDE, the Comprehensive Modular Ontology IDE, to develop and ex-
plore such a modeling approach. In this paper we present an evaluation
of the CoModIDE tool, with a set of 21 subjects carrying out some
typical modeling tasks. Our findings indicate that using CoModIDE im-
proves task completion rate and reduces task completion time, compared
to using standard Protégé. Further, our subjects report higher System
Usability Scale (SUS) evaluation scores for CoModIDE, than for Protégé.
The subjects also report certain room for improvements in the CoMo-
dIDE tool – notably, these comments all concern comparatively shallow
UI bugs or issues, rather than limitations inherent in the proposed mod-
eling method itself. We deduce that our modeling approach is viable, and
propose some consequences for ontology engineering tool development.

1 Introduction

Building a knowledge graph, as with any complex system, is an expensive en-
deavor, requiring extensive time and expertise. For many, the magnitude of re-
sources required for building and maintaining a knowledge graph is untenable.
Yet, knowledge graphs are still poised to be a significant disruptor in both the
private and public sectors [17]. As such, lowering the barriers of entry is very
important. More specifically, it will be necessary to increase the approachability
of knowledge graph development best practices, thus reducing the need for dedi-
cated expertise. Of course, we do not mean imply that no expertise is desirable,
simply that a dedicated knowledge engineer may be out of reach for small firms
or research groups. For this paper, we focus on the best practices according
to the eXtreme design (XD) [4] and modular ontology modeling (MOM) [12]
paradigms. To this point, we are interested in how tooling infrastructure can
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improve approachability. In the context of our chosen paradigms and focus on
tooling infrastructure, approachability may be proxied by the amount of effort
to produce correct and reasonable output, where effort is a function of tool-user
experience (UX) and time taken. Furthermore, by using tooling infrastructure
to encapsulate best practices, it improves the maintainability and evolvability
accordingly.

In particular, this paper investigates the use of a graphical modeling tool that
encapsulates the pattern-driven philosophies of XD and MOM. To do so, we have
developed CoModIDE (the Comprehensive Modular Ontology IDE – pronounced
“commodity”), a plugin for the popular ontology editing platform, Protégé [16].
In order to show that CoModIDE improves approachability of knowledge graph
development, we have formulated for the following hypotheses.

H1. When using CoModIDE, a user takes less time to produce correct and rea-
sonable output, than when using Protege.

H2. A user will find CoModIDE to have a higher SUS score than when using
Protege alone.

The remainder of this paper is organized as follows. Section 2 presents Co-
ModIDE. Section 3 discusses related work on graphical modeling and ontology
design pattern use and development. We present our experimental design in
Section 4, our results in Section 5, and a discussion of those results and their
implications in Section 6. Finally, Section 7 concludes the paper, and suggests
possibilities for future research.

2 CoModIDE: A Comprehensive Modular Ontology IDE

2.1 Motivator: A Graphical and Modular Ontology Design Process

CoModIDE is intended to simplify ontology engineering for users who are not
ontology experts. Our experience indicates that such non-experts rarely need or
want to make use of the full set of language constructs that OWL 2 provides;
instead, they typically, at least at the outset, want to model rather simple se-
mantics. Such users (and, indeed also more advanced users) often prefer to do
initial modeling in pair or group settings, and to do it graphically – whether that
be on whiteboards, in vector drawing software, or even on paper. This further
limits the modeling constructs to those that can be expressed somewhat intu-
itively using graphical notations (such that all involved participants, regardless
of their ontology engineering skill level, can understand and contribute).

This initial design process typically iterates rapidly and fluidly, with the
modeling task being broken down into individual problems of manageable com-
plexity3; candidate solutions to these problem pieces being drawn up, analysed

3 We find that the size of such partial solutions typically fit on a medium-sized white-
board; but whether this is a naturally manageable size for humans to operate with,
or whether it is the result of constraints of or conditioning to the available tooling,
i.e., the size of the whiteboards often mounted in conference rooms, we cannot say.
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and discussed; a suitable solution selected and documented; and the next step
of the problem then tackled. Many times, the formalization of the developed
solution into an OWL ontology is carried out after-the-fact, by a designated on-
tologist with extensive knowledge of both the language and applicable tooling.
However, this comes at a cost, both in terms of hours expended, and in terms
of the risk of incorrect interpretations of the previously drawn graphical repre-
sentations (the OWL standard does not define a graphical notation syntax, so
such representations are sometimes ambiguous).

The design process discussed above mirrors the principles of eXtreme Design
(XD) [4]: working in pairs, breaking apart the modeling task into discrete prob-
lems, and iterating and refactoring as needed. XD also emphasizes the use of
Ontology Design Patterns (ODPs) as solutions to frequently recurring modeling
problems. Combining ODP usage with the graphical modeling process discussed
above (specifically with the need to in an agile manner refactor and modify
partial solutions) requires that the partial solutions (or modules) derived from
ODPs are annotated, such that they can at a later time be isolated for study,
modified, or replaced.

In summary it would be useful for our target user group if there were tool-
ing available that supported 1) intuitive and agile graphical modeling, directly
outputting OWL ontologies (avoiding the need for the aforementioned post-
processing), and 2) reuse of ODPs to create and maintain ODP-based modules.
Hence, CoModIDE.

2.2 Design and Features

The design criteria for CoModIDE, derived from the requirements discussed
above, are as follows:

– CoModIDE should support visual-first ontology engineering, based on a
graph representation of classes, properties, and datatypes. This graphical
rendering of an ontology built using CoModIDE should be consistent across
restarts, machines, and operating system or Protégé versions.

– CoModIDE should support the type of OWL 2 constructs that can be easily
and intuitively understood when rendered as a schema diagram. To model
more advanced constructs (unions and intersections in property domains or
ranges, the property subsumption hierarchy, property chains, etc), the user
can drop back into the standard Protégé tabs.

– CoModIDE should embed an ODP repository. Each included ODP should
be free-standing and completely documented. There should be no external
dependency on anything outside of the user’s machine4. If the user wishes,
they should be able to load a separately downloaded ODP repository, to
replace or complement the built-in one.

4 Our experience indicates that while our target users are generally enthusiastic about
the idea of reusing design patterns, they are quickly turned off of the idea when they
are faced with patterns that lack documentation or that exhibit link rot.
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Fig. 1: CoModIDE User Interface featuring 1) the schema editor, 2) the pattern
library, and 3) the configuration view.

– CoModIDE should support simple composition of ODPs; patterns should
snap together like Lego blocks, ideally with potential connection points be-
tween the patterns lighting up while dragging compatible patterns. The re-
sulting ontology modules should maintain their coherence and be treated like
modules in a consistent manner across restarts, machines, etc. A pattern or
ontology interface concept will need be developed to support this.
CoModIDE is developed as a plugin to the versatile and well-established

Protégé ontology engineering environment. The plugin provides three Protégé
views, and a tab that hosts these views (see Figure 1). The schema editor view
provides an a graphical overview of an ontology’s structure, including the classes
in the ontology, their subclass relations, and the object and datatype properties
in the ontology that relate these classes to one another and to datatypes. All of
these entities can be manipulated graphically through dragging and dropping.
The pattern library view provides a set of built-in ontology design patterns,
sourced from various projects and from the ODP community wiki5. A user can
drag and drop design patterns from the pattern library onto the canvas to in-
stantiate those patterns as modules in their ontology. The configuration view lets
the user configure the behavior of the other CoModIDE views and their compo-
nents. For a detailed description, we refer the reader to the video walkthrough
on the CoModIDE webpage6. We also invite the reader to download and install
CoModIDE themselves, from that same site.

When a pattern is dragged onto the canvas, the constructs in that pattern
are copied into the ontology (optionally having their IRIs updated to corre-
spond with the target ontology namespace), but they are also annotated using

5 http://ontologydesignpatterns.org/
6 https://comodide.com
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Fig. 2: Factors affecting conceptual modeling, from [9].

the OPLa vocabulary, to indicate 1) that they belong to a certain pattern-based
module, and 2) what pattern that module implements. In this way module prove-
nance is maintained, and modules can, provided that tool support exists (see
Section 7) be manipulated (folded, unfolded, removed, annotated) as needed.

3 Related Work

Graphical Conceptual Modeling [9] proposes three factors (see Figure 2)
that influence the construction of a conceptual model, such as an ontology;
namely, the person doing the modeling (both their experience and know-how,
and their interpretation of the world, of the modeling task, and of model quality
in general), the modeling grammar (primarily its expressive power/completeness
and its clarity), and the modeling process (including both initial conceptualisa-
tion and subsequent formal model-making). Crucially, only the latter two fac-
tors can feasibly be controlled in academic studies. The related work discussed
below tends to focus on one or the other of these factors, i.e., studying the
characteristics of a modeling language or a modeling process. Our work on Co-
ModIDE straddles this divide: employing graphical modeling techniques reduces
the grammar available from standard OWL to those fragments of OWL that can
be represented intuitively in graphical format; employing design patterns affects
the modeling process.

Graphical modeling approaches to conceptual modeling have been extensively
explored and evaluated in fields such as database modeling, software engineering,
business process modeling, etc. Studying model grammar, [22] compares EER no-
tation with an early UML-like notation from a comprehensibility point-of-view.
This work observes that restrictions are easier to understand in a notation where
they are displayed coupled to the types they apply to, rather than the relations
they range over. [7] proposes a quality model for EER diagrams that can also
extend to UML. Some of the quality criteria in this model, that are relevant in
graphical modeling of OWL ontologies, include minimality (i.e., avoiding dupli-
cation of elements), expressiveness (i.e., displaying all of the required elements),
and simplicity (displaying no more than the required elements).

[1] study the usability of UML, and report that users perceive UML class
diagrams (closest in intended use to ontology visualizations) to be less easy-to-
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use than other types of UML diagrams; in particular, relationship multiplicities
(i.e., cardinalities) are considered frustrating by several of their subjects. UML
displays such multiplicities by numeric notation on the end of connecting lines
between classes. [13] analyses UML and argues that while it is a useful tool
in a design phase, it is overly complex and as a consequence, suffers from re-
dundancies, overlaps, and breaks in uniformity. [13] also cautions against using
difficult-to-read and -interpret adornments on graphical models, as UML allows.

Various approaches have been developed for presenting ontologies visually
and enabling their development through a graphical modeling interface, the most
prominent of which is probably VOWL, the Visual Notation for OWL Ontologies
[15], and its implementation viewer/editor WebVOWL [14,23]. VOWL employs a
force-directed graph layout (reducing the number of crossing lines, increasing leg-
ibility) and explicitly focuses on usability for users less familiar with ontologies.
As a consequence of this, VOWL renders certain structures in a way that, while
not formally consistent with the underlying semantics, supports comprehensi-
bility; for instance, datatype nodes and owl:Thing nodes are duplicated across
the canvas, so that the model does not implode into a tight cluster around such
often used nodes. It has been evaluated over several user studies with users rang-
ing from laymen to more experienced ontologists, with results indicating good
comprehensibility. CoModIDE has taken influence from VOWL, e.g., in how we
render datatype nodes. However, in a collaborative editing environment in which
the graphical layout of nodes and edges needs to remain consistent for all users,
and relatively stable over time, we find the force-directed graph structure (which
changes continuously as entities are added/removed) to be unsuitable.

For such collaborative modeling use cases, the commercial offering Grafo7

offers a very attractive feature set, combining the usability of a VOWL-like
notation with stable positioning, and collaborative editing features. Crucially,
however, Grafo does not support pattern-based modular modeling, and as a web-
hosted service, does not allow for customizations or plugins that would support
such a modeling paradigm.

CoModIDE is partially based on the Protégé plugin OWLAx, as presented in
[19]. This plugin supports one-way translation from graphical schema diagrams
drawn by the user, into OWL ontology classes and properties; however, it does
not render such constructs back into a graphical form. There is thus no way of
continually maintaining and developing an ontology using only OWLAx. There
is also no support for design pattern reuse in this tool.

Ontology Design Patterns Ontology Design Patterns (ODPs) were intro-
duced by Gangemi [8] and Blomqvist & Sandkuhl [2] in 2005, as a means of sim-
plifying ontology development. ODPs are intended to guide non-expert users, by
packaging best practices into reusable blocks of functionality, to be adapted and
specialised by those users in individual ontology development projects. Presutti
et al.[18] defines a typology of ODPs, including patterns for reasoning, nam-
ing, transformation, etc. The eXtreme Design methodology [4] describes how

7 https://gra.fo
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ontology engineering projects can be broken down into discrete sub-tasks, to be
solved by using ODPs. Prior studies indicate that the use of ODPs can lower
the number of modeling errors and inconsistencies in ontologies, and that they
are by the users perceived as useful and helpful [3,5].

Applying the XD method and ODPs requires the availability of both high-
quality ODPs, and of tools and infrastructure that support ODP use. Recent
work in this area, by the authors and others, includes XDP, a fork of the
WebProtégé ontology editor [10]; the OPLa annotations vocabulary that mod-
els how ontology concepts can be grouped into modules, and the provenance
of and interrelations between such modules, including to ODPs [11]; and the
MODL library, a curated and specially documented collection of high-quality
patterns for use in many domains [21]. CoModIDE draws influence from all of
these works, and includes the MODL library as its default pattern library, using
an OPLa-based representation of those patterns.

4 Research Method

Our experiment is comprised of four steps: a survey to collect subject background
data (familiarity with ontology languages and tools), two modeling tasks, and
a follow-up survey to collect information on the usability of both Protégé and
CoModIDE. The tasks were designed to emulate a common ontology engineering
process, where a conceptual design is developed and agreed upon by whiteboard
prototyping, and a developer is then assigned to formalizing the resulting white-
board schema diagram into an OWL ontology.

During each of the modeling tasks, participants are asked to generate a rea-
sonable and correct OWL file for the provided schema diagram. In order to
prevent a learning effect, the two tasks utilize two different schema diagrams.
To prevent bias arising from differences in task complexity, counterbalancing
was employed (such that half the users performed the first task with standard
Protégé and the second task with CoModIDE, and half did the opposite). The
correctness of the developed OWL files, and the time taken to complete each
tasks, were recorded (the latter was however, for practical reasons, limited to 20
minutes per task).

The following sections provide a brief overview of each the steps. The source
material for the entire experiment is available online8.

Introductory Tutorial As previously mentioned, our intent is to improve
the approachability of ontology modeling by making it more accessible to those
without expertise in knowledge engineering. As such, when recruiting our par-
ticipants for this evaluation, we did not place any requirements on ontology
modeling familiarity. However, to establish a shared baseline knowledge of foun-
dational modeling concepts (such as one would assume participants would have
in the situation we try to emulate, see above), we provided a 10 minute tutorial

8 http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47887
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Fig. 3: Task A Schema Diagram

on ontologies, classes, properties, domains, and ranges. The slides used for this
tutorial may be found online with the rest of the experiment’s source materials.

a priori Survey The purpose of the a priori survey was to collect information
relating to the participants base level familiarity with topics related to knowledge
modeling, to be used as control variables in later analysis. We used a 5-point
Likert scale for rating the accuracy of the following statements.

CV1. I have done ontology modeling before.
CV2. I am familiar with Ontology Design Patterns.
CV3. I am familiar with Manchester Syntax.
CV4. I am familiar with Description Logics.
CV5. I am familiar with Protégé.

Finally, we asked the participants to describe their relationship to the test leader,
(e.g. student, colleague, same research lab, not familiar).

Modeling Task A In Task A, participants were to develop an ontology to
model how an analyst might generate reports about an ongoing emergency. The
scenario identified two design patterns to use:

– Provenance: to track who made a report and how;
– Event: to capture the notion of an emergency.
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Fig. 4: Task B Schema Diagram

Figure 3 shows how these patterns are instantiated and connected together.
Overall the schema diagram contains seven concepts, one datatype, one subclass
relation, one data property, and six object properties.

Modeling Task B In Task B, participants were to develop an ontology to
capture the steps of an experiment. The scenario identified two design patterns
to use:

– Trajectory: to track the order of the steps;
– Explicit Typing: to easily model different types of apparatus.

Figure 4 shows how these patterns are instantiated and connected together.
Overall, the schema diagram contains six concepts, two datatypes, two subclass
relations, two data properties, and four object properties (one of which is a
self-loop).

a posteriori Survey The a posteriori survey included the SUS evaluations for
both Protégé and CoModIDE. The SUS is a very common “quick and dirty,” yet
reliable tool for measuring the usability of a system. It consists of ten questions,
the answers to which are used to compute a total usability score of 0–100. Addi-
tional information on the SUS and its included questions can be found online.9

Additionally, we inquire about CoModIDE-specific features. These state-
ments are also rated using a Likert scale. However, we do not use this data
in our evaluation, except to inform our future work, as described in Section 7.
Finally, we requested any free-text comments on CoModIDE’s features.

9 https://www.usability.gov/how-to-and-tools/methods/

system-usability-scale.html
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Table 1: Mean, standard deviation, relative standard deviation, and median re-
sponses to a priori statements

mean σ relative σ median

CV1: I have done ontology modeling before 3.05 1.75 57 % 3
CV2: I am familiar with Ontology Design Patterns 3.05 1.32 43 % 3
CV3: I am familiar with Manchester Syntax 2.33 1.56 67 % 1
CV4: I am familiar with Description Logics 2.81 1.33 47 % 3
CV5: I am familiar with Protégé 2.95 1.63 55 % 3

5 Results

5.1 Participant Pool Composition

Of the 21 subjects, 12 reported some degree of familiarity with the authors, while
9 reported no such connection. In terms of self-reported ontology engineering
familiarity, the responses are as detailed in Table 1. It should be observed that
responses vary widely, with a relative standard deviation (σ/mean) of 43–67 %.

5.2 Metric Evaluation

We define our two metrics as follows:
– Time Taken: number of minutes, rounded to the nearest whole minute and

capped at 20 minutes due to practical limitations, taken to complete a task;
– Correctness is a discrete measure that corresponds to the structural ac-

curacy of the output. That is, 2 points were awarded to those structurally
accurate OWL files, when accounting for URIs; 1 point for a borderline case
(e.g one or two incorrect linkages, or missing a domain statement but in-
cluding the range); and 0 points for any other output.

For these metrics, we generate simple statistics that describe the data, per mod-
eling task. Tables 2a and 2b show the mean, standard deviation, and median for
the Time Taken and Correctness of Output, respectively.

In addition, we examine the impact of our control variables (CV). This anal-
ysis is important, as it provides context for representation or bias in our data set.
These are reported in Table 2c. CV1-CV5 correspond exactly to those questions
asked during the a priori Survey, as described in Section 4. For each CV, we cal-
culated the bivariate correlation between the sample data and the self-reported
data in the survey. We believe that this is a reasonable measure of impact on
effect, as our limited sample size is not amenable to partitioning. That is, the
partitions (as based on responses in the a priori survey) could have been tested
pair-wise for statistical significance. Unfortunately, the partitions would have
been too small to conduct proper statistical testing. However, we do caution
that correlation effects are strongly impacted by sample size.

We analyze the SUS scores in the same manner. Table 4 presents the mean,
standard deviation, and median of the data set. The maximum score while using
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Table 2: Summary of statistics comparing Protege and CoModIDE.

mean σ median

Protégé 17.44 3.67 20.0
CoModIDE 13.94 4.22 13.5

(a) Mean, standard deviation, and me-
dian time taken to complete each mod-
eling task.

mean σ median

Protégé 0.50 0.71 0.0
CoModIDE 1.33 0.77 1.5

(b) Mean, standard deviation, and me-
dian correctness of output for each
modeling task.

CV1 CV2 CV3 CV4 CV5

TT (P) -0.61 -0.18 -0.38 -0.58 -0.62
Cor. (P) 0.50 0.20 0.35 0.51 0.35
TT (C) 0.02 -0.34 -0.28 -0.06 0.01
Cor. (C) -0.30 0.00 -0.12 -0.33 -0.30

(c) Correlations control variables (CV)
on the Time Taken (TT) and Correct-
ness of Output (Cor.) for both tools
Protégé (P) and CoModIDE (C).

CV1 CV2 CV3 CV4 CV5

SUS (P) 0.70 0.52 0.64 0.73 0.64
SUS (C) -0.34 -0.05 -0.08 -0.29 -0.39

(d) Correlations with control variables
(CV) on the SUS scores for both tools
Protégé (P) and CoModIDE (C).

the scale is a 100. Table 2d presents our observed correlations with our control
variables.

Finally, we compare the each metric for one tool against the other. That is,
we want to know if our results are statistically significant—that as the statistics
suggest in Table 2, CoModIDE does indeed perform better for both metrics and
the SUS evaluation. To do so, we calculate the probability p that the samples
from each dataset come from different underlying distributions. A common tool,
and the tool we employ here, is the Paired (two-tailed) T-Test—noting that it
is reasonable to assume that the underlying data are normally distributed, as
well as powerful tool for analyzing datasets of limited size. The threshold for
indicating confidence that the difference is significant is generally taken to be
p < 0.05. Table 3 summarizes these results.

5.3 Free-text Responses

18 of the 21 subjects opted to leave free-text comments. We applied fragment-
based qualitative coding and analysis on these comments. I.e., we split the com-
ments apart per the line breaks entered by the subjects, we read through the

Table 3: Significance of results.

Time Taken Correctness SUS Evaluation

p ≈ 0.025 < 0.05 p ≈ 0.009 < 0.01 p ≈ 0.0003 < 0.001
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Table 4: Mean, standard deviation, and median SUS score for each tool. The
maximum score is 100.

mean σ median

Protégé 36.67 22.11 35.00
CoModIDE 73.33 16.80 76.25

fragments and generated a simple category scheme, and we then re-read the
fragments and applied these categories to the fragments (allowing at most one
category per fragment) [6,20]. The subjects left between 1–6 fragments each for a
total of 49 fragments for analysis, of which 37 were coded, as detailed in Table 5.

Of the 18 participants who left comments, 3 left comments containing no
codable fragments; these either commented upon the subjects own performance
in the experiment, which is covered in the aforementioned completion metrics,
or were simple statements of fact (e.g., “In order to connect two classes I drew
a connecting line”).

6 Discussion

Participant Pool Composition The data indicates no correlation (bivariate
correlation < ±0.1) between the subjects’ reported author familiarity, and their
reported SUS scores, such as would have been the case if the subjects who
knew the authors were biased. The high relative standard deviation for a priori
knowledge level responses indicates that our subjects are rather diverse in their
skill levels – i.e., they do not consist exclusively of the limited-experience class
of users that we hope CoModIDE will ultimately support. As discussed below,
this variation is in fact fortunate as it allows us to compare the performance of
more or less experienced users.

Metric Evaluation Before we can determine if our results confirm H1 and H2
(replicated in Figure 5 from Section 1), we must first examine the correlations
between our results and the control variables gathered in the a priori survey. In
this context, we find it reasonable to use these thresholds for a correlation |r|:

Table 5: Free text comment fragments per category
Code Fragment #

Graph layout 4
Dragging & dropping 6

Feature requests 5
Bugs 8

Modeling problems 5
Value/preference statements 9
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H1. When using CoModIDE, a user takes less time to produce correct and rea-
sonable output, than when using Protege.

H2. A user will find CoModIDE to have a higher SUS score than when using
Protege alone.

Fig. 5: Our examined hypotheses, restated from Section 1.

0-0.19 very weak, 0.20-0.39 weak, 0.40-0.59 moderate, 0.60-0.79 strong, 0.80-1.00
very strong.

As shown in Table 2c, the metric time taken when using Protégé is nega-
tively correlated with each CV. The correctness metric is positively correlated
with each CV. This is unsurprising and reasonable; it indicates that familiarity
with the ontology modeling, related concepts, and Protégé improves (shortens)
time taken to complete a modeling task and improves the correctness of the
output. However, for the metrics pertaining to CoModIDE, there are only very
weak and three weak correlations with the CVs. We may construe this to mean
that performance when using CoModIDE, with respect to our metrics, is largely
agnostic to our control variables.

To confirm H1, we look at the metrics separately. Time taken is reported bet-
ter for CoModIDE in both mean and median. When comparing the underlying
data, we achieve p ≈ 0.025 < 0.05. Next, in comparing the correctness metric
from Table 2b, CoModIDE again outperforms Protégé in both mean and me-
dian. When comparing the underlying data, we achieve a statistical significance
of p ≈ 0.009 < 0.01. With these together, we reject the null hypothesis and
confirm H1.

This is particularly interesting; given the above analysis of CV correlations
where we see no (or very weak) correlations between prior ontology modeling
familiarity and CoModIDE modeling results, and the confirmation of H1, that
CoModIDE users perform better than Protégé users, we have a strong indicator
that we have in fact achieved increased approachability.

When comparing the SUS score evaluations, we see that the usability of
Protégé is strongly influenced by familiarity with ontology modeling and fa-
miliarity with Protégé itself. The magnitude of the correlation suggests that
newcomers to Protege do not find it very usable. CoModIDE, on the other hand
is weakly, negatively correlated along the CV. This suggests that switching to a
graphical modeling paradigm may take some adjusting.

However, we still see that the SUS scores for CoModIDE have a greater mean,
tighter σ, and greater median, achieving a very strong statistical significance
p ≈ 0.0003 < 0.001. Thus, we may reject the null hypothesis and confirm H2.

As such, by confirming H1 and H2, we may say that CoModIDE, via graph-
ical ontology modeling, does indeed improve the approachability of knowledge
graph development, especially for those not familiar with ontology modeling—
with respect to our participant pool. However, we suspect that our results are
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generalizable, due to the strength of the statistical significance (Table 3) and
participant pool composition (Section 5.1).

Free-text Responses The fragments summarized in Table 5 paints a quite
coherent picture of the subjects’ perceived advantages and shortcomings of Co-
ModIDE, as follows:

– Graph layout: The layout of the included MODL patterns, when dropped on
the canvas, is too cramped and several classes or properties overlap, which
reduces tooling usability.

– Dragging and dropping: Dragging classes was hit-and-miss; this often caused
users to create new properties between classes, not move them.

– Feature requests: Pressing the “enter” key should accept and close the entity
renaming window. Zooming is requested, and an auto-layout button.

– Bugs: Entity renaming is buggy when entities with similar names exist.
– Modeling problems: Self-links/loops cannot easily be modeled.
– Value/preference statements: Users really appreciate the graphical modeling

paradigm offered, e.g., “Mich easier to use the GUI to develop ontologies”,
“Moreover, I find this system to be way more intuitive than Protégé”, , “co-
modide was intuitive to learn and use, despite never working with it before.”

We note that the there is a near-unanimous consensus among the subjects that
graphical modeling is intuitive and helpful. When users are critical of the CoMo-
dIDE software, these criticisms are typically aimed at specific and quite shallow
bugs or UI features that are lacking. The only consistent criticism of the model-
ing method itself relates to the difficulty in constructing self-links (i.e., properties
that have the same class as domain and range).

7 Conclusion

To conclude, we have shown how the CoModIDE tool allows ontology engineers,
irrespective of previous knowledge level, to develop ontologies more correctly and
more quickly, than by using standard Protégé; that CoModIDE has a higher us-
ability (SUS score) than standard Protégé; and that the CoModIDE issues that
concern users primarily derive from shallow bugs as opposed to methodological
or modeling issues. Taken together, this implies that the modular graphical on-
tology engineering paradigm is a viable way to improving the approachability of
ontology engineering.

Future Work CoModIDE is under active development and is not yet feature-
complete. Specifically, during the spring of 2020 we will implement the following
features:

– Wrapping instantiated modules (e.g., in dashed-line boxes) to indicate cohe-
sion and to allow module folding/unfolding.
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– An interface feature, allowing design patterns to express how they can be
connected to one another; and adding support for this to the canvas, lighting
up potential connection points as the user drags a pattern.

– Support for custom pattern libraries; and vocabulary specifications indicat-
ing hos pattern libraries should be annotated to be useful with CoModIDE.

In developing CoModIDE we have come across several trade-offs between us-
ability and expressiveness, as discussed in Section 2. We intend to follow these
threads, using CoModIDE as test bed, to study more precisely how the need for
graphical representability affects the use of modeling constructs and/or ontology
engineering methods. For instance, we initially assumed that a graphical mod-
eling paradigm would help users verify the correctness of their designs; but the
answers to our a posteriori survey questions on this matter proved inconclusive.
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