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Abstract. Neuro-symbolic integration is a current field of investigation
in which symbolic approaches are combined with deep learning ones. In
this work we start from simple non-relational knowledge that can be
extracted from text by considering the co-occurrence of entities inside
textual corpora; we show that we can easily integrate this knowledge with
Logic Tensor Networks (LTNs), a neuro-symbolic model. Using LTNs it
is possible to integrate axioms and facts with commonsense knowledge
represented in a sub-symbolic form in one single model performing well
in reasoning tasks. In spite of some current limitations, we show that
results are promising.

1 Introduction

Neuro-symbolic integration models [11, 12] aim at combining properties of sym-
bolic reasoning and neural networks, to account both for data-driven learning
and high-level reasoning, two tightly related aspects of human cognition. Ad-
ditional advantages of this combination can be found in a higher explainability
of learned knowledge and in the capability of softening some aspects of crisp
logic-based reasoning approaches. This integration is also connected to the com-
bination of sub-symbolic perception with high-level reasoning, a critical task in
artificial intelligence [19].

Logic Tensor Networks (LTNs) [9, 24] are an example of a neuro-symbolic
model that embeds first-order fuzzy logic in a vector space. In LTNs logic con-
stants are represented as vectors and n-ary predicates are n-ary functions whose
values are real numbers in the range [0, 1]. A neural network for each predicate
learns both the representation of logic constants and the weights that character-
ize the n-ary function. Learning is based on a set of axioms.

On the other hand, computational linguistics has developed distributional
models of language that have been found cognitively plausible at a large extent
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by psychologists [18]. We believe that these models, once adapted to be easily
integrated with existing logical frameworks that combine learning and reasoning,
can provide an account for commonsense knowledge and structured inferences
that go beyond crisp reasoning approaches.

In this paper, we focus on the integration of two aspects of knowledge: (i) sub-
symbolic common sense knowledge [17] that accounts for some kind of intuitive
understanding of the world [7] and (ii) axiomatic knowledge has the one found
in knowledge bases that accounts for structured inference. As an example of how
this combination might work, imagine an agent that has access to the following
set of axioms {species(cat),mammal(tiger), bird(penguin),∀x(mammal(x) →
animal(x))}, we refer to the first three as instantiated atoms or facts and to
the latter one as universally quantified formula; this axiomatic knowledge is not
enough to infer mammal(cat). However, if the agent knows that cats and tigers
are similar to each other and both are dissimilar to penguins, she might infer
that cats are mammals too (i.e., mammal(cat)). Once the latter instantiated
atom has been inferred, the agent can make use of the axiom ∀x(mammal(x) →
animal(x)) to infer that cats are also animals (i.e., animal(cat)), bridging the
gap with more complex inferences. We believe that combining these two worlds
would bring great benefits in reasoning approaches since one requires the help
of the other.

We present a first approach towards this direction that feeds Entity Embed-
ding (EEs) generated using distributional semantics, i.e., vector-based represen-
tations of entities generated from text using Word2Vec [3], to a knowledge base
represented in LTNs. This EEs encode the similarity between entities based on
the principle that entities that share more contexts within a text corpus are
more similar to each other. Distributional semantics has been found to pro-
vide representations that are strongly correlated with associative learning [18];
we thus refer to these representations as sub-symbolic commonsense. While in
LTNs, neural representations of axioms are usually learned only from a par-
tial (structured) knowledge base, EEs are used here as representations for the
LTNs constants. In this way, LTNs will only need to learn the representation
of the predicate network. Moreover, with the use of pre-trained representations,
we can make inferences on entities that do not occur in the knowledge base as
long as we have a sub-symbolic commonsense representation of those entities.
Figure 1 shows the elements of our model that combines logical reasoning and
sub-symbolic commonsense knowledge.

In once sentence, the major contribution of this work is to show that com-
bining commonsense knowledge under the form of text-based entity embeddings
with LTNs is not only simple, but it is also promising. Our experiments explore
a limited part of a knowledge base but results show that the model is flexible
and can be useful under different settings and use-cases.

The paper is organized as follows: in Section 2 we summarize related work
and in Section 3 we outline the two main components of our model, namely
the embeddings and LTNs and we show how we can combine the strengths of
both; in Section 4 we develop and experiment comparing our model with some
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Fig. 1. We learn embeddings from text and we use LTNs to learn how to represent
predicates with the network. “dbr:” stands for the DBpedia Knowledge Graph names-
pace.

baselines; eventually we end the paper in Section 5 with conclusions and future
work.

2 Related Work

While recently deep learning [13] has shown great capabilities in many differ-
ent tasks its techniques are still limited when they have to take into account
the same reasoning and knowledge transformation capabilities that symbolic ap-
proaches show. However, symbolic artificial intelligence is constrained by com-
putational limits and knowledge acquisition bottlenecks. The neuro-symbolic
field was introduced to address the limits of both approaches by at the same
time taking advantage of the capabilities of each of them. In this section, we
present recent works from both the symbolic/statistical relational learning and
the neuro-symbolic fields.
Symbolic and Statistical Relational Learning Approaches. Different sym-
bolic/statistical relational learning approaches have been devised to treat infer-
ence; Recently, ProbLog [8] has been proposed as a probabilistic logic program-
ming language that can be used to combine probability and logical inference,
allowing the user to treat both probabilistic uncertainty and classical inference.
Another approach to inference is the one represented by Probabilistic Soft Logic
(PSL) [1] that is a statistical relational learning model that comes from the
family of Markov Logic Networks (MLNs) [20].
Neuro-symbolic Approaches. We refer to recent surveys for discussions of dif-
ferent neuro-symbolic approaches proposed in the literature [11, 12] while hereby
we cite some examples of relevant approaches. DeepProbLog [19] is, for exam-
ple, a “deep” extension of ProbLog [8], that show that it is possible to combine
the power of deep nets with the expressive capabilities of logical reasoning. On
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the other hand, the Neural Theorem Prover (NTP) was introduced as an ex-
tension of the Prolog language that supports soft unification rules with the use
of similarity between embedded representations [23]. Other approaches address
reasoning with networks [25, 16] and transferability of reasoning with memory
networks [10]. Different approaches have been defined to generate sub-symbolic
representations of entities and relationships of a knowledge base [5, 26] and some
of these integrate fuzzy logic in the process of learning these embedded repre-
sentations [14].

We also report that the combination between distributional semantics and
logic is not new and there is a recent line of research that is currently exploring
formal distributional semantics [4].

We propose a method to complement logical reasoning in the vector space
with sub-symbolic commonsense knowledge. We decided to focus on LTNs be-
cause the integration of sub-symbolic knowledge is straightforward and simpler
to do with respect to other neuro-symbolic algorithms: LTNs gives us the ad-
vantage representing first-order logic inside a vectors space; at the same time
we use entity embeddings to represent commonsense knowledge as the starting
vector space on which LTNs learn to do reasoning.

3 Logical Reasoning with Sub-symbolic Commonsense

3.1 Logical Reasoning with Logic Tensor Networks

LTNs [9, 24] use first-order fuzzy logic and represent terms, functions, and pred-
icates in a vector space. Connectives are interpreted as binary operations over
real numbers in [0, 1]. For example, t-norms are used in place of the conjunc-
tion from classical logic (e.g., the t-norm can be interpreted as the min between
two truth values). The action of representing elements of the logic language as
elements in the vector space is referred to as grounding.

In LTNs, constants are grounded to vectors in Rn and predicates are grounded
to neural network operations which output values in [0, 1]. The neural net-
work learns to define the truthness of an atom P (c1, . . . , cn) as a function of
the grounding of the terms c1, . . . , cn [24]. For a predicate of arity m and for
which v1, . . . ,vm ∈ Rn are the groundings of m terms, the grounding of the

predicate is defined as G(P )(v) = σ(uTP (tanh(vTW
[1:k]
P v + VPv + BP ))) where

v = 〈v1, . . . ,vm〉 represents the concatenation between the vectors vi, σ is the
sigmoid function, W , V , B and u are parameters to be learned by the network
while k is layer size of the tensor.

LTNs reduce the learning problem to a maximum satisfiability problem: the
task is to find groundings for terms and predicates that maximize the satis-
fiability of the formulas in the knowledge base. For example, for a grounded
formula like mammal(cat), the network updates the representation of the pred-
icate mammal (i.e., the parameters in the tensor layer) and the representation
of cat (i.e., its vector) in such a way that the degree of truth of an instantiated
atom is closer to 1. Optimization also works in place of quantified formulas (e.g.,
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∀x(mammal(x) → animal(x)); In fact, the universally quantified formulas are
computed by using an aggregation operation [24] defined over a subset of the
domain space Rn. LTNs can be be used to do after-training reasoning over com-
binations of axioms on which it was not trained on (e.g., ask the truth value of
queries like ∀x(¬mammal(x) → species(x)); this property allows us to explore
the learned knowledge base with different combinations of predicates.

3.2 Sub-symbolic Commonsense with Entity Embeddings

Sub-symbolic representations of knowledge are popular in the deep learning com-
munity. In the NLP area, pre-trained representation of words (aka, word embed-
dings [21]) based on in-text co-occurrence are used frequently to enhance the
performance on several tasks. In the same way, embeddings of entities and rela-
tionships that come from a knowledge base are becoming widely used in several
contexts [5].

We use text-based embeddings of entities [3]. This approach is grounded in
distributional semantics, originally introduced for words: similar words appear
in similar context share similar meanings [15]; the same is true for entities [3],
with two main advantages: (i) entities identifiers are not ambiguous and (ii)
entities identifiers are interpreted as logical constants. The original work [3]
presented also embeddings of ontological types, we ignore this component in
our work since in this work we interpret entity types as unary predicates in
LTNs. Starting from a text T , containing a sequence of words w1, . . . , wn we use
entity linking tools [22] to find entities and to generate an annotated text that
contains sequences of entity identifiers e1, . . . , em. The word2vec algorithm [21]
is used to learn an embedding function φ based on the co-occurrence of entity
mentions in the text φ(ei) = ei. Word2vec lets the user decide the dimension
of the embedding and a window size to define the width of the context for each
entity.

3.3 Combining Sub-symbolic Commonsense and Logical Reasoning

In our commonsense vector space, logical constants are represented by a vector
and thus we can use LTNs to learn representations for the predicates over the
commonsense vector space. Thus, we used the entity embeddings e1, . . . , em as
vectors to feed to LTNs. The truth value computed by LTNs is function not
only of the parameters of the networks but also of the text-based pre-trained
representations. While LTNs generally needs to learn the representation of vector
from scratch in our setting are already learned (sub-symbolic commonsense) and
do not need any more training.

Figure 1 shows a summary of the components of our model. We generate
distributional embeddings from text and then we use axiomatic knowledge to
learn the representations of predicates. After training we can use the model to
reason over new axioms. A good way of understanding how LTNs work is to
consider the learned predicate network as an area for which vectors have a truth
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value of 1 in certain locations that decreases to values close to 0 when vectors
are distant from those locations.

4 Experiments

The main motivation that guides this experimental section is to show the capabil-
ities of a model that combines logical reasoning and sub-symbolic commonsense
knowledge like the one defined in the previous section.

We use 100 dimensional DBpedia entity embeddings [3]; these embeddings
are generated first by using an automatic annotator (DBpedia Spotlight) and
then by using word2vec (Skip-gram) [21]. LTNs were initialized with k = 20 and
we used the fuzzy Lukasiewicz t-norm as in [24]. Code, data and architectures
to replicate our experiments are available online5.

4.1 Reference Knowledge Base

We create three small knowledge completion tasks for our experiments that are
based on a common reference knowledge base introduced in this paper6. Our
knowledge base is based on DBpedia and contains: a set of predicates P (e.g.,
mammal); a set of constants C (e.g., dbr:cat7); a set I of instantiated atoms, i.e.,
facts such as (e.g., mammal(dbr:cat)); a set Q of universally quantified formulas
that represent the dependency in the DBpedia ontology (e.g., ∀x mammal(x)
→ animal(x)); the set IQ of formulas closed under the application of standard
FOL inference to the previous set I (e.g., animal(dbr:cat)); a set of negated IN

instantiated atoms that are derived as follows: all the instantiated atoms built
with predicates in P that are not in IQ and I (e.g., ¬fungus(dbr:cat)). The
reference knowledge base D is I ∪ IQ ∪ IN .

We first of all extract entities (C) from DBpedia and its ontology of the fol-
lowing classes (note that some classes are much less represented than others):
Mammal (0.38%), Fungus (0.17%), Bacteria (0.03%), Plant (0.42%). We add
the universally quantified formulas Q to derive inferences for predicates Animal,
Eukaryote and Species for each atom, and apply this axiom to generate the set
of instantiated axioms IQ. Finally, we also generate all the negative instantiated
atoms in IN (e.g., ¬fungus(dbr:cat)). Considering positive and negative instan-
tiated axioms this reference knowledge base contains 35,133 elements. We test
the following three tasks by splitting the reference knowledge base D in training
and testing:

5 https://github.com/vinid/logical_commonsense
6 Other knowledge base exist but some are too big to be explored [5] and others can

be completed with simple axioms [6].
7 We are aware that in some cases there is a subtle difference between what can be

considered an instance and what is instead a type; cat can be for example the type
of all the instances of cats. Since this generally depends on the granularity of the
knowledge base we think that this does not affect the general applicability of the
proposed experiment.
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– D1. Objective: evaluate the performance of the algorithms in a task in
which only positive atoms are given, not all the atoms can be influenced
from the axioms. As training, we have 1,400 positive atoms and we ask the
models to find all the other 7,077 atoms related to the entities found in the
1,400 atoms. For example, models have to infer atoms about the instance
“dbr:cat” even if the only know that “dbr:cat” is a Species.

– D2. Objective: evaluate the performance of the algorithms in a task in
which both positive and negative atoms are given; each entity in the training
set appears also in the test set. As training, we have 7,026 atoms both positive
and negatives and as in D1 we ask the models to find other 20,890 atoms
(positive and negative).

– D3. Objective: evaluate the performance of the algorithms in a task in
which both positive and negative atoms are given, but the test set will also
contain atoms of entities not present in the training set: The models will
need to rely on the sub-symbolic commonsense vectors. As training, we have
1,756 atoms and the models are now asked to infer the value of 33,377 atoms
(positive and negative).

Domain Theory We define a set of universally quantified axioms to be used
by the models that contains 22 axioms. The complete list is available online and
we hereby show some of them.

– ∀x(plant(x) → eukaryote(x))
– ∀x(mammal(x) → animal(x))
– ∀x(plant(x) → ¬mammal(x))
– ∀x(fungus(x) → ¬animal(x))

Note that this set is different from the set Q: the models will not know for
example that ∀(x : animal(x) → eukaryote(x)).
Baseline. We will compare the LTNEE model (trained over atoms and univer-
sally quantified formulas to reach 0.99 satisfiability over the input knowledge
base) with the following competitors.

– Simple LTNs model not initialized with pre-trained embeddings. We use this
model to show that the use of pre-trained representation is useful.

– Probabilistic Soft Logic [1], the main competitor for the symbolic field that
will be trained on both atoms and universally quantified formulas. We use
the tool provided by the original authors with default parameters8.

– Deep Neural Network initialized with EEs trained to assign 0 or 1 to instan-
tiated atoms (note that we cannot use universally quantified formulas here),
we explored several architectures often obtaining similar results. The DNN
referenced in the results embeds the pre-trained representations of entities
and a one-hot representation of predicates in 20 dimensions, concatenate
them and apply another transformation to 1 dimension plus a sigmoid as
non-linearity. Validation is done on 20% of the input data. Note that DNN
cannot make use of the axioms of the domain theory.

8 https://psl.linqs.org/
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4.2 Results

Table 1 shows the results of the different models over the different settings with
the F1 measure for each predicate. In the following sections we discuss the result
on each dataset.

Experiments on D1 In this setting we compare LTNEE with LTN and PSL.
We cannot use DNN because we are using only positive atoms. We also report
that a simple rule-based model that uses axioms to complete the knowledge
base would be able to infer only 45% of the axioms (with a 100% precision). The
LTNEE approach is the best performing one. The comparison between pure
LTN and PSL suggests that while the latter performs better their difference is
not high in this setting.

Experiments on D2 In this experiment each entity for which we require to
find other instantiated atoms appear at least one time in the training set; this
allows us to use PSL as a baseline in this setting. PSL performance is more or
less similar to the one shown for the D1 dataset, but the performance between
LTNEE and DNN is comparable. In this settings the domain theory does not
seem to provide increases in performance, but we remark that LTNs provide a
model that can be queried after training.

Experiments on D3 From this experiment it is clear that LTNEE generalizes
slightly better than the competitor, and this could be due to both the domain
theory and the fact that LTNEE trains each predicate as a separate tensor layer.
While the F1 score for many classes are comparable, the ones for Fungus and
Bacteria reached a lower score than in the previous experiment: this might be
due to the fact that the representation of elements of the class Fungus are similar
to those of the class Plant while the Bacteria class as only a few instances in this
experiment. Even if DNN and LTNEE performances are similar (as expected,
since both are neural models), we stress the fact that LTNEE can be used for
after-training logical inferences and this is a key aspect.

4.3 Examples and Limits

After training we can evaluate the truthfulness of axioms for which it was not
specifically trained on. Table 2 reports some examples. We also explored the pos-
sibilities given by a more complex example that contains KG triples with facts
nationality(Person, Country), bornIn(Person, City) and locatedIn(City, Coun-
try) with 200 training examples (for which we also defined some simple axioms
like ∀x,∀y,∀z(bornIn(x, y) ∧ locatedIn(y, z) → nationality(x, z)) during train-
ing, but not the ones we show in the Table). It is interesting how LTNs can
learn to reason on non-trivial axiomatic properties like the fact that being born
in New York makes one American. The small experiment with KG triples is
limited by the fact that the current implementation of LTNs suffers from heavy
computational requirements in the presence of predicates in combination with
quantifiers [2]. While the use of quantifiers extends the expressive power of the
model it certainly downgrades the efficiency.
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Table 1. F1 score per tested class.

D1 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.81 0.74 0.84 0.66 0.52 0.97 1.00
LTN 0.40 0.14 0.12 0.10 0.03 0.93 1.00
PSL 0.54 0.19 0.15 0.14 0.07 0.93 1.00

D2 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.91 0.86 0.91 0.86 0.63 0.99 1.00
DNN 0.93 0.82 0.93 0.87 0.54 0.99 1.00
PSL 0.56 0.20 0.20 0.17 0.10 0.88 0.98

D3 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.88 0.80 0.89 0.82 0.60 0.99 1.00
DNN 0.87 0.64 0.85 0.77 0.47 0.98 1.00

Table 2. The truth values of novel axioms.

Axiom Truth

∀x(species(x) → animal(x)) 0
∀x(eukaryote(x) → ¬bacteria(x)) 0.73
∃x(eukaryote(x) ∧ ¬plant(x)) 1

∀x, y, z(nationality(x, y) ∧ locatedIn(y, z)
→ bornIn(x, z)) 0.33

∃x(nationality(x,Canada)
∧bornIn(x,Montreal)) 1
∀x(bornIn(x,New Y ork)

→ nationality(x, United States)) 0.88

5 Conclusions

In this paper, we have shown that the combination of sub-symoblic commonsense
representations, under the form of entity embeddings generated from text, and
logical reasoning in vector spaces is flexible and can be used to solve completion
tasks. Since LTNs are based on Neural Networks, they reach similar results while
also achieving high explainability due to the fact that they ground first-order
logic. The real advantage comes from the fact that LTNs allow us to get the best
of both the symbolic and connective worlds and to easily integrate additional
knowledge like sub-symbolic commonsense knowledge. Despite the limitations
and the simple experimental setting, the preliminary results show that the ap-
proach is promising. The key point of this paper is that with the combined model
we can inject domain knowledge in a network (using LTNs) and at the same time
use pre-trained representations. Our futures steps include improving LTNs train-
ing to treat bigger knowledge bases [5], introducing commmonsense knowledge
within other frameworks and testing natural language inference tasks.
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19. Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., De Raedt, L.: Deep-

problog: Neural probabilistic logic programming. arXiv preprint arXiv:1805.10872
(2018)

20. Meza-Ruiz, I., Riedel, S.: Jointly identifying predicates, arguments and senses using
markov logic. In: NAACL. pp. 155–163. ACL (2009)

21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS. pp. 3111–3119
(2013)

22. Rizzo, G., Troncy, R.: Nerd: a framework for unifying named entity recognition
and disambiguation extraction tools. In: EACL. pp. 73–76. ACL (2012)
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