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Abstract

We introduce a notion of extensional metamodeling that can be used to extend knowl-
edge representation languages, and show that this feature does not increase computational
complexity of reasoning in many cases. We sketch the relation of our notion to various
existing logics with metamodeling and to non-wellfounded sets, and discuss applications.
We also comment on the usability of black-box reductions to develop reasoning algorithms
for metamodeling.

1 Introduction

A common theme in logical languages for knowledge representation (KR) is type separation. For
example, in description logics (DLs) [3] there are usually different types of syntactic entities for
concepts/classes (such as ‘Eagle’) and individuals (such as a particular eagle). Metamodeling is
the practice of using one type of entity in the way appropriate to a different type. For example,
most knowledge-representation languages can express that an individual belongs to a class, but
to say (something like) that a class belongs to a class is metamodeling. It is so called because
ontologists (the W3C standard Web Ontology Language OWL is based on DLs [9]) often refer
to an ontology as a ‘model’ of the individuals that populate it. To treat the classes and relations
of the ontology as subjects of the same kind of modeling is ‘meta-modeling’. [10] classifies the
many applications of metamodeling into two kinds: domain-specific (e.g., in biology, a family
may belong to an order), and general issues of the ontology-modeling process (e.g., associating
a class with the researcher who added it to the ontology).

While working with reasoning over aggregate individuals, we realized we could do it ele-
gantly by treating the class of the parts as an individual (see section 6). But this required an
‘extensional’ notion of metamodeling, whereas most existing approaches are ‘intensional’, and
for good reason (see below for explanation, and [10] for arguments in favor of the intensional; we
have found that compelling use cases for the extensional are hard to find in the literature). In
this paper, we demonstrate how intensional metamodeling can be simulated in an extensional-
metamodeling language by careful ontology design, and argue that this is better than baking
the somewhat mysterious concept of intension into the language semantics.

One line of semantics work that has taken extensionality seriously is that of Motz, Severi
and Rohrer in e.g. [16] and [18], in which universes of interpretation contain some objects that
just are sets of other objects, and an individual and a set can be the same in the most literal
way. Proofs about these systems are quite complex, mainly because the structure of models
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is constrained by well-foundedness requirements (which flow naturally from their set-theoretic
nature). We argue that this too is a feature best separated out from the logic. We propose
an abstract semantics for metamodeling that is equivalent to a wellfounded-set semantics for
certain ontologies designed to ensure this, but equivalent to a non-wellfounded-set semantics
for other ontologies. Plausibly, it also allows ontologies to mix these assumptions, although the
details of this require further work.

We show by a simple nondeterministic reduction that our metamodeling does not increase
complexity of reasoning for many KR languages. This proof is ‘black-box’ in the sense that
it uses an inclusive notion of ‘logic’ not referring to any particular syntax. As a point of
interest, we also show that such a reduction cannot be made deterministic without additional
postulates, unless P = NP. In most of the paper, we will focus on class-individual metamodeling,
but in section 6 we show how a fundamental result generalizes to metamodeling with complex
structures.

The paper is organized as follows: in Section 2, we define basic notions. In Section 3, we
discuss a motivating example related to extensionality. In Section 4, we provide a motivating
example related to wellfoundedness. In Section 5.1, we establish basic decidability and com-
plexity facts about our metamodeling system, and analyze the ‘optimality’ of the proof. In
Section 5.2, we connect our semantics to wellfounded and non-wellfounded set-theoretic seman-
tics. In Section 5.3, we prove our simulation result for intensional metamodeling. In Section
6, we extend the main result of 5.1 to more complex metamodeling. In Section 7, we review
related work.

2 Definitions

Assume there are fixed sets NI of individual names and NP,n of predicate names of arity n for
each positive natural number n, and these symbols have some binary encoding.

Let a first-order structure1 I with respect to NI , NP,n be a set ∆I , called the domain of
I, together with a mapping ·II : NI → ∆I , and mappings ·IP,n : NP,n → P((∆I)n). (The
domain models all the objects of a certain kind in some possible state of the universe, and
the mappings model reference, of names to those objects and of predicates to relations among
those objects.) We will write all the mappings as ·I when no confusion is possible. We use
A,B for class names (members of NP,1) and a, b, c for individual names. A predicate of arity 2
(member of NP,2) is a role in description logic terminology. Let I,J be first-order structures,
and i : ∆I → ∆J . i is called an isomorphism if it is a bijection, and for all k, predicates
P ∈ NP,k, and (x1, ...xk) ∈ (∆I)k, (x1, ...xk) ∈ P I iff (i(x1), ...i(xk)) ∈ PJ , and if there exists
such a mapping we say I,J are isomorphic.

Let a logic L (with respect to NI , NP,n) be a set of strings, called axioms or formulas of
L, containing symbols from NI , NP,n and possibly other symbols, together with a relation |=L

relating first-order structures over NI , NP,n to axioms of L.2 When the logic intended is clear,
we will write |= instead of |=L. If S is a set of axioms, we write I |= S to mean I |= A for all
A ∈ S. We write S |= A (‘S entails A’) to mean that for every I such that I |= S, I |= A also.
A set S of axioms is satisfiable if there exists I such that I |= S.

A logic will be called isomorphism-invariant if for any two isomorphic first-order structures
I,J , and any axiom α ∈ L, I |=L α iff J |=L α. A logic will be called decidable if there is an
algorithm which, given a finite set of axioms S, decides whether S is satisfiable.

We will sometimes use the notation I |= A ⊑ B to mean AI ⊆ BI .

1Sometimes called an interpretation
2This relation may be a proper class relation.
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Set Metamodeling Let L be a logic. We define an extended logic LM as follows (see [18]):
Let ≈ be a new symbol not appearing in any axioms of L. Then the axioms of LM are the

axioms of L, plus all axioms of the forms a ≈ A and a ̸≈ A, where a is an individual name
and A is a class name (is in NP,1). Let a metamodeling interpretation I be an interpretation
I∗ together with a relation ≈I⊆ ∆I∗ × P(∆I∗

) which is a local bijection, i.e. for all x, y ∈
∆I , X, Y ∈ P(∆I) such that x ≈I X and y ≈I Y , x = y iff X = Y . The relation |=LM between
metamodeling interpretations and LM formulas is defined as follows:

1. If A is an L axiom, I |=LM A iff I∗ |=L A

2. I |=LM (b ≈ B) iff bI
∗ ≈I BI∗

3. I |=LM (b ̸≈ B) iff it is not the case that bI
∗ ≈I BI∗

Define satisfiability etc. in the same way as for ordinary logics. From now on we will write,
e.g., bI instead of bI

∗
. (Technically, LM is not a ‘logic’ in the sense just defined, since its

|= relation pertains to metamodeling interpretations, not just first-order structures. We may
informally call it a ‘logic’ anyway, but when we refer to ‘any logic L such that...’, we mean
something with semantics given by plain first-order structures.)

3 Example I: Intensionality

One of the debates in the metamodeling literature has been extensional vs. intensional seman-
tics. In extensional metamodeling, to treat a class as an individual is to let that individual’s
name refer to the extension of the class, and in intensional semantics one lets the individual
name refer to the intension of the class. This distinction is normally phrased in systems like
Motik’s [14]; we transfer it to our setting, where the syntax resembles [16]. Say that a logic
satisfies Extensionality if the following inference is valid for all a, b, A,B:

{(a ≈ A), (b ≈ B), A ⊑ B,B ⊑ A} |=L (a ≈ b)
LM satisfies Extensionality. To illustrate the contrast, we define another logic-forming op-

erator:
Let L be a logic. Now let LIntM be the logic L extended with the axioms (a ≈ A), (a ̸≈ A),

and define metamodeling interpretations as for LM, except that we no longer require ≈I to be
injective (but it must still be functional): there may be two different x, y ∈ ∆I and one set X
such that x ≈I X and y ≈I X. This is obviously appropriate for a relation that means ‘picking
out a set’ rather than ‘being a set.’ The difference between LIntM and LM parallels that of the
HiLog and injective HiLog semantics discussed in [10]; that paper shows (in the appendix) that
the latter is equivalent to the more usual Henkin semantics for extensional metamodeling.

It is not always desirable to have to choose one of these options. We use a classic example
to illustrate. Suppose you are designing an ontology that includes the concept Raven, treated
as a unary predicate (often called a ‘concept name’ in ontology modeling). You want to include
some statements about properties of this concept. Let Black be the class of black objects, and
R′ ≡ Black ⊓ Raven. It will also turn out that Raven ≡ R′, because Raven ⊑ Black. But now
suppose you want to say ‘Raven is a biological concept’. We can do this with metamodeling:
(raven ≈ Raven), and Biological(raven). We might as well also treat the concept “black ravens”
as an object that can have properties, by asserting (r′ ≈ R′). But we may want to assert that
r′ is not a biological concept, since we want Biological to refer only to concepts defined purely
by biological features, and we don’t consider color to be a biological feature. So ¬Biological(r′).
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With extensional metamodeling, this ontology is inconsistent, so it seems we must use inten-
sional metamodeling. But now suppose we have another predicate of concepts, Instantiated.
We intend this to hold of all concepts that apply to at least one object. (It applies to both
Raven and R′, in particular.) For this predicate, we would like to get the inference pattern:
from (a ≈ A), (b ≈ B), A ≡ B, Instantiated(a), infer Instantiated(b). Extensional metamodeling
would give us this inference power, by means of inferring a = b. But this looks like overkill, for
something that might just be a quirk of the predicate Instantiated.

Note what peculiar feature of Instantiated makes this work: it is a predicate that depends
only on the extension of a concept, whereas Biological is not. Instantiated is not a ‘thick’
property of concepts, but just a proxy for a property of another entity - the nonemptiness of
the concept’s extent. We can use these predicates together and get all the inferences we want,
as follows:

Let hasExtent be a new binary predicate. Now to meta-model with the concept Raven,
we introduce two individuals: raven and ravenExt, and assert hasExtent(raven,ravenExt), and
(ravenExt ≈ Raven). Now we claim Biological(raven), but Nonempty(ravenExt). The predicate
Instantiated can be recovered by the definition Instantiated ≡ ∃hasExtent.Nonempty.3

Doing this has another advantage: it removes the connection between ‘concept’ objects and
their extents from the purview of the logic and puts it in the hands of the ontology designer.
Depending on the application, there may not be just one relation hasExtent, but many. The
extent of Raven, in fact, changes over time. While a set is either Nonempty or not, a concept
is Instantiated at some time. Many concepts have borderline cases (such as ‘Forest’), and
sometimes these are significant enough that the ontology designer does not want data that
merely classifies things as ‘a forest’, but as a ‘Forest according to authority or dataset X’. In
that case the concept-object forest would have many extents, as well.

We hope we have argued well for this way of treating intensionality, but one thing we
have not yet shown is that it is adequate to simulate intensional metamodeling built in to the
semantics. We do this in section 5.3.

4 Example II: Wellfoundedness

‘Wellfoundedness’, in set theory, is the principle that there is no infinite descending chain of sets
S1 ∋ S2 ∋ S3 ∋ .... In particular, there cannot be a set that (directly or indirectly) contains
itself. In the literal-equality semantics of [16], this has the consequence that, for instance,
{(a ≈ A), A(a)} is always inconsistent.

Especially in the development of so-called upper ontologies, which are meant to be maximally
general ontologies from which other ontologies can be created by refinement, an ontologist may
want a class like ‘Continuant,’ which is supposed to subsume all objects, concrete or abstract,
that persist through time. If the ontology also states properties of the concept Continuant
itself, by use of a metamodeling axiom (continuant ≈ Continuant), then it will be appropriate
to state, or at least not to contradict, the axiom Continuant(continuant), since a concept does
persist through time. Our semantics does not render this inconsistent.

Nevertheless, consequences of wellfoundedness are often desirable, and can help detect bugs
in an ontology. In an ontology for material objects, we might have some concept names re-
ferring to types of material objects, such as Metallic or Engine, and others referring to types
of properties, such as Compositional or Structural. If we know Structural(engine) and Com-
positional(metallic), then wellfoundedness implies that the reverse containments cannot hold.

3Typical description logic syntax. In first-order syntax, ∀x[Instantiated(x) ↔ ∃y[hasExtent(x, y) ∧
Nonempty(y)]].
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But the same functionality can be obtained with additional axioms. We might define 2 ‘level’
classes, MaterialObject and Property-1, and declare ∀x[¬(MaterialObject(x) ∧ Property-1(x))],
and Property-1(engine), Property-1(metallic), etc., and Metallic ⊑ MaterialObject, etc. As we had
in the case of intensionality, implementing wellfoundedness at the level of ontology design pro-
vides flexibility: not only does it allow this ontology to be seamlessly integrated with an upper
ontology using Continuant(continuant), it also allows us to finely control what can be a member
of a class. Suppose we (using metamodeling) lump the known properties of Property-1’s into
a class called Property-2. Wellfoundedness implies that property-2 cannot be a Property-1. But
it does not prevent, say, Property-1)t, for a particular toaster (a MaterialObject) t. Nor does it
prevent Structural(t). Even with wellfoundedness, some domain-controlling axioms need to be
written, to make a good hierarchy of meta-properties. So we argue that all decisions of this
kind should be made at once, in ontology design, rather than leaving the developer to think
through which axioms are consequences of semantic wellfoundedness and which are not. But
also like intensionality, we would like to guarantee that this kind of maneuver can simulate all
the effects of semantic wellfoundedness. We do this for a special case in section 5.2.

5 Results

5.1 Decidability and Complexity

Say that a logic L has individual equality (resp. inequality) if for every two individual names
a, b there is an axiom X of L such that for all I, I |= X iff aI = bI (resp. aI ̸= bI). We will
write such an axiom “(a = b)” (resp. “(a ̸= b)”), but this need not be the syntactic form of
the axiom. We do, however, require that there is an algorithm to generate X given (the binary
encoding of) a, b in polynomial time.

Likewise, a logic has class equality (inequality) if for every two class names A,B, there is
an axiom (A ≡ B) (respectively (A ̸≡ B)) such that for all I, I |= (A ≡ B) iff AI = BI

(I |= (A ̸≡ B) iff AI ̸= BI), and these axioms can be generated for each (A,B) in polynomial
time. Our proof is somewhat similar to Motik’s Theorem 6 in [14].

Theorem 1. Let L be a decidable logic with individual and class equality and inequality axioms.
Then LM-satisfiability is decidable by an algorithm that runs in nondeterministic polynomial
time and makes one call to an oracle for L-satisfiability.

Proof. Let T be a finite set of LM-axioms. An identification X for T is a set of axioms such
that:

1. for every individual name a appearing in T and every class name A appearing in T ,
exactly one of (a ≈ A) or (a ̸≈ A) is in X ∪ T

2. for every pair a, b of individual names appearing in T , exactly one of a = b or a ̸= b is in
X

3. for every pair A,B of class names appearing in T , exactly one of A = B or A ̸= B is in X

4. if (a ≈ A), (b ≈ B), (a = b) ∈ T , then A ≡ B ∈ T

5. if (a ≈ A), (b ≈ B), (A ≡ B) ∈ T , then a = b ∈ T .

6. if (a ≈ A), (a = b), (A ≡ B) ∈ T , then (b ≈ B) ∈ T .
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Let L(X) denote the set of L-axioms in X.
Claim: T is LM-satisfiable iff there exists an identification X for T such that L(T ) ∪ L(X)

is L-satisfiable.
Proof of claim: Suppose I |=LM T . Let X contain (a ≈ A) (where a,A appear in T ) iff

aI ≈I AI , and otherwise let X contain (a ̸≈ A). Also let X contain a = b iff aI = bI , otherwise
let X contain a ̸= b. Likewise, let X contain A ≡ B iff AI = BI , and A ̸≡ B otherwise. Then
X is an identification for T : the first three conditions are trivial, and the others follow because
≈I is a local bijection. I∗ (the first-order structure underlying I) |=L L(T ) ∪ L(X).

Now suppose there exists an identification X for T such that I |= L(T ) ∪ L(X), for some
first-order structure I. Then we define a metamodeling structure J whose underlying first-order
structure is I, and define

≈J= {(y, Y ) | ∃a,A[(a ≈ A) ∈ X ∧ (aI = y) ∧ (AI = Y )]}

≈J is a local bijection. For, let x ≈J X and y ≈J X. Then there are a, b, A,B (not necessarily
distinct) such that x = aJ , y = bJ , X = AJ = BJ and (a ≈ A), (b ≈ B) ∈ X. But either
A ≡ B or A ̸≡ B is in X, and the latter cannot hold, since I |= X. Therefore A ≡ B ∈ X.
Then by one of the postulates of identifications, a = b ∈ T , so x = y, as required. (The other
direction of the proof of bijection is the same.) J also satisfies the axioms in X of the form
(a ≈ A), by construction. Conversely, let J |=LM (a ≈ A). By construction there is some b, B
such that (b ≈ B) ∈ X, and bJ = aJ , BJ = AJ . Arguing as before, a = b and A ≡ B are in
X. So by the last postulate of identifications, (a ≈ A) ∈ X. So, J satisfies exactly the (a ≈ A)
axioms that appear in X, and therefore exactly the (a ̸≈ A) axioms in X. This finishes the
claim.

Now the algorithm, on input T , guesses an identification X, which is of size O(|T |2), and
checks that L(T ) ∪ L(X) is L-satisfiable. By the above claim, this checks LM satisfiability of
T .

Corollary 2. If L-satisfiability is in NP (resp. PSPACE, EXP, NEXP, N2EXP), and L has
individual and class equality and inequality, then LM-satisfiability is in NP (resp. PSPACE,
EXP, NEXP, N2EXP).

This corollary indicates that, by the rough metric of complexity class, most description
logics do not become less tractable when we extend them with set metamodeling. However, the
corollary does not mention polynomial-time logics, because a nondeterministic algorithm calling
a P oracle does not suffice to put a problem in P. There is probably no way to improve the
reduction in Theorem 1 to deterministic polynomial time without using additional properties
of L, as we now show.

Theorem 3. There exists a logic L with individual and class equality and inequality, such that
L-satisfiability is in P, but LM-satisfiability is NP-hard.

Proof. Let B be some NP-complete language. So it has proofs of membership of length nO(1).
Fix some reasonable polynomial-size encoding of partitions of [1...n] and choose some efficient
algorithm that, for each n, maps partitions of [1...n] surjectively to strings of length ≤ nΩ(1).
Thus we can use partitions of the set [1...nk], for a fixed k, as proofs of membership in B for
instances of length n, instead of arbitrary strings. Now for each string x of length n, we choose a
string of lengthO(nO(1)) efficiently computable from x, which we call the ‘axiom’ ϕx, and assume
x can be efficiently recovered from ϕx. For each n, let a1, ...ank be some set of individual names
efficiently enumerable given n, and likewise class names A1...Ank . Any first-order structure I
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defines a partition of ai by the equivalence relation ai ∼= aj iff aIi = aIj , and likewise Ai; we can

also treat these as two partitions of the indices i ≤ nk. Let K(x) : {0, 1}∗ → N be an injective
function everywhere > |x|k. Define satisfaction of ϕx as follows:

I |=L ϕx iff the two partitions of [1...nk] defined by ai, Ai, I are equal, and are both partition
proofs of membership for x in B, or the two partitions are different; and furthermore there are
exactly K(x) elements in ∆I .

Let L be the logic of the axioms ϕn, and individual and class equality and inequality axioms
with their expected semantics.

Claim 1: L-satisfiability is in P:
Given a set S of L-axioms, if there are two ϕx, ϕx′ , x ̸= x′, in it, we reject S as unsatisfiable,

because a domain cannot contain exactly K(x) and K(x′) elements. So we need only consider
the case of a single ϕn and some equality and inequality axioms. Now in a domain of size
K(x) > nk, ·I can clearly be chosen to induce any partition of ai and any partition of Ai. It
is also possible, given a set of equality and inequality axioms E on ai, to decide in polynomial
time whether there are 0, 1, or more than 1 partitions of [1...nk] induced on the ai by structures
satisfying E, and if there is exactly 1, return the unique such partition. The same, of course,
holds for Ai. To decide satisfiability of S, do this for both ai and Ai, and if either case returns
‘0 partitions’, reject; otherwise, if either case returns ‘> 1 partitions’, accept - for there is some
structure in which the two partitions are different, which therefore satisfies ϕn. Finally, if both
cases return a unique partition, check if the partitions are equal. If not, accept; if so, check
whether this partition is a proof of membership for x in B. If so, accept; otherwise reject.

Claim 2: LM-satisfiability is NP-hard:
We reduce the NP-hard problem B. Given x, we decide whether x ∈ B as follows: compute

the axiom ϕn and check L-satisfiability of S = {ϕx} ∪ {(ai ≈ Ai | 1 ≤ i ≤ nk)}. Any structure
satisfying S must induce the same partition on both ai and Ai because of the metamodeling
axioms, but it also satisfies ϕx, so this partition is a proof of membership for x in B. Conversely,
if there is a partition proof P of membership for x in B, there exists a structure I of K(x)
elements inducing this partition on both ai, Ai; now define the metamodeling relation ≈I such
that aIi ≈I AI

j iff i, j are in the same block in P . It is easy to see this is a local bijection, and it
satisfies the metamodeling axioms in S. Thus, S is L-satisfiable iff x has some partition proof
of membership, iff x is in B.

Nevertheless, this complexity blowup seems to be pathological, and efficient deterministic
reductions are possible when certain stronger assumptions hold. One case in which metamodel-
ing does not increase complexity of reasoning problems in P is for entailment problems in logics
with so-called consequential models, which include most of the logics of the EL family [18].4

Note that the results in [18] are for a stricter semantics than ours (wellfoundedness). One of
the logics in the EL family provides the semantics for OWL EL, an OWL language profile used
in many influential ontologies, including SNOMED-CT [4] and the Gene Ontology [2][1].

5.2 Significance of the Semantics

The set metamodeling semantics we have presented in this paper is not obviously correct. It
seems obvious that ‘identity of a class with an entity’ can be approximated by a binary relation
between classes and entities, and if this relation is to resemble identity, it should be, among
other things, a local bijection. But among what other things? It is not apparent how much

4This seems to be an unpublished manuscript
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is lost by replacing identity with a relation. The results of this section justify the use of our
semantics in some situations.

For any logic L, we defined the logics LM and LIntM using our metamodeling-relation seman-
tics; now define the logic LTM similarly, by extending L with the axioms (a ≈ A) and (a ̸≈ A),
and extending |=L with the conditions:

1. I |=LTM (a ≈ A) iff aI = AI

2. I |=LTM (a ̸≈ A) iff aI ̸= AI

LTM, LIntM and LM have exactly the same formulas, but different semantics. LTM has the
most literal possible semantics for metamodeling - (a ≈ A) means that the (object) name a
and the (class) name A actually refer to the same thing, which is an object that happens to
be a class. Notice that nothing in the definition of first-order structures prevents an element
of a structure from also being a set of elements in the same structure, but there is something
weird about referring to a situation like this in a semantic clause.5 Normally elements of a
structure are thought of as featureless, and the only information about them relevant to the
truth of axioms is provided by their relation to the mapping ·I . Nevertheless, since any other
condition would leave open the same objection as the semantics of LM (that we are not taking
metamodeling seriously enough) we will use LTM as a baseline for comparison.

Cyclicity The following theorem and lemma are true only when we switch our metamathe-
matical perspective from standard ZFC set theory to Boffa’s non-wellfounded set theory BAFA
(see [17][13]), a set theory in which the wellfoundedness principle fails, and furthermore there
are many non-wellfounded sets. However, by doing this we get a very good result: LM- and
LTM-satisfiability hold of exactly the same sets of axioms. Boffa’s set theory has been criticized
(see [17]) as too ‘intensional’, which would make its use contrary to our aims; however, it also
has its defenders (see [13]).

Let a decoration d of a directed graph G be a mapping from nodes in V (G) to sets such that
d(x) = {d(y) | (x, y) ∈ E(G)}. Let a pointed graph be a graph with a distinguished node, and
call a pointed graph accessible if every node is reachable from the distinguished node. A graph is
extensional if there are no two distinct nodes with the same successors. Boffa’s antifoundation
axiom says that every accessible extensional pointed graph has an injective decoration. The
pointing and accessibility condition can mostly be ignored, as we see:

Lemma 4 (in BAFA). For any extensional graph G, there is an injective decoration.

Proof. If G, x is accessible for some choice of distinguished x ∈ V (G), then we are done.
Suppose there is no such x. Let u be an object not in V (G), and consider the graph G′ with
nodes V ∪ {u}, whose edges are E(G) ∪ {(u, g) | g ∈ V (G)}. Then (G′, u) is an accessible
pointed graph. It is also extensional: u is a successor of nothing, so it suffices to show no node
in V (G) has the same set of successors as u, namely, all of V (G). But this is the case, since
if there were such a node G would be accessible. Thus by Boffa’s axiom there is an injective
decoration d of G′. Further, d(u) is not in any d(g), g ∈ V (G), since u is not a successor of any
g. So the restriction of d to G is also a decoration of G.

Call a graph ur-extensional if no two distinct nonterminal nodes (i.e., nodes having some
successor) have the same set of successors. Let G be an ur-extensional graph and N a set of

5Motz et al. [16] make it less strange by prescribing that models must be built up from N by powersets, but
we do not strictly need to do this for |=

LTM
to make sense, so to make our comparison simpler, we don’t.
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nodes with up to one terminal node in it. An N -ur-decoration of G is a mapping d from nodes
to sets such that for each node x ∈ N , d(x) = {d(y) | (x, y) ∈ E(G)}. The idea of this is that it
treats the chosen nonterminal nodes as pictures of nonempty sets, and up to one terminal node
as a picture of the empty set, and all other terminal nodes as ‘urelements’, which have internal
structure we don’t care about except that they are unique.

Lemma 5 (in BAFA). For every ur-extensional graph G and set N ⊆ V (G) containing up
to one terminal node, G has an injective N -ur-decoration, such that when terminal x ̸∈ N ,
d(x) ∩ d[V (G)] = ∅.

Proof. Let G be ur-extensional. Let κ be the cardinality of the nodes of G. If necessary, replace
the nodes of G so that none of them are ordinals < κ+ 2. For each ordinal α < κ+ 2, add to
G a node zα, and an edge (zβ , zα) whenever α < β. Number the nodes of G as gα for α from 1
to κ+ 1, and add to G the edge (gα, zα) whenever gα is terminal in G and not in N . Also add
the edge (zα, zα) for all α. Call the result G′. G′ is extensional:

Choose any two distinct nodes, and we can show they have different successors. Case I: gα
and gβ , both nonterminal. Different since G is ur-extensional. Case II: gα in V (G), gβ terminal,
not in N : Then gβ has successor zβ which gα does not. Case III: gα in V (G), gβ terminal in N :
gα has some successor and gβ does not. Case IV: gα, zβ : gα does not have successor z0 (since
we started numbering gα at 1), but zα does. Case V: zα, zβ : by wellfoundedness of ordinals,
(wlog) α < β. Then zβ is a successor of zβ but not of zα.

Thus, there is an injective decoration d of G′ by lemma 4. d is also an ur-decoration of G:
let x be nonterminal in G. Then its successors in G′ are its successors in G, so d(x) = {d(y) |
(x, y) ∈ E(G′)} = {d(y) | (x, y) ∈ E(G)} as required.

The last condition of the lemma follows since d is injective, and points not in N have only
z’s as successors.

We prove results in this section for possibly-infinite sets of axioms partly just to show it
can be done, but also to facilitate future applications in which a logic might employ axioms
equivalent to an infinite set of basic metamodeling axioms. Finiteness plays no part in the
possibility of interpreting our semantics set-theoretically.

Theorem 6 (in BAFA). For any isomorphism-invariant logic L, and any set of LM axioms S
(which is to say a set of LTM axioms), S is satisfiable in LM iff S is satisfiable in LTM.

Proof. If: Let I |=LTM S. We augment I with the relation ≈I defined, for x ∈ ∆I , X ⊆ ∆I ,
by (x ≈I X iff x = X). This is a local bijection, since it is just a subrelation of the identity
relation, so I,≈I is a metamodeling interpretation. Now for any L axiom B ∈ S, I |=L B,
so I,≈I |=LM B. And if (a ≈ A) ∈ S, then I |=LTM (a ≈ A), so aI = AI , so aI ≈I AI , so
I |=LM (a ≈ A). The same for (a ̸≈ A). Thus S is LM satisfiable.

Only if: Let I,≈I be some model of S in LM. Define the relation of ‘pseudomembership’
∈P : x ∈P y iff y ≈I Y for some set Y and x ∈ Y . Then ∆I ,∋P is a directed graph. We claim
it is ur-extensional: suppose not, and let x, y be distinct nonterminal points with the same set
P of ∋P successors (‘pseudo-elements’). Then x ≈ X and y ≈ Y for some (unique) sets (if
not, they are ∋P -terminal), and by definition of pseudo-member, X = P = Y . Thus by local
bijectivity of ≈, x = y, a contradiction.

Let N be the set of ∋P -nonterminal nodes in ∆I , plus the node x such that x ≈I ∅, if
there is one. There is an injective N -ur-decoration d of ∆I ,∋P as described in Lemma 5.
Let ∆J = d[∆I ], and let PJ = {(d(x1), ...d(xn)) | (x1, ...xn) ∈ P I} for each predicate and
aJ = d(aI) for each individual. d is an isomorphism between I and J , so J |=L all L-axioms
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in S. Let (a ≈ A) ∈ S. Then aI is in N , so aJ = d(aI) = {d(y) | (aI ∋P y)} = {d(y) | (y ∈
AI)} = d[AI ] = AJ . Let (a ̸≈ A) ∈ S. There are two cases: Case I: aI ≈ X for some set X:
so X ̸= AI , but aI ∈ N , so aJ = d[X] ̸= d[AI ] = AJ , by injectivity of d[·]. Case II: aI ̸∈ N .
Then by the last clause of lemma 5, aJ is disjoint from ∆J but not empty. Thus it is not a
subset of ∆J and cannot be AJ .

This theorem shows that any reasoners developed for LM can be thought of, if you prefer,
as reasoners for LTM, under the condition that you accept non-wellfounded set theory. We also
sketch the connection between LM and LTM under ordinary metamathematics.

Acyclicity Call a set of LM formulas S (semantically) acyclic if there is a wellfounded qua-
siordering ≤ on the individual names appearing in S, such that if (a ≈ A) ∈ S, I,≈I |=LM S
and bI ∈ AI , then b < a.

Lemma 7. Let S be a set of LM axioms. If S is satisfiable, it is satisfied by a metamodeling
interpretation I in which x ≈I X only holds for x,X where there is a,A such that x = aI , X =
AI , (a ≈ A) ∈ S. Furthermore, if there is an interpretation satisfying exactly the axioms S,
there is an interpretation with the above feature, satisfying exactly the axioms S.

Proof. Let I,≈I |= S. Now consider ≈′, the relation which contains just the pairs aI , AI such
that (a ≈I A) ∈ S. By definition of satisfaction of these kind of axioms, ≈′⊆≈I . Therefore
≈′ is a local bijection. But I,≈′|= (a ≈ A) for all (a ≈ A) ∈ S, so I,≈′|=LM S. Clearly if
I,≈I |= (a ̸≈ A), then so does I,≈′.

Theorem 8. Let S be semantically acyclic, and L be isomorphism-invariant. Then S is satis-
fiable in LM iff S is satisfiable in LTM.

Proof. If: Same as the if-direction of Theorem 6.
Only if: Let I,≈I be a LM model of S. Assume without loss of generality that no element

of ∆I is a set indirectly containing another member of ∆I , and that ≈I holds only on pairs
aI , AI where (a ≈ A) ∈ S, which we can do by lemma 7. Divide the individual names in S into
disjoint ‘rank’ sets Rα indexed by ordinals, starting at 1, such that if a < b, a ∈ Rα, b ∈ Rβ ,
then α < β. This can be done by (transfinite) induction. Let the rank rank(a) of a name be the
unique ordinal α such that a ∈ Rα. Let the rank rank(x) of an element x ∈ ∆I be 0 if there
is no set X where x ≈I X, and otherwise the least rank among names a where aI = x, and
(a ≈ A) ∈ S for some A. Such a exists, by our assumption from lemma 7. For each α, define a
partial mapping Jα on elements of rank ≤ α by induction, as follows:

J0 is the identity map.
Jα+1 is equal to Jα on elements of rank ≤ α, and for aI of rank α+ 1, Jα+1(a

I) = Jα[X],
where X is the unique set such that aI ≈I X.

Jβ , for β a limit ordinal, is equal to Jα on elements of rank α for all α < β. For aI of rank
β, Jβ(a

I) = [
⋃

α<β

Jα][X], where X is the unique set such that aI ≈I X.

Jα is well-defined. In the inductive cases, X exists because, by hypothesis, aI is not of rank
0. Assume without loss of generality that a is chosen so rank(a) = rank(aI), and (a ≈ A) ∈ S
(a gives x its rank). We should prove X is a subset of the domain of Jα (resp. the combined
domains of Jα): X = AI for some A where (a ≈ A) ∈ S, by assumption. Now let y ∈ AI . If
rank(y) > 0, then y ≈ Y for some set Y , and there is b, B where bI = y,BI = Y, (b ≈ B) ∈ S,
and rank(b) = rank(y). So by acyclicity, b < a, so rank(b) < rank(a) = α+1 (resp. β). Otherwise
rank(y) = 0. This proves that all elements of X have rank less than that of aI , as required.
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Each Jα is injective, by induction on α:
For α = 0, trivial.
For level γ = α+1, or γ a limit ordinal: first we prove Jγ(a

I) is not in the range of Jα for any
α < γ. Suppose it is, and let x be an element of rank α < γ such that Jα(x) = Jγ(a

I). Since
this is a set indirectly containing elements of ∆I , we know α is not 0. Now, by construction,
Jγ(a

I) = (∪βJβ)[Y ] for some set Y such that x ≈I Y and some set of ordinals β < γ, where Y
is contained in the domain of (∪βJβ). But (∪βJβ)[Y ] = Jγ [Y ], and Jβ are a nested sequence of
injective functions, by inductive hypothesis. Thus their union is injective and a subfunction of
Jγ , and we get X = Y . Then since ≈I is a local bijection, aI = x ∈ X, which makes the rank
of aI less than rank(aI), a contradiction.

Thus it suffices to show that for any two distinct x, y of rank γ exactly, Jγ(x) ̸= Jγ(y), but
this follows from the construction since Jα is injective for α < γ, and the sets Xx, Xy such that
x ≈I Xx and y ≈I Xy are distinct.

Now take the union of all the Jα; call it J . J is injective. Let ∆J be the image J [∆I ],
and define ·J as in theorem 6, so that J is an isomorphism of I to J . Now for each axiom
(a ≈ A) ∈ S, we have aI ≈I AI , so J(aI) = J [AI ], so aJ = AJ . Likewise, let (a ̸≈ A) ∈ S.
Case I: aI is not ≈I X for any X. Then aI has rank 0, and aJ = aI . But AJ is a set indirectly
containing members of ∆I , so it cannot be aI . Case II: aI ≈I BI for some BI ̸= AI . Then
aJ = BJ = J [BI ] ̸= J [AI ] = AJ , because J is injective.

Thus J |=LTM S.

Practical Consequences The designer of an ontology cannot do anything with theorem
8 unless he can make the ontology semantically acyclic. Fortunately, in description logics
extending ALCO (see e.g. [7] for this logic), acyclicity can be enforced by a syntactic condition.
The following definition uses some ALCO syntax:

Suppose there is a wellfounded quasiordering < on individual names in S. Let S be called
(syntactically) acyclic if, for all pairs (a, b) of individual names appearing in S, where b ̸< a,
and axioms (a ≈ A) ∈ S, we have ({b} ⊓A ⊑ ⊥) ∈ S.

Proposition 9. If S is syntactically acyclic, S is semantically acyclic.

Proof. Trivial

Here is our point of departure from the line of work of [16] [18]. In those systems, well-
foundedness is assumed in the logic itself; ontologies that imply a cyclic containment of sets
are reported as inconsistent by a complete reasoner. In our approach, this does not happen
- the ontology designer must ensure acyclicity by asserting it. Theorem 8 shows that if this
is done ‘all the way’, reasoning becomes equivalent to reasoning with a wellfounded-set-based
semantics like [16], but it is up to the ontologist to decide when and how to enforce acyclicity.

5.3 Simulation of Intensional Semantics by Extensional

To describe the logics for which the following simulation works, we introduce another generic
operation. For any first-order structure I, and set S ⊆ ∆I , let the S-reduct J of I be the
structure with domain S, and where for any predicate P ∈ NP,k, P

J = P I ∩ Sk.6

6If aI ̸∈ UI for some individuals a, we can map them into UI arbitrarily.
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For a set of L axioms S, and a class name U , let a U -localization of S be a set of axioms
S′ such that for all I, if I |=L S′ and I |=L A ⊑ U for all class names A appearing in S and
U(a) for all individual names a appearing in S, then the UI-reduct of I satisfies S; and if the
UI-reduct of I satisfies S, then I |= S′. Say that a logic L admits localization if for all sets of
L-axioms S and class names U not appearing in S, there is a U -localization of S.

Let L be a logic, and suppose that for any role name r ∈ NP,2 and individual names a, b,
L has an axiom r(a, b) such that I |=L r(a, b) iff (aI , bI) ∈ rI (that is, L can express role
assertions). Suppose L can also assert functionality of roles: that is, there is an axiom F (r)
such that I |=L F (r) iff rI is a functional relation. Let S be a set of axioms in the logic LIntM.
Let r ∈ NP,2 be a role name not appearing in S, and for each a ∈ NI appearing in S, let a′ be
a new individual name not appearing in S. Define the set S′ as follows: Assume without loss
of generality that every class name appearing in S appears in an L axiom in S. Let L(S) be
the part of S consisting of L axioms and M(S) the part consisting of metamodeling axioms.
Let U be a class name not appearing in S, and let S′′ be a U -localization of L(S). Let S′ be
S′′ extended with the axiom r(a, a′) for each a, and F (r). Let π be a mapping that replaces
(a ≈ A) with (a′ ≈ A) and (a ̸≈ A) with (a′ ̸≈ A), and on L-axioms α ∈ S, let π(α) be a set of
L axioms that is a U -localization of {α}.

Theorem 10. For any axiom α of LIntM, S |=LIntM α iff S′ ∪ π[M(S)] |=LM π(α).

Proof. Suppose S |=LIntM α, and I |=LM S′ ∪ π[M(S)]. Assume without loss of generality that
≈I only holds between named entities (Lemma 7). Take the reduct of I to UI , and turn it into
a metamodeling interpretation I ′ by defining x ≈I′ X iff for some a, x = aI and (a′)I ≈I X.
I ′ is an LIntM metamodeling interpretation, i.e., ≈I′ is functional, because rI relates each aI

to (a′)I , and rI is functional. So (a′)I is determined uniquely by x. Furthermore, I ′ |=LIntM S:
L(S) holds in I ′ because the localization S′′ holds in I. So let (a ≈ A) be an axiom in M(S).
I |=LM (a′ ≈ A), so (a′)I ≈I AI , so by definition, aI

′
= aI ≈I′ AI = AI′

. (Equality of these
sets follows since I |= A ⊑ U .) Let (a ̸≈ A) be in M(S). Then similarly, (a′)I ̸≈I AI , and
this equivalence is necessary for aI ≈I′ AI , since (a′)I is functionally determined by aI . So
aI

′
= aI ̸≈I′ AI = AI′

.

Since I ′ |=LIntM S, also I ′ |=LIntM α. So I |=LM π(α): by a similar argument to the above,
if α is a metamodeling axiom, and otherwise, by definition of localization.

Converse: Let S′ ∪ π[M(S)] |=LM π(α), and let I |=LIntM S. For each set X such that
some aI is related to X by ≈I , extend the domain of I with a new object e[X]. Let Xa denote
the unique set related to aI . For each aI not related to any X, extend the domain with a
new object e[aI ]. Define I ′ with this extended domain, such that P I′

= P I for predicates
appearing in S, and UI′

= ∆I , and ≈I′= {(e[Xa], Xa)}. Let (a′)I
′
= e[Xa] if Xa exists,

otherwise e[aI ]. Let rI
′
= {(aI , (a′)I)}. I ′ is an LM metamodeling interpretation, because by

construction ≈I′ is a local bijection. Now I ′ |=LM S′: F (r) and r(a, a′) hold by definition of

rI
′
. I is the U -reduct of I ′, so I ′ |=L S′′ by definition of localization. And I ′ |=LM π[M(S)]:

for any (a′ ≈ A) ∈ π[M(S)], (a ≈ A) ∈ M(S), so I |=LIntM (a ≈ A), so aI ≈I AI , so Xa = AI ,
so e[Xa] ≈I′ AI , as needed. For any (a′ ̸≈ A) ∈ π[M(S)], (a ̸≈ A) ∈ M(S), so aI ̸≈I AI , so
Xa ̸= AI (or Xa fails to exist), therefore (a′)I

′ ̸≈I′ AI , so I ′ |=LIntM (a′ ̸≈ A). This finishes
the claim that I ′ |=LM S′ ∪ π[M(S)].

Therefore I ′ |=LM π(α). But then I |=LIntM α. This is by definition of localization if α ∈ L.

Otherwise: let I ′ |=LM (a′ ≈ A). Then (a′)I
′
= e[Xb] and AI = AI′

= Xb, for some b. But

(a′)I
′
has this form only if aI ≈I Xa. Therefore I |=LIntM (a ≈ A). Finally, let I |=LM (a′ ̸≈ A).

Then either (a′)I
′
= e[Xb] for some b, or (a′)I

′
= e[aI ]. In case 1, if aI ≈I AI , then Xa = AI ,
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but since (a′)I
′
= e[Xb], we have Xb = Xa. But Xb cannot be AI , since I ′ |=LM (a′ ̸≈ A).

This is a contradiction. In case 2, aI is related to nothing by ≈I , so I ′ |=LIntM (a ̸≈ A).

Thus I ′ |=LIntM α in all cases.

This translation has a natural meaning: we expand our ontology S with a new type of thing,
‘extensions’, and let U be the class of everything whose existence the ontology acknowledged
before this expansion. r is the relation of an ‘intension’ to its ‘extension.’ For each named
‘intension’ a we name its ‘extension’ a′. As remarked in Section 3, it seems obvious that we
can do this selectively, to mix intensional and extensional semantics in one ontology - but this
needs to be made precise.

6 Object Metamodeling

We can extend the semantics of this paper beyond the simple setting of set metamodeling. Let
an object type of length k be a tuple τ ∈ Nk. We write k as |τ |. Let L be a logic. Now define the
logic LOM to have axioms the axioms of L, plus the additional axioms (a ≈τ O) and (a ̸≈τ O),
where O is a tuple of |τ | predicate names Oi, such that Oi ∈ NP,τ [i]. Call such a tuple an object
label of type τ .

For any set D, let Dτ denote the set of |τ |-tuples R such that the i-th element Ri of R is a
subset of Dτ [i]. Let an object metamodeling interpretation be a first-order structure I together
with a relation ≈I,τ for each τ , which is a local bijection between ∆I and (∆I)τ . We may write
it simply as I. For an object label O of type τ , we let OI denote the tuple in (∆I)τ such that
(OI)i = (Oi)

I . Define satisfaction in LOM relative to an object metamodeling interpretation I
by

1. I |= A for A an L axiom iff I |=L A

2. I |= (a ≈τ O) iff aI ≈I,τ OI

3. I |= (a ̸≈τ O) iff aI ̸≈I,τ OI

This can be used to state properties of an entire structure of semantic objects, such as a
graph: the graph with vertex set V I and edge set EI (where V ∈ NP,1, E ∈ NP,2) can be
treated as an object gI using the axiom (g ≈τ ⟨V,E⟩), where τ = ⟨1, 2⟩. It can also be used to
include in ontologies properties of roles, such as transitivity or connectness, by metamodeling
the role (an object of type ⟨2⟩) and asserting that it belongs to ConnectedRole, etc. Of course,
the semantics by itself does not guarantee that ConnectedRoleI is a class of connected roles, but
we have a way of at least defining these meta-properties as ordinary predicates, not annotations
or something else.

We prove the generalization of Theorem 1.

Say that a logic L has n-ary predicate equality (resp. inequality) if for every two predicates
P,Q ∈ NP,n it has an axiom X that holds in a structure I exactly if P I = QI (resp. P I ̸= QI),
which can be generated from (the binary encoding of) P,Q in polynomial time. We will denote
these axioms P ≡ Q (resp. P ̸≡ Q). For object labels O,O′ of type τ , let O ≡ O′ be shorthand
for the set of axioms Oi ≡τ O′

i for all 1 ≤ i ≤ |τ |. Say that L has disjunctions of predicate
inequalities if, for every two τ -object labels O,O′, there is an axiom O ̸≡ O′ which holds in I
iff for at least one 1 ≤ i ≤ |τ |, (Oi)

I ̸= (O′
i)

I .
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Theorem 11. Let L be a decidable logic and d a constant. Then LOM-satisfiability - on sets
S such that L has individual and n-ary predicate equality and inequality and disjunctions of
inequalities, for every arity n of predicate appearing in S, and no type τ appears in S with
|τ | > d - is decidable by an algorithm that runs in nondeterministic polynomial time and makes
one call to an oracle for L-satisfiability.

Proof. Like the proof of Theorem 1. Say that a type τ appears in a set of axioms S if some
axiom (a ≈τ O) appears. Say that a τ -object label O appears potentially in S if each component
Oi appears in S. We extend the notion of identification X for S as follows:

1. for every individual name a and type τ appearing in S, and every object label O appearing
potentially in S, exactly one of (a ≈τ O) or (a ̸≈τ O) is in X

2. for every pair a, b of individual names appearing in S, exactly one of a = b or a ̸= b is in
X

3. for every pair P,Q of n-ary predicate names appearing in S, exactly one of P = Q or
P ̸= Q is in X, for all n that are the arity of some predicate name appearing in S

4. if (a ≈τ O), (b ≈τ O′), (a = b) ∈ S ∪X, then A ≡τ B ⊆ S ∪X

5. if (a ≈τ O), (b ≈τ O′), (O ≡τ O′) ⊆ S ∪X, then a = b ∈ S ∪X.

6. if (a ≈τ O), (a = b), (O ≡τ O′) ∈ S ∪X, then (b ≈τ O′) ∈ S ∪X.

Let L(X) denote the set of L-axioms in X.

We prove, as in Theorem 1, that S is LOM-satisfiable iff there exists an identification X for
S such that L(S)∪L(X) is L-satisfiable. Identifications are still of polynomial size in |S|, since
only polynomially many types τ appear in S, and (thanks to the constant d) only polynomially
many τ -object labels potentially appear.

7 Related Work

Metamodeling has been tackled in the description logic literature from many angles. [14]
is motivated by OWL Full, an ontology language with no built-in type distinction between
individuals and classes. [5] explores higher-order description logics, which relate to normal
DL’s as higher-order logic does to first-order logic. Both of these works and their extensions
differ from ours in style by using logics without explicit type separation. [10][11] discuss higher-
order DL’s with type separation, but with many types - classes of individuals, classes of classes
of individuals, etc. [10] proves a relation between this kind of logic and the kind from [14].
[8] studies metamodeling in description logics in the DL-Lite family, which are mostly less
expressive than the logics we consider here. [6] performs a passive kind of metamodeling, in
which metamodeling information is extracted from an ontology that does not explicitly use any.
[12] uses an individual ‘as’ a class without extending the base logic at all, associating a with
∃t.{a} for some ‘type’ predicate t. This simulates a kind of intensional metamodeling.

Our approach is most similar to Motz et al. [16] and Severi [18], which uses axioms that
assert the ‘alignment’ of an individual with a class, but distinguishes individual names from
class names. However, the semantics in these papers is stricter than ours, and we discuss why
this might not be wanted in section 4.
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8 Conclusions

With this paper we hope to make the case that metamodeling can be simpler than it has often
been thought. Our system does not assume acyclicity, and does assume extensionality - and we
show that both of these features can be reversed (or mixed with their opposite) in a natural way
by designing one’s ontology to do so. Our opinion is that if these kind of choices can be made
by the ontology designer rather than the logic designer, they should be. Results like Theorem
8, which show that an easy-to-work-with semantics agrees with a more constrained semantics
for all appropriately-built ontologies, seem to us a promising line of research.

We have isolated what features of a logic L are needed to make our metamodeling results
work, and they are minimal. Results such as Theorems 1 and 11 hold not only for DL’s and
rule-based languages, but for a broad range of formalisms including full higher-order logics,
fixpoint logics, etc. - since these do have semantics in terms of first-order structures, they
merely use them in a higher-order way.

Theorem 3 may seem somewhat silly, since the kind of algorithm it rules out is extremely
restricted (a reduction using no specific axioms except equality and inequality statements). But
given the huge variety of logics studied in KR, it is potentially insightful to find minimal sets
of properties enabling some operation. We hope more powerful theorems of this type will come
in the future.

Of course, before any kind of metamodeling can be incorporated into ontology-management
software, we need optimized algorithms for specific logics. [15] has already done this for OWL
and the semantics from [16]; adapting this to the non-wellfounded setting is probably easy.

We have mentioned the possibility of using both intensional and extensional metamodeling
in one ontology, and using wellfoundedness assumptions in a local scope - we leave it for future
work to devise an intended semantics for such situations, and to prove that an ontology designer
using our framework can simulate it, aiming for results similar to Theorem 8.
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