
Noname manuscript No.
(will be inserted by the editor)

Towards Bridging the Neuro-Symbolic Gap: Deep
Deductive Reasoners

Monireh Ebrahimi · Aaron Eberhart ·
Federico Bianchi · Pascal Hitzler

Received: date / Accepted: date

Abstract Symbolic knowledge representation and reasoning and deep learning
are fundamentally different approaches to artificial intelligence with complemen-
tary capabilities. The former are transparent and data-efficient, but they are sen-
sitive to noise and cannot be applied to non-symbolic domains where the data is
ambiguous. The latter can learn complex tasks from examples, are robust to noise,
but are black boxes; require large amounts of –not necessarily easily obtained–
data, and are slow to learn and prone to adversarial examples. Either paradigm
excels at certain types of problems where the other paradigm performs poorly.
In order to develop stronger AI systems, integrated neuro-symbolic systems that
combine artificial neural networks and symbolic reasoning are being sought. In
this context, one of the fundamental open problems is how to perform logic-based
deductive reasoning over knowledge bases by means of trainable artificial neural
networks.

This paper provides a brief summary of the authors’ recent efforts to bridge the
neural and symbolic divide in the context of deep deductive reasoners. Through-
out the paper we will discuss strengths and limitations of models in term of ac-
curacy, scalability, transferability, generalizabiliy, speed, and interpretability, and
finally will talk about possible modifications to enhance desirable capabilities.
More specifically, in terms of architectures, we are looking at Memory-augmented
networks, Logic Tensor Networks, and compositions of LSTM models to explore
their capabilities and limitations in conducting deductive reasoning. We are ap-

M. Ebrahimi
Data Semantics Laboratory
Kansas State University, USA E-mail: monireh@ksu.edu

A. Eberhart
Data Semantics Laboratory
Kansas State University, USA E-mail: aaroneberhart@ksu.edu

F. Bianchi
Bocconi University, Italy E-mail: f.bianchi@unibocconi.it

P. Hitzler
Data Semantics Laboratory
Kansas State University, USA E-mail: hitzler@ksu.edu



2 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

plying these models on Resource Description Framework (RDF), first-order logic,
and the description logic EL+respectively.

Keywords Neuro-symbolic reasoning · Deep deductive reasoners · Memory-
augmented networks · Logic tensor networks · LSTM · Logic

1 Introduction & Motivation

Approaches in Artificial Intelligence (AI) based on machine learning, and in par-
ticular those employing artificial neural networks, differ fundamentally from ap-
proaches that perform logical deduction and reasoning on knowledge bases. The
first are connectionist or subsymbolic AI systems that are able to solve complex
tasks over unstructured data using supervised or unsupervised learning, including
problems which cannot reasonably be hand-coded by humans. Subsymbolic meth-
ods are generally robust against noise in training or input data. And recently, in the
wake of deep learning, they have been shown to exceed human performance in tasks
involving video, audio, and text processing. Symbolic systems, by contrast, thrive
in tasks that use highly structured data, including agent planning, constraint solv-
ing, data management, integration and querying, and other traditional application
areas of expert systems and formal semantics. Classical rule-based systems, on-
tologies, and knowledge graphs that power search and information retrieval across
the Web are also types of symbolic AI systems.

Symbolic and subsymbolic systems are almost entirely complementary to each
other. For example, the key strengths of subsymbolic systems are weaknesses of
symbolic ones, and vice versa. Symbolic systems are brittle; they are susceptible
to data noise or minor flaws in the logical encoding of a problem, which stands in
contrast to the robustness of connectionist approaches. But subsymbolic systems
are generally black boxes in the sense that the systems cannot be inspected in ways
that provide insight into their decisions (despite some recent progress on this in the
explainable AI effort) while symbolic knowledge bases can in principle be inspected
to interpret how a decision follows from input. Most importantly, symbolic and
subsymbolic systems differ in the types of problems and data they excel at solving.
Scene recognition from images appears to be a problem that lies generally outside
the capabilities of symbolic systems, for example, while complex planning scenarios
appear to be outside the scope of current deep learning approaches.1

The complementary nature of these methods has drawn a stark divide in the
rich field of AI. The split is technical in nature; symbol manipulation as captured
by deductive reasoning cannot be sufficiently performed using current subsym-
bolic systems. Moreover, the training to study subsymbolic systems (involving
probability theory, statistics, linear algebra, and optimization) differs from sym-
bolic systems (involving logic and propositional calculus, set theory, recursion,
and computability) so strongly that AI researchers tend to find a side of the di-
vide based on their intellectual interests and background. There is even a cultural
aspect to he schism, pitting mindsets and prior beliefs of communities against one

1 The topic is being investigated, of course, with some recent progress being made. For
example, [1] report on an application of deep learning to planning, and explicitly frame it as
work towards bridging the “subsymbolic-symbolic boundary.”



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 3

another, that in the past could sometimes split the academic AI research commu-
nity by provoking (heated) fundamental discussions. Even geography has an effect:
researchers working on symbolic approaches are more prevalent in the European
Union than in the United States.

We are interested in answering fundamental problems needed to build a techni-
cal bridge between the symbolic and subsymbolic sides of the divide. The promises
of successfully bridging of the technological divide are plenty [29,33,7,17]. In
the abstract, one could hope for best-of-both-world systems, which combines the
transparency and reasoning-ability of symbolic systems with the robustness and
learning-capabilities of subsymbolic ones. Integrated symbolic-subsymbolic sys-
tems may be able to address the knowledge acquisition bottleneck faced by sym-
bolic systems, learn to perform advanced logical or symbolic reasoning tasks even
in the presence of noisy or uncertain facts, and even yield self-explanatory sub-
symbolic models. More abstractly, bridging the two may also shed insights into
how natural (human) neural networks can perform symbolic tasks as witnessed
by people doing mathematics, formal logic, and other pursuits that we, introspec-
tively, see as symbolic in nature. This is a basic research problem for Cognitive
Science.

This paper provides the brief summary of the authors’ recent efforts toward
bridging the neural and symbolic approaches divide. Indeed, this work is a merged
and expanded version of the authors’ recent publications [26,9,8,25] at conferences
and symposia.2 Throughout the paper we will discuss strengths and limitations of
models in term of the accuracy, scalability, transferability, generalizabiliy, speed,
and interpretability capability and finally will talk about possible modifications
to enhance such desirable capabilities. In terms of architectures, we are looking at
Memory-augmented networks, Logic Tensor Networks (LTNs), and compositions
of LSTM models to explore their capabilities and limitations in conducting deduc-
tive reasoning. We are applying these models to RDF, first-order logic, and the
description logic EL+ respectively.

The paper is organized as follows: in section 2 we summarize related work for
our line of research. Section 3 provides a summary of our work in the context of
techniques, logics, and logical embeddings that have been used. In section 4 we
first outline the experimental results of our memory network based RDF deduc-
tive reasoning system with focus on transferability and generalization. Next we
explore LTNs in the context of deductive reasoning tasks, highlighting the prop-
erties, weaknesses, and strengths of these models. We also show that integrating
subsymbolic commonsense representations in the form of pre-trained embeddings
improves the performance of LTNs for reasoning tasks. Finally, we give an overview
of our work on conducting reasoning for the more complex description logic EL+.
We give concluding remarks and ideas for future work in Section 5.

2 Related Work

The research into how subsymbolic systems can perform deductive reasoning is
often referred to as the study of neuro-symbolic integration. It can be traced

2 [26] is under review at AAAI-MAKE 2021 symposium at the time of submitting this
journal paper.



4 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

back at least to a landmark 1942 article by McCulloch and Pitts [53] showing
how propositional logic formulas can be represented using simple neural network
models with threshold activation functions. A comprehensive and recent state of
the art survey can be found in [7], and hence we will only mention essentials for
understanding the context of our work.

Most of the body of work on neuro-sybmolic integration concerns propositional
logic only (see, for example, [28]), and relationships both theoretical and practical
in nature between propositional logics and subsymbolic systems are relatively easy
to come by, an observation to which John McCarthy refered as the “propositional
fixation” of artificial neural networks [52]. Some of these include Knowledge-Based
Artificial Neural Networks [74] and the closely related propositional Core method
[42,36]. Early attempts to go beyond propositional logic included the SHRUTI
system [70,71] which, however, uses a non-standard connectionist architecture and
thus had severe limitations as far as learning was concerned. Approaches that use
standard artificial neural network architectures with proven learning capabilities
for first-order predicate logic [32] or first-order logic programming [5,4] were by
their very design unable to scale beyond toy examples.

In the past few years, however, deep learning as a subsymbolic machine learning
paradigm has surpassed expectations in machine-learning based problem solving,
and it is a reasonable assumption that these developments have not yet met their
natural limit. Consequently, they are being looked upon as promising for trying to
overcome the symbolic-subsymbolic divide [1,23,67,68,51,41,64] – this list is not
exhaustive. Even more work exists on inductive logical inference, for example [64,
24,59], but this is not what we are investigating in our work.3 Recently, neural
theorem provers [64] have shown exciting capabilities [57,56] in link prediction
tasks.

On the issue of logical reasoning using deep networks we mention some se-
lected contributions. Tensor-based approaches for reasoning have been proposed
[23,67,68,64], following [72,31], but present models remain restricted in terms of
logical expressivity and/or to toy examples and limited evaluations. [51] performs
knowledge graph reasoning using RDF(S) [39,19] based on knowledge graph em-
beddings. However evaluation and training is done on the same knowledge graph,
that is, there is no learning of the general logical deduction calculus, and conse-
quently no transfer thereof to new data. Likewise, recent years have seen some
progress in zero-shot relation learning in the subsymbolic domain [58,66]. Zero-
shot learning refers to the ability of the model to infer new unseen relationships
between pairs of entities. This generalization capability is still quite limited and
fundamentally different from our work in terms of both methodology and purpose.
[41] moves away from RDFS to consider OWL RL reasoning [39,38], however again
no general deduction calculus is acquired during training.

There are different approaches from Statistical Relational Learning that do not
integrate neural networks with logic, but rather tackle the problem in a symbolic
manner by also using statistical information. Examples from this category are
ProbLog [21], which is a probabilistic logic programming language, and Markov
Logic Networks (MLNs) are a statistical relational learning model that are effective

3 Induction like in Inductive Logic Programming or Relational Learning has statistical as-
pects and is much closer in nature to a machine learning task, and thus arguably easier to
tackle using machine learning approaches.



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 5

on a large variety of tasks [62,54]. The intuition behind MLNs and LTNs is similar
since they both base their approach on logical languages. MLNs define weights for
formulas and interpret the world from a probabilistic point of view, while LTNs
use fuzzy logic and a neural architectures to generate their inferences.

Finally, in the context of description logic reasoning there are additional unique
challenges for the neuro-symbolic integration task. Not only are variable terms
implicit, or not stated, in expressions, but also the open world assumption means
that there is no fixed set of constants to use in training like in logic programming.
There is promising work that attempts to use neural networks to reason over
description logic profiles that have monotonic reasoning behavior using completion
rules. For EL+and EL++reasoning, for example, some attempt to embed EL++

with translational embedding (TransE) using a novel concept of n-balls, though it
currently does not consider the RBox as well as certain EL++ axioms that do not
translate into the embedding [46,14].

3 Summary of our Work

Subsymbolic systems are trained to produce an output given some input, which
may be a label (classification) or a numerical value (regression). For our RDF
reasoning and some experiments for first-order logic reasoning, we re-frame the
task as a classification problem. Any4 given logic L comes with an entailment
relation |=L v TL × FL, where FL is a subset of the set of all logical formulas
(or axioms) over L, and TL is the set of all theories (or sets of logical formulas)
over L. If T |= F , then we say that F is entailed by T . For a classification task
we can ask whether a given pair (T, F ) ∈ TL × FL should be classified as a valid
entailment (i.e., T |=L F holds), or as the opposite (i.e., T 6|=L F ). We seek to train
a DNN over the sets of examples (T, F ) embedded into a vector space amenable
for DNN processing, such that the DNN learns to correctly classify examples as
valid or invalid inferences. Of course, we would have to restrict our attention to
finite theories, which is usually done in computational logic anyway.

Another way to re-frame the deductive reasoning problem (used in our EL+

reasoning task) is by considering, for each theory T ∈ TL, the set c(T ) = {F ∈
FL | T |=L F} of all formulas entailed by T ; we call c(T ) the completion of T . We
can then attempt to train a DNN to produce c(T ) for any given T ∈ L, i.e., we
would use pairs (T, c(T )) as input-output training pairs. In this case, restricting
to finite T may not be entirely sufficient because even for finite T it is possible
that c(T ) may be infinite. In such cases, we will have to restrict our training data
to large but finite subsets of c(T ).5

Figure 1 illustrates the general setting within which the studies in this paper
reside. Under a three dimensional investigative space, whereby the logic under
consideration, the logical embedding, and a DNN model type, we examine capa-
bilities and limits of different DNN architectures to perform deductive reasoning
and to transfer their learning to unseen knowledge bases encoded in the same
logic. Transferability means that a DNN demonstrates reasoning capabilities that

4 Any may be too grandiose a statement, but these are the ones we are looking at.
5 Attempting to find finite representations for infinite sets – in the cases where this would

even be reasonably possible – would add another layer of complication which we are currently
not considering.



6 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

Our Project:
Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners

Investigative Dimensions

Logics

Logical 
Embeddings

DNN Architectures

Capabilities and Limits

Are there embeddings or architectures 
(un)suitable for particular logics? 

Deductive Reasoning

• Can a DNN perform entailment for a 
particular logic? How do logics and 
architectures inhibit reasoning? 

Transferable Learning

• Can we train DNN to learn 
transferable knowledge; to 
perform reasoning on out-of-
training knowledge bases? 

Fig. 1 Our work explores the capabilities and limits of subsymbolic systems (DNNs) to per-
form transferrable deductive reasoning. Experiments are carried out along three investigative
dimensions: type of logic, embeddings of logic to a quantitative space, and DNN architectures.

require acquisition of principles (or “inference rules,” if you like) which underlie
the logic and not simply specific answers. If we were to train the DNN such that
it learns only to reason over one theory, then this could hardly be demonstrated.
Theoretical perspectives are derived by studying model performance under par-
ticular constraints in the knowledge bases, for example, the degree or number of
reasoning steps needed to determine an entailment.

Our general line of research can be understood based upon a selection of (i)
candidate logic; (ii) logical embedding method; and (iii) DNN architecture. To
provide context, here, fist we discuss each investigative dimension in more detail:

Logics We have so far looked at three logics of different complexity, as listed
below. Two of them, RDFS and EL+ come from the context of Semantic Web [39]
research, and have direct bearing on current data management practice [34]. The
Semantic Web field indeed provides ample opportunity to instigate neuro-symbolic
integration approaches [35].

(1) RDFS (Resource Description Framework Schema). The Resource Descrip-
tion Framework RDF, which includes RDF Schema (RDFS) [19,39] is an estab-
lished and widely used W3C standard for expressing knowledge graphs. The stan-
dard comes with a formal semantics6 that define an entailment relation. An RDFS
knowledge base (KB) is a collection of statements stored as triples (e1, r, e2) where
e1 and e2 are called subject and object, respectively, while r is a binary relation
between e1 and e2.

As a logic, RDFS is of very low expressivity and reasoning algorithms are very
straightforward. In fact, there is a small set of thirteen entailment rules [18], fixed

6 In fact, it comes with three different ones, but we have only considered the most compre-
hensive one, the RDFS Semantics.



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 7

(x, rdf:subClassOf, y) ∧ (y, rdfs:subClassOf, z) ` (x, rdfs:subClassOf, z) (1)

(x, rdfs:subPropertyOf, y) ∧ (y, rdfs:subPropertyOf, z) ` (x, rdfs:subPropertyOf, z) (2)

(x, rdfs:subClassOf, y) ∧ (z, rdf:type, x) ` (z, rdf:type, y) (3)

(a, rdfs:domain, x) ∧ (y, a, z) ` (y, rdf:type, x) (4)

(a, rdfs:range, x) ∧ (y, a, z) ` (z, rdf:type, x) (5)

Fig. 2 Some RDFS entailment rules. Explanations can be found in the main text.

across all knowledge graphs, which are expressible using Datalog.7 These thirteen
rules can be used to entail new facts.

Figure 2 shows examples for some of these entailment rules. The identifiers
x, y, z, a are variables. The remaining elements of the triples are pre-fixed with
the rdfs or rdf namespace and carry a specific meaning in the formal semantics
of RDFS. E.g., rdfs:subClassOf indicates a sub-class (or sub-set) relationship, i.e.
Rule 1 states transitivity of the rdf:subClassOf binary relation. Likewise, in Rule 2,
(x, rdfs:subPropertyOf, y) indicates that x, y are to be understood as binary re-
lations, where x is a restriction (called a subproperty) of y. In Rule 3, the triple
(z, rdf:type, x) indicates that z is a member of the class (or set) x. In Rules 4 and
5, rdfs:domain and rdfs:range indicate domain respectively range of a, which is to
be interpreted as a binary relation.

(2) Real Logic/First-Order Fuzzy Logic. First-order fuzzy logic [45] is a general-
ization of first-order logic in which binary truth values are replaced with continuous
real values in the range of [0, 1]. In [69] the authors introduce Real Logic, the logic
that will be used to define Logic Tensor Networks in the next sections. This logic
allows us to express the degree of truth of a given axiom that is not as crisp as
binary logic. However, moving to continuous values also requires changing the be-
haviour of standard logical connectives such as conjunction: new operations have
to be considered that can accommodate the real values of the logic. For example,
the standard conjunction can be replaced with a t-norm; and different implemen-
tations of t-norms exist, like the Gödel t-norm which, given two values a and b
equals min(a, b). More details about how the connectives are treated can be found
in [69].

(3) EL+. EL+ is a lightweight and highly tractable description logic [39]. A
typical reasoning task in EL+ is a sequential process with a fixed endpoint, mak-
ing it a perfect candidate for sequence learning. Unlike RDF, which reasons over
links between instance data in triple format, EL+ reasoning occurs on the predi-
cate level. Thus reasoning requires training the system to actually learn reasoning
patterns and logical structure of EL+ directly from encoded knowledge bases.

The signature Σ for EL+ is defined as Σ = 〈NI , NC , NR〉 with NI , NC , NR

pairwise disjoint. NI is a set of individual names, NC is a set of concept names
that includes >, and NR is a set of role names.An EL+ knowledge base consists of
a finite set of statements of the form C v C, R v R and R ◦ . . . ◦R v R, where
C and R are defined by the following grammar.

R ::= NR

C ::= NC | C uC | ∃R.C

7 Datalog is equivalent to function-free definite logic programming [40].



8 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

Table 1 EL+ Semantics

Description Expression Semantics

Individual a a ∈ ∆I
Top > ∆I

Bottom ⊥ ∅
Concept C CI ⊆ ∆I

Role R RI ⊆ ∆I ×∆I
Conjunction C uD CI ∩DI

Existential Restriction ∃R.C { a | there is b ∈ ∆I such that
(a, b) ∈ RI and b ∈ CI }

Concept Subsumption C v D CI ⊆ DI
Role Subsumption R v S RI ⊆ SI

Role Chain R1 ◦ · · · ◦Rn v R RI1 ◦ · · · ◦RIn ⊆ RI
with ◦ signifying standard binary composition

The semantics of EL+ is defined by means of interpretations I = (∆I , ·I) which
map NI , NC , NR to elements, sets, and relations in the domain of interpretation
∆I . For an interpretation I and C(i), R(i) ∈ Σ, the function ·I is shown in Table 1.

Both RDFS and EL+ can be expressed in first-order predicate logic.

Logical embeddings It is essential that symbolic expressions of any logic can be
transformed into a continuous space that is amenable for subsymbolic processing.
Such a transformation must map discrete logical expressions into some continuous
space Rn of fixed dimension as an n−dimensional vector. The mapping from
discrete data to a continuous space is often called an embedding. Embeddings have
been studied for many types of data,8 including pieces of text (words, sentences,
paragraphs) [48,13,60,55,44], and structured objects like graphs [16], knowledge
graphs represented by a set of RDF triples [15,78,49,81,75],9 and types of logical
formulas [23].

There are two key ingredients that we need to consider for logical embeddings.
First, note that logical expressions are highly structured, symbolic, and discrete.
Structure refers to the ordering of logical operations, the type of each symbol in
the expression, arity of predicates, variable bindings, etc. In fact, it is essentially
the structure that deductive reasoning operates over.10 An embedding should thus
(1) consider structure, in the sense that similarly structured logical statements
should be located “close” to each other within the embedding. Furthermore, the
actual symbols representing entities in a knowledge base (for example the string
name of an entity) representing variables, constants, functions, and predicates
are insubstantial for deductive reasoning in the sense that a consistent renaming
across a logical theory does not change the set of entailed formulas (under the same
renaming). An embedding should thus (2) disregard all textual features of a
logical statement: an embedding based on textural features may cause a DNN to
learn to reason based on common text-based patterns in logical statements, rather
than by its logical semantics. This may cause a DNN to overfit to knowledge

8 https://github.com/thunlp/KRLPapers has an extensive listing of existing work on knowl-
edge embeddings.

9 See [11,76] for a recent survey.
10 Some deductive entailment algorithms can even be understood as simply a type of syntax

rewriting systems.



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 9

specific to a single knowledge base and, more importantly, would train the DNN
to make decisions in ways that are not representative of how a symbolic system
processes information.

In determining adaptations of existing embeddings (or when devising new em-
beddings) for our tasks, we have considered the interplay of the embedding ap-
proach with the structure of statements encoded in a particular logic. A simple
translation of existing embeddings may not be fruitful, as the overwhelming use
case explored for knowledge graph embeddings (knowledge graphs are commonly
expressed in RDF(S)) is not deductive in nature, but concerns the problem of the
discovery or suggestion of new edges in a knowledge graph. In this edge discov-
ery setting, the actual labels for nodes or edges in the graph and their meaning
matter, as reflected in most embedding methods, and this is contradictory to key
ingredient (2) discussed above. Generic graph embeddings [16] also appear to be
insufficient since structural aspects like the importance of specific node or edge
labels from the RDF(S) namespaces to the deductive reasoning process would not
get sufficient attention. We further do not anticipate a “one-embedding-fits-all”
phenomenon to emerge, instead we expect different embedding methods to be
necessary for different logics.

In looking at embeddings that consider the structure of logic, we can turn
to inspiration from past work demonstrating how simple logic operations can be
simulated over vectors in a real space [30]. The approach is able to model quanti-
fiers in a logic language and thus many of its characteristics could be generalized
to other logics. Nevertheless, this representation is completely symbolic: a vector
representation of a logical entity and relation is just the one-hot encoding, and so
little information about similarity is preserved. For embeddings in RDF reasoning,
RDF2Vec [63] is an intriguing algorithm that maps RDF entites and relationships
into vector space by a virtual document that contains lexicalized graph walks. A
natural language embedding algorithm is then applied to the documents based on
token co-occurrences. RDF2Vec ignores language semantics, but could be used to
study the distributional properties of RDF and to build pre-trained embeddings
for use in DNN architectures. The fundamental method that RDF2Vec employs
should be extendable to other types of logics as well. Another inspiring approach
to be taken into consideration is an embedding of facts and relations into matrices
and tensors [77] found by a matrix factorization derived from proof graphs. Proof
graphs may be used to describe the relationships of statements encoded in any
logic, and hence might be a starting point for logics such as Datalog, ACL and
SROIQ [39].

To incorporate the second ingredient where textural features of a logical state-
ment should not be considered by an embedding, we explore normalizations of
statements before embedding in our RDF reasoning work. Normalizations that we
explore have two different types. In the first case, normalization done before in-
voking logical reasoning algorithms will usually control the structural complexity
of the formulas and theories producing entailments. Secondly, we explore name
label normalization, by which we mean a renaming of the primitives from a log-
ical language (variables, constants, functions, predicates) to a set of pre-defined
entity names which will be used across different theories. While simple, such a
normalization would not only play the role of “forgetting” irrelevant label names,
but also make it possible to transfer learning from one knowledge graph to the
other. Moreover, a deep network will be limited to learning only over the structural



10 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

information within the theories, and not on the actual names of the primitives,
which would be insubstantial for an entailment task.

In our work with Logic Tensor Networks (LTNs), we focus on the Real Logic
that we defined in the previous sections. We follow [69] in the definitions of LTNs.
In LTNs, constants are grounded to vectors in Rn and predicates are grounded to
neural network operations which output values in [0, 1]. The neural network learns
to define the truth value of an atom P (c1, . . . , cn) as a function of the grounding of
the terms c1, . . . , cn [69]. For a predicate of arity m and for which v1, . . . ,vm ∈ Rn

are the groundings of m terms, the grounding G of the predicate P is defined as

G(P )(v) = σ(uTP (tanh(vTW
[1:k]
P v + VPv +BP ))), (6)

where v = 〈v1, . . . ,vm〉 is the concatenation of the vectors vi, σ is the sigmoid
function, W , V , B and u are all parameters learned by the network during training,
and k is the tensor layer size.

Learning in LTNs comes from interpreting the problem as the one of finding
the weights in such a way that they better satisfy the formulas. Thus, the task is to
find values for all the weights in such a way that the satisfiability of the formulas
in the knowledge base is maximized. We make this more clear with an example:
Suppose we have an atom like mammal(cat), learning to satisfy this atom means
that the network has to update the representation of the parameters in such a
way that the parameters of the tensor network mammal, given in input the vector
representation of the constant cat returns a value that is as close as possible to 1.
In this way, given multiple atoms, LTNs can learn the best weights to satisfy
them. As long as the atoms are combined through the use of fuzzy connectives,
the optimization works similarly: given mammal(cat) → animal(cat), the values
of the two atoms are obtained separately and then combined using the fuzzy
interpretation of →. Again, this value can be maximized during the optimization.

LTNs also support learning of quantified formulas. For example, universally
quantified axioms (for example, ∀x mammal(x)→ animal(x)); are computed by
using an aggregation operation [69] defined over a subset T of the domain space
Rn; different aggregation operations, such as min, average or harmonic average
can be considered. Hence, the optimization comes from aggregating the truth
value of each formula, instantiated with the values in the domain, and then the
maximization of this value, as we want ∀x mammal(x) → animal(x) to be true
for all x ∈ T .

Another important quality of LTNs is that they can be used to do after-training
reasoning over combinations of axioms on which they were not trained: we can ask
the truth values of queries like ∀x ¬mammal(x) → species(x); this is important
because it allows us to explore the space of the results using logical axioms.

To train LTNs we need to define fuzzy connectives (e.g., Gödel, Lukasiewicz,
etc.) for the logic, the dimension of constant embeddings, the size of the tensor
layer, and the aggregation function used for the ∀ formulas. LTNs can be trained
until they reach a certain level of satisfiability (ideally 1) or for a given number of
epochs.

Finally, in the case of our EL+ reasoning, we use the following encoding scheme:
The maximum number of role and concept names in knowledge bases are used
to scale all of the integer values for names into a range of [−1, 1]. To enforce
disjointedness of concepts and role names, we map all concepts to (0, 1], all roles



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 11

Table 2 Translation Rules

KB statement Vectorization

CX v CY → [ 0.0, X
c
, Y

c
, 0.0 ]

CX u CY v CZ → [ X
c
, Y

c
, Z

c
, 0.0 ]

CX v ∃RY.CZ → [0.0, X
c
, −Y

r
, Z

c
]

∃RX.CY v CZ → [−X
r
, Y

c
, Z

c
, 0.0]

RX v RY → [0.0, −X
r
, −Y

r
, 0.0]

RX ◦ RY v RZ → [−X
r
, −Y

r
, −Z

r
, 0.0]

c = Number of Possible Concept Names
r = Number of Possible Role Names

to [−1, 0). Each of the six possible normalized axiom forms is encoded into a
4-tuple based on the logical encodings defined in Table 2. Tuples are concatenated
end-to-end for each axiom in a knowledge base or reasoning step then duplicated
across a new dimension to match the desired tensor shape where ragged tensors are
padded with zeros. We refer to this as an encoding rather than embedding because,
except for noise in the conversion back and forth from integer to floating point
number, it produces a faithful logical encoding of arbitrary integer names without
needing to embed structure. The correct structure of normalized EL+ expressions
is known, not inferred, so the system enforces an approximate representation of this
without the added assistance of moving similar predicate names closer together in
an embedding.

3.1 Investigative dimension 3: DNN architectures

The design space of DNN architectures is vast. Rather than taking a “walking
in the dark” strategy where we consider arbitrary constructions of multi-layered
perceptrons, convolutional architectures, recurrent architectures, and architectures
with combinations thereof, we will focus our exploration on: (i) models that can
recall previously consumed information; and (ii) variants of models already shown
in the literature to achieve some level of subsymbolic processing. In the former
case, we are motivated by the basic idea that deducing new facts from existing
ones requires consideration of the entire set of facts consumed thus far. In the
latter case, we seek to build on the shoulders of past researchers who have also
tried to bridge the neuro-symbolic divide, but we of course have no expectation
that a simple port or copy of such reported DNN architectures will be completely
(or even barely) capable of deductive reasoning. This is especially true because
our investigations utilize multiple types of logic and logical embeddings.

Models with recollection. A common type of DNN architecture able to recall
previous consumed information is memory networks [79]. Memory networks denote
a family of models consisting of ‘memory cells’, which are defined essentially as
embeddings over the set of training data. Multiple memory cells can be chained to-
gether to model multiple “memory lookups”, where the embedding of a subsequent



12 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

cell in a chain can be thought of as representing a view of the memory during a
lookup conditioned on the previous lookup. The idea of memory lookups naturally
extends to a deductive reasoning task: whether or not a hypothesis is entailed by
facts in a knowledge base is logically determined by deducing if the hypothesis is
a consequence of all known facts and their entailments. This suggests a strategy
of multiple ‘lookups’ of known facts conditioned on previous facts that have been
evaluated thus far. We have selected memory networks since we believe that they
are a good candidate for performing deductive logical entailment. Their sequen-
tial nature corresponds, conceptually, to the sequential process underlying some
deductive reasoning algorithms. The attention modeling corresponds to pulling
only relevant information (logical axioms) necessary for the next reasoning step.
And their success in natural language inferencing is also promising: while natural
language inferencing does not follow a formal logical semantics, logical deductive
entailment is nevertheless akin to some aspects of natural language reasoning.
Besides, as attention can be traced over the run of a memory network, we will fur-
thermore glean insights into the ”reasoning” underlying the network output, as we
will be able to see which pieces of the memory (for example, the input knowledge
graph) are taken into account at each step.

Some limitations of memory networks need to be overcome to make them
applicable for deductive reasoning. The most crucial limitation will be how most
memory networks rely on some word-level embedding with a fixed size lookup
table over a vocabulary to represent memory cells. They are thus known to have
difficulties dealing with out-of-vocabulary terms as a word lookup table cannot
provide a representation for the unseen, and thus cannot be applied to natural
language inference over new sets of words [6], and for us this will pose a challenge
in the transfer to new knowledge bases. Additionally, learning good representations
for rare words is challenging as these models require a high frequency of each word
to generalize well. One option may be to pursue variants of the copy mechanism
and pointer networks [27,61] to refer to the unknown words in the memory in
generating the responses. Another option is utilizing character-level embeddings
[50] to compose the representation of characters into words. Despite the success of
these mentioned methods in handling few unknown words absent during training,
transferability and the ability of these models to generalize to a completely new
set of vocabulary is still an open research question. Similarly, using character-level
embeddings may prove to be an inelegant solution in our case, since one of our
hypothesized key ingredients of an embedding is independence of the strings used
to represent logical statements.

Building on proven models. Besides exploring the design space of memory
networks, we have also identified models from the literature that have shown some
ability to perform symbolic tasks. This includes Logic Tensor Networks (LTN) [67,
68,23] which are based on Tensor Networks [72]. In the LTN setting, first-order
fuzzy predicate logic primitives are embedded as tensors (an n-dimensional array
of reals), and complex predicates and formulas are built by applying tensors as
functions of other tensors. LTNs have been shown to handle deductive reasoning,
but only under small toy examples and simple inferences [67,68]. The scalability
of LTNs has not been addressed other than in qualitative arguments which would
need quantitative evaluation. Our work has explored LTNs in greater detail re-



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 13

garding their performance, scalability, and reasoning ability over different logic
types.

Reasoning Structure Emulation In a logic-based system there is transparency
at any stage in the reasoning. We cannot, of course, expect this in most neural
networks. With a network that aims to emulate reasoner behavior rather than out-
put, however, we can impose a degree of intermediate structure. This intermediate
structure allows us to inspect a network part-way through and perform a sort of
“debugging” since we know exactly what it should have learned at that point. This
is a crucial break from current thinking that advocates more and deeper opaque
hidden layers in networks that improve accuracy but detract from explainability.
Inspection of intermediate answers could indicate whether a proposed architecture
is actually learning what we intend, which should aid development of more correct
systems.

We will look at this for the simple logic EL+, reason over knowledge bases
in that logic, and then extract supports from the reasoning steps, mapping the
reasoner supports back to sets of the original knowledge base axioms. The support
thus consists of the set of original axioms from which a reasoning step conclusion
can be drawn. This allows us to encode the input data in terms of only knowl-
edge base statements. It also provides an intermediate answer that might improve
results when provided to the system. This logic data is fed into three different
LSTM architectures with identical input and output dimensionalities. One archi-
tecture, which we call “Deep”, does not train with support data but has a hidden
layer the same size as the supports we have defined. Another architecture, called
“Piecewise”, trains two separate half-systems, the first takes knowledge bases and
learns supports, and the second takes correct supports provided by the reasoner
and learns reasoner answers. The last system, called “Flat”, simply trains to map
knowledge base inputs directly to reasoner outputs for each reasoning step.

4 Summary of our Experimental Settings & Evaluations

4.1 RDFS Reasoning with Memory Networks

4.1.1 Problem Setting

We begin with reasoning for the simplest logic under consideration: RDFS. A
plethora of embeddings for RDFS have been proposed [15,78,49,81,75], but we
were not aware of an embedding that has the two key ingredients (considering
logical structure and ignoring entity strings) we consider necessary for the de-
ductive reasoning task. We thus first consider a hand-coded embedding where all
RDFS URIs not in the RDF or RDFS namespaces are mapped to a random inte-
ger from a pre-defined set {a1, . . . , an}, were n is the upper bound of the size of
any knowledge base to be considered. URIs in the RDF/RDFS namespace are not
renamed as the ‘types’ of entities and relationships are important to the deductive
reasoning process using the RDFS deduction rules as exemplified in Figure 2. This
normalization not only plays the role of “forgetting” irrelevant label names, but
also makes it possible to transfer learning from one knowledge graph to the other.

After normalization, we must map a knowledge graph of RDFS triples to a
numerical multi-dimensional tensor. This could be done in several ways. Here, we



14 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

map each normalized URI to a vector in Rd, where d is the embedding size. Then
we can map each element in the RDF triple to a corresponding (d-dimensional
vector, and finally the full knowledge graph into a (d × k)-tensor, where k is the
number of triples in the knowledge graph. We use an end-to-end memory network
architecture (MemN2N) [73] where the network learns memory cell embeddings at
the same time as the rest of the model weights, including attention mechanisms.

For this and for other approaches, we conjecture that reasoning depth ac-
quired by the network will correspond to both: (i) the number of layers of the
DNN model; and (ii) the ratio of deep versus shallow reasoning required to per-
form the deductive reasoning. This is because forward-chaining reasoners (which
are standard for RDF(S), EL+, and Datalog) iteratively apply inference rules in
order to derive new entailed facts. In subsequent iterations, the previously derived
facts need to be taken into account. The number of sequential applications of the
inference rules required to obtain a given logical consequence can be understood as
a measure of the “depth” of the deductive entailment. Typically, one expects the
number of entailed facts over the number of inference rule applications to follow
a long-tail distribution, which means that in training data, “deep” entailments
would be underrepresented, and this may cause a network to not actually acquire
deep inference skills. Thus, we have conducted experiments with different training
sets, possibly overrepresenting “deep” entailments, to counter this problem. Fur-
thermore, a naive expectation on the trained network would be that each layer
performs something equivalent to an inference rule application. If so, then the
number of layers would limit the entailment depth the network could acquire, but
we have yet to assess this assumption experimentally.

In terms of scalability, we have put a global limit on the size of knowledge
graphs a trained system will be able to handle, as required training time can be
expected to grow super-linearly in the size of the knowledge graphs. A practical
solution to this problem may be to use a clustering or path ranking algorithm [47]
that filters away irrelevant triplets or extracts sets of all paths that connect query-
entity pairs. This way we may be able to decrease the memory size substantially
and attempt to train on knowledge graphs with tens of thousands of triples. The
contribution of our work, however, is on the fundamental capabilities of deep
learning approaches to perform deductive reasoning, so we do not yet report on
scalability aspects.

4.1.2 Evaluations

We now present and discuss our evaluation and results. We obtain training and
test data from Linked Data Cloud website11 and LOD laundromat12. The can-
didate entailments are composed of true entailments inferred by Jena13 and false
entailments generated by replacing a random element of a present or entailed triple
with another random element of the same rdf:type. The specifics of the datasets,
memory network architecture and training hyper-parameters are detailed in [26].
Our evaluation metrics are average of precision and recall and f-score for all the
KGs in the test dataset, obtained for both inferred and non-inferred sets of triples.

11 https://lod-cloud.net/
12 http://lodlaundromat.org/
13 https://jena.apache.org



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 15

Training Dataset Test Dataset
Valid Triples Class Invalid Triples Class

Accuracy
Precision

Recall
/Sensitivity

F-measure Precision
Recall

/Specificity
F-measure

OWL-Centric Dataset Linked Data 93 98 96 98 93 95 96
OWL-Centric Dataset (90%) OWL-Centric Dataset (10%) 88 91 89 90 88 89 90
OWL-Centric Dataset OWL-Centric Test Set b 79 62 68 70 84 76 69
OWL-Centric Dataset Synthetic Data 65 49 40 52 54 42 52
OWL-Centric Dataset Linked Data a 54 98 70 91 16 27 86
OWL-Centric Dataset a Linked Data a 62 72 67 67 56 61 91
OWL-Centric Dataset(90%) a OWL-Centric Dataset(10%) a 79 72 75 74 81 77 80
OWL-Centric Dataset OWL-Centric Test Set ab 58 68 62 62 50 54 58
OWL-Centric Dataset a OWL-Centric Test Set ab 77 57 65 66 82 73 73
OWL-Centric Dataset Synthetic Data a 70 51 40 47 52 38 51
OWL-Centric Dataset a Synthetic Data a 67 23 25 52 80 62 50

Baseline
OWL-Centric Dataset Linked Data 73 98 83 94 46 61 43
OWL-Centric Dataset (90%) OWL-Centric Dataset (10%) 84 83 84 84 84 84 82
OWL-Centric Dataset OWL-Centric Test Set b 62 84 70 80 40 48 61
OWL-Centric Dataset Synthetic Data 35 41 32 48 55 45 48

a More Tricky Nos & Balanced Dataset b Completely Different Domain.

Table 3 Experimental results of proposed model

We also report the recall for the class of negatives (specificity) by calculating the
number of true negatives. Besides, we have done zero-padding to the batches of
100 queries. Thus we need to introduce another class label for zero paddings in
the training and test sets. We have not considered the zero-padding class in the
calculation of precision, recall and f-measure. Through our evaluations, however,
we have observed some missclassifications from/to this class. Thus, we report ac-
curacy as well to show the impact of any such mistakes.

To the best of our knowledge there is no architecture capable of performing de-
ductive reasoning over unseen RDFS KGs. Hence, we have used a non-normalized
embedding version of our memory network as a baseline. Our technique outper-
forms the baseline as depicted in Table 3.

A further, even more prominent advantage of utilizing our normalization model
is its training time duration. Indeed, this huge time complexity difference is because
of the notable size difference of embedding matrices in the original and normalized
cases. For example, the size of embedding matrices for the normalized OWL-
Centric dataset is 3, 033 × 20 compared to 811, 261 × 20 for the non-normalized
one (and 1, 974, 062× 20 for Linked Data which is prohibitively big). This causes
a significant decrease in training time and space complexity and hence has helped
improve the scalability of our memory networks. In the OWL-Centric dataset, for
instance, the space required for saving the normalized model is 80 times less than
the intact model (≈ 4G after compression). Nevertheless, the normalized model
is almost 40 times faster to train than the non-normalized one for this dataset.
Our normalized model trained for just a day on OWL-Centric data but achieves
better accuracy, whereas it trained on the same non-normalized dataset more than
a week on a 12-core machine.

To further investigate the performance of our approach on different datasets,
we have run our approach on multiple datasets with various characteristics. The
performance across all variations are reported in Table 3. As the table shows,
beside our strikingly good performance compared to the baseline, there are a
number of other interesting findings: Our model shows even better performance
on the Linked Data task while it has trained on the OWL-Centric dataset. We
believe that this may be because of a generally simpler structure of Linked Data,
but validating this will need further investigation. The majority of our few false
negative instances relates to the inability of our approach to learn reflexivity, that
is, to infer that any class is a subclass of itself.



16 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

Training Dataset Test Dataset
Valid Triples Class Invalid Triples Class

Accuracy
Precision Recall F-measure Precision Recall F-measure

OWL-Centric Dataset Linked Data 94 97 95 97 93 95 28
OWL-Centric Dataset (90%) OWL-Centric Dataset (10%) 85 92 88 92 83 87 76
OWL-Centric Dataset OWL-Centric Test Set a 73 80 75 80 67 71 61
OWL-Centric Dataset Synthetic Data 52 43 46 51 60 54 51

a Completely Different Domain.

Table 4 Ablation Study: No Positional Encoding

Dataset
Hop 1 Hop 2 Hop 3 Hop 4 Hop 5 Hop 6 Hop 7 Hop 8 Hop 9 Hop 10

F% D% F% D% F% D% F% D% F% D% F% D% F% D% F% D% F% D% F% D%
OWL-Centrica - 8 - 67 - 24 - 1 - - - - - - - - - - - -

OWL-Centricb 42 5 78 64 44 30 6 1 - - - - - - - - - - - -
Linked Datac 88 31 93 50 86 19 - - - - - - - - - - - - - -

Linked Data d 86 34 93 46 88 20 - - - - - - - - - - - - - -
Synthetic 38 0.03 44 1.42 32 1 33 1.56 33 3.09 33 6.03 33 11.46 31 20.48 31 31.25 28 23.65%

a Training set b Completely different domain c LemonUby Ontology d Agrovoc Ontology

Table 5 F-measure and Data Distribution over each reasoning hop

Our algorithm shows poor performance when it has trained on the OWL-
Centric dataset and tested on the tricky Linked Data. In that case our model
has classified a majority of the triples to the “yes” class and this has caused
the low specificity (recall for “no” class) of 16%. This seems inevitable since the
negative triples are very similar to the positives ones, making differentiation more
complicated. However, training the model on the tricky OWL-Centric dataset has
improved that by a large margin (more than three times).

For our particularly challenging synthetic data, performance is not as good,
and this may be the result of the unique nature of this dataset that includes
much longer reasoning chains compared to non-synthetic data. We have trained
our model only on real-world datasets; it may be interesting to investigate the
results of training on synthetic data, but that was out of scope of our work.

It appears natural to analyze the reasoning depth acquired by our network.
We hypothesize that the reasoning depth acquired by the network will correlate
with both the network depth, and the ratio of deep versus shallow steps required
to conduct the deductive reasoning. Forward-chaining reasoners iteratively apply
inference rules in order to derive new entailed facts. In subsequent iterations, the
previously derived facts need to be taken into consideration. To gain an intuition
of what our model has learned in this respect, we have emulated this symbolic
reasoner behavior in creating our test set. We first started from our input KG K0

in hop 0. We then produced, subsequently, KGs of K1,..., Kn until no new triples
are added (i.e. Kn+1 is empty) by applying the RDFS inference rules from the
specification: The hop 0 dataset contains the original KG’s triples in the inferred
axioms, hop 1 contains the RDFS axiomatic triples. The real inference steps start
with Kn where n >= 2. Table 5 summarizes our results in this setup.

Unsurprisingly, the result for synthetic data is poor. This may be because of
the huge gap between the distribution of our training data over reasoning hops
and the synthetic data reasoning hop length distribution as shown in the first row
of Table 5. From that, one can see how the distribution of our training set affects
the learning capability of our model. Apart from our observations, previous studies
[20,65,82] also acknowledged that the reasoning chain length in real-world KGs
is limited to 3 or 4. Hence, a synthetic training toy set would have to be built as
part of follow-up work, to further analyze the reasoning depth issue.

Furthermore, a naive expectation would be that each network layer would
perform processing equivalent to an inference rule application. If this is the case,
then the number of layers would limit the entailment depth the network could



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 17

Fig. 3 PCA projection of embeddings for the vocabulary

acquire. We assessed this assumption experimentally. For this purpose, we have
done 10 experiments (K=1 to 10) to assess the effect of changing the number of
computational hops on our results, over the OWL-Centric Dataset. Interestingly,
our results suggest that our model is able to get almost the same performance with
K=1, and furthermore the F-measure remains almost constant when increasing K
stepwise from 1 to 10. This shows us that multi-hop reasoning can already be
done using one-hop attention of memory networks over our training set, and that
increasing the of number of hops does not hurt performance. This suggests that
each attention hop of our network is able to conduct more than one naive deductive
reasoning step. At the same time, this also demonstrates robustness of our method
against change of its structure.

General Embeddings Visualization The PCA projections of the embedding learned
in the first memory cell of the network are shown in Figure 3. The PCA projection
reveals how the network learns to differentiate RDF/RDFS namespace relations
from the random strings assigned to entity and relational names, and that it learns
meaningful similarities between RDF/RDFS relations expected when performing
deductive reasoning.

Ablation Study We further performed an ablation study where we remove posi-
tional encoding from embeddings and compare the results to assess their impact.
The idea behind positional encoding is keeping order of elements in the triples
into account. Here instead we are using bag of words and do not take ordering of
elements in each triple into account. The results have been listed in Table 4. As
anticipated, removing the positional encoding results in a performance decrease for
all of our experiments in terms of accuracy. Indeed, through more detailed analysis



18 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

of the result for our first model, we found that it classifies all zero-paddings to the
negative class. That is the explanation for the huge gap of accuracy and f-measure
in that model. Nevertheless, removing positional encoding does not decrease the
performance for some of our experiments substantially. Indeed, this is not prac-
tically surprising in light of the fact that orderless representations have always
shown tremendous success in the NLP domain even when order matters.

4.2 Deductive Reasoning Capabilities of Logic Tensor Networks

4.2.1 Problem Setting

Logic Tensor Networks (LTNs) are meant to provide a logical framework grounded
in a vector space. However, learning in machine learning happens by reducing
errors, and the logic learned in the space might not be as perfect and consistent
as expected. Nevertheless, being able to logically query the vector space is an
important asset of LTNs that makes the model very useful under an interpretability
point of view.

In the next section we are going to evaluate LTNs on two different tasks: the
first one, deductive reasoning is meant to show how effective LTNs are as a
deductive reasoning tool. We will train LTNs and use them to infer facts about an
unseen predicate, checking how well LTNs can learn using rules. In the second task,
reasoning with pre-trained entity embeddings we will show that that it is
possible to combine LTNs with pre-trained entity embeddings [10] to account for
both logical reasoning and a more general similarity based reasoning. Eventually,
we are going to show a few more details about LTN scalability.

4.3 Evaluations

Deductive Reasoning. The first task we want to test for LTNs is deductive
reasoning: given some data in the form of instantiated axioms and a set of rules,
how well can LTNs combine these two to infer new knowledge? The experiment
we describe here has been obtained after searching for the best parameters, as
described in [9]. The results we show use the harmonic mean as aggregator, 10
dimensional embeddings and 10 neural tensor layer. All the experiments described
in this section can be replicated using code, data and parameters we release and
describe in the online repository.14

The setting we are going to consider is described in Figure 4, where we show
nodes that represent people and edges that represent parental relationships (for
example, P is parent of S and thus parent(P, S)).

Our objective in this context is another predicate, ancestor. What we want
to test is the ability of LTNs in generalizing towards this new predicate, without
having access to data that describe it: can LTNs, from the set of all parent instan-
tiated atoms and with the aid of some transitivity axioms, deduce the ancestor
relations? For example, can LTNs, after training, correctly deduce ancestor(C, S)
and ancestor(D,N)? We will refer to this set of ancestor instantiated axioms as

14 https://github.com/vinid/ltns-experiments



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 19

AC B

E

D

G FI H

M LO NQP

S

R

Fig. 4 Representation of the parental relationships in the P dataset

KBa. We also test how the model performs over the set of ancestor formulas that
require multi-hop inferences (that is, those that cannot be directly inferred from
∀a, b ∈ P : parent(a, b) → ancestor(a, b)), and those ancestors pairs for which
the parent pair is false (for example, ancestor(C, S)). We will refer to this set of
axioms as KBa

filtered. This operation is done to check if LTNs are able to pass
information from the parent predicate to the ancestor predicate and whether this
is enough to give to the network the ability to make even more complex inferences
that are related to chains of ancestors.

The representation for the ancestor predicate should be generated from knowl-
edge in the axioms, since no data about it is provided.

LTNs will thus be trained on all parent atoms and to the following universally
quantified rules. These rules are enough to complete the knowledge base in first-
order logic, and we want to see if we can do the same with LTNs.

– ∀a, b ∈ P : parent(a, b)→ ancestor(a, b)
– ∀a, b, c ∈ P : (ancestor(a, b) ∧ parent(b, c))→ ancestor(a, c)
– ∀a ∈ P : ¬parent(a, a)
– ∀a ∈ P : ¬ancestor(a, a)
– ∀a, b ∈ P : parent(a, b)→ ¬parent(b, a)
– ∀a, b ∈ P : ancestor(a, b)→ ¬ancestor(b, a)

After training, LTNs on KBa have an F1 score of 0.77. However, if we only
consider KBa

filtered, the model correctly infers 22 ancestors while generating 25
false positives, thus generating an F1 that is equal to 0.62. The network seems to
be able to fit the data well, but multi-hop inferences are still difficult to predict.

To provide a better understanding of this experiment we decided to add two
novel axioms to the previous set of axioms. The two axioms we add explicitly
describe the relationships between the two predicates:

– ∀a, b, c ∈ P : (ancestor(a, b) ∧ ancestor(b, c))→ ancestor(a, c)
– ∀a, b, c ∈ P : (parent(a, b) ∧ parent(b, c))→ ancestor(a, c)



20 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

Table 6 Ancestor completion task with different number of axioms. Value out of the paren-
theses are computed over the complete ancestor knowledge base, KBa, while those within
the parenthesis are computed only on those axiom that require require multi-hop inferences,
KBa

filtered.

Type F1 Precision Recall

Six Rules 0.77 (0.62) 0.64 (0.47) 0.96 (0.92)
Eight Rules 0.85 (0.72) 0.80 (0.66) 0.89 (0.79)

Table 6 shows what happens when we extend the previous set of rules (Six
Rules) with the two novel rules (Eight Rules), tested again on the ancestor dataset.
We use F1 measure, precision and recall as evaluation metrics. Results show that
the added rules are beneficial to the learning process. This result offers an in-
teresting point of view: adding more rules that under a logical point of view are
redundant (they can be inferred from the six rules), is helpful to a model that
is trained in a machine learning context. This is because the model will see the
examples more times, given that there are now more axioms.

Reasoning with Pre-trained Entity Embeddings. When we use logics it is
difficult to encode knowledge represented by a more general, commonsense under-
standing of the world. For example, realizing that cats are similar to tigers might
help in inferring something about cats. This fact allows for extended reasoning: if
we know that tigers are mammals, then even though we know nothing about cats
we can use its similarity to infer that also cats are mammals. This similarity can
be captured by pre-trained embeddings [55] commonly used to give a vector repre-
sentation to each word; in these embeddings words that occur in similar contexts
will have similar vectors.

However, we are interested in the embedding of logical constants. Here, we make
use of Knowledge Graph Distributional Entity Embeddings described in [10], where
Entity Embeddings (EEs) are generated from entity-to-entity co-occurrence in text
that has been annotated with an entity linker. Since both dbr:tiger15 and dbr:cat
appear in similar contexts, they will have similar vectors. These embeddings are
100-dimensional and the entities come from DBpedia.16

The question that is left to answer is: “how do we combine these embeddings
with LTNs?” LTNs treat constants as vectors and thus it is possible to use pre-
trained embeddings in place of those vectors. If we freeze these representations,
we can use LTNs in a zero-shot fashion: at test time, novel entities for which we
have an embedding can be used to test the system, even though they were never
seen in training. This makes LTNs more general and more interesting to use. All
the experiments described in this section can be replicated using code, data and
parameters we release and describe in the online repository.17

We follow this procedure to generate our reference knowledge base to test
the combination between LTNs and entity embeddings: we query the DBpedia
SPARQL endpoint for entities of the following classes: Mammal (0.38%), Fungus
(0.17%), Bacteria (0.03%), Plant (0.42%). Note that some classes are much more
frequent than others. We generate the transitive closure with respect to the pred-

15 We will use the prefix dbr: to refer to DBpedia entities.
16 https://wiki.dbpedia.org/
17 https://github.com/vinid/logical_commonsense



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 21

icates Animal, Eukaryote, and Species, collecting the class memberships for each
entity (for example, ¬mammal(dbr:cat), eukaryote(dbr:cat), species(dbr:cat) . In-
deed, we also generate all the negative instantiated atoms like, ¬fungus(dbr:cat).
Considering positive and negative instantiated atoms, the knowledge base used in
these experiments contains 35,133 elements.

We now describe the three settings that we have defined to evaluate our pro-
posal. The idea behind these three settings is to show three different aspects of
how inference can be supported by the combination of LTNs and embedded rep-
resentations.

– S1. In training, we have 1,400 positive atoms. In the test phase we ask the
models to find all the other 7,077 atoms that are exclusively related to the
entities found in the 1,400 atoms. Models have to infer something about the
instance “dbr:cat” even if the only atom that was present in the training set was
Species(dbr : cat). Objective: evaluate the performance of the algorithms in
a task in which the models have only access to positive atoms and not negative
ones.

– S2. In training, we have 7,026 atoms both positive and negatives. In the test
phase we ask the models to find all the other 20,890 atoms (positive and nega-
tive). Objective: evaluate the performance in a task in which the models can
access to both positive and negative atoms. Also, note that each entity in the
test set appears also in the training set.

– S3. In training, we have 1,756 atoms. The models are now asked to infer the
value of the rest of the entire dataset 33,377 atoms (positive and negative).
Objective: evaluate the performance in a task in which both positive and
negative atoms are given, but the test set will also contain atoms of entities
that were not present in the training set. The models will need to rely on the
pre-trained embeddings to infer the values of predicates with respect to unseen
entities.

To support logic models, we define 22 universally quantified rules that are used
to support inference, here is a sample of the rules we give to the model.

∀x(plant(x)→ eukaryote(x))

∀x(mammal(x)→ animal(x))

∀x : (mammal(x)→ Animal(x))

∀x(plant(x)→ ¬mammal(x))

∀x : (mammal(x)→ ¬plant(x))

∀x : (mammal(x)→ ¬fungus(x))

∀x : (mammal(x)→ ¬bacteria(x))

∀x : (bacteria(x)→ ¬Animal(x)

∀x(fungus(x)→ ¬animal(x))

We are going to refer to our proposed approach, the LTNs model initialized
with entity embeddings, as LTNEE .
Baseline. We consider the following three algorithms as alternative methods on
the setting we have defined:



22 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

– Simple LTN architecture not initialized with pre-trained embeddings.
– Probabilistic Soft Logic [2] will be trained on both atoms and universally quan-

tified formulas. We use the tool provided by the authors with default parame-
ters.18

– A simple deep neural network (DNN) that takes as input the entity embeddings
and it is trained to assign 0 or 1 to instantiated atoms, we explored several
architectures often obtaining similar results. The DNN separately embeds the
pre-trained representations of entities and a one-hot representation of predi-
cates in 20 dimensions, concatenates them and applies another transformation
to 1 dimension plus a sigmoid function to predict a binary score. We use 20%
of the input dataset for validation and it is used to early stop the training with
a patience of 10. The DNN is not able to use the domain theory and will need
to rely on the data.

Table 7 F1 score per tested class.

S1 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.81 0.74 0.84 0.66 0.52 0.97 1.00
LTN 0.40 0.14 0.12 0.10 0.03 0.93 1.00
PSL 0.54 0.19 0.15 0.14 0.07 0.93 1.00

S2 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.91 0.86 0.91 0.86 0.63 0.99 1.00
DNN 0.93 0.82 0.93 0.87 0.54 0.99 1.00
PSL 0.56 0.20 0.20 0.17 0.10 0.88 0.98

S3 AF1 FF1 MF1 PF1 BF1 EF1 SF1

LTNEE 0.88 0.80 0.89 0.82 0.60 0.99 1.00
DNN 0.87 0.64 0.85 0.77 0.47 0.98 1.00

In Table 7 we report the results of the various models using the F1 measure.
To give a better understanding of the results, the F1 is reported on a predicate
level.
Experiments on S1 In this setting we compare LTNEE with LTN and PSL.19

The LTNEE approach is the best performing one. Interestingly, while PSL seems
to have better results than LTN , their difference is not huge. Also note that as
simple rule-based baseline model that can use the 22 axioms we previously defined
would have been able to infer only 45% of the atoms correctly (with a 100%
precision)
Experiments on S2 In this setting, the models are trained on both positive and
negative atoms and the test set contains atoms of seen entities. PSL performance
is close to the one seen in the setting S1, and it is not at the level of the other
two models used. The performances of LTNEE and DNN are comparable. Thus,
in this settings the domain theory does not seem to provide increases in perfor-
mance. However, with LTNs we can now logically query the model, showing better
explainablity.

18 https://psl.linqs.org/
19 DNNs cannot be used because the training consists of just positive instantiated atoms, the

network would eventually just learn to output 1 for every input.



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 23

Experiments on S3 In this setting, the models are trained on both positive and
negative atoms, however the test set might contain atoms of entities that have
never been seen in the test set. The only element that can be used for inference is
the pre-trained embedding representation. LTNEE generalizes slightly better than
the DNN. It is interesting to see that the LTNEE model shows better performances
for the classes Fungus and Bacteria, even if the general F1 is lower than the one
shown in the previous setting.
After-training Inference in LTNs One last experiment we ran was meant to
show a different perspective on this kind of exploration, including axioms that are
more relevant. Table 8 reports some examples. In the first part of the table we
show results related to the task of the previous section. It is possible to see that
the model is able to effectively learn that some species are not overlapping.

Table 8 The truth values of novel axioms.

Axiom Truth

∀x(species(x)→ animal(x)) 0
∀x(eukaryote(x)→ ¬bacteria(x)) 0.73
∃x(eukaryote(x) ∧ ¬plant(x)) 1

∀x, y, z(nationality(x, y) ∧ locatedIn(y, z) → bornIn(x, z)) 0.33
∃x(nationality(x,Canada) ∧bornIn(x,Montreal)) 1

∀x(bornIn(x,New Y ork) → nationality(x, United States)) 0.88

We additionally extended this experiment by considering KG triples from DB-
pedia of the following types: nationality(Person, Country), bornIn(Person, City)
and locatedIn(City, Country). In total, we collected 200 training examples and we
defined some simple axioms like

∀x,∀y,∀z(bornIn(x, y) ∧ locatedIn(y, z)→ nationality(x, z))

to be used during training (the ones shown in the Table are not present in this
set). Even with a few training samples, it is interesting to look at the results:
LTNs can learn to reason on non-trivial properties of the data. For example, if
you are born in New York, you are American. Though this small experiment
is constrained by current implementation limitations of LTNs [8], it also shows
the promising quality of this model. These results show that the combination
of subsymbolic pre-trained information, entity embeddings, and logical reasoning
capabilities provided by LTNs are an effective way to solve completion tasks even
in contexts in which there is missing information.

4.4 Scalability

This last experiment is meant to show how long training with different combina-
tions of predicates and arguments can take with LTNs. To do this, we generate
different universally quantified rules, with a variable number of arguments and
with different predicate arity and test how long LTNs needs to do do the training
epochs. In detail, we consider n predicates with arity that goes from 1 to 3:



24 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

– ∀x : predn(x)
– ∀x, y : predn(x, y)
– ∀x, y, z : predn(x, y, z)

Also, we introduce k different constants that will be the domain of the ∀predn().
In our setting k and n will take the following values [4, 8, 12, 20, 30]. This means
that in the setting with k = 4 constants and n = 8, for predicates of arity 3 we in-
troduce 4 constants (a, b, c, d) in the model and 8 predicates (pred1, pred2, . . . , pred8)
and each predicate is universally quantified (e.g., ∀x, y, z : pred1(x, y, z)). We run
the model for 5000 epochs with an embedding size equal to 10.

4 8 12 20 30
Number of constants

4

8

12

20

30

N
um

be
r o

f p
re

di
ca

te
s 

(a
rit

y 
1)

2.6 2.7 2.8 3 3.4

3.7 3.9 4.2 4.6 5.1

5.1 5.3 6 6.1 6.5

8 8 8.4 8.9 9.9

11 12 12 13 14 4

6

8

10

12

Fig. 5 Computational times
in seconds for predicates of ar-
ity one.

4 8 12 20 30
Number of constants

4

8

12

20

30

N
um

be
r o

f p
re

di
ca

te
s 

(a
rit

y 
2)

3.3 4.5 7.5 14 28

5.1 7.1 17 31 56

6.5 9.6 18 33 66

9.7 15 27 51 1e+02

14 21 37 74 1.5e+02
25

50

75

100

125

150

Fig. 6 Computational times
in seconds for predicates of ar-
ity two.

4 8 12 20 30
Number of constants

4

8

12

20

30

N
um

be
r o

f p
re

di
ca

te
s 

(a
rit

y 
3)

6.8 24 64 2.6e+02 8.5e+02

11 39 1.1e+02 5.1e+02 1.7e+03

15 56 1.6e+02 7.3e+02 2.5e+03

23 88 2.6e+02 1.2e+03 4.1e+03

34 1.3e+02 4.1e+02 2e+03 6.5e+03

1500

3000

4500

6000

Fig. 7 Computational times
in seconds for predicates of ar-
ity three.

Figures 5, 6, 7 show the seconds needed to complete the learning phase for each
setting. These results clearly show that what impacts the most in the models is
the arity of the predicate: this requires the model to create multiple combinations
of the inputs to pass to the network, slowing the entire training procedure.

4.5 Reasoning Emulation for the Description Logic EL+

A major roadblock to progress for neuro-symbolic reasoning is that solutions and
evaluations which work well for logic, or for deep learning and machine learning,
do not work well in the opposite, and likely do not further the goal of integra-
tion. In this section we demonstrate an approach that embraces the liminality of
integrating deep learning and deductive logic. Our approach is by its very nature
ill-suited to either neural networks or logic alone. But it tries to avoid the pitfalls
of unintentionally favoring one paradigm over the other, aiming instead to grasp
at something new in the space between.

4.5.1 Problem Setting

In a deductive reasoning system the semantics of the data is known explicitly.
Why then would we want to blindly allow such a system to teach itself what is
important when we already know what and how it should learn? Possibly we don’t
know the best ways to guide a complex network to the correct conclusions, but
surely more, not less, transparency is needed for integrating logic and deep learn-
ing. Transparency often becomes difficult when we use extremely deep or complex



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 25

Table 9 EL+ Completion Rules

(1) A v C C v D |= A v D
(2) A v C1 A v C2 C1 u C2 v D |= A v D
(3) A v C C v ∃R.D |= A v ∃R.D
(4) A v ∃R.B B v C ∃R.C v D |= A v D
(5) A v ∃S.D S v R |= A v ∃R.D
(6) A v ∃R1.C C v ∃R2.D R1 ◦R2 v R |= A v ∃R.D

Table 10 Support Generation

New Fact Rule Support

Step 1 C1 v C3 (1) C1 v C2,C2 v C3

C1 v C4 (4) C1 v C2,C1 v ∃R1.C1,∃R1.C2 v C4

C1 v ∃R1.C3 (3) C1 v C2,C2 v ∃R1.C3

C1 v ∃R2.C1 (5) C1 v ∃R1.C1,R1 v R2

C1 v ∃R4.C4 (6) C1 v ∃R1.C1,R1 ◦ R3 v R4,C1 v ∃R3.C4

Step 2 C1 v C5 (2) C3 u C4 v C5,C1 v C2,C2 v C3,C1 v C2,C1 v ∃R1.C1,∃R1.C2 v C4

networks that cannot be reduced to components. It also makes things difficult
when we pre-process our data to improve results by training the system to learn
embeddings. When we do this we struggle to tell if it was the embedding or the
system itself or one of a dozen other things that might have caused an improve-
ment. In response to these and other concerns we have performed an evaluation
that tests whether a neural network is in fact capable of learning the structure,
and not just the output, of a EL+ reasoning task without assistance.

It is a well established result that any EL+ knowledge base has a least fixed
point that can be determined by repeatedly applying a finite set of completion rules
that produce all entailments of a desired type [7,43]. In other words, we can say
that reasoning in EL+ often amounts to an interconnected sequence of applications
of a set of pattern-matching rules. One such set of rules, the set we have used in
our experiment, is given in Table 9. The reasoning reaches completion when there
are no new conclusions to be made. Because people are usually interested most in
concept inclusions and restrictions, those are the types of statements we choose to
include in our reasoning.

After reasoning finishes we are able to recursively define supports for each
conclusion the reasoner reaches. The first step, of course, only has supports from
the knowledge base. After this step supports are determined by effectively running
the reasoner in reverse, and replacing each statement that is not in the original
knowledge base with a superset that is, as you can see by the colored substitutions
in Table 10. When the reasoner proved the last statement it did not consider all
of the supports, since it had already proved them. It used the new facts it had
learned in the last iteration. But we have drawn their supports back out so that
we can define a fixed set of inputs exclusively from the knowledge base.

To provide sufficient training input to our system we use a synthetic generation
procedure that combines a structured forced-lower-bound reasoning sequence with
a connected randomized knowledge base. This allows us to rapidly generate many
normal semi-random EL+ knowledge bases of arbitrary reasoning difficulty that



26 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

Initial Axioms:

C1 v C2
C2 v C3
C3 u C4 v C5

C1 v ∃R1.C1
C1 v ∃R2.C3
C2 v ∃R2.C3

C2 v ∃R1.C3
C1 v ∃R3.C4
C2 v ∃R1.C3

∃R1.C2 v C4
R1 v R2
R1 ◦ R3 v R4

Entailments Step 1:

C1 v C3
C1 v C4

C1 v ∃R1.C3 C1 v ∃R2.C1
C1 v ∃R4.C4

Entailments Step 2:

seed1 = C1 v C5

Fig. 8 First Iteration of Sequence in an Example

always use all of the EL+ completion rules. An example of one iteration of the
two-part sequence is provided in Figure 8. We also import data from the SNOMED
2012 ontology and sample connected subsets with a minimum of reasoning activ-
ity to ensure that our method is applicable to non-synthetic data. SNOMED is a
widely-used, publicly available, ontology of medical terms and relationships [22].
SNOMED 2012 has 39392 logical axioms, some of which are complex, but this can
be normalized in constant time to a logically equivalent set of 124,428 normal form
axioms. We require that the samples be connected because any normal knowledge
base is connected, and it improves the chances that the statements will have entail-
ments. The reasoning task for SNOMED is more unbalanced than for the synthetic
data. It is trivial for a reasoner to solve any EL+ knowledge base type. However,
we observe that random connected sampling tends to favor application of rules 3,
5, and 6 (see Table 9) much more heavily than others, so the neural system will
have a more difficult time learning the overall reasoning patterns. This imbalance
is likely an artifact from SNOMED because it seems to recur in different sample
sizes with different settings, though we acknowledge that it could be correlated
somehow with the sampling procedure.

4.5.2 Evaluation

Our system attempts to learn the structure of a reasoning task rather than rea-
soning answers. This is not to say we do not care about reasoning answers, or
that they do not matter. Those values are reported for our system. However if
reasoning structure is learned well enough then a system should emulate the same
behavior and correct answers should follow.

If we examine the example output from the synthetic data inputs in Table 11,
it is clear that it is getting very close to many correct answers. When it misses it
still appears to be learning the shape, and this makes us optimistic about its future
potential. The fact that most answers are close but not exact fits with our strategy
of training to learn structure rather than answers. The SNOMED predictions are
much more dense and do not fit well into a table, but we have included a few good
examples with the original data labels translated into English sentences.



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 27

Table 11 Example Synthetic Output

Correct Answer Predicted Answer

Step 0 C9 v C11 C8 v C9

C2 v C10 C1 v C9

C9 v C12 C8 v C9

C7 v C6 C8 v ∃R4.C9

C9 v ∃R4.C11 C1 v ∃R5.C9

C2 v ∃R4.C9 C8 v ∃R4.C9

C9 v ∃R5.C9 C9 v ∃R5.C9

C2 v ∃R5.C11

C9 v ∃R7.C12

C2 v ∃R6.C12

Step 1 C9 v C13 C8 v C12

C2 v C11 C2 v C10

C2 v C12 C1 v C11

C2 v ∃R4.C11 C1 v ∃R3.C12

C2 v ∃R5.C9 C1 v ∃R4.C8

C2 v ∃R7.C12

Step 2 C2 v C13 C1 v C12

Table 12 Example SNOMED Outputs

Correct Answer C6 v ∃R4.C1
Meaning if something is a zone of superficial fascia, then

there is a subcutaneous tissue that it is PartOf

Prediction C6 v ∃R4.C3
Meaning if something is a zone of superficial fascia,

then there is a subcutaneous tissue of palmar
area of little finger that it is PartOf

Correct Answer C8 v ∃R3.C2
Meaning if something is a infrapubic region of pelvis,

then there is a perineum that it is PartOf

Prediction C9 v ∃R3.C2
Meaning if something is a zone of integument,

then there is a perineum that it is PartOf

For our evaluations we use three unique edit-distance measurements. Edit dis-
tance is used because it captures the degree to which each predicted statement
misses what it should have been better than a simple accuracy number. We have a
naive “Character” Levenshtein distance function that takes two unaltered knowl-
edge base statement strings and computes their edit distance [80]. However, be-
cause some names in the namespace are one digit numbers and other names are
two digit numbers, we include a modified version of this function, called “Atomic”,
that uniformly substitutes all two digit numbers in the strings with symbols that
do not occur in either. Since there cannot be more than eight unique numbers
in two decoded strings there are no issues with finding enough new symbols. By
doing the substitutions we can see the impact that the number digits were having
on the edits from the Atomic Levenshtein distance. Finally we devise a distance
function that is based on our encoding scheme. The “Predicate” Distance method



28 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

Table 13 Average Statement Edit Distances with Reasoner

Atomic Levenshtein Distance Character Levenshtein Distance Predicate Distance

From To Average From To Average From To Average

Synthetic Data

Piecewise Prediction 1.336599 1.687640 1.512119 1.533115 1.812006 1.672560 2.633427 4.587382 3.610404

Deep Prediction 1.256940 1.507150 1.382045 1.454787 1.559751 1.507269 2.504496 3.552074 3.028285

Flat Prediction 1.344946 1.584674 1.464810 1.586281 1.660409 1.623345 2.517655 3.739770 3.128713

Random Prediction 1.598016 1.906369 1.752192 1.970604 1.289533 1.630068 5.467918 10.57324 8.020583

SNOMED Data

Piecewise Prediction 1.704931 2.686562 2.195746 2.016249 2.862737 2.439493 6.556592 5.857769 6.207181

Deep Prediction 1.759633 3.052080 2.405857 2.027190 3.328850 2.678020 4.577427 6.179389 5.378408

Flat Prediction 1.691738 2.769542 2.230640 1.948757 2.991328 2.470042 5.548226 6.665659 6.106942

Random Prediction 1.814656 3.599629 2.707143 2.094682 1.621700 1.858191 5.169093 12.392325 8.780709

Table 14 Average Precision Recall and F1-score For each Distance Evaluation

Atomic Levenshtein Distance Character Levenshtein Distance Predicate Distance

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Synthetic Data

Piecewise Prediction 0.138663 0.142208 0.140412 0.138663 0.142208 0.140412 0.138646 0.141923 0.140264

Deep Prediction 0.154398 0.156056 0.155222 0.154398 0.156056 0.155222 0.154258 0.155736 0.154993

Flat Prediction 0.140410 0.142976 0.141681 0.140410 0.142976 0.141681 0.140375 0.142687 0.141521

Random Prediction 0.010951 0.0200518 0.014166 0.006833 0.012401 0.008811 0.004352 0.007908 0.007908

SNOMED Data

Piecewise Prediction 0.010530 0.013554 0.011845 0.010530 0.013554 0.011845 0.010521 0.013554 0.011839

Deep Prediction 0.015983 0.0172811 0.016595 0.015983 0.017281 0.016595 0.015614 0.017281 0.016396

Flat Prediction 0.014414 0.018300 0.016112 0.0144140 0.018300 0.016112 0.013495 0.018300 0.015525

Random Prediction 0.002807 0.006803 0.003975 0.001433 0.003444 0.002023 0.001769 0.004281 0.002504

disassembles each string into only its predicates. Then, for each position in the
4-tuple, a distance is calculated that yields zero for perfect matches, absolute
value of (guessed number - actual number) for correct Class and Role guesses, and
(guessed number + actual number) for incorrect class and role matches. So, for
instance, guessing C1 when the answer is C2 will yield a Predicate Distance of 1,
while a guess of R2 for a correct answer of C15 will yield 17. Though this method
is specific to our unique encoding, we believe it detects good and bad results quite
well because perfect hits are 0, close misses are penalized a little, and large misses
are penalized a lot.

For each method we take every statement in a knowledge base completion and
compare it with the best match in the reasoner answer and random answers. While
we compute these distances we are able to obtain precision, recall, and F1-score
by counting the the number of times the distance returns zero and treating the
statement predictions as classifications. Each time the system runs it can make any
number of predictions, from zero to the maximum size of the output tensor. This
means that, although the predictions and reasoner are usually around the same
size, we have to generate random data to compare against that is as big as could
conceivably be needed by the system. Any artificial shaping decisions we made to
compensate for the variations between runs would invariably introduce their own
bias in how we selected them. Thus the need to use the biggest possible random
data to compare against means the precision, recall, and F1-score for random are
low.

Our system is trained using randomized 10-fold cross validation at a learning
rate of 0.0001 to 20000 epochs on the deep and flat systems and 10000 epochs
each for the parts of the piecewise system. The data in Table 14 shows the edit
distances calculated for the predictions against the correct answers, and 13 show
the precision, recall, and F1-score numbers that result from those distance calcu-
lations.



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 29

It is interesting to note that by comparing Table 14 with Table 13 we can see
that on the much harder SNOMED data the deep system appears to have a better
result because of the higher F1 score, but the average edit distance, which is our
preferred alternative measure for evaluation, is not obviously correlated with the
F1-score. This is reflective of the shift in focus from purely accuracy optimizing
systems and a more semantic type of structural learning. The “best” result will
depend on which criteria is preferred.

Fig. 9 Synthetic Training

Fig. 10 SNOMED Training



30 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

A cause for this difference may be the higher training difficulty for reaching
the completion versus reaching the supports in the SNOMED data, which you can
see in Figures 9 and 10. We can speculate on the degree to which various factors
are contributing to this by comparing the piecewise architecture we have designed
with the more traditional flat and deep systems. Forcing the network to conform to
transparency-improving strategies like the piecewise network involves many trade-
offs, some of which likely sacrifice a degree of accuracy, but for a highly structured
task like neuro-symbolic reasoning, the ability to stop halfway and inspect answers
has great potential for improving integration.

Source code and experiment data is available on GitHub.20 Additional details
can be found in the original publication [25].

5 Conclusions

This paper summarizes the authors’ contributions in the neuro-symbolic integra-
tion research direction. First in the paper we examined the capability of memory-
augmented networks in performing the RDF entailment for cross-knowledge graph
deductive reasoning. Then we evaluated the deductive reasoning capability of LTNs
over first-order fuzzy logic. Finally, we examined the strengths and weaknesses of
variations of LSTM networks for EL+ reasoning. We aim to better understand
the effectiveness of each model and the desirable properties expected with respect
to three different logics (RDF, first-order fuzzy, and EL+). Such understanding
would help pave the way for future efforts in this research direction.

Indeed, the results reported herein, while providing advances on the topic of
neuro-symbolic deductive reasoning, also expose significant gaps in both the foun-
dational methods used, and in terms of issues to be solved before practical ap-
plications can be built. For the RDFS approach, precision and recall values are
good, but scalability is far beneath practical requirements. For the LTN approach,
scalability is limited to mostly toy examples. For the EL+ approach, precision and
recall values are good enough to stimulate further investigation, but are still way
below any application needs.

There is a plethora of different deep learning approaches that could be inves-
tigated for neuro-symbolic dedcutive reasoning. The verdict is still open, though
whether deductive reasoning, at reasonable scale and precision, is a problem class
that can indeed be tackled using deep learning. On a fundamental level, deductive
reasoning is known to be formally akin to topological dynamical systems (a.k.a.,
chaotic systems) [12,3,37], and thus pose a particularly hard challenge.

Acknowledgements This work was supported by the Air Force Office of Scientific Research
under award number FA9550-18-1-0386 and by the National Science Foundation (NSF) under
award OIA-2033521 ”KnowWhereGraph: Enriching and Linking Cross-Domain Knowledge
Graphs using Spatially-Explicit AI Technologies.”

References

1. Asai, M., Fukunaga, A.: Classical planning in deep latent space: Bridging the subsymbolic-
symbolic boundary. In: S.A. McIlraith, K.Q. Weinberger (eds.) Proceedings of the Thirty-

20 https://github.com/aaronEberhart/ERCompletionReasoningLSTM



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 31

Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, Febru-
ary 2-7, 2018. AAAI Press (2018)

2. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields and
probabilistic soft logic. Journal of Machine Learning Research 18, 1–67 (2017)

3. Bader, S., Hitzler, P.: Logic programs, iterated function systems, and recurrent radial basis
function networks. J. Appl. Log. 2(3), 273–300 (2004). URL https://doi.org/10.1016/
j.jal.2004.03.003

4. Bader, S., Hitzler, P., Hölldobler, S.: Connectionist model generation: A first-order ap-
proach. Neurocomputing 71(13-15), 2420–2432 (2008)

5. Bader, S., Hitzler, P., Hölldobler, S., Witzel, A.: A fully connectionist model generator for
covered first-order logic programs. In: M.M. Veloso (ed.) IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad, India, January
6-12, 2007, pp. 666–671 (2007)

6. Bahdanau, D., Bosc, T., Jastrzebski, S., Grefenstette, E., Vincent, P., Bengio, Y.: Learning
to compute word embeddings on the fly. CoRR abs/1706.00286 (2017). URL http:
//arxiv.org/abs/1706.00286

7. Besold, T.R., d’Avila Garcez, A.S., Bader, S., Bowman, H., Domingos, P.M., Hitzler, P.,
Kühnberger, K., Lamb, L.C., Lowd, D., Lima, P.M.V., de Penning, L., Pinkas, G., Poon,
H., Zaverucha, G.: Neural-symbolic learning and reasoning: A survey and interpretation.
CoRR abs/1711.03902 (2017). URL http://arxiv.org/abs/1711.03902

8. Bianchi, F., Hitzler, P.: On the capabilities of logic tensor networks for deductive reasoning.
In: AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering
(2019)

9. Bianchi, F., Palmonari, M., Hitzler, P., Serafini, L.: Complementing logical reasoning with
sub-symbolic commonsense. In: International Joint Conference on Rules and Reasoning,
pp. 161–170. Springer (2019)

10. Bianchi, F., Palmonari, M., Nozza, D.: Towards encoding time in text-based entity em-
beddings. In: International Semantic Web Conference, pp. 56–71. Springer (2018)

11. Bianchi, F., Rossiello, G., Costabello, L., Palmonari, M., Minervini, P.: Knowledge graph
embeddings and explainable ai. arXiv preprint arXiv:2004.14843 (2020)

12. Blair, H.A., Chidella, J., Dushin, F., Ferry, A., Humenn, P.R.: A continuum of discrete
systems. Ann. Math. Artif. Intell. 21(2-4), 153–186 (1997). URL https://doi.org/10.
1023/A:1018913302060

13. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword
information. Transactions of the Association for Computational Linguistics 5, 135–146
(2017)

14. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. In: Advances in neural information processing
systems, pp. 2787–2795 (2013)

15. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating em-
beddings for modeling multi-relational data. In: C.J.C. Burges, L. Bottou, Z. Ghahramani,
K.Q. Weinberger (eds.) Advances in Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting
held December 5-8, 2013, Lake Tahoe, Nevada, United States., pp. 2787–2795 (2013)

16. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems,
techniques and applications. IEEE Transactions on Knowledge and Data Engineering
(2018)

17. Confalonieri, R., Besold, T.R., Weyde, T., Creel, K., Lombrozo, T., Mueller, S.T., Shafto,
P.: What makes a good explanation? cognitive dimensions of explaining intelligent ma-
chines. In: A.K. Goel, C.M. Seifert, C. Freksa (eds.) Proceedings of the 41th Annual
Meeting of the Cognitive Science Society, CogSci 2019: Creativity + Cognition + Compu-
tation, Montreal, Canada, July 24-27, 2019, pp. 25–26. cognitivesciencesociety.org (2019).
URL https://mindmodeling.org/cogsci2019/papers/0013/index.html

18. Consortium, W.W.W., et al.: Rdf 1.1 semantics. empty (2014)
19. Cyganiak, R., Wood, D., Lanthaler, M. (eds.): RDF 1.1 Concepts and Ab-

stract Syntax. W3C Recommendation 25 February 2014 (2014). Available from
http://www.w3.org/TR/rdf11-concepts/

20. Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar, I., Krishnamurthy, A., Smola,
A., McCallum, A.: Go for a walk and arrive at the answer: Reasoning over paths in
knowledge bases using reinforcement learning. In: International Conference on Learning
Representations (2018)



32 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

21. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Machine Learning
100(1), 5–47 (2015)

22. De Silva, T.S., MacDonald, D., Paterson, G., Sikdar, K.C., Cochrane, B.: Systematized
nomenclature of medicine clinical terms (snomed ct) to represent computed tomography
procedures. Comput. Methods Prog. Biomed. 101(3), 324–329 (2011). DOI 10.1016/j.
cmpb.2011.01.002

23. Donadello, I., Serafini, L., d’Avila Garcez, A.S.: Logic tensor networks for semantic image
interpretation. In: C. Sierra (ed.) Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pp. 1596–1602. ijcai.org (2017)

24. Dong, H., Mao, J., Lin, T., Wang, C., Li, L., Zhou, D.: Neural logic machines. In: Inter-
national Conference on Learning Representations (2018)

25. Eberhart, A., Ebrahimi, M., Zhou, L., Shimizu, C., Hitzler, P.: Completion reasoning
emulation for the description logic EL+. In: A. Martin, K. Hinkelmann, H. Fill, A. Ger-
ber, D. Lenat, R. Stolle, F. van Harmelen (eds.) Proceedings of the AAAI 2020 Spring
Symposium on Combining Machine Learning and Knowledge Engineering in Practice,
AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I, CEUR Work-
shop Proceedings, vol. 2600. CEUR-WS.org (2020). URL http://ceur-ws.org/Vol-2600/
paper5.pdf

26. Ebrahimi, M., Sarker, M.K., Bianchi, F., Xie, N., Doran, D., Hitzler, P.: Reasoning over
rdf knowledge bases using deep learning. arXiv preprint arXiv:1811.04132 (2018)

27. Fung, P., Wu, C., Madotto, A.: Mem2seq: Effectively incorporating knowledge bases into
end-to-end task-oriented dialog systems. In: I. Gurevych, Y. Miyao (eds.) Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pp. 1468–1478. Associa-
tion for Computational Linguistics (2018)

28. d’Avila Garcez, A., Lamb, L., Gabbay, D.M.: Neural-Symbolic Cognitive Reasoning.
Springer, Heidelberg (2009)

29. d’Avila Garcez, A.S., Besold, T.R., Raedt, L.D., Földiák, P., Hitzler, P., Icard, T.,
Kühnberger, K., Lamb, L.C., Miikkulainen, R., Silver, D.L.: Neural-symbolic learning
and reasoning: Contributions and challenges. In: 2015 AAAI Spring Symposia, Stanford
University, Palo Alto, California, USA, March 22-25, 2015. AAAI Press (2015). URL
http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10281

30. Grefenstette, E.: Towards a formal distributional semantics: Simulating logical calculi with
tensors. In: Second Joint Conference on Lexical and Computational Semantics (* SEM),
Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual
Similarity, pp. 1–10 (2013)

31. Grefenstette, E., Hermann, K.M., Suleyman, M., Blunsom, P.: Learning to transduce with
unbounded memory. In: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Gar-
nett (eds.) Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pp. 1828–1836 (2015)

32. Gust, H., Kühnberger, K., Geibel, P.: Learning models of predicate logical theories with
neural networks based on topos theory. In: B. Hammer, P. Hitzler (eds.) Perspectives of
Neural-Symbolic Integration, Studies in Computational Intelligence, vol. 77, pp. 233–264.
Springer (2007)

33. Hammer, B., Hitzler, P. (eds.): Perspectives of Neural-Symbolic Integration, Studies in
Computational Intelligence, vol. 77. Springer (2007)

34. Hitzler, P.: Semantic Web: A review of the field. Communications of the ACM (2021). To
appear

35. Hitzler, P., Bianchi, F., Ebrahimi, M., Sarker, M.K.: Neural-symbolic integration and the
semantic web. Semantic Web (Preprint) pp. 1–9 (2019)

36. Hitzler, P., Hölldobler, S., Seda, A.K.: Logic programs and connectionist networks. J.
Applied Logic 2(3), 245–272 (2004)

37. Hitzler, P., Hölldobler, S., Seda, A.K.: Logic programs and connectionist networks. J.
Appl. Log. 2(3), 245–272 (2004). URL https://doi.org/10.1016/j.jal.2004.03.002

38. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2
Web Ontology Language: Primer (Second Edition). W3C Recommendation 11 December
2012 (2012). Available from http://www.w3.org/TR/owl2-primer/

39. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chap-
man & Hall/CRC (2010)



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 33

40. Hitzler, P., Seda, A.K.: Mathematical Aspects of Logic Programming Semantics. Chapman
and Hall / CRC studies in informatics series. CRC Press (2011)

41. Hohenecker, P., Lukasiewicz, T.: Ontology reasoning with deep neural networks. Journal
of Artificial Intelligence Research 68, 503–540 (2020)

42. Hölldobler, S., Kalinke, Y.: Ein massiv paralleles modell für die logikprogrammierung. In:
WLP, pp. 89–92 (1994)

43. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: Elk: a reasoner for owl el ontologies. System
Description (2012)

44. Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A., Fidler, S.:
Skip-thought vectors. In: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett
(eds.) Advances in Neural Information Processing Systems 28, pp. 3294–3302. Curran
Associates, Inc. (2015)

45. Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic, vol. 4. Prentice hall New Jersey (1995)
46. Kulmanov, M., Liu-Wei, W., Yan, Y., Hoehndorf, R.: El embeddings: geometric construc-

tion of models for the description logic el++. In: Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pp. 6103–6109. AAAI Press (2019)

47. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale
knowledge base. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 529–539. Association for Computational Linguistics (2011)

48. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Interna-
tional Conference on Machine Learning, pp. 1188–1196 (2014)

49. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for
knowledge graph completion. In: B. Bonet, S. Koenig (eds.) Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA., pp. 2181–2187. AAAI Press (2015)

50. Ling, W., Dyer, C., Black, A.W., Trancoso, I., Fermandez, R., Amir, S., Marujo, L., Lúıs,
T.: Finding function in form: Compositional character models for open vocabulary word
representation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 1520–1530 (2015)

51. Makni, B., Hendler, J.A.: Deep learning for noise-tolerant RDFS reasoning. Semantic Web
10(5), 823–862 (2019). DOI 10.3233/SW-190363

52. McCarthy, J.: Epistemological challenges for connectionism. Behavioral and Brain Sciences
p. 44 (1988)

53. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity.
The Bulletin of Mathematical Biophysics 5(4), 115–133 (1943)

54. Meza-Ruiz, I., Riedel, S.: Jointly identifying predicates, arguments and senses using
markov logic. In: Proceedings of Human Language Technologies: The 2009 Annual Con-
ference of the North American Chapter of the Association for Computational Linguistics,
pp. 155–163 (2009)

55. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: Advances in neural information
processing systems, pp. 3111–3119 (2013)

56. Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., Grefenstette, E.: Differentiable
reasoning on large knowledge bases and natural language. Proceedings of the AAAI Con-
ference on Artificial Intelligence 34(04), 5182–5190 (2020). DOI 10.1609/aaai.v34i04.5962

57. Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., Rocktäschel, T.: Learning rea-
soning strategies in end-to-end differentiable proving. In: ICML (2020)

58. Neelakantan, A., Roth, B., McCallum, A.: Compositional vector space models for knowl-
edge base completion. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pp. 156–166 (2015)

59. Nguyen, D.Q., Nguyen, D.Q., Nguyen, T.D., Phung, D.: A convolutional neural network-
based model for knowledge base completion and its application to search personalization.
Semantic Web 10(5), 947–960 (2019)

60. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In:
Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp. 1532–1543 (2014)

61. Raghu, D., Gupta, N., Mausam: Hierarchical pointer memory network for task oriented
dialogue. CoRR abs/1805.01216 (2018). URL http://arxiv.org/abs/1805.01216

62. Richardson, M., Domingos, P.: Markov logic networks. Machine learning 62(1-2), 107–136
(2006)



34 M. Ebrahimi, A. Eberhart, F. Bianchi, P. Hitzler

63. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In: Interna-
tional Semantic Web Conference, pp. 498–514. Springer (2016)

64. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: I. Guyon, U. von
Luxburg, S. Bengio, H.M. Wallach, R. Fergus, S.V.N. Vishwanathan, R. Garnett (eds.)
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pp.
3791–3803 (2017)

65. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: Advances in Neural
Information Processing Systems, pp. 3788–3800 (2017)

66. Rocktäschel, T., Singh, S., Riedel, S.: Injecting logical background knowledge into em-
beddings for relation extraction. In: Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 1119–1129 (2015)

67. Serafini, L., d’Avila Garcez, A.S.: Learning and reasoning with logic tensor networks. In:
G. Adorni, S. Cagnoni, M. Gori, M. Maratea (eds.) AI?A 2016: Advances in Artificial
Intelligence – XVth International Conference of the Italian Association for Artificial In-
telligence, Genova, Italy, November 29 – December 1, 2016, Proceedings, Lecture Notes in
Computer Science, vol. 10037, pp. 334–348. Springer (2016)

68. Serafini, L., d’Avila Garcez, A.S.: Logic tensor networks: Deep learning and logical rea-
soning from data and knowledge. In: T.R. Besold, L.C. Lamb, L. Serafini, W. Tabor (eds.)
Proceedings of the 11th International Workshop on Neural-Symbolic Learning and Rea-
soning (NeSy’16) co-located with the Joint Multi-Conference on Human-Level Artificial
Intelligence (HLAI 2016), New York City, NY, USA, July 16-17, 2016., CEUR Workshop
Proceedings, vol. 1768. CEUR-WS.org (2016)

69. Serafini, L., d’Avila Garcez, A.S.: Logic tensor networks: Deep learning and logical rea-
soning from data and knowledge. In: T.R. Besold, L.C. Lamb, L. Serafini, W. Tabor (eds.)
Proceedings of the 11th International Workshop on Neural-Symbolic Learning and Rea-
soning (NeSy’16) co-located with the Joint Multi-Conference on Human-Level Artificial
Intelligence (HLAI 2016), New York City, NY, USA, July 16-17, 2016, CEUR Work-
shop Proceedings, vol. 1768. CEUR-WS.org (2016). URL http://ceur-ws.org/Vol-1768/
NESY16\_paper3.pdf

70. Shastri, L.: Advances in SHRUTI-A neurally motivated model of relational knowledge
representation and rapid inference using temporal synchrony. Appl. Intell. 11(1), 79–108
(1999)

71. Shastri, L.: SHRUTI: A neurally motivated architecture for rapid, scalable inference. In:
B. Hammer, P. Hitzler (eds.) Perspectives of Neural-Symbolic Integration, Studies in Com-
putational Intelligence, vol. 77, pp. 183–203. Springer (2007)

72. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks
for knowledge base completion. In: C.J.C. Burges, L. Bottou, Z. Ghahramani, K.Q. Wein-
berger (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Con-
ference on Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States., pp. 926–934 (2013)

73. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks. In:
C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (eds.) Advances in Neural
Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 2440–2448 (2015)

74. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif. Intell.
70(1-2), 119–165 (1994)

75. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for
simple link prediction. In: M. Balcan, K.Q. Weinberger (eds.) Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, JMLR Workshop and Conference Proceedings, vol. 48, pp. 2071–2080.
JMLR.org (2016)

76. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey of ap-
proaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

77. Wang, W.Y., Cohen, W.W.: Learning first-order logic embeddings via matrix factorization.
In: IJCAI, pp. 2132–2138 (2016)

78. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on
hyperplanes. In: C.E. Brodley, P. Stone (eds.) Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.,
pp. 1112–1119. AAAI Press (2014)



Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners 35

79. Weston, J., Chopra, S., Bordes, A.: Memory networks. In: Y. Bengio, Y. LeCun (eds.) 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings (2015). URL http://arxiv.org/abs/1410.
3916

80. Wikibooks contributors: Algorithm implementation/strings/levenshtein distance (2019
(accessed November 19, 2019)). URL https://en.wikibooks.org/wiki/Algorithm_
Implementation/Strings/Levenshtein_distance#Python

81. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning
and inference in knowledge bases. In: Y. Bengio, Y. LeCun (eds.) 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (2015). URL http://arxiv.org/abs/1412.6575

82. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge
base reasoning. In: Advances in Neural Information Processing Systems, pp. 2319–2328
(2017)


