
ON THE CAPABILITIES OF POINTER NETWORKS FOR DEEP
DEDUCTIVE REASONING

A PREPRINT

Monireh Ebrahimi
Department of Computer Science

Kansas State University
monireh@ksu.edu

Aaron Eberhart
Department of Computer Science

Kansas State University
aaroneberhart@ksu.edu

Pascal Hitzler
Department of Computer Science

Kansas State University
hitzler@ksu.edu

June 18, 2021

ABSTRACT

The importance of building neural networks that can learn to reason has been well recognized in
the neuro-symbolic community. In this paper, we apply neural pointer networks for conducting
reasoning over symbolic knowledge bases. In doing so, we explore the benefits and limitations of
encoder-decoder architectures in general and pointer networks in particular for developing accurate,
generalizable and robust neuro-symbolic reasoners. Based on our experimental results, pointer net-
works performs remarkably well across multiple reasoning tasks while outperforming the previously
reported state of the art by a significant margin. We observe that the Pointer Networks preserve their
performance even when challenged with knowledge graphs of the domain/vocabulary it has never
encountered before. To the best of our knowledge, this is the first study on neuro-symbolic reasoning
using Pointer Networks. We hope our impressive results on these reasoning problems will encourage
broader exploration of pointer networks’ capabilities for reasoning over more complex logics and for
other neuro-symbolic problems.

Keywords Neuro-symbolic reasoning · Pointer networks · Transformers · RDF reasoning · EL+

reasoning

1 Introduction

The study of architectures and methods for artificial neural networks so that they can learn and perform tasks from
the realm of logic-based knowledge representation and reasoning has a long-standing tradition Besold et al. [2017].
This research area is sometimes referred to as “neuro-symbolic integration” (or “neural-symbolic integration”) and
there are at least two primary rationales that can be found in the literature on the subject. The first is the desire to
arrive at systems that combine the robustness and trainability of artificial neural networks with the transparency and
interpretability of knowledge-based systems, while at the same time making use of structured background knowledge.
The second rationale is more prevalent in cognitive science and lies in addressing the fundamental gap between symbolic
and subsymbolic representation and processing, based on the observation that humans perceive much of their own
thinking, introspectively, as symbolic, while the physical structure of the brain gives rise to artificial neural networks as
a mathematical and computational abstraction.

Many of the earlier lines of research on neuro-symbolic integration, discussed primarily from a cognitive science
perspective, can be found in Besold et al. [2017]. Of particular interest is the integration of deep learning with logics
that are not propositional in nature, since propositional logic is of limited applicability to knowledge representation and
reasoning tasks. In the wake of deep learning breakthroughs, fundamental issues around neuro-symbolic integration
have recently received increased attention with some progress being made as new approaches emerge. In particular, there
has been progress in developing neural networks that can learn to reason. These include the Neural Theorem Prover
(NTP) and its variations Rocktäschel and Riedel [2017], Rocktäschel and Riedel [2016], Minervini et al. [2020a,b],
Logic Tensor Networks (LTN) Serafini and Garcez [2016], Bianchi and Hitzler [2019], Badreddine et al. [2020], and the
application of memory networks and LSTMs Ebrahimi et al. [2021a] and others Makni and Hendler [2019], Hohenecker

ar
X

iv
:2

10
6.

09
22

5v
1

 [
cs

.A
I]

 1
7

Ju
n

20
21

https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000

Monireh Ebrahimi et al. A PREPRINT

and Lukasiewicz [2020]. Yet, there is still much work to do in terms of new model development and investigation of
inductive bias in existing architectures and their reasoning capability.

This paper tries to fill this gap by examining the reasoning capability of pointer networks Vinyals et al. [2015] in
emulating deductive reasoning. Pointer Networks and their variations have been applied successfully to a variety of
sophisticated tasks including theoretical computer science problems (i.e., NP-hard Travelling Salesman Problem (TSP),
Delaunay Triangulation, and Convex Hull) Vinyals et al. [2015] and practical problems like abstractive See et al. [2017]
and extractive Jadhav and Rajan [2018] text summarization, code completion Li et al. [2018], and dependency parsing
Fernández-González and Gómez-Rodríguez [2020, 2019], Ma et al. [2018]. Nevertheless, almost nothing is known
about their potential for conducting logical deductive reasoning accurately. In fact, they have been mainly used for
solving discrete combinatorial optimization problems because of their variable-size output vocabulary and for resolving
the rare or out-of-vocabulary problem in Natural Language Processing. We hypothesize that using the pointer attention
to decide what elements of the input knowledge base should be chosen as the output, and in which order, will work
well for deductive reasoning tasks. Indeed, using pointer networks we can mimic human reasoning behaviour where
one can learn to choose a set of symbols in different locations and copy these symbols to suitable locations to generate
new logical consequences based on a set of predefined logical entailment rules. To verify this, here, we explore the
capabilities and limitations of pointer networks for performing deductive reasoning on Resource Description Framework
(RDF) Brickley and Guha [W3C Recommendation 25 February 2014] and EL+ Baader et al. [2005] knowledge bases
in terms of accuracy, and generalizability.Based on our experimental results, pointer networks perform remarkably well
across multiple reasoning tasks while outperforming the previously reported state of the art by a significant margin.
We observe that the Pointer Networks preserve their performance even when challenged with knowledge graphs of
the domain/vocabulary it has never encountered before. To our knowledge, this work is the first attempt to reveal the
impressive power of pointer networks for conducting deductive reasoning.

In terms of the logic, in this paper we are looking at two logics with different expressivity, power, and reasoning
difficulty. The Resource Description Framework Schema (RDFS) Brickley and Guha [W3C Recommendation 25
February 2014] is non-trivial (and non-propositional), yet one of the simplest widely used logics: It is a mature W3C
Semantic Web standard that is commonly used to express knowledge graphs and linked data Hitzler [2021], and many
corresponding data sets are freely available on the World Wide Web Rietveld et al. [2017]. The standard carries a
model-theoretic semantics which defines deductive entailment [Hayes and Patel-Schneider, W3C Recommendation
25 February 2014, Section 9.2], and reasoning over RDFS is usually done using rule-based reasoning engines. The
second logic is the description logic EL+ (or ER) Baader et al. [2005] that is the basis for the W3C standard OWL EL
Hitzler et al. [2012]. It is considered to be a rather inexpressive but practically useful logic Schulz et al. [2009] and
generally used for expressing ontologies and knowledge graph schemas Hitzler et al. [2010] particularly in medical
domain ontologies.

In short this paper strives to answer two main research questions: “Can Pointer Networks perform logical deductive
reasoning using pointer attention?”, and more generally, “Can other attention-based sequence-to-sequence models like
self-attention based popular Transformer architectures successfully perform the same task?”,“How well do pointer
network reasoners perform on completely new knowledge graphs?", and finally, “How robust is our model to noise?".
To answer these questions we conduct a set of experiments by applying pointer networks and transformers to RDFS and
EL+ reasoning tasks. We believe, the answer to our third question is particularly very important since it a very big
step toward developing accurate yet symbol-invariant deep deductive reasoners which generalize very well on unseen
knowledge bases of differing domain or vocabulary. The contributions of this work are fourfold:

1. A novel paradigm for viewing a symbolic reasoning problem as a pointing problem.

2. Pointer Networks are used to neurally resolve symbolic reasoning for the first time.

3. The proposed approach is able to transfer its reasoning ability to new domain/vocabulary knowledge graph of
same logic.

4. We report the state-of-the-art performance of the EL+ and RDF reasoning.

The remainder of the paper is organized as follows. In Section 2 we discuss related research efforts, more precisely an
overview of recent work on deep deductive reasoning over RDFS, EL+, and other logics, followed by a list of various
tasks where pointer networks have been effectively applied. In Section 3, we concretely present the deep learning
architecture and the logics we used. In Sections 4, we present an experimental evaluation of our approach and discuss
our findings. We conclude and discuss future work in Section 5.

2

Monireh Ebrahimi et al. A PREPRINT

2 Related Work

2.1 Deep Deductive Reasoning

Training artificial neural networks to learn deductive reasoning is a hard machine learning task that was out of reach
before the advent of deep learning. In the last few years, several publications have shown that deep deductive reasoning
– using deep learning methods – is possible. We will briefly review the core body of existing work. As we will see, it
remains a hard task, even for deep learning.

Before we do so, though, let us point out that our work is different from what is usually called knowledge graph
completion, or the study of knowledge graph embeddings, although we deal with logics relevant for knowledge
graphs Hitzler [2021]: Knowledge graph completion (sometimes called link prediction or knowledge graph refinement)
Paulheim [2017] refers to enriching a knowledge graph with additional relationships that are statistically induced,
sometimes using machine learning methods. In contrast to this, we are studying deductive reasoning, which is not
based on statistics or likelihood, but based on a mathematical, logical calculus that derives additional statements which
were already implicit – in a mathematically precisely defined sense – in the statements already made. Deductive
inference tasks are usually hard computationally (e.g., for propositional logic, it is NP-complete), and are traditionally
addressed using complex but provably correct algorithms – correctness in this sense is in relation to the underlying
mathematical definitions that determine what is, and what is not, a deductive logical consequence. The study of
knowledge graph embeddings Ristoski et al. [2019], in isolation, is about the learning of representations of knowledge
graphs in multi-dimensional Euclidean space. While embeddings are often a component of deep deductive reasoning
systems, our goal is the overall functionality of deep deductive reasoning, and not just knowledge graph embeddings in
isolation.

A good overview of existing deep deductive reasoning work is Ebrahimi et al. [2021a]. It appears to be appropriate to
distinguish between the different logics that are addressed in the literature, the reasonable assumption being that less
complex logics are easier to learn, and this resonates with the as yet limited body of work. We refer to Hitzler et al.
[2010] for background on all the mentioned logics. We know about investigations of RDFs Ebrahimi et al. [2021b],
Makni and Hendler [2019], of EL+Eberhart et al. [2020], of OWL RL Hohenecker and Lukasiewicz [2020], and of
first-order predicate logic (FOL) Bianchi and Hitzler [2019].

paper logic transfer generative scale performance
Ebrahimi et al. [2021b] RDFS yes no moderate high

Makni and Hendler [2019] RDFS no yes low high
Eberhart et al. [2020] EL+ yes yes moderate low

Hohenecker and Lukasiewicz [2020] OWL RL no* no low high
Bianchi and Hitzler [2019] FOL no yes very low high

Table 1: Overview of published deep deductive reasoning work. See the main text for details on the columns. no*
indicates that the paper claims that transfer is possible in principle, but it was not demonstrated or evaluated to what
extent transfer really happens.

We give an overview of the key aspects of each of these in Table 1 – we admit that some interpretations in this table
may be somewhat subjective. The column “transfer" indicates whether the system was demonstrated to have a good
transfer capability to previously unknown and very different knowledge bases. The column “generative" indicates
whether the system generates all (under certain finiteness constraints) deductive inferences in one run – if not, then it
would usually be query-based, i.e. it would be able to tell whether a given logical expression is a logical consequence
of the knowledge base. The column “scale" indicates how large the input knowledge bases were in the experiments,
ranging from a few logical statements as in the FOL case to RDF graphs with 1,000 triples in Ebrahimi et al. [2021b].
The column “performance" indicates how well the system learned to reason; “high" indicates 70% or more in terms of
f-measure, while “low" indicates values just a bit better than random guessing.

For a deep deductive reasoner, we would ideally like to have it on an expressive logic, with transfer, generative, at
massive scale, and with high performance. For all the referenced works, except the FOL one, the scale aspect has not
been systematically explored yet; for the FOL case, it does look rather unfavorable as discussed in Bianchi and Hitzler
[2019]. Otherwise, it is important to note that only one of the works is both generative and able to transfer, however this
was also the system with very low performance. As we will see, our new approach we report on in this paper is able to
do transfer and is generative, with high performance. This is the key contribution of this paper.

3

Monireh Ebrahimi et al. A PREPRINT

2.2 Pointer Networks

Pointer Networks and their variations have been applied successfully to a variety of sophisticated tasks including
theoretical computer science problems (i.e., NP-hard Travelling Salesman Problem (TSP), Delaunay Triangulation,
and Convex Hull Vinyals et al. [2015] as well as 0–1 Knapsack problem Gu and Hao [2018]) and practical problems
like abstractive See et al. [2017] and extractive Jadhav and Rajan [2018] text summarization, code completion Li et al.
[2018], dependency parsing Fernández-González and Gómez-Rodríguez [2020, 2019], Ma et al. [2018], named entity
boundary detection Li et al. [2019], conversation disentanglementYu and Joty [2020], anaphora resolution Lee et al.
[2017], paragraph ordering Pandey and Chowdary [2020], paraphrase generation for data augmentation Gupta and
Krzyzak [2020], entity linking Banerjee et al. [2020], and airline itinerary prediction Mottini and Acuna-Agost [2017].
Nevertheless, almost nothing is known about their possible application and ability for conducting logical deductive
reasoning accurately. In fact, they have been mainly used for solving discrete combinatorial optimization problems
because of their variable-size output vocabulary and for resolving the rare or out-of-vocabulary problem in Natural
Language Processing.

3 Methodology

In order to explain more formally what we are setting out to do, let us first re-frame our entailment problem as an
input-output mapping task: Given some logic L, for each theory T over L, the set c(T) = {F | T |=L F} of all
formulas over L that are entailed by T ; we call c(T) the completion of T . We can then attempt to train a neural network
to produce c(T) for any given T over L, i.e., we would use pairs (T, c(T)) as input-output training pairs for a generative
deep deductive reasoner.

3.1 Logics

RDF The Resource Description Framework RDF, which includes RDF Schema (RDFS) Cyganiak et al. [2014],
Hitzler et al. [2010] is an established and widely used W3C standard for expressing knowledge graphs. The standard
comes with a formal semantics1 that defines an entailment relation. An RDFS knowledge base (KB) is a collection of
statements stored as triples (e1, r, e2) where e1 and e2 are called subject and object, respectively, while r is a binary
relation between e1 and e2. In the context of RDF/RDFS, the triple notation (e1, r, e2) is more common than a notation
like r(e1, e2) as it is suggestive of a node-edge-node piece of a labelled graph, and so we will use the triple notation.

As a logic, RDFS is of very low expressivity and reasoning algorithms are very straightforward. In fact, there is a small
set of thirteen entailment rules Consortium et al. [2014], fixed across all knowledge graphs, which are expressible using
Datalog.2 These thirteen rules can be used to entail new facts.

Table 2: Selected RDFS Completion Rules

(x, rdfs:subClassOf, y), (y, rdfs:subClassOf, z) |= (x, rdfs:subClassOf, z) (1)
(x, rdfs:subPropertyOf, y), (y, rdfs:subPropertyOf, z) |= (x, rdfs:subPropertyOf, z) (2)

(x, rdfs:subClassOf, y), (z, rdf:type, x) |= (z, rdf:type, y) (3)
(a, rdfs:domain, x), (y, a, z) |= (y, rdf:type, x) (4)
(a, rdfs:range, x), (y, a, z) |= (z, rdf:type, x) (5)

Table 2 shows examples for some of these entailment rules. The identifiers x, y, z, a are variables. The remaining
elements of the triples are pre-fixed with the rdfs or rdf namespace (a concept borrowed from XML) and carry a specific
meaning in the formal semantics of RDFS. E.g., rdfs:subClassOf indicates a sub-class (or sub-set) relationship, i.e. Rule
1 states transitivity of the rdf:subClassOf binary relation. Likewise, in Rule 2, (x, rdfs:subPropertyOf, y) indicates that
x, y are to be understood as binary relations, where x is a restriction (called a subproperty) of y. In Rule 3, the triple
(z, rdf:type, x) indicates that z is a member of the class (or set) x. In Rules 4 and 5, rdfs:domain and rdfs:range indicate
domain respectively range of a, which is to be interpreted as a binary relation. The rules are applied exhaustively on an
input RDF knowledge base, i.e. inferred triples are added and then rule execution continues taking the new triples also
into account.

1In fact, it comes with three different ones, but we have only considered the most comprehensive one, the RDFS Semantics.
2Datalog is equivalent to function-free definite logic programming Hitzler and Seda [2011].

4

Monireh Ebrahimi et al. A PREPRINT

EL+ The standard reasoning task over EL+ is called classification and can be understood as the computation of all
formulas of the form ∀x(p(x)→ q(x)) entailed by the given theory, and the set of all these formulas, which is called
the completion of the input theory, is finite if the input theory is finite.

Formally, let NC be a set of atomic classes (or concepts, or class names), let NR be a set of roles (or properties), and let
NI be a set of individuals. Complex class expressions (or simply complex classes or classes) in the description logic
EL+ are defined by the grammar

C ::= A|C1 u C2|∃R.C,

where A ∈ NC , R ∈ NR, and C1, C2, and C are complex class expressions. A TBox in EL+ is a set of general class
inclusion axioms (or TBox statements) of the form C v D, where C, D are (complex) classes. We use C ≡ D as
abbreviation for the two statements C v D and D v C. An RBox in EL+ is a set of general role inclusion axioms
(or RBox statements) of the form R1 ◦ · · · ◦ Rn v R, where R, Ri ∈ NR (for all i). An EL+ knowledge base (or
ontology) is a set of TBox and RBox statements.

EL+ is in fact a fragment of first-order predicate logic: all statements can be translated into it, and the inherited
semantics is exactly the first-order predicte logic semantics – details can be found in Hitzler et al. [2010]. Classification
is known to be P-complete.

An EL+ normal form knowledge base contains only axioms of the following forms.

C v D C1 u C2 v D C v ∃R.D

∃R.C v D R1 v R R1 ◦R2 v R

As usual, every EL+ knowledge base can be cast into normal form in polynomial time, and such that it suffices to
perform classification over the normal form knowledge base.

Given an EL+ knowledge base K in normal form, the completion comp(K) of K can for example be obtained from K
by exhaustively applying the completion rules from Table 3. There are of course different ways to perform classification
using reasoning algorithms, e.g. reasoning can also be encoded using a larger number of Datalog rules which remain
fixed across input theories Krötzsch [2011]. So on the surface this seems similar to RDFS reasoning. However EL+

as a logic has a different look and feel: RDFS reasoning focuses on the derivation of new facts from old facts, while
EL+ is about the processing of schema knowledge, in particular subclass relationships, in the presence of existential
quantification (which is completely absent from RDFS). The transformation into Datalog reasoning is also more
complicated than for RDFS.

Table 3: EL+ Completion Rules

(1) A v C C v D |= A v D
(2) A v C1 A v C2 C1 u C2 v D |= A v D
(3) A v C C v ∃R.D |= A v ∃R.D
(4) A v ∃R.B B v C ∃R.C v D |= A v D
(5) A v ∃S.D S v R |= A v ∃R.D
(6) A v ∃R1.C C v ∃R2.D R1 ◦R2 v R |= A v ∃R.D

3.2 Pointer Networks

Pointer networks is an encoder-decoder architecture based model which uses attention as a pointer to choose an
element of the input in each decoding time step. The remarkable main advantage of this model compared to other
sequence-to-sequence models like Transfromers is that the learned models generalize beyond the maximum lengths that
they were trained on. Thus, they were initially proposed to generate a correct variable size output sequence, given an
input sequence consisting of a variable size combinatorial optimization problem. Amazingly, it has even outperformed
the fixed input size problem baseline, showing its potential to be used in wider applications.

Inspired by the above-mentioned advantages, here we have used pointer networks to copy the symbols from the
knowledge base via pointing to generate logical consequences.

In our corpus, each knowledge graph and its completion denoted as (T, c(T)) comprises the sequence of symbols.
Given the (T, c(T)) pair, we are feeding the pointer network with (T , C(T)′) where T = {T1, ..., Tn} is a sequence
of n symbols each refer to an element in our input knowledge graph and C(T)′ = {c(T1)

′, ..., c(Tm)′} is a sequence
of m indices each between 1 and n. The sequence-to-sequence model then computes the conditional probability
p(c(Ti)

′|c(T1)
′, ..., c(Ti−1)

′, T) changing the Bahdanau Bahdanau et al. [2015] attention to the pointer attention as

5

Monireh Ebrahimi et al. A PREPRINT

Figure 1: EL+ Completion Rule (1): "(a) Sequence-to-Sequence - An RNN (green) processes the input sequence to
create a code vector that is used to generate the output sequence (purple) using the probability chain rule and another
RNN. (b) Ptr-Net - An encoding RNN converts the input sequence to a code (green) that is fed to the generating network
(purple). At each step, the generating network produces a vector that modulates a content-based attention mechanism
over inputs. The output of the attention mechanism is a softmax distribution with dictionary size equal to the length of
the input."

follows:

ui
j = vT tanh(W1ej +W2di) for j ∈ (1,, n) and (6)

p(c(T)′i|c(T)′1, ..., c(T)′i − 1, T) = Softmax(ui), (7)

where (e1, ..., en) and (d1, ..., dm) denote the encoder and decoder hidden states respectively, and v, W1, and W2 are
learnable parameters of the output model. The softmax

Softmax(ui) =
e(ui)∑
j e

(uj)

normalizes the vector ui of length n to be an output distribution over the dictionary of inputs. Indeed the model uses ui
j

as pointers to the input symbols.

4 Experimental Setup

In this section, we describe the detail of datasets, training process, the baseline models, and the performance of our
proposed model in terms of correctness, and generalizability in comparison to existing baselines.

4.1 Datasets

We evaluate different approaches on two benchmarked datasets:

EL+Dataset To provide sufficient training input to our network we followed the same synthetic generation procedure
as proposed in Eberhart et al. [2020] that combines a structured forced-lower-bound reasoning sequence with a connected
randomized knowledge base. This allows us to rapidly generate many normal semi-random EL+knowledge bases of
arbitrary reasoning difficulty. For this experiment we choose the knowledge bases of size 40, 50, and 120 statements with
a moderate difficulty setting so that it can compare with nonsynthetic data. To ensure that the randomized statements do
not shortcut this pattern, the random statements are generated in a nearly disjoint space and connected only to the initial
seed term. This ensures that at least one element of the random space will also produce random entailments for the
duration of the sequence, possibly longer. Our procedure also guarantees that each completion rule will be used at least
once every iteration of the sequence so that all reasoning patterns can potentially be learned by the system. An example
of a graph and its corresponding inference in our EL+dataset is demonstrated in Table 4.

RDF Dataset For testing the capability of our model in conducting RDF reasoning we are using the same two datasets
used in Makni and Hendler [2019] namely a synthetic dataset from "Lehigh University Benchmark (LUBM) Guo et al.

6

Monireh Ebrahimi et al. A PREPRINT

C0 v C0
C1 v C1
C2 v C2
C3 v C3
C4 v C4
C5 v C5
C6 v C6
C7 v C7
C8 v C8
C9 v C9
C10 v C10
C11 v C11
C12 v C12
C13 v C13
C2 v C9
C4 v C2
C8 v C0
C9 v C10
C10 v C11
C0 u C1 v C7
C3 u C6 v C8
C11 u C12 v C13
C1 v ∃R1.C9
C3 v ∃R3.C6
C9 v ∃R4.C9
C9 v ∃R5.C11
C9 v ∃R6.C12
C9 v ∃R6.C12
C10 v ∃R4.C11
C10 v ∃R5.C11
∃R2.C3 v C0
∃R3.C7 v C4
∃R4.C10 v C12
R4 v R5
R2 v R0
R4 ◦R6 v R7
R3 ◦R0 v R2

C2 v C10
C2 v C11
C2 v C12
C2 v C13
C4 v C9
C4 v C10
C4 v C11
C4 v C12
C4 v C13
C9 v C11
C9 v C12
C9 v C13
C2 v ∃R4.C9
C2 v ∃R4.C11
C2 v ∃R5.C9
C2 v ∃R5.C11
C2 v ∃R6.C12
C2 v ∃R7.C12
C4 v ∃R4.C9
C4 v ∃R4.C11
C4 v ∃R5.C9
C4 v ∃R5.C11
C4 v ∃R6.C12
C4 v ∃R7.C12
C9 v ∃R4.C11
C9 v ∃R5.C9
C9 v ∃R7.C12

Table 4: EL+ Knowledge Graph & Inference Knowledge Graph

[2005] and a real-world Scientist dataset from DBpedia. Essentially, the mission for our deep reasoner is to learn the
mapping between input RDF graphs and their inference graphs generated using Apache Jena API Carroll et al. [2004]
-a state of the art tool for RDF and OWL reasoning -. The first dataset is created on top of LUBM ontology developed
for benchmarking Semantic Web knowledge base systems with respect to use in large OWL applications including
deductive reasoning. It conceptualizes 42 classes from the academic domain with 28 properties relating these classes.
Using Univ-Bench Artificial Data Generator (UBA) 3, they yielded LUBM1 containing one hundred thousand triples
with 17189 subject resources within 15 classes. For each resource r in the set of these subject-resources, a graph g
(graph description of the resource r) is created by executing the following SPARQL Query:

DESCRIBE <r>

For each knowledge graph g then they have obtained an inference graph i based on the LUBM ontology using Apache
Jena API for applying the RDF inference rules covered partially in Table 2.

The second dataset namely "Scientists" is a real-world dataset including ' 5.5million triples describing 25760 URIs
of scientists obtained by applying following SPARQL query against DBpedia Auer et al. [2007] endpoint:

prefix dbo: <http://dbpedia.org/ontology/>

3http://swat.cse.lehigh.edu/projects/lubm/

7

Monireh Ebrahimi et al. A PREPRINT

select distinct ?scientist
where {
?scientist a dbo:Scientist .
}

The dataset also includes a few other classes related to the Scientist concept in DBpedia i.e., University and Award
related based on set of relationships. For the sake of our evaluations we will conduct our evaluations in each of these
classes datasets separately. For a more detailed description and statistics of these two datasets please see Makni and
Hendler [2019].

We split each dataset in a ratio of 80%− 10%− 10% for training, validation, and testing.

4.2 Training Details

The core of our experiments comprises training a sequence-to-sequence based model trained on large set of knowledge
bases and completions pairs (T, c(T)). We use two single layer LSTMs of 128 hidden units each: an LSTM encoder
for encoding the knowledge graph and and the Pointer LSTM for generating the completion via pointing to the input
knowledge base symbols. It has been trained with stochastic gradient descent, batch size of 100, random uniform weight
initialization from -0.08 to 0.08, and L2 gradient clipping of 2.0. The Adam optimizer was used with an initial learning
rate of 0.1. Depending on the maximum knowledge base and completion sizes in our dataset various maximum input
sequence lengths and the maximum output lengths have been enforced for each of our experiments.

4.3 Input Representation Details

Tokenization For the tokenization of the text we experiment with both Whitespace tokenizers and SubWordText
tokenizers Sennrich et al. [2016]. Tokenization of the text is the process of splitting the text into meaningful chunks
called tokens. We believe that experimenting with different types of tokenization not only change the accuracy of our
results but also gives us better understanding about the nature of reasoning and generalization ability of our network.
SubWordText tokeinzer, which works based on variant of byte pair encoding segmentation algorithm Gage [1994],
translates rare words into smaller units than words. As an example, SubWordText tokenizer tokenizes the triples below
into {"http", "www", "department2", "university0", ... } while the Whitespace tokenizer splits each triple into subject,
predicate, and object.

<http://www.Department2.University0.edu/GraduateStudent1>
<http://swat.cse.lehigh.edu/onto/univ-bench.owl#takesCourse>
<http://www.Department2.University0.edu/GraduateCourse0> .

It is worth noting that since the symbols in our synthetic EL+ dataset follow the [A− Z]\d+ regular expression both
Whitespace and SubWordText tokenizers will lead to the almost same tokens splitting for EL+ and hence will not
change the results for EL+.

Normalization To analyze the deductive reasoning capability of our network as opposed to the inductive reasoning
capability usually obtained by learning a good representation of entities during the training or in the pre-training phase
here we use the normalizationEbrahimi et al. [2021b], Evans et al. [2018]. Unlike inductive reasoning, in the deductive
reasoning the names of entities are insubstantial and should not be leveraged by the reasoner. In EL+the logical operators
(v,∃, ◦,u, .) are the only elements of the language in each knowledge base that have consistent implicit semantics
across knowledge bases. In this sense, two entailments "A v C, C v D |= A v D" and "P v Q, Q v R |= P v R"
should be treated as equivalent by the ideal reasoner. Similarly for RDF reasoning, the actual names (as strings)
of entities from the underlying logic such as variables, constants, functions, and predicates are insubstantial and
should not ideally be captured by model. The only elements of the language in each knowledge base that have
consistent implicit semantics across the knowledge bases here are the RDF and RDFS controlled vocabulary. Hence,
two entailments "(a, rdfs:domain, x), (y, a, z) |= (y, rdf:type, x)" and "(b, rdfs:domain, p), (q, b, r) |= (q, rdf:type, p)"
should be ideally considered as equivalent for logical entailment. Therefore, consistent renaming across a theory should
not change the set of entailed formulas (under the same renaming). To encourage models to capture this invariance, we
should either provide the term-agnostic input to our model or implement a term-agnostic strategy for the reasoning. To
implement the former we use syntactic normalization: a renaming of primitives from the logical symbols to a set of
predefined entity names that are used across different normalized theories. By randomly assigning the mapping for the
renaming, the network’s learning will be based on the structural information within the theories, and not on the actual
names of the primitives. Note that this normalization not only plays the role of “forgetting” irrelevant label names, but
also makes it possible to transfer learning from one KB to the other. Indeed, the network can be trained with many

8

Monireh Ebrahimi et al. A PREPRINT

KBs, and then subsequently tested on completely new ones. To do so, for RDFS reasoning, we normalize all the triples
within the knowledge graph by systematically renaming all URIs which are not in the RDF or RDFS namespaces. Each
such URI is mapped to a set of arbitrary strings in a predefined set A = {a1, ..., an}, where n is number of entities in
our largest KB. Note that URIs in the RDF/RDFS namespaces are not renamed, as they are important for the deductive
reasoning according to the RDFS model-theoretic semantics. Consequently, each normalized RDFS KB will be a
collection of facts stored as set of triples {(ai, aj , ak)}. Similarly, for the EL+ we have generated our syntactic dataset
randomly such that only logical operators have consistent semantic meaning across the knowledge graphs. For the latter,
later in Section 4.6 we show that - unlike most of the deep learning architectures which mostly rely on learning the
symbols’ representations - Pointer Network is inherently symbol-invariant and hence we do not need to apply such
normalization to the input for Pointer Networks.

4.4 Baselines

Transformers With the recent shift towards using Transformer methods in a variety of tasks and their tremendous
success, achieving the state-of-the-art in tasks such as language modeling and machine translation, we believe that it is
important to assess their capability in conducting reasoning over the EL+ and RDFS deductive reasoning tasks. As such,
for our baseline model, we use a standard vanilla encoder-decoder Transformers as proposed in Vaswani et al. [2017].
The transformer architecture is merely based on self-attention mechanism and is very parallelizable. It follows with
the Encoder-Decoder framework in that, given an input sequence, the network obtain a continuous representation of it
based on the context and decode that context-based representation into the output sequence. It replaces the LSTMs with
Self-Attention layer and encodes the order using the sinusoidal Positional Encodings. Our network stacks 2 encoder
blocks on top of each other where each block consists of 2 sub-layers, a multi-head self-attention mechanism and a
position-wise dense feed-forward network. Around each sub-layer a residual connection is employed followed a layer
normalization. The 2 decoder blocks has the same structure except it contains an additional multi-head attention layer
that applied on the output of an encoder block. The multi-head attention that works on output representations masks all
subsequent positions and the output embeddings are shifted right by one position so that a prediction for the current
step depends only on previously predicted known outputs.

All embedding layers and all sub-layers in the model produce outputs of size 512. Our Transformer trainer uses the
teacher-forcing strategy where the target output gets passed to the next time step regardless of model’s prediction at the
current time step. The Rectified Linear Unit (ReLU) has been used as our activation function. The batch size has been
set to 64 and the multi-head attention consist of 8 heads. The dropout with rate Pdrop = 0.1 has been applied to the
output of each sub-layer and also to the embeddings summation and the positional encodings in both the encoder and
decoder stacks.

Graph Words Translation defines layering RDF graphs for each of the relations in the ontology and encoding them
in the form of 3D adjacency matrices where each layer layout forms a graph word. Each input graph and its entailments
are then represented as sequences of graph words, and RDFS inference can be formulated as sequence-to-sequences
problem, solved using neural machine translation techinques. In an effort to understand the benefits and drawbacks
of our method compared to Graph words Translation Makni and Hendler [2019] -current state-of-the-art method in
RDF Reasoning-; here we report our results on the same dataset. Our results show Pointer Networks outperform Graph
Words Translation.

Piece-Wise LSTM A deductive reasoning involves the learners being given the general rule of entailment in the
language, which is then applied to specific knowledge base iteratively. It involves a set of intermediate results added at
each step to the original knowledge base until we cannot generate any new statement. The Piece-Wise LSTM and its
variants proposed in Eberhart et al. [2020] strive to emulate this reasoning steps by mapping them to each time step
in an LSTM learner. To our knowledge, this is the only work has been done for emulating deductive reasoning for
EL+logic. As such, here we use the same procedure for generating our data and compare our result. Our finding show
Pointer Networks outperform Piece-Wise LSTM and its variants by a huge margin.

LSTM Decoder As an ablation study, we replace the Pointer LSTM decoder in our encoder-decoder architecture
with vanilla LSTM and evaluate its performance. This gives us a clear understanding on the contribution of the Pointer
attention in our proposed model.

4.5 Correctness

In order to reflect how well our Pointer Networks have learned to conduct the reasoning task accurately; here we
report the exact matching accuracy for this model and compared that to the above baselines as shown in 5. As

9

Monireh Ebrahimi et al. A PREPRINT

Table 5: Exact Match Accuracy Results

Logic KG Size
Pointer Networks Transformer

LSTMSubWordText Tokenizer Normalized Not-Normalized
SubWordText Tokenizer

RDF 3 - 735 87% 99% 5% 25% 4% 0.17%

ER
40 73% 73% 8% 8% 0.4 % 0%
50 68% 68% 11% 11% 0.3% 0%
120 49% 49% 15% NA NA 0%

Table 6: Exact Match Accuracy Results for Transfer Learning/Representation: SubWordText Tokenization Encoding

Train
Test LUBM Awards University

LUBM * 75% 78%
Awards 79% * 77%
University 81% 82% *

we can see from the table, our Pointer network model has performed very well (99% accuracy) in conducting the
RDF reasoning outperforming the state-of-the-art results obtained by Graph Words Translation Makni and Hendler
[2019](98% accuracy). Later, we show another advantage of Pointer Networks over Graph Words Translation namely its
generalization capability to unseen domains. There is also an added benefit that Pointer Networks can be easily applied
to any reasoning problems by defining that as "input knowledge base to inferred knowledge base mapping problem". In
Graph Words Translation case, however, the network is specifically designed and tailored for RDF reasoning. Compared
to the Transformer, our method has shown extraordinarily better accuracy showing clear significant performance gain
of Pointer attention over self-attention in conducting the neuro-symbolic reasoning. The very poor performance of
our vanilla encoder-decoder LSTM network further corroborate the benefits of using Pointer attentions. Finally, it
is worth noting that the random guess is only accurate 2.8e-07% of the time for RDF reasoning over LUBM dataset
demonstrating how difficult this task is.

Similarly, for EL+ reasoning task, our proposed model performs extraordinarily well across all the dataset, and achieves
much better results achieving 73% accuracy as opposed to 0.16% accuracy reported in Eberhart et al. [2020]. Similarly
to our RDF reasoning experiments, here, we found our Pointer attention based method has shown extraordinarily better
accuracy compared to the self-attention based Transformers and the vanilla encoder-decoder LSTM network.

4.6 Generalizability: Zero-Shot Reasoning

Table 7: Exact Match Accuracy Results for Transfer Learning/ Representation: Whitespace Tokenization Encoding

Train
Test LUBM Awards University

LUBM * 61% 47%
Awards 96% * 84%
University 82% 88% *

Using the pointer networks for simply copying from the input knowledge base to the completed one might seem
simple. Despite their simple nature, the generalizability that they can provide is far more intricate and in our interest.
Indeed, the main goal of this paper is to demonstrate the general symbol/naming-invariant reasoning learning capability
of Pointer Networks when they encounter with the knowledge graph of the new domain/vocabulary in the testing
phase. This ensures the model has gained the deep understanding of the logical semantics and reasoning as opposed to
merely working based on the representation learning and induction. As such, we measured exact matching accuracy of
the results yielded by Pointer Networks when trained on one domain and tested on another without fine-tuning i.e.,
zero-shot . The results for its transfer capability for RDFS reasoning is shown in Tables 6 and 7, while for the EL+

the results in Table 5 already shown this capability. Based on the table, Pointer Network gives surprisingly good and
consistent empirical results when it comes to transfer learning. Indeed, Pointer Networks have several desirable inherent
characteristics leading into this transfer learning behaviour. They are capable of dealing with dynamic vocabulary
length as opposed to fixed vocabulary output, dealing with rare or out-of-vocabulary word, and heavy-tailed vocabulary
distribution.

10

Monireh Ebrahimi et al. A PREPRINT

Additionally, to further understand the nature of how Transformers learn to reason?, we have applied normalization and
various tokenization on our RDF dataset and examined the change in the accuracy. Not surprisingly, unlike Pointer
Networks, Transformers are very sensitive to the changes of tokenization and the normalization. This is mainly because
Transformers heavily rely on the subsymbolic representation of entities and relations learned by the network. Indeed the
power of Transformers mainly comes from their self/intra-attention module primarily used to learn the representation
of the tokens in the input based on their relations with other tokens. This explains why our baseline Transformer
model tends to obtain its highest accuracy when trained on not-normalized SubWordText encoded RDF knowledge
base. This way, the network can learn much better representation for the symbols in the knowledge base which leads to
better reasoning accuracy. Unsurprisingly, the normalization decreases the accuracy of the Transformer showing poor
symbol-invariant reasoning capability, as indicated in the Normalized column in Table 5.

5 Conclusion & Future Works

We have shown that a deep learning architecture based on pointer networks is capable of learning how to perform
deductive reason over RDFS and EL+ KBs with high accuracy. We designed a novel way of conducting neuro-symbolic
through pointing to the input elements. More importantly we showed that the proposed approach is generalizable
across new domain and vocabulary demonstrating symbol-invariant zero-shot reasoning capability. We plan to properly
investigate scalability of our approach and to adapt it to other, more complex logics. We furthermore intend to investigate
the added values which should arise out of adding subsymbolic deductive reasoning components to more traditional deep
learning scenarios, in particular in the areas of knowledge graph inference and natural-language-based commonsense
reasoning.

References
Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe

Kühnberger, Luis C Lamb, Daniel Lowd, Priscila Machado Vieira Lima, et al. Neural-symbolic learning and
reasoning: A survey and interpretation. arXiv preprint arXiv:1711.03902, 2017.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In Advances in Neural Information
Processing Systems, pages 3788–3800, 2017.

Tim Rocktäschel and Sebastian Riedel. Learning knowledge base inference with neural theorem provers. In Jay Pujara,
Tim Rocktäschel, Danqi Chen, and Sameer Singh, editors, Proceedings of the 5th Workshop on Automated Knowledge
Base Construction, AKBC@NAACL-HLT 2016, San Diego, CA, USA, June 17, 2016, pages 45–50. The Association
for Computer Linguistics, 2016. doi:10.18653/v1/w16-1309. URL https://doi.org/10.18653/v1/w16-1309.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel. Learning reasoning
strategies in end-to-end differentiable proving. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 6938–6949. PMLR, 2020a. URL http://proceedings.mlr.press/v119/minervini20a.html.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette. Differentiable
reasoning on large knowledge bases and natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 5182–5190. AAAI Press, 2020b. URL https://aaai.org/ojs/index.php/AAAI/
article/view/5962.

Luciano Serafini and Artur S d’Avila Garcez. Learning and reasoning with logic tensor networks. In Conference of the
Italian Association for Artificial Intelligence, pages 334–348. Springer, 2016.

Federico Bianchi and Pascal Hitzler. On the capabilities of logic tensor networks for deductive reasoning. In
Andreas Martin, Knut Hinkelmann, Aurona Gerber, Doug Lenat, Frank van Harmelen, and Peter Clark, editors,
Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering
(AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA, March 25-27, 2019., Stanford University, Palo
Alto, California, USA, March 25-27, 2019, volume 2350 of CEUR Workshop Proceedings. CEUR-WS.org, 2019.
URL http://ceur-ws.org/Vol-2350/paper22.pdf.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor networks. CoRR,
abs/2012.13635, 2020. URL https://arxiv.org/abs/2012.13635.

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, and Pascal Hitzler. Towards bridging the neuro-symbolic gap:
Deep deductive reasoners. Applied Intelligence, 2021a. to appear.

11

https://doi.org/10.18653/v1/w16-1309
https://doi.org/10.18653/v1/w16-1309
http://proceedings.mlr.press/v119/minervini20a.html
https://aaai.org/ojs/index.php/AAAI/article/view/5962
https://aaai.org/ojs/index.php/AAAI/article/view/5962
http://ceur-ws.org/Vol-2350/paper22.pdf
https://arxiv.org/abs/2012.13635

Monireh Ebrahimi et al. A PREPRINT

Bassem Makni and James A. Hendler. Deep learning for noise-tolerant RDFS reasoning. Semantic Web, 10(5):823–862,
2019. doi:10.3233/SW-190363. URL https://doi.org/10.3233/SW-190363.

Patrick Hohenecker and Thomas Lukasiewicz. Ontology reasoning with deep neural networks. J. Artif. Intell. Res., 68:
503–540, 2020. doi:10.1613/jair.1.11661. URL https://doi.org/10.1613/jair.1.11661.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 2692–2700, 2015. URL http://papers.nips.cc/paper/5866-pointer-networks.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with pointer-generator
networks. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers,
pages 1073–1083. Association for Computational Linguistics, 2017. doi:10.18653/v1/P17-1099. URL https:
//doi.org/10.18653/v1/P17-1099.

Aishwarya Jadhav and Vaibhav Rajan. Extractive summarization with SWAP-NET: sentences and words from
alternating pointer networks. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 142–151. Association for Computational Linguistics, 2018. doi:10.18653/v1/P18-1014. URL
https://www.aclweb.org/anthology/P18-1014/.

Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. Code completion with neural attention and pointer networks. In
Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 4159–4165. ijcai.org, 2018. doi:10.24963/ijcai.2018/578.
URL https://doi.org/10.24963/ijcai.2018/578.

Daniel Fernández-González and Carlos Gómez-Rodríguez. Transition-based semantic dependency parsing with
pointer networks. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 7035–7046. Association for Computational Linguistics, 2020. doi:10.18653/v1/2020.acl-main.629. URL
https://doi.org/10.18653/v1/2020.acl-main.629.

Daniel Fernández-González and Carlos Gómez-Rodríguez. Left-to-right dependency parsing with pointer networks.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 710–716. Association for
Computational Linguistics, 2019. doi:10.18653/v1/n19-1076. URL https://doi.org/10.18653/v1/n19-1076.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard H. Hovy. Stack-pointer networks
for dependency parsing. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 1403–1414. Association for Computational Linguistics, 2018. doi:10.18653/v1/P18-1130. URL
https://www.aclweb.org/anthology/P18-1130/.

Dan Brickley and R.V. Guha, editors. RDF Schema 1.1. "", W3C Recommendation 25 February 2014. Available from
http://www.w3.org/TR/rdf-schema/.

Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack Kaelbling and Alessandro
Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
Edinburgh, Scotland, UK, July 30 - August 5, 2005, pages 364–369. Professional Book Center, 2005.

Pascal Hitzler. A review of the semantic web field. Communications of the ACM, 64(2):76–83, 2021.
Laurens Rietveld, Wouter Beek, Rinke Hoekstra, and Stefan Schlobach. Meta-data for a lot of LOD. Semantic Web, 8

(6):1067–1080, 2017.
Patrick J. Hayes and Peter F. Patel-Schneider, editors. RDF 1.1 Semantics. "", W3C Recommendation 25 February

2014. Available from http://www.w3.org/TR/rdf11-mt/.
Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian Rudolph, editors. OWL 2 Web

Ontology Language: Primer (Second Edition). W3C Recommendation 11 December 2012, 2012. Available from
http://www.w3.org/TR/owl2-primer/.

Stefan Schulz, Boontawee Suntisrivaraporn, Franz Baader, and Martin Boeker. SNOMED reaching its adolescence:
Ontologists’ and logicians’ health check. I. J. Medical Informatics, 78(Supplement-1):S86–S94, 2009.

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web Technologies. Chapman &
Hall/CRC, 2010.

12

https://doi.org/10.3233/SW-190363
https://doi.org/10.3233/SW-190363
https://doi.org/10.1613/jair.1.11661
https://doi.org/10.1613/jair.1.11661
http://papers.nips.cc/paper/5866-pointer-networks
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P18-1014
https://www.aclweb.org/anthology/P18-1014/
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/n19-1076
https://doi.org/10.18653/v1/n19-1076
https://doi.org/10.18653/v1/P18-1130
https://www.aclweb.org/anthology/P18-1130/

Monireh Ebrahimi et al. A PREPRINT

Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web, 8(3):
489–508, 2017. doi:10.3233/SW-160218. URL https://doi.org/10.3233/SW-160218.

Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Renato De Leone, and Heiko Paulheim. Rdf2vec: RDF graph
embeddings and their applications. Semantic Web, 10(4):721–752, 2019. doi:10.3233/SW-180317. URL https:
//doi.org/10.3233/SW-180317.

Monireh Ebrahimi, Md. Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, HyeongSik
Kim, and Pascal Hitzler. Neuro-symbolic deductive reasoning for cross-knowledge graph entailment. In Andreas
Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, and Frank van Harmelen,
editors, Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engi-
neering (AAAI-MAKE 2021), Stanford University, Palo Alto, California, USA, March 22-24, 2021, volume 2846 of
CEUR Workshop Proceedings. CEUR-WS.org, 2021b. URL http://ceur-ws.org/Vol-2846/paper8.pdf.

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, and Pascal Hitzler. Completion reasoning emulation
for the description logic EL+. In Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug
Lenat, Reinhard Stolle, and Frank van Harmelen, editors, Proceedings of the AAAI 2020 Spring Symposium
on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA,
USA, March 23-25, 2020, Volume I, volume 2600 of CEUR Workshop Proceedings. CEUR-WS.org, 2020. URL
http://ceur-ws.org/Vol-2600/paper5.pdf.

Shenshen Gu and Tao Hao. A pointer network based deep learning algorithm for 0-1 knapsack problem. In ICACI,
pages 473–477. IEEE, 2018.

Jing Li, Deheng Ye, and Shuo Shang. Adversarial transfer for named entity boundary detection with pointer networks.
In IJCAI, pages 5053–5059. ijcai.org, 2019.

Tao Yu and Shafiq R. Joty. Online conversation disentanglement with pointer networks. In EMNLP (1), pages
6321–6330. Association for Computational Linguistics, 2020.

Changki Lee, Sangkeun Jung, and Cheon-Eum Park. Anaphora resolution with pointer networks. Pattern Recognit.
Lett., 95:1–7, 2017.

Divesh Pandey and C. Ravindranath Chowdary. Modeling coherence by ordering paragraphs using pointer networks.
Neural Networks, 126:36–41, 2020.

Varun Gupta and Adam Krzyzak. An empirical evaluation of attention and pointer networks for paraphrase generation.
In ICCS (3), volume 12139 of Lecture Notes in Computer Science, pages 399–413. Springer, 2020.

Debayan Banerjee, Debanjan Chaudhuri, Mohnish Dubey, and Jens Lehmann. PNEL: pointer network based end-to-end
entity linking over knowledge graphs. In Jeff Z. Pan, Valentina A. M. Tamma, Claudia d’Amato, Krzysztof Janowicz,
Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Kagal, editors, The Semantic Web - ISWC 2020 - 19th
International Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part I, volume 12506
of Lecture Notes in Computer Science, pages 21–38. Springer, 2020. doi:10.1007/978-3-030-62419-4_2. URL
https://doi.org/10.1007/978-3-030-62419-4_2.

Alejandro Mottini and Rodrigo Acuna-Agost. Deep choice model using pointer networks for airline itinerary prediction.
In KDD, pages 1575–1583. ACM, 2017.

Richard Cyganiak, David Wood, and Markus Lanthaler, editors. RDF 1.1 Concepts and Abstract Syntax. W3C
Recommendation 25 February 2014, 2014. Available from http://www.w3.org/TR/rdf11-concepts/.

World Wide Web Consortium et al. Rdf 1.1 semantics. empty, 2014.

Pascal Hitzler and Anthony Karel Seda. Mathematical Aspects of Logic Programming Semantics. Chapman and Hall /
CRC studies in informatics series. CRC Press, 2011.

Markus Krötzsch. Efficient rule-based inferencing for OWL EL. In Toby Walsh, editor, IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
pages 2668–2673. IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-444. URL https://doi.org/
10.5591/978-1-57735-516-8/IJCAI11-444.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and
translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/
abs/1409.0473.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge base systems. J. Web
Semant., 3(2-3):158–182, 2005.

13

https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-180317
https://doi.org/10.3233/SW-180317
https://doi.org/10.3233/SW-180317
http://ceur-ws.org/Vol-2846/paper8.pdf
http://ceur-ws.org/Vol-2600/paper5.pdf
https://doi.org/10.1007/978-3-030-62419-4_2
https://doi.org/10.1007/978-3-030-62419-4_2
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-444
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-444
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-444
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

Monireh Ebrahimi et al. A PREPRINT

Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and Kevin Wilkinson. Jena: imple-
menting the semantic web recommendations. In WWW (Alternate Track Papers & Posters), pages 74–83. ACM,
2004.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary G. Ives. Dbpedia: A
nucleus for a web of open data. In ISWC/ASWC, volume 4825 of Lecture Notes in Computer Science, pages 722–735.
Springer, 2007.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. In
ACL (1). The Association for Computer Linguistics, 2016.

Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994.
Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. Can neural networks understand

logical entailment? In ICLR (Poster). OpenReview.net, 2018.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NIPS, pages 5998–6008, 2017.

14

	1 Introduction
	2 Related Work
	2.1 Deep Deductive Reasoning
	2.2 Pointer Networks

	3 Methodology
	3.1 Logics
	3.2 Pointer Networks

	4 Experimental Setup
	4.1 Datasets
	4.2 Training Details
	4.3 Input Representation Details
	4.4 Baselines
	4.5 Correctness
	4.6 Generalizability: Zero-Shot Reasoning

	5 Conclusion & Future Works

