
Understanding CNN Hidden Neuron Activations using
Concept Induction over Background Knowledge
Abhilekha Dalal1

1Kansas State University, Manhattan KS, USA

Abstract
A major challenge in Explainable AI is interpreting hidden neuron activations accurately. These in-
terpretations can reveal what a deep learning system perceives as relevant in the input data, thereby
addressing the black-box nature of such systems. The state of the art indicates that hidden node acti-
vations can be interpretable by humans, but there’s a lack of systematic automated methods to verify
these interpretations, especially those that utilize substantial background knowledge and inherently
explainable methods. In this proposal, we introduce a novel model-agnostic post-hoc Explainable AI
method based on a Wikipedia-derived concept hierarchy with approximately 2 million classes. Our
approach utilizes OWL-reasoning-based Concept Induction for explanation generation and compares
with off-the-shelf pre-trained multimodal-based explainable methods. Our results demonstrate that our
method automatically provides meaningful class expressions as explanations to individual neurons in
the dense layer of a Convolutional Neural Network, outperforming prior work in both quantitative and
qualitative aspects.
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1. Introduction

Deep learning has revolutionized various fields such as image classification [1], speech recogni-
tion [2], translation [3], drug design [4], medical diagnosis [5], climate sciences [6]. However,
the opaque nature of deep learning systems poses challenges in applications involving auto-
mated decisions and safety-critical systems. For instance, concerns arise from incidents like
Steve Wozniak’s accusation of gender discrimination in Apple Card credit limits and biased
image search results for ”CEOs” [7]. Safety-critical areas like self-driving cars [8] and [9, 10]
are also vulnerable to adversarial attacks [11], including altering classification results [11] and
manipulating the order of training images [12]. Some attacks are hard to detect post facto,
posing significant risks [13, 14].

Problem Statement: While statistical evaluations are standard for assessing deep learning
performance, they fall short in providing explanations for specific system behaviors [15]. There-
fore, developing robust explanation methods for deep learning systems remains crucial. Despite
significant progress in this area (see Section 4), current approaches often rely on a limited set of
predefined explanation categories. This reliance on human-selected categories is problematic,
as it assumes they are suitable for explaining deep learning systems, which lacks evidence.
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Some methods leverage deep learning models, such as LLMs, to generate explanations [16],
introducing another layer of opacity. Additionally, state-of-the-art explanation systems often
require modified deep learning architectures, which can lead to reduced system performance
compared to unmodified versions [17].
Importance: The importance of solving this challenge cannot be overstated. Transparent

and interpretable AI systems are crucial for building trust, especially in domains like healthcare,
finance, and autonomous vehicles. By providing explanations, we empower users, including
non-experts, to understand AI decisions, fostering better acceptance and adoption. Advancing
explainable AI contributes to interdisciplinary collaboration and can enhance societal benefits
while mitigating ethical risks associated with AI deployment. Therefore, it is imperative to
address the challenge of developing transparent and interpretable explanation methods for deep
learning systems.

The subsequent section presents the research question and objectives, building on the above
core principles. 2.1 describe the contributions we have made, focusing on methods we use or
plan to use to support these contributions and then describing the results 3 thus far from them.

2. Research Question and Contributions

Research Question: How can we develop an effective approach to explainable deep learning
that can be used to assign human-understandable interpretations to the activations of hidden
neurons in the deep learning model?

This proposal outlines an approach to use Concept Induction, i.e., formal logical deductive
reasoning [18] to automatically provide meaningful explanations for hidden neuron activation
in a Convolutional Neural Network (CNN) architecture for image scene classification (on the
ADE20K dataset [19]), using a class hierarchy consisting of about 2 ⋅ 106 classes, derived from
Wikipedia, as the pool of categories [20]. Stating the hypothesis clearly that drives the work
outlined in this proposal.
Hypothesis: Concept Induction analysis with large-scale background knowledge yields

meaningful labels that stably explain neuron activation in the hidden layer of CNN architecture.

2.1. Contributions and Methodology

To achieve the above-stated hypothesis, the following objectives with the methodology followed
or planned to follow are outlined:
Objective 1: Employing Concept Induction and a Wikipedia Knowledge Graph to Assign

Meaningful Labels to Hidden Neurons’ Activation.
We explored and evaluated three concrete methods (Concept Induction, CLIP-Dissect [16],

GPT-4 [21]) to generate high-level concepts for explaining hidden neuron activations. Our
comprehensive methodology for Objective 1 is detailed in our paper [22].

1. Prep: Scenario and CNN Training - Utilizing the annotated ADE20K dataset [19], we
trained Resnet50V2 for scene classification, achieving an accuracy of (86.46%). The anno-
tations are only used for generating label hypotheses, not for CNN training. While highest



accuracy isn’t critical for our investigation, it’s important for models to be practically
applicable.

2. Concept Induction - [18] system accepts three inputs: positive set 𝑃 and negative set𝑁 of
images from ADE20K, and a knowledge base 𝐾, all expressed as description logic theories,
and all examples 𝑥 ∈ 𝑃 ∪ 𝑁 occur as individuals (constants) in 𝐾. It returns description
logic class expressions 𝐸 such that 𝐾 ⊧ 𝐸(𝑝) for all 𝑝 ∈ 𝑃 and 𝐾 ̸⊧𝐸(𝑞) for all 𝑞 ∈ 𝑁. For
scalability, we used ECII [23] heuristic Concept Induction system with Wikipedia [20].
We included the images in the background knowledge by associating object annotations
from ADE20K images with classes in the hierarchy, using the Levenshtein string similarity
metric [24] with edit distance 0.

3. Generating Label Hypotheses -
a) In Concept Induction, we used 1,370 ADE20K images with our trained ResNet50V2,

extracting activations from the dense layer with 64 neurons. Positive examples (𝑃)
are images activating the neuron with > 80% of its max activation, negative examples
(𝑁) are those activating it with < 20% of its max or not at all. ECII generates the
target label for each neuron based on these sets and background knowledge.

b) CLIP-Dissect employs the top 20,000 English vocabulary words as concepts. Sub-
sequently, activations from our trained ResNet50v2 model for ADE20K test images
were collected, resulting in a matrix (Number of Images × 64). Utilizing these inputs,
CLIP-Dissect assigns a label to each neuron such that the neuron is most activated
when the corresponding concept is present in the image, resulting in 22 distinct
concepts across 64 neurons.

c) GPT-4 Leveraging GPT-4, we adopt a methodology akin to [25] for concept genera-
tion to differentiate image classes [26]. We input image annotations from positive
(𝑃) and negative (𝑁) sets into GPT-4 with prompts to discern concepts unique to
𝑃. The prompt ”Generate top three classes of objects/general scenarios that better
represent what images in the positive set (𝑃) have but the images in the negative set
(𝑁) do not,” yields three concepts per neuron, from which we select one per class
for assessment.

Objective 2: Automate Concept Label Association for Input Images using Neuron Ensembles
and Non-target Activation Probabilities.

1. Concept Associations and Non-Target Activations - In pursuit of Objective 1, Step 3
generates labels for neuron activation. Each neuron’s label is the target concept, with all
other images considered as non-target concepts. This analysis focuses on the top three
ECII responses, assessing neuron activation for non-target concepts at various cut-off
values relative to each neuron’s maximum activation value: > 0, > 20% of max, > 40% of
max, and > 60% of max. The goal is to establish strong associations between concepts
and neuron activations, understanding which concepts trigger specific neurons and to
what extent.

2. Neuron Ensembles for Concept Associations - Input information can be distributed
across simultaneously activated neurons, necessitating the examination of neuron ensem-
ble activations using previously established cut-off values. However, the scale challenge



arises with 264 potential neuron ensembles for just 64 neurons. To address this, we pro-
pose combining neurons activated for semantically related labels (with top-3 responses
from ECII). For instance, if ”building” activates both neuron 0 and neuron 63. We as-
sess all images activating both neurons 0 and 63 for specified cut-off values. In cases
where a concept activates more than two neurons, our analysis encompasses all possible
combinations of pairs, evaluating target and non-target activations. We proceed with
concepts, including neuron ensembles, that exhibit target activation exceeding 80% for
further analysis

3. Validating Neuron-Concept Associations - After completing Step 1 and Step 2, we
obtain probabilities for non-target concepts across all concepts, including those activating
single neurons as well as neuron ensembles. This allows for identifying potential concepts
and assessing associated error margins. To verify or reject these concepts, we revisit the
ADE20K dataset. Using a subset of 1050 randomly chosen images, we conduct a user study
via Amazon Mechanical Turk (MTurk) [27] to annotate images with target concepts. We
then cross-reference these designated concepts with image annotations obtained from the
MTurk study. We evaluate the likelihood of neuron activations for non-target concepts.

4. Developing an Automated System - We propose developing an automated system to
streamline the entire process, enabling scalability to larger datasets and exploration of
a broader parameter range. The system would comprise: Concept induction: Generates
class expressions/responses ranked by coverage score. Neuron activation: Calculates acti-
vation for target and non-target concepts (including neuron ensembles) at various cut-off
values. Concept validation: Validates generated concepts. This automated system would
analyze new images, generating a list of potential concepts with associated probabilities.
Users could review the concepts and select the most relevant ones for the image. The
automated approach offers several advantages, including speed, efficiency, scalability to
larger datasets, and exploration of diverse parameter settings.

3. Evaluation and Results

Objective 1: The three approaches generate label hypotheses for all studied neurons, which
we validated using new images. We search Google Images using each target label as keywords
and collect 200 images per label with Imageye1. These images are split into 80% for evaluation
and 20% for statistical analysis. We then determine if the target neuron activates when the
retrieval label matches the target label and if any other neurons activate. Table 1(presents
selective representation due to space constraints, complete version is available at [22].) show
the percentage of target images that activated each neuron. A target label is confirmed if
it activates for ≥ 80% of its target images, regardless of its activation for non-target images.
Detailed paper can be found at [22].
Statistical Evaluation and Result:- After generating confirmed labels from all three

approaches, we assess node labeling using the remaining images, treating each neuron-label
pair in Table 1 as a hypothesis. Concept Induction, CLIP-Dissect, and GPT-4 produce 20, 8,
and 27 hypotheses, respectively, based on confirmed labels. Using the Mann-Whitney U test,

1https://chrome.google.com/webstore/detail/image-downloader-imageye/agionbommeaifngbhincahgmoflcikhm
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Table 1
Generated label hypotheses from all three approaches,Bold denotes neurons whose labels are considered
confirmed(the full version can be found in our work at [22]).

Concept Induction
Neuron Obtained Label(s) Images Coverage Target % Non-Target %

0 building 164 0.997 89.024 72.328
1 cross_walk 186 0.994 88.710 28.923
11 river_water 157 0.995 31.847 22.309

CLIP-Dissect
0 restaurants 140 55.000 59.295
3 dresser 171 95.322 66.199
7 bathroom 153 93.333 44.113

GPT-4
0 Urban Landscape 176 54.545 59.078
1 Street Scene 164 92.073 29.884
3 Bedroom 165 97.576 62.967Table 2

Statistical Evaluation details for all three approaches(full version can be found in our work at [22]).
Concept Induction

Neuron Label(s) Images # Activations (%) Mean Median z-score p-value
targ non-t targ non-t targ non-t

0 building 42 80.95 73.40 2.08 1.81 2.00 1.50 -1.28 0.0995
1 cross_walk 47 91.49 28.94 4.17 0.67 4.13 0.00 -8.92 <.00001
18 slope 35 91.43 68.85 1.59 1.37 1.44 1.00 -2.03 0.0209
49 footboard, chain 32 84.38 66.41 2.63 1.67 2.30 1.17 -2.58 0.0049

CLIP-Dissect
3 dresser 43 93.02 64.61 2.59 1.42 2.62 0.68 5.01 <0.0001
7 bathroom 46 89.47 41.56 2.02 1.01 2.15 0.00 5.45 <0.0001
18 dining 36 94.87 76.82 3.01 1.85 3.11 1.44 4.52 <0.0001

GPT-4
1 Street Scene 42 90.50 30.40 3.80 0.70 4.20 0.00 -9.62 <0.0001
14 Living Room 41 78.00 67.50 1.40 1.30 1.20 0.90 -0.77 0.4413
17 Dining Room 40 97.50 45.90 2.20 0.60 2.50 0.00 -8.29 <0.0001
31 Urban Street Scene 41 80.50 65.70 1.80 1.30 1.70 0.90 -2.4 0.164

we compared activation strengths between images retrieved using the target label and those
retrieved using other keywords. Table 2 shows the selective representation of results obtained
through Mann-Whitney U test. Concept Induction consistently outperforms other methods, as
evidenced by Mann-Whitney U results and statistical analysis. For most neurons, activation
values of target images significantly exceed those of non-target images (with 𝑝 < 0.00001).
Concept Induction rejects 19 out of 20 null hypotheses at 𝑝 < 0.05, CLIP-Dissect rejects all 8
null hypotheses, and GPT-4 rejects 25 out of 27 null hypotheses at 𝑝 < 0.05. More details in [22].

Objective 2: Wewill conduct a comprehensive statistical evaluation using the Mann-Whitney
U (MWU) test for each concept across different cut-off values. This evaluation aims to compare
the activation strengths of non-target concepts retrieved through Google Images(from Objective
1) with those retrieved from the ADE20K dataset. The hypothesis under consideration is that the
activation strength of non-target concepts from Google Images exceeds that from the ADE20K
dataset. Conversely, the null hypothesis (H0) posits that the activation strength of non-target
concepts from Google Images equals that from the ADE20K dataset. For each category of cut-off
values, concepts exhibiting a significant difference in activation strengths (p-value < 0.005) will



undergo further validation through the Wilcoxon signed-rank test across all cut-off values as a
collective unit. We refine our approach and enhance concept label associations’ accuracy by
identifying concepts with significantly higher activation strengths.

4. Related Work

With the recent advances in deep learning [28], its wide usage in nearly every field, and its
opaque nature make explainable AI more important than ever, and there are multiple ongoing
efforts to demystify deep learning [29, 30, 31]. Existing explainable methods can be categorized
based on input data (feature) understanding, e.g., feature summarizing [32, 33], or based on
the model’s internal unit representation, e.g., node summarizing [34, 11]. Those methods
can be further categorized as model-specific [32] or model-agnostic [33]. Another kind of
approach relies on human interpretation of explanatory data returned, such as counterfactual
questions [35].

We focus on the understanding of internal units of the neural network-based deep learning
models. Prior work has shown that internal units may indeed represent human-understandable
concepts [34, 11], but these approaches often require resource-intensive methods like semantic
segmentation [36] or explicit concept annotations [37]. There has been research utilizing
Semantic Web data for explaining deep learning models [38, 39], and Concept Induction for
generating explanations [40, 41]. However, they mainly focused on analyzing how inputs
relate to outputs and generating explanations for the whole system, while we focused on
understanding internal node activations.

CLIP-Dissect [16], similar to our work, takes a different approach. It utilizes the CLIP pre-
trained model, employing zero-shot learning to associate images with labels. Another related
work, Label-Free Concept Bottleneck Models [26], builds upon CLIP-Dissect, using GPT-4 [21]
for concept set generation. However, CLIP-Dissect faces challenges in accurately predicting
output labels based on concepts in the last hidden layer and transferring to other modalities
or domain-specific applications. The Label-Free approach inherits these limitations and may
compromise explainability due to its use of a concept derivation method that lacks inherent
explainability.

5. Conclusion

Concept Induction, leveraging large-scale ontological background knowledge, provides mean-
ingful labeling of hidden neuron activations, validated by statistical analysis. This allows us to
pinpoint concepts that strongly trigger neuron responses, effectively explaining neuron activa-
tions. Our approach introduces novel possibilities for diverse label categories. Comparative
analysis against CLIP-Dissect and GPT-4 showcases Concept Induction’s superiority, especially
in settings with labeled data. Ultimately, our work aims to thoroughly analyze hidden layers in
deep learning systems, facilitating the interpretation of activations as implicit input features and
explaining system input-output behavior. Moving forward, future work will focus on enhancing
Concept Induction’s scalability and efficiency, enabling its broader applicability across various
domains.
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