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Abstract
Open data initiatives and knowledge graphs, in synergy, have contributed to an increasing volume of
disaster-related data in the Semantic Web. Synthesizing and enriching these data is critical to support all
aspects of data-driven disaster risk reduction and management. A standard template that coherently
defines, maps, and classifies the wide range of hazards to which communities are exposed is a key input for
this task. The UNDRR-ISC Hazard Information Profiles (HIPs) provide evidence-informed standardization
of hazard nomenclature and definitions and a “science-backed” classification. Unfortunately, they are
not in a machine-readable format. This paper develops the HIP Ontology as its FAIR counterpart in RDF
format that allows its utilization for the greater alignment and consistency of disaster data and systems
within and across sectors. Moreover, since HIPs are developed through extensive and rigorous scientific
consultation, the HIP Ontology will provide an important layer of data standardization, strengthening
the data ecosystem for policy-making and risk management at the global, regional, and national levels.
In addition, we also present the Disaster Event Ontology, which provides a schema of key concepts
and relationships to link observations and spatiotemporal representations of disaster data with specific
hazard types in the HIP Ontology. The two ontologies together will enhance interoperability, integration,
and comprehension of disaster datasets within knowledge graphs.
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1. Introduction
The integration of multi-faceted disaster-related data into knowledge graphs (KGs) is a rapidly
evolving area of research and practice [1, 2] with several initiatives developing disaster-domain
ontologies and vocabularies [3, 4]. Despite progress, challenges persist in modeling and integrat-
ing these data within an interconnected Open Knowledge Network (OKN). We draw attention
to two key issues. First, the lack of a reference disaster-domain ontology prevents existing
disaster-related ontologies, vocabularies, data schema, and code lists from being integrated or
aligned. Second, no formal and FAIR-based [3], standardized disaster classification scheme exists
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that is suitable for linked data adoption. This paper addresses the latter challenge and proposes
an ontological framework to connect this classification scheme with other disaster-themed data,
enhancing their interoperability and accessibility within the Semantic Web.

Disaster data from authoritative portals like the Humanitarian Data Exchange1, DesInventar2,
and EM-DAT3 are not readily semantically interoperable due to terminology discrepancies.
Even linking related datasets from the same US federal agency is problematic due to ambiguity,
e.g., NOAA uses the term “storm” to refer to “storm events”, “storm tracks”, and “storm impacts”.
Another example is how cyclonic phenomena are referred to by different terms across ocean
basins: “hurricane” in the North Atlantic, “typhoon” in the western North Pacific, and “tropical
cyclone” in the Indian Ocean and South Pacific Ocean [5]. A standardized vocabulary with
mappings between synonymous hazard terms and other contextual relationships can improve
the consistency and accuracy of exchanged disaster information [6].

Before 2021, disaster vocabularies like the CRED disaster classification and the IRDR Peril
classification had limited scope and inconsistent naming conventions, hindering their ability to
harmonize diverse data. These vocabularies lacked context on drivers, outcomes, and risks, lim-
iting their effectiveness in linking disaster data for response and mitigation strategies. In 2021,
the United Nations Office for Disaster Risk Reduction (UNDRR) and the International Science
Council (ISC) launched the Hazard Information Profiles (HIPs), as a standardized hazard vocabu-
lary to monitor and implement the Sendai Framework for Disaster Risk Reduction 2015-2030 [6].
HIPs provides standardized hazard terms and definitions to inform government strategies and
actions on risk reduction and operational risk management policies. Covering over 300 hazard
types, from natural phenomena to human-induced events, HIPs offers detailed descriptions,
conceptual clarity, and systematic classification. Developed through a comprehensive scientific
consultation, HIPs compiles rich metadata for each hazard type, offering conceptual clarity,
systematic classification, clear documentation, and supporting materials. The framework is
also regularly updated to include new disasters and revised hazard definitions based on the
latest scientific evidence. Despite their authoritative nature, it is informally documented and
lacks machine-readable formats. Adapting them to linked data is crucial for enhancing their
integration into global frameworks and improving their effectiveness in disaster risk reduction
and sustainable development.

This paper presents two key contributions.

1. The HIP Ontology, the formalized counterpart of HIPs4, represented in OWL syntax. We
utilized the Scientific Taxonomy Pattern [7] and extended SKOS [8] to hierarchically
organize concepts. Additionally, we developed a metadata schema to include specific
semantic annotations for various details of each hazard type, facilitating their expansion
into meaningful semantic relations and rules.

2. The Disaster Event Ontology (DEO), which conceptualizes disaster-related events, related
observations, spatiotemporal aspects, and causal relations. This ontology is meant to link
the HIP Ontology to other disaster-themed data.

1https://data.humdata.org/
2https://www.desinventar.net/
3https://www.emdat.be/
4Throughout the rest of the paper we will use HIPs to refer to the informal classification scheme.
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We envision the HIP Ontology as a catalyst for advancing disaster management services
towards FAIR, collaborative, and unbiased Disaster Management Systems. The formal frame-
work will bolster the long-term development and sustainability of the HIPs classification by
establishing a structured workflow for revisions. The HIP Ontology will extend its value beyond
disaster management, for instance, in healthcare, as already explored in [9] to study the effects
of climate change on populations, clinicians, and healthcare systems.

The remainder of this paper is organized as follows. In Sec. 2, we introduce HIPs, followed by
a background on hazard events and their context in Sec. 3. In Sec. 5, we briefly overview state-of-
art and limitations. We present a use case demonstrating the motivation for developing the HIP
Ontology in Sec. 4. Sec. 6 describes the HIP Ontology and DEO, followed by a demonstration of
their implementation in the KnowWhereGraph [1] in Sec. 7. Finally, Sec. 8 concludes the paper
and outlines future work.

2. The Hazard Information Profiles for Hazard Types
The HIPs [6] provide a standardized classification of hazard types, curated through rigorous sci-
entific consultation and peer review by experts. Designed to inform policy-making, practice, and
reporting in disaster risk reduction and management, this authoritative resource includes hazard
types that meet specific criteria: have the potential to impact communities, have measurable
spatial and temporal components, and are associated with proactive operational measures.

The HIPs categorize hazards into eight main types, each further subdivided by cluster type,
encompassing a range of specific hazards:

– Meteorological and Hydrological hazards: 9 hazard clusters and 60 specific hazards
– Extraterrestrial hazards: 1 hazard cluster and 9 specific hazards
– Geo-hazards: 3 hazard clusters and 35 specific hazards
– Environmental hazards: 2 hazard clusters and 24 specific hazards
– Chemical hazards: 9 hazard clusters and 25 specific hazards
– Biological hazards: 10 hazard clusters and 88 specific hazards
– Technological hazards: 9 hazard clusters and 53 specific hazards
– Societal hazards: 4 hazard clusters and 8 specific hazards

The structure of HIPs, with examples, is detailed in Sec. 6.1.1. The HIPs technical review
document [6] describes this organization and provides comprehensive metadata to improve
definition clarity and precision. Each HIP includes details such as hazard type name, reference
number, authoritative definitions, the UN organization providing guidance, and additional
annotations like synonyms, scientific descriptions, metrics, and numerical limits. Contextual
metadata, including links between hazards, risks, and impacts, are also included to facilitate
stakeholder engagement in loss and damage accounting and multi-hazard analysis. The hazard
type list in HIPs is open-ended and regularly updated through international consensus to
maintain its relevance and accuracy.

3. Hazards, Disasters, and Impacts
Conceptually, a hazard event and its type (i.e., which is what HIPs references), are distinct yet
semantically interconnected entities. The context of hazards as events is crucial for accurately
interpreting and utilizing HIPs.



This section offers a high-level overview of hazards, disasters, and impacts as spatiotemporal,
measurable events. Hazards are distinct from disasters, where disasters occur when hazards
adversely affect the human population. UNDRR defines5 a disaster as a hazardous event
interacting with conditions of exposure, vulnerability, and capacity, ultimately resulting in
impact. Disasters can also be perceived as future risks determined probabilistically based on
hazard, exposure, vulnerability, and capacity. Therefore, understanding, studying, quantifying,
and reducing risk is essential for disaster prevention. Conceptually, they are distinct: disasters
as events versus disasters as a risk. Nevertheless, a robust framework of hazard types and
definitions that HIPs provides serves as a critical tool to manage events, investigate risks, and
implement mitigation strategies.

Hazards are spatiotemporal and meteorological events that often trigger cascading effects,
where one event can lead to additional events that may coincide, be connected, or disperse spa-
tiotemporally [10]. Each event episode within a disaster cascade can vary in nature, frequency,
duration, intensity, and other hazard property measurements, making it challenging to compare
spatial and temporal scales of the resulting impacts. Many datasets intertwine impacts with
larger disaster events, treating disaster and impact as identical phenomena. Moreover, datasets
such as NOAA’s Storm Events Database6 attribute deaths and damages to entire disaster events
like Category 5 hurricanes rather than distinct storm-related episodes (e.g., strong wind, coastal
flood, debris flow, lightning). Such modeling makes it difficult to estimate the hazard potential
or risk from any one particular physical phenomenon (e.g., damage from a lightning strike vs. a
coastal flood), or even delineate the full impact area of one particular historical event (e.g., the
epicenter of an earthquake vs. the vast expanse of resulting infrastructure damage). Despite
these challenges, hazards and disasters are interconnected with their impacts, yet existing
ontologies poorly model these connections. A comprehensive examination of interactions
between hazard categories and impact types is essential for accurate risk estimation, mitigation,
and recovery efforts based on empirical evidence and predictive models. Such analyses benefit
greatly from standardized and harmonized hazard types and definitions.

4. The KnowWhereGraph Use Case
The HIP and DEO ontologies are developed and evaluated within the framework of the
KnowWhereGraph (KWG) [1], a densely linked geospatial knowledge graph. KWG integrates
over 35 datasets from the environmental, social, and public health domains, to facilitate human-
itarian relief efforts by providing up-to-date disaster situation-aware data [11]. Drawing from
diverse hazard- and disaster-related sources, including federal agencies like NOAA and FEMA,
KWG encompasses a wide array of disaster themes. These encompass hurricane trajectories,
storm impacts, disaster declarations, as well as fire-related phenomena such as burn scars,
smoke plumes, and fire forecasts.

From a data integration and querying standpoint within KWG, the imperative was to establish
connections across diverse datasets covering various facets such as hazard occurrences, resultant
impacts, affected regions, and demographic information. For instance, modeling linkages
between wildfire incidents, resultant smoke plumes, and populations with underlying health

5https://www.undrr.org/terminology/disaster
6https://www.ncdc.noaa.gov/stormevents/
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conditions facilitated the identification of areas necessitating N95 mask distribution to mitigate
smoke-related health risks. From the perspective of applications that interface KWG, the need
was to resolve disparate datasets referring to identical hazard types (e.g., wildfires sourced from
MTBS and NIFC agencies [12]) and summarize attributes about the same hazard event recorded
across multiple data repositories.

In developing the KWG Ontology [12], which extends the HIP and DEO ontologies, our
objectives were to: 1) incorporate a consistent ontology pattern for uniform querying across
all hazard observational data (e.g., droughts, hurricanes, wildfires); 2) align named events
(e.g., Hurricane Katrina) across disparate datasets (e.g., NOAA Storm Events, FEMA Disaster
Declarations Summaries, NOAA Historical Hurricane Tracks); 3) employ methods to integrate
data with authoritative classification schemes and vocabularies.

Below are examples of informal competency questions that were used to set basic requirements
for designing the HIP Ontology and DEO:

• (CQ1) List all the fires that impacted Santa Barbara between 2005 and 2010.
• (CQ2) What were the human mortality impacts caused by hurricanes in the U.S. in 2005?
• (CQ3) What was the total dollar damage in California from floods that happened in 2021?
• (CQ4) List all Category 5 hurricanes that have impacted the U.S. since 2010.

The observational, spatial, and temporal context of hazards and spatial concepts in KWG
is modeled by reusing external standard ontologies, including SOSA/SSN [13], GeoSPARQL
[14], and OWL-Time [15]. In Fig. 1, the core classes from KWG are denoted using orange boxes,
illustrating how these classes extend the standard ontologies to integrate data effectively. This
figure also depicts the kernel pattern used for uniform querying across hazards and places
within KWG. Furthermore, this template highlights the reusability of three standard ontologies
for modeling hazard, disaster, and impact events in the subsequent sections.

Figure 1: The five core classes of KWG (kwg-ont), in orange, extending the SOSA (sosa), SSN (ssn),
GeoSPARQL (geo), and OWL-Time (time) ontologies.



5. Existing Work and Limitations
The disaster domain witnesses the ongoing development of numerous ontologies each year, pri-
marily centered around terms related to the components of the disaster management cycle [16].
A recent comprehensive review identified 69 ontologies focusing on keywords such as Disaster,
Vulnerability, Risk, Crisis, Humanitarian, Early Warning, and Emergency [3]. Although there
are comprehensive frameworks, such as the EDXL Ontologies [17], designed to facilitate infor-
mation exchange during emergencies, none of these ontologies serves as a dedicated controlled
vocabulary specifically for hazards, providing standardized identifiers, representative relation-
ships, and annotated metadata for various hazard types. Existing ontologies proposing disaster
classification lack publicly accessible formal representations [4]. Although standardized and
reference vocabularies exist for the domain, they remain informal (e.g., EM-DAT, DesInventar,
IRDR Perils). In contrast, other domains, particularly biomedicine, have embraced formalized
controlled vocabularies as standard practice, exemplified by renowned ontologies like the Gene
Ontology and the Disease Ontology. The divide between knowledge modelers and disaster
domain experts presents a significant challenge, contributing to the absence of a formalized
controlled vocabulary for hazards [3]. We anticipate that the development of the HIP Ontology
will bridge this gap, facilitating the refinement of HIPs and enhancing their suitability for
intelligent disaster management capabilities.

6. Description of the Modeling

Figure 2: High-level overview of the Disaster Event
Ontology (DEO) and the HIP Ontology.

Scope and Overview: The HIP Ontol-
ogy is developed as a part of the broader
framework of the Disaster Management
Domain Ontology (DMDO) [18], which
is currently undergoing comprehensive
development to address the broader data
representation, integration, and analytic
needs in the disaster domain. We ap-
plied the Modular Ontology Methodol-
ogy (MOMo) [19], which treats ontology
design patterns as fundamental compo-
nents, enabling flexible schema develop-
ment. DMDO is intended to be a refer-
ence ontology, providing a generic but data-aware conceptualization of the disaster management
life cycle [16], which distinguishes the operational phase (denoting actions undertaken to reduce
the impact of the disaster), from the phenomenon phase (denoting the occurrence of the actual
disaster and its impacts). This classification is adopted for the modularization of the DMDO
ontology into two core independent but coherent ontologies: the Disaster Event Ontology, and
the Disaster Operational Ontology. The Disaster Event Ontology (DEO), detailed in Sec. 6.2,
conceptualizes and organizes observational data about different types of phenomena in the
domain by largely reusing SOSA. Previously, in Fig. 1 we demonstrated the KWG pattern that
adopts SOSA, GeoSPARQL, and OWL-Time for this specific purpose. The Disaster Operational
Ontology (DOO), which is being developed as future work, is meant to model the concepts of



operational effectiveness before, during, and after an emergency. Describing the DOO pattern is
outside the scope of this paper. Aside from this, DMDO offers integration adaptability to include
ancillary modules, such as the Disaster Properties Ontology [18] to model hazard properties.

In the rest of this section, we describe the HIP Ontology, the DEO, and their alignment. The
ontology modeling presented here was developed through an iterative and collaborative process
with a team comprising of knowledge modelers from the KWG project and domain experts in the
disaster relief community. The conceptualization is discussed in this paper using generic schema
diagrams, and the detailed ontology and documentation are available in a public repository:
https://github.com/KnowWhereGraph/dmdo/tree/main/modules/disaster-event-module.

General notation of schema diagrams: Edges with filled arrows are object properties and
edges with broad heads indicate subclass relationships.

6.1. The HIP Ontology
The HIP Ontology modeling is presented in two parts. First, we introduce the conceptual
model aimed at formalizing the hierarchical classification structure of HIPs. Next, we present a
metadata framework meticulously designed to encapsulate the metadata extracted from their
PDF technical review document [6].

6.1.1. Modeling the Classification Structure
As discussed earlier in Sec. 2, each HIP is structured into three hierarchical facets, representing
distinct categories of hazard terminology: Hazard Type, Hazard Cluster, and Specific Hazard.
Terms within each facet are interconnected with one or multiple terms in the parent facet. For
example, in Fig. 3, we observe a subset of HIPs where three specific hazards (Nuclear Agents,
Biological Agents, Chemical Warfare Agents) are linked to the same hazard cluster (CBRNE),
which is, in turn, associated with multiple hazard types in the topmost facet. Initially, we
constructed the HIP Ontology as a poly-hierarchical ontology using only subclass relations.
This choice stemmed from the lack of explicit relation types such as partonomy, membership,
or hypernymy defined over the links in HIPs. However, we soon recognized that this approach
led to incorrect inferencing. For instance, adopting a strict class-subclass poly-hierarchical
classification over the example in Fig. 3 would mean inferring any instance of Chemical Hazard
(e.g., Hydrogen Cyanide) as an instance of Biological Hazard, which is undesirable. Consequently,
we opted to relate facets and their instances in the HIP Ontology using other semantic relations
that are not necessarily transitive, such as hypernymy and membership relations.

Figure 3: Poly-hierarchical classification of HIPs denoted using a subset of terms. Top-level facets are
denoted with purple boxes. Arrows denote links between terms across facets, as described in HIPs.

https://github.com/KnowWhereGraph/dmdo/tree/main/modules/disaster-event-module


Fig. 4 (a) illustrates the schema diagram detailing the hierarchical organization of HIP Ontol-
ogy concepts. The diagram showcases the three distinct facets of HIPs, which are represented as
disjoint subclasses within the hip:HazardClassification scheme. This scheme is identified
as a subclass of the skos:ConceptScheme class [8]. At the lowest level of the hierarchy is the
hip:SpecificHazard class, which encapsulates all named hazards. The hip:HazardType class
at the top level of the hierarchy represents generic hazard types categorized by their nature of
origin. Situated between these levels, the hip:HazardCluster class serves to group specific
hazards based on their corresponding generic hazard types. This class is denoted as a subclass
of skos:Collection, as it specifically intends to group related hazards into clusters. Concepts
within each facet are designated as subclasses of the respective facet type. Cross-facet relations
among concepts are established through two taxonomic relations: hypernym-hyponym and
membership, facilitating a comprehensive hierarchical structure within the HIP Ontology.

The non-transitive relation hip:broader, denoted as a sub-property of skos:broader, sig-
nifies that a specific hazard or hazard cluster concept has a narrower scope than a hazard type
concept. Similarly, the hip:isMemberOf relation, a sub-property of skos:isMemberOf, denotes
the membership of a specific hazard within a hazard cluster. Extending SKOS relations within
the HIP namespace is specifically done to axiomatically constrain their domain and range. Fig. 3
(b) illustrates the subset of HIPs from Fig. 3 structurally formalized in the HIP Ontology.

6.1.2. Modeling the Metadata Framework

In addition to structural information, each HIP includes a comprehensive set of metadata detailed
in columns 1 and 2 of Tab. 1. Column 3 of the table specifies the properties utilized to model
each metadata item. This metadata framework is designed to capture temporal trends within
the taxonomy and enhance the functionality of HIPs as reference specifications by attributing
provenance to concept names, definitions, and descriptions.

6.2. The Disaster Event Ontology

The conceptual scope of DEO encompasses aspects related to disaster events and their impacts,
connections to their classification schemes, associated properties of interest, risk elements,

Figure 4: (a) Schema diagram denoting the structural organization of concepts in the HIP ontology. (b)
Example of the HIPs classification (from Fig. 3) as modeled in the HIP Ontology.



HIP annotation details extracted from the natural-language documentation HIP Ontology
mapping/metadata termElement Description

Name and
Reference

Name of the specific hazard. rdfs:label, hip:vernacularName
Reference number. hip:identifier

Hazard type, and cluster type. hip:broader, hip:narrower, hip:hasMember

Definition
A hazard definition, sourced from an authoritative source (such as a UN agency)
or up-to-date academic and scientific sources, that reflect scientific consensus,
and are of broad international relevance. Reference(s) for the definition is cited.

hip:definedAs o hip:Definition

(hip:Definition is an
entity with provenance)

Annotations

Possible synonyms, equivalents in non-English languages hip:synonym

Additional description elements that expand on the primary definition. hip:describedAs o hip:Description

Relevant and available, globally used metrics and numeric limits. hip:measurementUnit o qudt:Unit

References to key relevant UN conventions or multilateral treaties. hip:relatedInstrument o hip:Instrument

Examples of drivers, outcomes, and risk management practices or processes
providing concrete information on the contexts and possible impacts of hazard.

hip:hasDriver o hip:Driver,
hip:hasOutcome o hip:Outcome

Key references from publicly available scientific and institutional sources to
support facts and statements made in the HIPs.

hip:definitionSource o prov:Entity

hip:descriptionSource o prov:Entity

Coordinating
Organization

The UN or international organizations that provide technical guidance on
the hazard.

hip:coordinatingEntity o prov:Agent

Table 1
Metadata elements and properties used in the HIP Ontology.

and spatiotemporal characteristics. Fig. 5 and Fig. 6 illustrates the schema diagrams for DEO,
demonstrating its extension of external ontologies. The three primary classes in this ontology
are Event, ElementAtRisk, and PossiblyCausesRelation, which are described below.

Event: The definitions of hazard, disaster, and impact as events or phenomena vary among
authoritative sources. Although upper ontologies like UFO and BFO provide valuable conceptual
distinctions for high-level concepts such as events and risks, we choose not to use them to
minimize complexity and overhead. Our goal is to develop a practical and functional domain
ontology efficiently, without the theoretical rigor required by foundational ontologies. We focus
on a broader definition of event (“event is anything that occurs” – cf.Wikipedia) to categorize oc-

Figure 5: Schema diagram illustrating key concepts and properties in the Disaster Event Ontology. The
core classes Event and ElementAtRisk are outlined in bold.

https://simple.wiktionary.org/wiki/event


currences with measurable properties as deo:Event. Both hazard and disaster occurrences have
distinct attributes that characterize their intensity, magnitude, and extent. For instance, hurri-
canes are characterized by sustainable wind speeds, heavy precipitation, and storm surges, while
earthquakes are typically recorded by magnitude at the epicenter. Impacts also have measurable
properties such as the number of deaths, homes damaged, roads affected, and economic loss, as
captured in disaster damage databases like EM-DAT and DesInventar. We model deo:Hazard,
deo:Disaster, and deo:DisasterImpact as subclasses of Event, and as subclasses of the SOSA
class sosa:FeatureOfInterest, which represents any entity whose property is measured dur-
ing an observation. Specifying deo:Event as a subclass of geo:Feature enables standardized
representation and querying of geometric attributes and spatial relationships of events with
other geospatial data. The deo:hasTemporalScope property captures temporal details of when
an event occurred, while deo:hasPart represents mereological relationships between event
segments or episodes. This deo:hasPart relation can be specialized to denote spatiotemporal
parts of events (e.g., tracks segments of a hurricane), or impact parts (e.g., impacts of individual
episodes of a hurricane).

Each instance of deo:Hazard and deo:Disaster represents a specific type of hazard, iden-
tified by the deo:HazardType class and related using the deo:hazardType property. The
deo:HazardType class refers to the hazard theme and is the ultimate feature of interest in SOSA
terminology. It acts as the connector between the DEO and the HIP ontology. In Fig. 5, the
class-equivalence mapping between the hip:SpecificHazard and deo:HazardType illustrates
how observations and other hazard-themed data represented using DEO can utilize the HIP
ontology for classification and enrichment. The relation between a hazard type and its specific
properties (e.g., a hurricane’s size, intensity, speed, and direction) is represented using the
deo:hasHazardProperty relation. Similarly, the impact type of a disaster is denoted using the
deo:ImpactType class and deo:impactType property.

PossiblyCausesRelation: Hazards can serve as the origins of disasters or as a series of
cascading events that lead to disasters [10]. We denote the relationship between deo:Disaster
and deo:Hazard using deo:resultOf. For example, in the case of Hurricane Katrina, the event
remained a hazard until making landfall, after which it transformed into a disaster event causing
damage, deaths, and injuries along its path. The deo:relatedImpact relation denotes the
relationship between deo:Disaster and deo:Impact.

The deo:possiblyCauses relation generalizes any explicit or inferred causal or correlation
relation between events, including the deo:relatedImpact and deo:resultOf relations as
shown in Fig. 6. However, causal links between hazards or disasters are often not explicit within
a dataset or across different datasets integrated into KWG. Given the complex and cascading
nature of disasters and their underlying risk drivers, causal relationships in disaster contexts
are non-linear and cannot be simplistically captured by, or inferred into a causal predicate. To
address this complexity, we adopt reification to attach provenance and additional information,
such as interacting factors and conditions, quantitative models, or participatory methods used
to determine causal relations. The reified class deo:PossiblyCausesRelation is employed
from the causal ontology design pattern [20] to facilitate this need.

ElementAtRisk: Disasters occur when valuable assets interact with hazards. The class
deo:ElementAtRisk encompasses entities of value that may be adversely affected by hazards,
including living beings, buildings, facilities, economic activities, and social structures. Specific



Figure 6: The schema diagram shows the general possiblyCauses relation between two events, its
subproperties, and the reified PossiblyCausesRelation class.

hazard properties determine the severity of impact on these assets, including the exposure of the
asset to the hazard and the intensity of the hazard. The degree of impact is influenced by the
intrinsic properties of each element-at-risk, and these are 1) the propensity of an element to
suffer a loss due to a specific hazard–vulnerability, and 2) the capacity of an element to cope
with the hazard–resilience). The Disaster Properties Ontology [18] elaborately models these
properties within the context of DMDO.

The deo:affectedBy relation is used to denote when an element-at-risk is impacted by a
hazard or disaster, while the deo:involvedInImpact relation relates the element-at-risk with
the actual impact phenomenon. Assets can be affected directly by a hazard (e.g., a house is
flooded; a person is injured by a landslide) or indirectly (e.g., services are interrupted, roads are
blocked). The concept of element-at-risk can be categorized (e.g., population, buildings) and
characterized (e.g., population income distribution, building age) in various ways. However,
formally incorporating any specific classification scheme into DEO is outside its current scope.

7. Evaluating the HIP Ontology in KnowWhereGraph
Here, we present the integration of the HIP ontology and DEO within KWG. Fig. 7 depicts a
subset of KWG’s hazard classes mapped to the HIP Ontology. This ontology now serves as the
framework for integrating various hazard datasets in KWG. Purple boxes represent top-level
hazard classes from each dataset, while yellow boxes indicate their subclasses. Mapping is
done at both core and subclass levels. During implementation, we found gaps in HIPs, such
as incomplete coverage of specialized NIFC (National Interagency Fire Center) fire classes,
including prescribed fire, wildland fire, and complex fire.

Upon further review, we found that some hazards in the Specific Hazard facet of HIPs may
need additional categorization. For example, NOAA classifies tropical cyclones by maximum
sustained winds into tropical depression (33 knots), tropical storm (34 to 63 knots), and hurricane
(64 knots). While HIPs cover tropical cyclone, tropical depression, and tropical storm, “hurricane”
is only listed as a synonym for tropical cyclone. This creates a modeling issue with NOAA’s
dataset, where “hurricane” denotes a specific type of tropical cyclone. Therefore, as shown
in Fig. 7, we avoid mapping the kwg-ont:NOAA_TropicalCyclone class to any HIP class to



Figure 7: Illustration of the mapping between KWG (purple and yellow boxes) with concepts in the HIP
Ontology (pink boxes). Concepts outlined in bold boxes do not have a corresponding mapping in HIPs.

prevent incorrectly classifying all NOAA hazard events as hurricanes.
We revisit competency question CQ1 from Sec.4 to illustrate querying and inferencing. Fig.8

shows the SPARQL query for CQ1, while Fig. 9 demonstrates KWG data instantiation using
DEO and HIP. In this figure, green and purple boxes represent instances and classes from the
NOAA storm events dataset, respectively. Solid-line arrows indicate asserted statements and
dotted-line arrows show inferred statements using a reasoner for CQ1.

PREFIX time: <http://www.w3.org/2006/time#>
PREFIX deo: <http://knowwheregraph/ontology/deo#>
PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX hip: <https://undrr-hip.org/>
select ?impact where { ?impact a deo:ImpactObservation ;

sosa:hasUltimateFeatureOfInterest hip:MH0058 ;
sosa:phenomenonTime | time:inXSDgYear "2005"^^xsd:gYear. }

Figure 8: SPARQL query to implement CQ1 from Sec. 4.

Besides evaluating DEO and HIP in the KWG through data integration and querying, the
ontologies were reviewed by experts from Direct Relief to assess their coverage, structure, and
quality. The Hermit reasoner in Protégé was used to check their logical consistency.

8. Conclusion
Integrating diverse types of hazard data in a KG enhances our understanding of hazards to build
more resilient communities and reduce disaster risk. Achieving this requires a machine-readable
hazard vocabulary to resolve ambiguity and create interlinked descriptions of entities that pro-
vide context to hazard data. The HIPs classification scheme offers a detailed and standardized
hazard vocabulary developed through significant human effort. However, while they serve as a



Figure 9: Example of KWG instance data that uses the HIP Ontology and populates a portion of DEO.

formal reference for disaster management practitioners, they lack formalization for implementa-
tion in information systems, particularly knowledge graphs. In this paper, we translate HIPs
into a FAIR vocabulary to fulfill the data integration needs and querying capabilities within
KWG. The resulting HIP Ontology hierarchically organizes terms and metadata elements from
HIPs using a consistent ontology pattern. Additionally, we present the Disaster Event Ontology,
which conceptualizes and organizes observational data related to different types of events in the
hazard-disaster domain, largely re-using existing standardized ontologies. Together, the HIP
ontology and DEO can be extended and specialized 1) for more fine-grained modeling of specific
disaster needs (e.g., to model wildfire-specific disaster response actions), 2) to model specific
synergies among (e.g., post-disaster and prevention actions). The long-term stewardship of the
ontology will be facilitated through KWG’s self-sustaining open-source ecosystem.
Future Work: The development of the HIP Ontology has identified certain gaps in the

current HIPs classification, which present opportunities for future work. As a first step, we
want to engage with the developers of the HIPs to revise the schema for better alignment and
consistency with data. This includes identifying and mapping identical concepts within the
same facet. An example is “Tsunami” represented as four distinct specific hazards in HIPs,
with distinct identifiers (MH0029, GH0006, GH0017, GH0035), based on their origin (i.e, marine,
seismogenic, volcanogenic, submarine landslide trigger). Additionally, we aim to identify and
address hazards that require further classification for improved representation of data.

Other aspects of future work involve applying machine learning and graph embeddings to
KGs utilizing the HIP Ontology to 1) identify and model multi-hazard relationships, such as
heavy rainfall resulting in a landslide or a volcanic eruption triggering a landslide; 2) annotate
hazard types with the spatial regions where they are prevalent.
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