
Bridging Upper Ontology and Modular
Ontology Modeling: A Tool and Evaluation

Abhilekha Dalal �, Cogan Shimizu, and Pascal Hitzler

Data Semantics Laboratory, Kansas State University, USA
{adalal,coganmshimizu,hitzler}@ksu.edu

Abstract. Ontologies are increasingly used as schema for knowledge
graphs in many application areas. As such, there are a variety of different
approaches for their development. In this paper, we describe and evaluate
UAO (for Upper Ontology Alignment Tool), which is an extension to
CoModIDE, a graphical Protégé plugin for modular ontology modeling.
UAO enables ontology engineers to combine modular ontology modeling
with a more traditional ontology modeling approach based on upper
ontologies. We posit – and our evaluation supports this claim – that the
tool does indeed makes it easier to combine both approaches. Thus, UAO
enables a best-of-both-worlds approach. The evaluation consists of a user
study, and the results show that performing typical manual alignment
modeling tasks is relatively easier with UAO than doing it with Protégé
alone, in terms of the time required to complete the task and improving
the correctness of the output. Additionally, our test subjects provided
significantly higher ratings on the System Utilization Scale for UOA.

1 Introduction

In many application areas, ontology modeling has become a primary approach to
schema generation for data integration and knowledge graphs [11,14,32]. Lately,
the policies of Findability, Accessibility, Interoperability, and Reusability (FAIR)
have been formulated as essential goals that data receptacles should meet to
enhance their data holdings’ usefulness [33]. The quest for efficient approaches
to model useful and reusable ontologies has, over the years, led to different
proposals for ontology creation processes and tooling.

One classic approach is based on so-called upper or foundational ontologies
[1,21,31]. Central to this paradigm is the utilizing of ontologies that are generic
and large, and as such cover a wide swath of domains, such as BFO [1], DOLCE
[10], SUMO [18]. In this approach to modeling, a new (domain) ontology is
created in accordance with the mindset or structure conveyed by these upper or
foundational ontologies. Technically, alignment of the domain ontology classes
and relations to the upper/foundational ontology entities – meaning creating
appropriate sub-class and sub-property relationships so that relevant structure
or axioms are inherited – play a prominent role.

A more recent approach to ontology modeling is based on a different mindset;
modular ontology modeling [27] is based on the idea that an ontology may best

2 Dalal, A., Shimizu, C., and Hitzler, P.

be viewed as a collection of interconnected modules, each of which correspond
to a key notion according to the terminology used by a domain expert. The
approach is related to other recent proposals to approach ontology modeling in
a divide and conquer fashion [22,30] and is a refinement of the eXtreme On-
tology Design methodology [24] based on Ontology Design Patterns [15]. In its
original conception, and the corresponding tooling, in particular the CoModIDE
Protégé plugin [27], the approach de-emphasizes sub-class and sub-property re-
lationships when reusing patterns, and in particular does not account for upper
or foundational ontologies.

Different ontology modeling paradigms have different emphases and as such
the resulting ontologies have different strengths and weaknesses. Approaches
based on foundational ontologies lead to ontologies that are based on a singular
philosophical paradigm to ontology building, and thus are internally coherent
and deeply thought-out. On the flip side, they are large and monolithic, with little
immediately discernible internal structure, and modeling choices are sometimes
hard to understand for those who are not ontology engineering specialists. The
modular approach, on the other hand, puts less emphasis on overall philosophical
coherence, but results in a highly structured ontology that natively aims to
reflect conceptualizations by domain experts. Which approach is chosen may
also sometimes be subjective, based on perceived advantages or disadvantages,
or on particulars of the use case.

In this paper, we provide a case in point that the two just mentioned ap-
proaches to ontology engineering are in fact not mutually exclusive, but that it
is possible to

use a combination of modular and upper ontology modeling. Combining the
best of both worlds can help ensure consistent development of ontologies across
multiple domains, and to accomodate a team with differing preferences and
perspectives. It will increase the flexibility of training; it will allow more effective
governance and quality assurance of ontology development, and it will promote
the degree to which multiple different groups of ontology developers and users
can inspect and critique.

We thus extend CoModIDE, a graphical paradigm based on Protégé for mod-
eling modular ontologies, with additional functionality, namely the Upper Align-
ment Tool (UOA) that supports the manual alignment of the currently modeled
ontology to a chosen upper ontology, and thus makes it possible to follow both
or either of the approaches, as desired.

As CoModIDE did previously not have such alignment capabilities, a user
would have needed to use the default Protégé experience to load, identify, and
align classes and properties. Thus, we hypothesize (and substantiate in our eval-
uation) that manual upper ontology alignment with any modular ontology using
the plugin developed is comparatively easier than doing it with Protégé alone.

The rest of this paper is organized as follows. Section 2 introduces the UOA.
Section 3 discusses relevant work on graphic modeling and ontology development
methods and tools. Sections 4 and 5 present our study design for evaluating the
tool and the results of our experiment. Section 6 discusses these findings and

The Upper Ontology Alignment Tool 3

their implications. Finally, Section 7 sums up the paper and proposes some pos-
sibilities for future research. A preliminary demonstration of the Upper Ontology
Alignment tool, without evaluation, was already provided in [8].

2 UOA: The Upper Ontology Alignment Tool

Motivation The Upper Ontology Alignment plugin is intended to simplify on-
tology development for users who want to combine a modular development ap-
proach with an upper ontology based one. The UOA thus provides a straight-
forward interface that gives the user the ability to manually align parts of the
currently modeled ontology to a chosen upper ontology. The tool is based on
manual alignment, because this is how it is usually done and discussed during
modeling with upper ontologies. In principle, algorithms for mapping recommen-
dations could be added, but this is not part of the current functionality.

The UOA is provided as part of CoModIDE [27], which is a versatile and
established Protégé plugin that supports intuitive and agile visual modeling,
reusing ODPs as templates to create modules but does not account for alignment
with upper or foundational ontologies [27]. Therefore, we used the following as
our design criteria:
1. full integration with Protégé and CoModIDE along with leveraging the

graphical user interface of CoModIDE and the creation of pattern-based
modules,

2. easy loading of any ontology as an upper ontology and extraction of its
concepts and relations, and

3. simple selection of checkboxes to define subClass and subproperty relation-
ships between the currently modeled ontology and the loaded upper ontology.

Implementation The Upper Ontology Alignment (UOA) tool extends CoMo-
dIDE, which provides three views: schema editor, pattern library, and the con-
figuration view. UOA is an additional, fourth view, labeled as (1) in Figure 1.
Classes are diagrammatically represented as cells, and properties are represented
as edges between them. The highlighted red box in the schema editor shows a
diagrammatic rendering of an alignment with the loaded upper ontology, UOA
user interface displays the list of classes when a cell is selected from the schema
editor and likewise, it will switch to list of properties from upper ontology when
edges are selected.

Since UOA provides additional functionality to CoModIDE, one of the lead-
ing design criteria is that it must be compatible and support the graphical rep-
resentation of an ontology created with CoModIDE, and should be consistent
across all reboots, instruments, and operating systems or versions of Protégé.

The UOA view allows a user to load an ontology file using a load button –
which may be an upper or foundational ontology – directly into the view (which
is kept isolated from the ontology active in Protégé). The view extracts all of the
classes and properties (excluding annotation properties) from the loaded ontol-
ogy. The user then selects classes (cells) or object/data properties (edges) on the

4 Dalal, A., Shimizu, C., and Hitzler, P.

F
ig

.1:
C

o
M

o
d

ID
E

p
lu

gin
v
iew

s
–

1
)

U
O

A
,

2
)

sch
em

a
ed

ito
r,

3
)

p
a
ttern

lib
rary.

The Upper Ontology Alignment Tool 5

graphical canvas. The UOA tool then displays the pertinent entities depending
on which glyph is selected on the graphical canvas. The view will automatically
construct and add – or remove – the pertinent subClass or subproperty axioms
to the ontology when the user selects or deselects checkboxes next to these enti-
ties. CoModIDE detects these additions and will also diagrammatically display
the added relationships.

The view also provides some supporting functionality for ease and clarity
of use: the view will display the currently selected entity, automatically select
checkboxes for axioms that are already present in the ontology (e.g., if some
entity is already a subClass of the Perdurant class, that particular checkbox
will be selected), will display the currently loaded ontology file name, allows for
different ontologies to be loaded (i.e., a user is not limited to a single upper
ontology), and provides descriptive logging in the case of failure.

3 Related Work

The intention behind having a tool like UOA that supports the interactive vi-
sual alignment of ontologies within the modular ontology methodology is to
enhance ontology engineers’ experience by merging modular ontology modeling
with foundational ontologies based modeling. We briefly discuss some other tools
that support the same or related goals.

eXtreme Design (XD) [4] was initially proposed to emphasize waterfall method-
ologies in ontological engineering to introduce a new, more flexible thinking in
ontological engineering. It was originally inspired by software engineering meth-
ods such as eXtreme Programming (XP) [29] and the experience factory ap-
proaches [2]. With the growth of the ontology, instead of a one-time process, an
emphasis is placed on the iterative delivery approach to success. The methodol-
ogy can be divided into three parts. (1) a project initiation and definition phase
that is executed only once at the beginning of the project. It is about collecting
realistic requirements based on stories that come directly from customers. It is
equally necessary to involve domain experts as customers in the development
process to confirm the correctness of domain functionality and coverage and the
adequacy of terminology and other non-functional requirements.

(2) XD emphasizes the divide and conquer paradigm, takes requirements
piece by piece to create modules for each requirement by reusing ODP building
blocks, adapting and integrating into the ontology module under development,
and like this, all requirements are covered through a development loop that
iteratively produces new modules. The module is tested against the selected
requirements to ensure that it covers them adequately.

(3) The methodology provides a tangible result in the initial phase and then
extends this result with each iteration. As soon as all requirements have been
met, the module is released and integrated into the overall solution. XD has
been classified as a requirement-driven, inherently modular methodology which
focuses on creating reusable modules and reduces failures in ontologies [5,3].

6 Dalal, A., Shimizu, C., and Hitzler, P.

However, the findings also indicate that pitfalls are associated with the possibility
of over-reliance on ODPs, as discussed in [12].

Ontology Design Patterns Gangemi [9], and Blomqvist and Sandkuhl [6] intro-
duced Ontology Design Patterns (ODPs) in 2005 to simplify ontology develop-
ment. ODPs are designed to guide unskilled users by consolidating best practices
into reusable building blocks that these users accommodate and specialize in in-
dividual ontology development projects. Presutti et al. [25] define a typology of
ODPs, including reasoning patterns, naming, transformation, etc. The eXtreme
Design methodology [4] describes how ontological engineering projects can be
broken down into discrete sub-tasks to be solved using ODPs. Previous studies
have shown that using ODPs can reduce the number of modeling errors and
inconsistencies in ontologies and that they are found to be useful and helpful by
users [3,5].

CoModIDE [26] has been developed as a plugin for the versatile and conventional
Protégé environment. The plugin presents three Protégé views and a tab that
stores these views. The Schema Editor view provides a graphical overview of the
structure of the ontology, including ontology classes, their subClass relationships,
and the object type and data type properties of the ontology that associate these
classes with data types. All of these objects can be graphically edited by dragging
and dropping. The pattern library view offers a number of integrated ontology
design patterns from various projects and from the ODP portal.1 The user can
drag and drop design models from the library to the drawing area in order to
display these models as modules in their ontology. In the configuration view, the
user can set the behavior of other CoModIDE views and their components.

When a pattern is dragged over to the canvas, the constructs of that pattern
are copied into the ontology. In addition, they are annotated using the Ontology
Pattern Language OPLa [16] to indicate that they belong to a specific mod-
ule, and are based on a particular pattern. In this way, origin information of
the modules is recorded, and the modules can be controlled (folded, unfolded,
deleted, commented) as required.

However, the approach de-emphasizes sub-class and sub-property relation-
ships, and in particular does not account for alignment with upper or founda-
tional ontologies.

Prompt-Viz [23] is a visualization tool for the Protégé Prompt [19] plugin that
extends PROMPTDiff [20] with information visualization techniques to provide
advanced cognitive support for understanding the differences between versions
of ontologies. It provides one single visual representation of ontologies within a
treemap layout [28]. This visualization aims to provide users the ability to deter-
mine the Location, Impact, Type, and Extent (LITE questions) of the changes
that have occurred to the ontology. Histogram bars represent the percentage of
descendants classified as unchanged, appended, removed, moved-from, moved-
to, and directly edited, respectively. It is divided into four linked frames [17]: (1)

1 http://ontologydesignpatterns.org/

The Upper Ontology Alignment Tool 7

An expandable horizontal tree layout of the ontology showing the differences; it
contains a search tool to locate specific concepts quickly. (2) A treemap layout of
the ontology installed in a zoomable user interface; (3) A path window showing
the location of currently selected concepts in the ontology within the is-a hier-
archy and serving as a navigation aid for the treemap component. The treemap
view can be zoomed in to show all of the boundaries for each route’s level. (4)
A comprehensive list of changes that have happened to the currently chosen
concept, for instance, the classification of the change, the change procedure, and
the reference frame in the previous and new versions of the ontology.

Prompt-Viz offers a sophisticated visualization, but it loses some intuitive
aspects of a graphical visualization (e.g., hierarchical relationships between con-
cepts). Using a single visualization to represent the two ontologies, the properties
of the source ontologies lose their clarity, which can be sufficient to merge, but
makes is less suitable for alignment.

4 Research Method

We conducted a user study to assess the added value of the UOA. The user
study consists of four parts: a questionnaire survey to collect necessary data
on the subject (e.g., familiarity with ontologies and corresponding tools), two
modeling tasks, and a follow-up questionnaire survey to collect information on
the usability of Protégé and UOA. The tasks were designed to imitate a stan-
dard ontology modeling process in which a conceptual design is developed and
approved through whiteboard prototyping. A developer is then to perform a
simple alignment task with an upper ontology.

During each modeling task, participants are asked to create an appropriate
and correct OWL file for the proposed tasks. To avoid a learning effect, the two
tasks use two different schematic diagrams; one is an instance of a pattern, and
the other is a small ontology. The specific order in which the user used which tool
first and next was randomized among participants (some used Protégé first for
the first activity and others used UOA) to avoid bias differences in the activity’s
complexity. The precision of the developed OWL files and the time required to
complete each task were recorded (the latter being limited to 20 minutes per
task). Each step of the study has been explained below.

Introductory Tutorial We provided participants with a brief tutorial on the basics
required to understand and perform the required tasks. As such, we did not have
to impose any prerequisites for participants. The 10-minutes tutorial established
a common basic understanding of the basic concepts of ontology modeling and
Protégé, including ontologies, top-level ontologies, classes, properties, domains,
ranges, sub-class relations.

Prior-Questionnaire Survey The idea of a prior questionnaire survey was to
collect information relating to the participant’s prior knowledge and experience
with topics related to ontology modeling or alignment of ontologies, to be used

8 Dalal, A., Shimizu, C., and Hitzler, P.

as control variables in the evaluation. We also asked the participants if they have
a Computer Science Background. The questions are listed in Table 1. We used
a 5-point Likert scale2 for the rating.

We also asked the participants to describe their relationship to the test leader,
(like student, colleague, same research lab, not familiar).

Fig. 2: Tasks A (top) and B (bottom) schema diagrams

We had two tasks
A and B, with two
parts to each task. In
task A, participants
were asked to develop
an ontology to model
an Event module and
then align the enti-
ties or properties with
an identified upper-
level ontology, specif-
ically GFO [13]. For
the first part, partic-
ipants were asked to
perform the modeling
task using UOA, and
for the second they
were asked to do it
using Protégé alone.
Figure 2 (top) shows
the expected result.

Similarly, for task
B, participants were
to develop an ontol-
ogy to capture in-
formation about dog
sales, in particular in-
formation about pertinent events and roles, and to later align the model with
GFO. For the first part, participants were asked to perform the modeling task
using the Upper Ontology Alignment Tool, and for the second, they were asked
to do it using Protégé alone. Figure 2 (bottom) shows the expected result.

Follow-up Questionnaire Survey The follow-up survey included the SUS evalua-
tions for both Protégé and UOA. The SUS is a ubiquitous “quick and dirty” yet
reliable tool for measuring a system’s usability. It consists of 10 questions, the
responses of which are used to calculate an overall usability score from 0 to 100.
The purpose of the selected questions was to capture the tool’s learnability, ef-
fectiveness, and efficiency which are the main components of the usability goals.

2 https://www.simplypsychology.org/likert-scale.html

The Upper Ontology Alignment Tool 9

Table 1: Mean, median, standard deviation and relative standard deviation re-
sponses to a priori questionnaire

mean median σ relative σ

CV1: I have done ontology modelling before 2.14 1 1.46 68%

CV2: I am familiar with Ontology Design Patterns 2.14 2 1.35 63%

CV3: I am familiar with Manchester Syntax 1.52 1 1.03 68%

CV4: I am familiar with Top-level Ontology 1.76 1 1.04 59%

CV5: I am familiar with Protégé 2.24 1 1.58 71%

CV6: I am familiar with CoModIDE pattern library 2.10 1 1.41 67%

Additional information on the SUS and its included items can be found online.3

Additionally, we inquire about UOA-specific features. These statements are also
scored using a Likert scale. However, this data has not been used in our evalu-
ation, except to inform our future work, as described in Section 7. At the end
of the survey, participants could provide free comments on UOA’s features or
their experience with the tool. Our hypothesis underlying the experiment design
described above was that UOA improves the approachability of knowledge graph
development in such a way that users require less time to produce correct and
reasonable output in comparison to using Protégé alone; we also hypothesized
that UOA will have a higher SUS score.

5 Results

Participant Distribution The total number of subjects who participated in the
user study evaluation was 21, out of which 13 stated that they knew the test
leader (the first author); the rest did not report any such relationship. The user
study was not limited to subjects having a computer science (CS) background in
order to have diversity and capture usability goals across different backgrounds,
and we had a small number of participants from fields such as entomology, agri-
culture engineering, and biochemistry. For self-reported ontological engineering
knowledge, the answers are shown in Table 1. The responses differ significantly,
with a relative standard deviation (σ/mean) of 59-71%.

Metric Evaluation The metrics that we considered for the result calculation are
1. Time Taken: number of minutes for each modeling task to run were recorded

and rounded to the nearest full minute and limited to 20 minutes for a task
to run due to practical limitations;

2. Correctness: structural accuracy of the output generated. The complete
structurally correct file received 2 points on examining URIs, axioms gener-
ated, alignments, 1 point was awarded for a partially correct file (e.g., one
or two incorrect linkages, incorrect axiom creation, labels); and 0 points for
incorrect files (e.g., absence of axioms, alignment).

3 https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

10 Dalal, A., Shimizu, C., and Hitzler, P.

Table 2: Summary of statistics comparing Protégé and UOA.

mean median σ

Protégé 17.29 18 4.11

UOA 13.81 15 4.76

(a) Mean, median and standard devi-
ation of total time-taken to complete
both modeling task.

mean median σ

Protégé (task A) 0.71 1 0.78

Protégé (task B) 0.52 0 0.74

UOA (task A) 1.38 2 0.86

UOA (task B) 1.05 1 0.86

(b) Mean, median and standard devia-
tion of the output’s correctness.

CV1 CV2 CV3 CV4 CV5 CV6

TP -0.26 -0.07 -0.36 -0.47 -0.23 -0.16

CP 0.05 -0.02 0.12 0.22 0.05 -0.03

TU 0.05 0.18 -0.13 -0.15 0.10 0.18

CU 0.08 -0.03 -0.02 0.03 0.19 0.12

(c) Correlations of control variables
(CV) on the Time Taken (T) and
Correctness of Output (C) for both
Protégé (P) and UOA (U).

CV1 CV2 CV3 CV4 CV5 CV6

SUS (P) 0.28 0.27 0.28 0.28 0.24 0.26

SUS (U) 0.00 0.02 0.01 0.10 0.13 0.01

(d) Correlations with control variables
(CV) on the SUS scores for both tools
Protégé (P) and UOA.

mean median σ

Protégé 44.05 42.5 21.04

UOA 71.79 72.5 13.06

(e) Mean, median and standard devi-
ation for SUS score of each tool. The
maximum score is 100.

Result Significance (p)

Time-taken p ≈ 0.010 < 0.05

Corr. (Task-A) p ≈ 0.004 < 0.05

Corr. (Task-B) p ≈ 0.012 < 0.05

SUS Evaluation p ≈ 0.0000015 < 0.001

(f) Significance of results.

For the metrics defined, we calculated simple statistics through which data of
each modeling task is described. Table 2a and 2b each show the mean, median,
and standard deviation of time-taken, and the output’s accuracy for each mod-
eling activity through Protégé as well as UOA.

Also, we examined the effects of our control variables (CVs). This analysis
is vital because it provides the context for the representation or bias of our
dataset. Results can be found in Table 2c, where CV1-CV6 correspond precisely
to the questions asked during the prior questionnaire survey (see Table 1). We
calculated each CV’s bivariate correlation between the sample data and the self-
reported data in the survey. We believe calculating correlation has a reasonable
measure of impact on the effect, as our sample’s limited size is not suitable for
partitioning. The partitions (based on the prior questionnaire survey responses)
could have been tested in pairs for statistical significance, but the partitions
would have been too small to perform the proper statistical tests. However, we
emphasize that the sample size strongly influences the correlation effects. SUS
scores are analyzed in the same way. Table 2d shows our observed correlations

The Upper Ontology Alignment Tool 11

of the SUS score for both tools with our control variables, and Table 2e shows
the mean, median, and standard deviation of the data set.

Finally, we compared each metric (time taken and accuracy of output) for
one tool against the other, assessing statistical significance; results are given in
Table 2f. We see that UOA performs better on both metrics and SUS, with at
least p < 0.05 in each case, i.e., the results are indeed statistically significant
at the 0.05 level. To make the comparison, we calculatee the probability for the
null hypothesis that the samples in each dataset come from different underlying
distributions, using the paired (two-tail) T-Test, which is a standard tool for this
type of analysis and suitable for limited sample size if it is reasonable to assume
that values follow a Gaussian distribution, as in our case.

Additional Free-Text Responses Of the 21 participants, 11 decided to leave free-
text comments at the end of the questionnaire. We applied qualitative coding
and analysis based on the fragments of these comments. That is, we divided
the comments based on the line breaks, read the details, and created basic cat-
egories. We then allocated the fragments into the categories (with a maximum
of one category per segment) [7]. Participants left between 2-5 fragments each
to analyze for a total of 35 fragments, 25 of which were encoded, as shown in
Table 3.

6 Discussion
Table 3: Free text comment fragments
per category

Category Fragments no.
User-Interface 5
Tree Structure Layout 2
Bugs 5
Additional features 4
Valuable statements 9

Participant Distribution The data
show no correlation (bivariate corre-
lation ≤ ± 0.1) between the reported
familiarity of the subjects and the re-
ported SUS values; for example, this
would have happened if the subjects
who knew the author were biased. The
high relative standard deviation of knowledge level responses from the prior ques-
tionnaire survey shows that our subjects are very diverse in skills. In other words,
they are not entirely made up of a limited-experience class or from a particu-
lar background of users that UOA will hopefully support at some point. This
variation and diversity of education help us evaluate and compare the user’s
performance and the tool’s usability more impartially.

Metric Evaluation To analyze the correlations coefficient between our results and
the control variables score collected in the prior survey, we have used threshold
values for a correlation |r|: 0-0.19 very weak, 0.20-0.39 weak, 0.40-0.59 moderate,
0.60-0.79 strong, 0.80-1.00 very strong.

As depicted in the Table 2c, the metric time-taken used to complete tasks
using Protégé correlates negatively with each of the control variables (taken
from the prior survey), and the strength of the relationship varies from very
weak to moderate. In contrast, the accuracy metric correlates weakly positively

12 Dalal, A., Shimizu, C., and Hitzler, P.

as the absolute value ranges from 0 to 0.22 except CV2 and CV6. Analysis for
Protégé indicates that familiarity with ontology modeling, top-level ontology,
related concepts, and the tool decreases the time required to finish the task and,
to any degree, improves the output’s accuracy.

However, for the metrics (time-taken and output’s correctness) concerning
UOA, the relationship’s strength and direction are dubious since there are only
very weak correlations with control variables varying from 0-0.19. We may in-
terpret that familiarity with ontology modeling does not have much influence
and that performance when using UOA is mostly skeptical of the study’s con-
trol variables. UOA reports having better scores when considering the mean and
median for the metric time-taken as described in Table 2a. When examining the
underlying data (2f), the significance of the p-value is approx. 0.010<0.05. Sub-
sequent, consider Table 2b for the correctness of both the tasks, UOA performs
better for both mean and median score than Protégé. Comparing underlying data
for correctness, the statistical significance of the p-value is approx. 0.004<0.05
and 0.012<0.05. Considering both the comparisons, we reject the null hypothesis
and confirm that a user produces correct and reasonable output in less time when
using UOA than when using Protégé alone.

From the above analysis of the correlation coefficient where we observe a
very weak correlation between the familiarity of ontology modeling and UOA
performance results and the confirmation that the user performs better in terms
of time required and output’s accuracy when using UOA rather than Protégé,
it indicates that UOA has delivered increased accessibility and learnability.

Further, Table 2e illustrates that the SUS scores for UOA have a greater
mean, greater median, and smaller σ, attaining a substantial statistical signifi-
cance of approx. 0.0000015< 0.001. Hence, we confirm that the user finds UOA
to have a higher SUS score than when using Protégé alone from the evaluation.
On examining SUS scores (Table 2d), we find that Protégé correlates strongly
positively with control variables. The absolute values indicate that subjects do
not find the tool very useful in terms of usability goals, including adequate to
use, easy to learn, and suitable. In contrast, the SUS correlation coefficient for
UOA suggests that there is either a very weak or weak correlation with the
CVs. By showing that in less time, users produce accurate output when using
UOA and users find UOA to have higher scores, we can say that UOA improves
usability and approachability for knowledge graph development, especially for
those unfamiliar with ontological modeling.

Additional Free-Text Responses The fragments summarized in Table 3 show the
advantages and disadvantages of UOA recognized by subjects as follows:
– User Interface: UOA’s design format is confusing and less-informative; the

button used for loading files into the tool does not serve the purpose much
and reduces approachability.

– Tree Structure Layout : The users find the view crowded and uncomfortable,
not easy to find the classes or properties down in the list.

– Bugs: Graphical display on canvas is faulty; checking boxes stopped adding
alignments to the model.

The Upper Ontology Alignment Tool 13

– Additional Features: There should be a search box to find the classes resp.
properties from the list; there should be prompts for the user in case of error;
zooming is requested.

– Valuable Statements: Users appreciate graphical modeling with the addi-
tional feature of alignment with upper ontologies. E.g. “The Upper Ontology
Alignment tool made it much easier to add classes with specific sub-class
axiom relations,” “This system is very useful and easier to use,” “The tool
efficiently reduces the manual steps and easy to use. I loved the concept and
would highly rate it.”

Some users opted to only leave comments about their performance in the ex-
periment or knowledge about the tool, hence containing no codable fragments.
We find that there is an agreement among participants that UOA adds value
to graphical modeling and is intuitive and useful. Criticism is aimed at specific,
simple bugs or UI functionality.

7 Conclusion and Future Work

Our experiments indicates that UOA allows users to develop ontologies with
the option of combining modular ontology modeling with modeling approaches
based on upper/foundational ontologies, more correctly and faster than Protégé,
irrespective of their previous knowledge level. Our experiments indicates that
UOA is more user-friendly and has improved usability goals (SUS score) than
the standard Protégé and that UOA concerns affecting users, as opposed to
methodological or modeling problems, mainly derive from simple faults in the
tool. Overall, this means that modular graphical ontological engineering with
alignment to upper ontology using the tool is a practical way to improve onto-
logical engineering accessibility.

Possible extensions of this work, as indicated by feedback from the user study,
include: automation or semi-automation of the alignment, provision of more
complex alignment capabilities beyond sub-classes or sub-properties, namespace
prefix and label presentation, search functionality, and improving the display of
the tree structure of classes and properties [8].

Acknowledgement. This work was supported by the U.S. Department of Com-
merce, National Institute of Standards and Technology, under award number
70NANB19H094.

References

1. R. Arp, B. Smith, and A. D. Spear. Building ontologies with basic formal ontology.
Mit Press, 2015.

2. V. R. Basili, G. Caldiera, and H. D. Rombach. Experience factory. Encyclopedia
of software engineering, 2002.

3. E. Blomqvist, A. Gangemi, and V. Presutti. Experiments on pattern-based on-
tology design. In Proceedings of the fifth international conference on Knowledge
capture, pages 41–48, 2009.

14 Dalal, A., Shimizu, C., and Hitzler, P.

4. E. Blomqvist, K. Hammar, and V. Presutti. Engineering ontologies with patterns-
the extreme design methodology. Ontology Engineering with Ontology Design Pat-
terns, (25):23–50, 2016.

5. E. Blomqvist, V. Presutti, E. Daga, and A. Gangemi. Experimenting with extreme
design. In International Conference on Knowledge Engineering and Knowledge
Management, pages 120–134. Springer, 2010.

6. E. Blomqvist and K. Sandkuhl. Patterns in ontology engineering: Classification of
ontology patterns. In ICEIS (3), pages 413–416, 2005.

7. P. Burnard. A method of analysing interview transcripts in qualitative research.
Nurse education today, 11(6):461–466, 1991.

8. A. Dalal, C. Shimizu, and P. Hitzler. Modular ontology modeling meets upper
ontologies: The upper ontology alignment tool. In The 19th International Semantic
Web Conference, volume 2721, pages 119–124, 10/2020 2020.

9. A. Gangemi. Ontology design patterns for semantic web content. In International
semantic web conference, pages 262–276. Springer, 2005.

10. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening
ontologies with DOLCE. In A. Gómez-Pérez and V. R. Benjamins, editors, Knowl-
edge Engineering and Knowledge Management. Ontologies and the Semantic Web,
13th International Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002,
Proceedings, volume 2473 of Lecture Notes in Computer Science, pages 166–181.
Springer, 2002.

11. C. Gutiérrez and J. F. Sequeda. Knowledge graphs. Commun. ACM, 64(3):96–104,
2021.

12. K. Hammar. Ontology design patterns in use: lessons learnt from an ontology
engineering case. In Workshop on Ontology Patterns in conjunction with the 11th
International Semantic Web Conference 2012 (ISWC 2012), 2012.

13. H. Herre. General Formal Ontology (GFO): A foundational ontology for conceptual
modelling. In Theory and applications of ontology: computer applications, pages
297–345. Springer, 2010.

14. P. Hitzler. A review of the semantic web field. Commun. ACM, 64(2):76–83, 2021.
15. P. Hitzler, A. Gangemi, K. Janowicz, A. Krisnadhi, and V. Presutti, editors. On-

tology Engineering with Ontology Design Patterns – Foundations and Applications,
volume 25 of Studies on the Semantic Web. IOS Press, 2016.

16. P. Hitzler, A. Gangemi, K. Janowicz, A. A. Krisnadhi, and V. Presutti. Towards a
simple but useful ontology design pattern representation language. In E. Blomqvist,
Ó. Corcho, M. Horridge, D. Carral, and R. Hoekstra, editors, Proceedings of the 8th
Workshop on Ontology Design and Patterns (WOP 2017) co-located with the 16th
International Semantic Web Conference (ISWC 2017), Vienna, Austria, October
21, 2017, volume 2043 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

17. M. Lanzenberger and J. Sampson. Alviz – a tool for visual ontology alignment.
In Tenth International Conference on Information Visualisation (IV’06), pages
430–440. IEEE, 2006.

18. I. Niles and A. Pease. Towards a standard upper ontology. In 2nd International
Conference on Formal Ontology in Information Systems, FOIS 2001, Ogunquit,
Maine, USA, October 17-19, 2001, Proceedings, pages 2–9. ACM, 2001.

19. N. F. Noy and M. A. Musen. The PROMPT suite: interactive tools for on-
tology merging and mapping. International journal of human-computer studies,
59(6):983–1024, 2003.

20. N. F. Noy, M. A. Musen, et al. Promptdiff: A fixed-point algorithm for comparing
ontology versions. AAAI/IAAI, 2002:744–750, 2002.

The Upper Ontology Alignment Tool 15

21. D. Oberle, A. Ankolekar, P. Hitzler, P. Cimiano, M. Sintek, M. Kiesel, B. Mougouie,
S. Baumann, S. Vembu, and M. Romanelli. DOLCE ergo SUMO: on foundational
and domain models in the SmartWeb Integrated Ontology (SWIntO). J. Web
Semant., 5(3):156–174, 2007.

22. D. Osumi-Sutherland, M. Courtot, J. P. Balhoff, and C. J. Mungall. Dead simple
OWL design patterns. J. Biomedical Semantics, 8(1):18:1–18:7, 2017.

23. D. S. J. Perrin. Prompt-viz: Ontology version comparison visualizations with
treemaps. 2004.

24. V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist. eXtreme Design with content
ontology design patterns. In E. Blomqvist, K. Sandkuhl, F. Scharffe, and V. Svátek,
editors, Proceedings of the Workshop on Ontology Patterns (WOP 2009) , collo-
cated with the 8th International Semantic Web Conference (ISWC-2009), Wash-
ington D.C., USA, 25 October, 2009., volume 516 of CEUR Workshop Proceedings.
CEUR-WS.org, 2009.

25. V. Presutti, A. Gangemi, S. David, G. A. de Cea, M. Surez-Figueroa, E. Montiel-
Ponsoda, and M. Poveda. NeOn Deliverable D2.5.1. a library of ontology design
patterns: reusable solutions for collaborative design of networked ontologies. NeOn
Project. http://www. neon-project. org, 2008.

26. C. Shimizu and K. Hammar. Comodide – the Comprehensive Modular Ontology
Engineering IDE. In ISWC 2019 Satellite Tracks (Posters & Demonstrations,
Industry, and Outrageous Ideas) co-located with 18th International Semantic Web
Conference (ISWC 2019) Auckland, New Zealand, October 26-30, 2019., volume
2456, pages 249–252. CEUR-WS, 2019.

27. C. Shimizu, K. Hammar, and P. Hitzler. Modular graphical ontology engineering
evaluated. In A. Harth, S. Kirrane, A. N. Ngomo, H. Paulheim, A. Rula, A. L.
Gentile, P. Haase, and M. Cochez, editors, The Semantic Web – 17th International
Conference, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceed-
ings, volume 12123 of Lecture Notes in Computer Science, pages 20–35. Springer,
2020.

28. B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Transactions on graphics (TOG), 11(1):92–99, 1992.

29. J. Shore et al. The Art of Agile Development: Pragmatic guide to agile software
development. O’Reilly Media, Inc., 2007.

30. M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, and H. Forssell. Practical ontol-
ogy pattern instantiation, discovery, and maintenance with reasonable ontology
templates. In D. Vrandecic, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti,
I. Celino, M. Sabou, L. Kaffee, and E. Simperl, editors, The Semantic Web – ISWC
2018 – 17th International Semantic Web Conference, Monterey, CA, USA, Octo-
ber 8-12, 2018, Proceedings, Part I, volume 11136 of Lecture Notes in Computer
Science, pages 477–494. Springer, 2018.

31. B. Smith. Classifying processes: an essay in applied ontology. Ratio, 25(4):463–488,
2012.

32. R. Vita, J. A. Overton, C. J. Mungall, A. Sette, and B. Peters. FAIR principles
and the IEDB: short-term improvements and a long-term vision of OBO-Foundry
mediated machine-actionable interoperability. Database, 2018:bax105, 2018.

33. M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton,
A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al. The
FAIR guiding principles for scientific data management and stewardship. Scientific
data, 3, 2016.

	Bridging Upper Ontology and Modular Ontology Modeling: A Tool and Evaluation

