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ABSTRACT
The explosive growth of the Linked Data on the Web has greatly
facilitated collecting data from remote sensors, from air quality
sensors spread out across a city, to seismograph stations spread
across the entire world. Integrating these heterogeneous data can
be quite challenging; however one can achieve this through the use
of available W3C standards to create a knowledge graph. For this
use case, theW3C also provides a standard, the Sensor, Observation,
Sample, Actuator (SOSA) Ontology, that allows for the semantic
encoding of sensors and their observations. However, even with
the guidance of this standard, it may be difficult to produce a correct
graph with high fidelity from heterogeneous sources. In this paper
we present a set of (data) shape constraints, called SOSA-SHACL,
for the SOSA ontology using a data validation language, namely
the W3C standard SHACL (Shape Constraint Language). These
constraints enable us to evaluate whether the modeled observations
in our Knowledge Graph comply with the SOSA recommendations.
Furthermore, we show through several case studies how the closed
world assumption plays a role in the process of designing such
shape constraints, especially as SOSA is based on the open world
assumption.

CCS CONCEPTS
• Information systems → Graph-based database models; Se-
mantic web description languages.
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1 INTRODUCTION
In recent years, the ability to collect and store observations from
various sensors has skyrocketed. Unfortunately, most of these ob-
servations remain siloed from each other. There are many potential
ways to integrate these observations, e.g., along space and time,
as well as what features of interest are being observed. However
the heterogeneity of models for representing sensor data typically
make integration quite difficult. Knowledge graphs can facilitate
the integration process, by leveraging relevant W3C standards in
order to provide consistent syntactical representation and semantic
interpretation of the data.

Two standards in particular, the Semantic Sensor Network On-
tology (SSN) [3, 11] and the Sensor, Observation, Sample, Actuator
(SOSA) Ontology [9], which is a lightweight version of SSN, are
ideal for modeling heterogeneous and multi-sourced observations
according to a common schema. Indeed, our overarching use case,
KnowWhereGraph,1 utilizes SSN/SOSA to integrate environmental
observations from over 27 different datasets from 17 distinct data
sources in order to provide highly detailed context regarding events
and processes that have happened in particular regions of the Earth
(which we call area briefings). This has required careful attention to
1http://knowwheregraph.org/
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Table 1: Namespaces used in this paper

Prefix Name URI
sosa: SOSA http://w3.org/ns/sosa/
geo: GeoSPARQL http://opengis.net/ont/geosparql/
cdt: Custom Datatype https://w3id.org/cdt/
xsd: XML Schema http://www.w3.org/2001/XMLSchema#
sf: Simple Feature http://www.opengis.net/ont/sf#
kwg-ont: KWG Ontology http://www.knowwheregraph.org/lod/ont/
kwgr: KWG Resource http://www.knowwheregraph.org/lod/resource/

retaining the original foci and value of the original, diverse datasets,
while enhancing their utility through integration with other dis-
parate resources. This has been especially challenging when mate-
rialization tasks, i.e. converting raw data into graph-ready format,
were carried out by a large, distributed team. Materializing a knowl-
edge graph, or triplification, is the act of converting flat data (e.g.,
CSV or shapefiles) into subject-predicate-object triples that conform
to some schema. Materialization is largely a software engineering
endeavor, as opposed to the schema development, which falls un-
der knowledge engineering. Consequently, there can be a conflict
in base assumptions—namely, the differences between the Open
World Assumption (OWA) and Closed World Assumption (CWA),
as there may not always be a straightforward translation from one
to another. For example, in an ontology under OWA, there may
be an axiom that specifies the existence of some filler for some
property (called an existential axiom). However, it may not be the
case that this filler would always be recorded or measured by the
sensor. Ontologically, we know that it exists, but empirically, we
do not. Thus, when we are materializing the graph, it may be dif-
ficult to identify errors or omissions in the graph by using only
the knowledge graph’s schema, as specified in an ontology, as a
guide. This error checking process is known as validation. TheW3C
also provides a recommendation for data validation—The Shapes
Constraint Language (SHACL) [8, 10]. This language allows us to
specify the shape of the graph, which is also a graph itself. That is,
what triples should be present, in what quantity, and, conversely,
what definitely should not be there.

In this paper, we have developed a comprehensive set of SHACL
shapes that can be used to validate knowledge graphs that utilize
SOSA, which we call SOSA-SHACL (Section 4). These shapes are
built based on our experience of modeling numerous environment-
related sensors and observations, including data themes of air qual-
ity, earthquakes, and wildfires (Section 3). The advantage of using
the closed world assumption over SOSA’s inherent open world as-
sumption to validate the graph is discussed in Section 5. Beyond
shapes tailored for SOSA, Section 6 further exemplifies the use of
SHACL to define data-dependent shapes together with SOSA. More-
over, background and related work are discussed in Section 2, and
Section 7 concludes by pointing to future research directions. The
related prefixes used in this paper are summarized in Table 1. We
also note that for clarity and brevity, when we refer to characteris-
tics of an sosa:Observation, these also tend to hold for other aspects
of SOSA (i.e., samplings, actuations, and observation collections).

2 BACKGROUND AND RELATEDWORK
This section provides backgrounds about the Sensor, Observation,
Sample, and Actuator (SOSA) ontology and the Shapes Constraint

Language (SHACL). Moreover, we summarize existing applications
of using SHACL.

2.1 Sensor, Observation, Sample, and Actuator
(SOSA) Ontology

The SOSA ontology2 [9] is a W3C/OGC standard developed using
a subset of SSN’s entities [3, 11] and contains concepts, proper-
ties, and annotations for describing sensors, observations, actua-
tors, samples, features of interest, observable properties, and ob-
servation procedures. It is extensively used in the Semantic Web
for applications ranging from representing data-streams [1, 5],
smart-city data [6, 7], communication technologies and protocols
[2, 14], and various kinds of geospatial information [12, 13, 15,
16]. The key uses of the ontology are: (1) linking observations
(sosa:Observation) to sensors (sosa:Sensor) that measured them
and the property (sosa:ObservableProperty) that was observed;
(2) annotating observation measurements with the observed value
(sosa:Result), the entity that was observed (sosa:FeatureOfInterest),
or the event that originated the measurement (sosa:Stimulus);
and (3) aggregating observations into observation collections
(sosa:ObservationCollection) using aggregators such as spatial
properties (of the observed feature or event), temporal properties
(sosa:resultTime and sosa:phenomenonTime), and the observed
property [17]. Figure 1 shows a schema diagram for the classes
immediately adjacent to sosa:Observation.

Figure 1: Fragment of SOSA’s schema diagram with a focus
on sosa:Observation class.

2.2 Shapes Constraint Language (SHACL)
The Shapes Constraint Language (SHACL) is a W3C standard for
validating RDF graphs; the standard describes two graphs, the data
graph and the shapes graph. The RDF graph to be validated is the
data graph, while the set of constraints—expressed in RDF as well—
that describe the shape of the graph, is collectively known as the
shapes graph. This shapes graph formally describes the set of con-
ditions the data graph needs to satisfy. SHACL provides a set of
built-in core constraints that are often used in validating graphs,
such as sh:class to restrict the focus node to be from a specific
class, sh:minCount to restrict the number of value nodes for a focus
node/property, and sh:or to restrict the logical “or” relation between
several shapes.
2https://www.w3.org/TR/vocab-ssn/ and the extension https://www.w3.org/TR/vocab-
ssn-ext/
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In general, there are two types of SHACL shapes according to
the target types: if the target is a node, it refers to be a node shape
(sh:NodeShape); if the target is a property, it is a property shape
(sh:PropertyShape). A SHACL validation engine uses shapes graphs
to validate data graphs. If there are some parts of the data graphs
violating conditions specified by the shapes graphs, an error will be
added to the SHACL validation report. As such, we can use SHACL
to assess and refine the data quality of any materialized RDF graphs.
Many modern triple stores support SHACL validation, including
GraphDB3, Apache Jena4, and Neo4j5.

2.3 Applications of SHACL
So far, SHACL has been used to design validating shapes for on-
tologies such as Schema.org6, W3C Provenance (PROV)7, and
GeoSPARQL [4]. In these use cases, SHACL has been leveraged
to enforce the cardinality of a relation, to improve the interoper-
ability between different systems, to declare metadata templates,
and so forth. This work, in contrast, designs SHACL constraints
for SOSA ontology. More importantly, our work emphasizes the
role that the CWA plays in using SHACL to design shapes to assess
and refine the quality of real-world environmental observations.
Meanwhile, it is also worth noting that similar to SHACL, ShEx
is an alternative designed to evaluate RDF graphs. A systematic
comparision of these two can be found in [8].

3 SAMPLE DATASETS
The motivation of designing SOSA-SHACL is primarily based on
our experience of using SOSA ontology to build a knowledge graph
that integrates data from different environment-related sensors
and observations. This section showcases three datasets, which
are related to environmental themes of air quality, earthquakes,
and wildfires, to empirically explain the need of SOSA-SHACL so
as to assess and refine the graph quality. More specifically, we
introduce the provenance of datasets, explain schema modeling
using SOSA ontology, and discuss limitations of only relying on
SOSA to validate the graph. These discussions further motivate the
introduction of SOSA-SHACL.

3.1 Air Quality Observations
The Air Data8 is an example of observation data that is made avail-
able by the Environmental Protection Agency (EPA) to report daily
pollutant measurements as recorded at air quality monitoring sta-
tions in the US.

Each row in the raw CSV file contains a single observation of
daily pollutant concentration, the Air Quality Index (AQI) value,
as well as some attributes such as Parameter Occurrence Code
(POC), geographic coordinates of the air quality site, and type of air
pollutantmeasured (e.g., PM10, CO, Pb). By consultingwith environ-
mental scientists, the schema as depicted in Figure 2 was developed
for this dataset. Specifically, the figure shows measurements of a
3https://graphdb.ontotext.com/documentation/free/shacl-validation.html
4https://jena.apache.org/documentation/shacl/index.html
5https://neo4j.com/labs/neosemantics/4.0/validation/
6https://datashapes.org/schema
7https://www.w3.org/TR/prov-constraints/
8https://www.epa.gov/outdoor-air-quality-data/download-daily-data

Figure 2: EPA Air Quality Observations Schema Diagram

Figure 3: Schema Diagram for the Earthquake Observations
Dataset

specific air pollutant (e.g., PM10) as observed by an air quality in-
strument (a subclass of sosa:Sensor), and the associated observation
collection (i.e., kwg-ont:AQObservationCollection as a subclass of
sosa:ObservationCollection). Such a collection contains individual
observation members (i.e., instances of kwg-ont:AQObservation,
which are subclasses of sosa:Observation) that are observed at a
specific time (xsd:dateTime).

While materializing Air Data using such a schema, the most
common mistake one can make is to collectively regard each
daily measurement of PM10, CO, PM2.5, etc. as members of one
observation collection. However, since each type of air pollu-
tant is measured by a different sensor (i.e., an instance of kwg-
ont:AirQualityInstrument), materializing data in such a manner
would result in multiple sensors associated with one observation
collection (i.e., an instance of kwg-ont:AQObservationCollection),
which violates the constraint that a sosa:ObservationCollection can
only be observed by exactly one sensor.

https://graphdb.ontotext.com/documentation/free/shacl-validation.html
https://jena.apache.org/documentation/shacl/index.html
https://neo4j.com/labs/neosemantics/4.0/validation/
https://datashapes.org/schema
https://www.w3.org/TR/prov-constraints/
 https://www.epa.gov/outdoor-air-quality-data/download-daily-data 
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3.2 Earthquake Observations
Similar to air quality observations, earthquakes are observed at
seismic stations through various sensors. The United States Geo-
logical Survey (USGS) API.9 is a resource for earthquake events
that occurred in the US. Each earthquake event contains informa-
tion on its latitude and longitude as well as 20 attributes defined
by the ANSS Comprehensive Earthquake Catalog (ComCat), e.g.,
magnitude and depth 10.

Based on the nature of the dataset and SOSA ontology, we ma-
terialized the sosa:Observation and sosa:ObservationCollection
pattern to describe the earthquake event. As depicted in Fig-
ure 3, the class kwg-ont:EarthquakeEvent is modeled as a sub-
class of sosa:FeatureOfInterest in SOSA ontology and a sub-
class of geo:Feature in GeoSPARQL ontology. Each row in
the USGS earthquake dataset (e.g., CSV file) is considered as
one kwg-ont:EarthquakeObservation, which is a subclass of
sosa:Observation in the SOSA ontology. For example, magnitude
is defined as the best available estimate of the earthquake’s size,
at the time that the event page is created by USGS. As one of the
earthquake observations, magnitude has a value (e.g., 4.6), through
the property sosa:hasSimpleResults. Besides using observations,
some important information which can be used for fast query and
further data integration, like location and time are also modeled
and stored using sf:Point and time:Instant.

Even with such a schema, we encountered several issues while
materializing the data. First of all, there might be cases where we
have an instance of kwg-ont:EarthquakeObservationCollection,
a subclass of sosa:ObservationCollection, but it is not related to
any instances of kwg-ont:EarthquakeObservation, which is a sub-
class of sosa:Observation through the predicate sosa:hasMember.
It is apparently an error that once has being reported, we would
have the chance to check the feasibility of the schema and the
completeness of the raw data. Moreover, based on SOSA, the do-
main of the object property sosa:observedProperty has to be either
sosa:Observation or sosa:ObservationCollection. However, sim-
ply using SOSA to model environmental observations does not
prevent one from linking sosa:observedProperty to other classes,
e.g., kwg-ont:MajorEarthquakeMeasurement. If a violation can
9https://earthquake.usgs.gov/fdsnws/event/1/
10https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php

Figure 4: Fire Event Schema Diagram

be detected, we can consequently refine the schema either by
adding kwg-ont:MajorEarthquakeMeasurement as a subclass of
sosa:Observation or by deleting the violating triples from the data.

3.3 Wildfire Observations
Another sample dataset is of wildfires, provided by Monitoring
Trends in Burn Severity program (MTBS), which was jointly con-
ducted by the U.S. Geological Survey Center for Earth Resources Ob-
servation and Science (EROS) and the USDA Forest Service Geospa-
tial Technology and Applications Center (GTAC)11. This dataset12
records the burn severity and extent of large fires across the US
from 1984 to present. Each wildfire event is stored as a row in a
shapefile, including event ID, incident name, incident type, fire
mapping assessment label, number of acres burned, mean dNBR
value, geometry, etc.

We picked 12 attributes out of the total 23 attributes to meet
domain experts’ interest. Particularly, we divided the selected at-
tributes into three groups: identity attributes (e.g., fire name, map
id), classification attributes (e.g., whether a fire event is a wild-
fire event or a complex fire event), and observation attributes
(e.g., number of acres burned). The way of modeling these at-
tributes differed for the three distinct attribute groups. The first
two were modeled directly as ordinary RDF triples without us-
ing SOSA ontology. In contrast, observation attributes were all
modeled with SOSA ontology (Figure 4), especially by using
sosa:ObservationCollection and sosa:Observation. In specific, each
fire event was modeled as a subclass of sosa:FeatureOfInterest and is
associated with a sosa:ObservationCollection through the property
sosa:isFeatureOfInterestOf. Plus, different attributes of a fire event
are observation members of their collection construct.

With this schema, there are still challenges when materializing
a wildfire dataset. For instance, since in reality observed attributes
regarding the same fire event (e.g., number of acres burned and
mean dNBR value) are usually observed at the same time, we at-
tach sosa:phenomenonTime to sosa:ObservationCollection rather
than to each individual observation. However, one might still relate
the sosa:phenomenonTime to either kwg-ont:fireEvent or kwg-
ont:FireObservation, a subclass of sosa:Observation in practice.
The former is in fact a materialization error that should be de-
tected and fixed, while the latter is more complicated as based
on SOSA, an instance of sosa:Observation can be linked with
sosa:phenomenonTime as well. So purely based on SOSA ontology,
such an inconsistency would not be addressed, and thus a SHACL
shape is needed.

4 SOSA-SHACL
To address aforementioned challenges of assessing and refining
environmental observations using SOSA, this section introduces
the design of SOSA-SHACL. It is designed to constrain the use of
SOSA on materializing real world environmental observations. To
do so, we leverage both the core and SPARQL-based constraint
defined by SHACL. For simple shapes, SHACL’s core components
such as those designed for cardinality check, value type check, and
11https://mtbs.gov/
12https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/MTBS_Fire/data/composite_
data/burned_area_extent_shapefile/mtbs_perimeter_data.zip

https://earthquake.usgs.gov/fdsnws/event/1/
https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
https://mtbs.gov/
https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/MTBS_Fire/data/composite_data/burned_area_extent_shapefile/mtbs_perimeter_data.zip
https://edcintl.cr.usgs.gov/downloads/sciweb1/shared/MTBS_Fire/data/composite_data/burned_area_extent_shapefile/mtbs_perimeter_data.zip
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logical check, are leveraged. Whereas for those complicated ones
(e.g., need to compare the result based on complicated queries), we
apply the SPARQL-based constraints defined in SHACL. In total,
we introduce 15 individual shapes for the core classes of SOSA
(e.g., sosa:Observation and sosa:ObservationCollection), each of
which works specifically to a SOSA class, as well as 23 shapes for
SOSA properties (e.g., sosa:phenomenonTime and sosa:hasResult),
each of which corresponds to a specific SOSA property. The shapes,
together with examples and testing codes can be found online, in
our our repository13.

While designing these constraints, we have two strategies. First,
we consult original SOSA ontology as well as its official recommen-
dation documents, where we translate those meaningful restrictions
(either in OWL or texts) into shapes using SHACL. One example is
shapes for sosa:Observation, which is depicted in Figure 5. One of
its shapes related to sosa:hasFeatureOfInterest is demonstrated in
Listing 1. It states that an observation has to associate with exactly
one feature of interest.

In addition, our second strategy is to combine the benefits of
closed world assumption of SHACL with the nature of environmen-
tal observations to propose shapes that have yet been considered, or
are hardly implemented, by using the open world assumption-based
SOSA ontology. This will be the focus of the next section.

sosa -shacl:ObservationConstraint_FOI
a sh:NodeShape ;
sh:targetClass sosa:Observation ;
sh:property

[
sh:path sosa:hasFeatureOfInterest ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:class sosa:FeatureOfInterest ;

] ;

Listing 1: A shape of sosa:Observation related to
sosa:hasFeatureOfInterest

5 VALIDATING “OPENWORLD” DATA
Even though OWL, as well as RDF Schema, can be used to check
the inconsistency of data in some sense, they are fundamentally
different from SHACL in terms of validating knowledge graphs.
OWL, specifically, defines some restriction properties such as
owl:maxCardinality, which can be used to constrain properties
of a class. However, these restrictions are not data constraints.
They are used for the purpose of inference instead. For instance,
if we assert the axiom of owl:maxCardinality to restrict the maxi-
mal number of sosa:FeatureOfInterest associated with an instance
of sosa:Observation to be 1; if this instance is linked with two
sosa:FeatureOfInterest, OWL will not report a violation. Instead, it
will infer that the two sosa:FeatureOfInterest are in fact the same
(i.e., they are just represented as distinct resources (URI) in the RDF
graph, but they both refer to the same entity in reality). In short,
OWL follows the “open world” assumption by inferring new knowl-
edge to make the data conform to the defined restrictions, while
SHACL obeys the “closed world” assumption directly constraining
the target data using defined shapes, and reporting violations if any.
The major benefit of using SHACL is not to infer new knowledge,
13https://github.com/KnowWhereGraph/KWG-SHACL

but to determine compliance of data graphs with the constraints
specified in SHACL shapes.

In fact, SOSA’s formal ontology14 only declares some basic
constraints using OWL, RDF Schema, and Schema.org, including
schema:domainIncludes, schema:rangeIncludes, rdfs:range, and
owl:inverseOf. Despite the fact that they have been suggested by
W3C 15, true “constraints”, (rather than axioms) are missing in
SOSA’s formal representation, such as the constraint: an instance of
sosa:Observationmust be associated with one and only one instance
of sosa:ObservableProperty.

Moreover, those W3C recommended constraints sometimes be-
come problematic while being used to validate real-world data
as discussed in Section 3. Hence, this section explains the use
of SHACL to define more meaningful and flexible shapes to con-
strain environment-related observations using SOSA. We specif-
ically choose to discuss those constraints that cannot be easily
accomplished through other standards (e.g., OWL).

5.1 Temporal Information in SOSA
Spatial and temporal information are essential for environmen-
tal observations, as they provide context for interpreting observa-
tions. For example, a deadly earthquake that occurs after midnight
rather than during the daytime can have drastically different im-
pacts, altering what types of relief strategies can be executed in
response. When using SOSA, there are two ways for connecting
temporal information, sosa:phenomenonTime (an object property)
and sosa:resultTime (a datatype property). The former is defined
as the time when an observation applies to a feature of interest
while the latter indicates the time when such an observation is
completed. Listing 2 and 3 illustrate the existing axioms related to
temporal information in SOSA: only very basic domain and range
rules are included. However, to empirically validate environmental
data requires more sophisticated constraints.

sosa:resultTime a owl:DatatypeProperty;
rdfs:label "result time"@en ;
schema:domainIncludes sosa:Actuation ;
schema:domainIncludes sosa:Observation ;
schema:domainIncludes sosa:Sampling ;
rdfs:range xsd:dataTime .

Listing 2: Declaration of sosa:resultTime

sosa:phenomenonTime a owl:ObjectProperty;
rdfs:label "phenomenon time"@en ;
schema:domainIncludes sosa:Actuation ;
schema:domainIncludes sosa:Observation ;
schema:domainIncludes sosa:Sampling ;
schema:rangeIncludes time:TemporalEntity .

Listing 3: Declaration of sosa:phenomenonTime

First of all, a valid observation (or an actuation and sampling)
that is capable of supporting decision making needs to have a tem-
poral scope. Either sosa:phenomenonTime or sosa:resultTime, or
even both, can be used to represent such a temporal scope. However,
no matter whether it is sosa:phenomenonTime or sosa:resultTime,
there should not be more than one corresponding value for ei-
ther. That is, it is invalid to have measured a single observation
14https://www.w3.org/ns/sosa/
15https://www.w3.org/TR/vocab-ssn/

https://github.com/KnowWhereGraph/KWG-SHACL
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https://www.w3.org/TR/vocab-ssn/
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Figure 5: UML diagram for sosa:Observation shapes. Only part of the designed shapes are illustrated.

of a phenomenon that happened at more than one distinct time.
Such a constraint of existence and cardinality cannot be readily
expressed in OWL, whereas by using SHACL’s core constraints,
we can design an observation shape that does so. As Listings 4
and 5 demonstrate, core constraints such as sh:or, sh:minCount,
and sh:class are combined to comprise shapes that constrain on (1)
there should be at least one piece of temporal information related
to an observation, either sosa:phenomenonTime or sosa:resultTime
(existential filler); (2) there cannot be more than one value asso-
ciated with sosa:phenomenonTime or sosa:resultTime (cardinal-
ity filler); and (3) the value of sosa:phenomenonTime has to be a
time:TemporalEntity, and the value of sosa:resultTime has to be
an xsd:dateTime (range filler). It is worth noting that the SOSA
ontology itself as shown in Listings 2 and 3 only covers the range
filler.

sosa -shacl:SOSATimeConstraint_Existential a sh:NodeShape;
sh:targetClass sosa:Observation ;
sh:or (
[

sh:path sosa:phenomenonTime ;
sh:minCount 1 ;

]
[

sh:path sosa:resultTime ;
sh:minCount 1 ;

]
).

Listing 4: SHACL shape to constrain the existential filler

sosa -shacl:SOSATimeConstraint_Cardinality a sh:NodeShape;
sh:targetClass sosa:Observation ;
sh:property
[

sh:path sosa:phenomenonTime ;
sh:maxCount 1 ;
sh:class time:TemporalEntity ;

];
sh:property
[

sh:path sosa:resultTime ;
sh:maxCount 1 ;
sh:classType xsd:dateTime ;

] .

Listing 5: SHACL shape to constrain the cardinality and
range filler

More interestingly, when both sosa:phenomenonTime and
sosa:resultTime are used, there should be an additional constraint
that the result time will typically be later than the phenomenon
time, due to latency in sensor actuation and value reporting. Such
a constraint becomes valuable in detecting results from model fore-
casting, as opposed to actual observations. For example, a simu-
lation model might predict air quality measures (e.g., PM2.5) at a

monitoring station for the next 10 days. The result time is when
the prediction is made (the time when the model, which can be
regarded as a sensor here, returns the result) and the phenom-
enon time (when the prediction applies to) would be up to 10
days after the result time. An observation whose phenomenon
time is after its result time, consequently, is either a "forecasted"
data value, or an error. Note that phenomenon time and result
time still frequently refer to the same time in many environmental
datasets. For example, the time when an earthquake occurs is also
the time when the sensor returns the result (i.e., the magnitude
of the seismic waves). In practice, only one of these two SOSA
temporal properties (mostly sosa:phenomenonTime) is typically
recorded in the graph, to reduce redundancy. It is worth noting, how-
ever, that sosa:phenomenonTime can reference a temporal interval,
while sosa:resultTime is always recorded as an instant in time. Fi-
nally, Listing 6 shows such a SPARQL-based shape constraint that
sosa:phenomenonTime has to be equal or prior to sosa:resultTime16.

sosa -shacl:SOSATimeConstraint_Comparision
a sh:NodeShape ;
sh:targetClass sosa:Observation ;
sh:sparql [
sh:prefixes sosa: ;
sh:select """

SELECT ?this ?phenTime_literal
WHERE {
?this sosa:phenomenonTime ?phenTime ;

sosa:resultTime ?resultTime_literal .
?phenTime time:inXSDDateTime ?phenTime_literal .
FILTER (? phenTime_literal > ?resultTime_literal)
}

""" ;
] .

Listing 6: SHACL shape to constrain the relation
between sosa:phenomenonTime and sosa:resultTime.

5.2 Observation Result
In the SOSA ontology, there are two ways to specify the result
of an observation: sosa:hasResult and sosa:hasSimpleResult. The
former is an object property designed to indicate the observed
result (sosa:Result) in regards to a corresponding observable prop-
erty (sosa:ObservableProperty) of an observation. The instance
of sosa:Result is commonly modeled as a blank node for environ-
mental observations, and external ontologies, such as QUDT17,
can be applied to formally represent the quantity as well as its
unit. To simplify the representation, particularly when the observa-
tion’s result is simply a literal node of numeric value, the property
sosa:hasSimpleResult can be used.
16There are other ways to write this constraint, which are included in the Github
repository.
17http://www.qudt.org/

http://www.qudt.org/
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SOSA specifies that sosa:Observation has minimally one
sosa:Result linked through sosa:hasResult. However, this tends
to not be true in practice, especially when sosa:hasSimpleResult
is used as well. That is, when materializing the graph, one may
choose to only materialize one or the other, depending on how
the raw data is provided to them. As such, we do not prescribe to
both existentials, but instead use the shape in Listing 7, which indi-
cates that a valid observation has a filler in either sosa:hasResult or
sosa:hasSimpleResult. Having a filler for both is invalid. Moreover,
the shape also declares that an observation can have maximally
one sosa:hasSimpleResult in order to reduce the ambiguity of the
simple result value. Such a consideration is due to the fact that the
range of sosa:hasSimpleResult is not defined so that any types of
data property can be used for the result. For instance, the impacted
area (an instance of sosa:ObservableProperty) of a wildfire can be
represented as either “120 acres” or “485623𝑚2”, and if both exist
in the data, the comparison between different wildfires in terms
of the impacted areas becomes impossible. It will be less likely an
issue for sosa:hasResult though because by representing the value
as an instance of sosa:Result together with QUDT, for example, it
enables the conversion between different unit standards.

sosa -shacl:SOSAResultConstraint
a sh:NodeShape ;
sh:targetClass sosa:Observation ;
sh:xone (

[
sh:path sosa:hasResult ;
sh:minCount 1 ;
sh:class sosa:Result ;

]
[
sh:path sosa:hasSimpleResult ;
sh:minCount 1 ;
sh:maxCount 1 ;

]
) .

Listing 7: SHACL shape to constrain the result of an
observation.

5.3 Implicit Sensor
Even though SOSA recommends that an observation must be made
by exactly one sensor (sosa:Sensor), we find such a constraint to be
too strong for environmental observations. In practice, the sensor
that makes an observation is often not explicitly indicated by the
raw data. For example, earthquake data collected by USGS does
not provide details of the sensor that collects it. Similar is true
for the aforementioned wildfire data. In addition, for forecasting
observations, such as the prediction of PM2.5, the sensor becomes
implicit because there is in fact no physically located sensor be-
ing deployed to collect such predictions; they are rather computed
based on mathematical models. To address such an ontological in-
consistency, we design the sensor-based shape for observation by
only constraining that there is maximally one associated sensor and
it must be an instance of sosa:Sensor. Listing 8 demonstrates the
shape. The same shapes pattern is used on the sosa:usedProcedure
and ssn:wasOriginatedBy properties as well, indicating that a valid
observation does not necessarily link with an explicit procedure
(sosa:Procedure) or stimulus (sosa:Stimulus). In fact, most raw data

of environmental observations do not explicitly provide this infor-
mation.

sosa -shacl:SOSASensorConstraint
a sh:NodeShape ;
sh:targetClass sosa:Observation ;
sh:property
[

sh:path sosa:madeBySensor ;
sh:maxCount 1 ;
sh:class sosa:Sensor ;

] ;

Listing 8: SHACL shape to constrain the sensor of an
observation.

5.4 Observation and Its Collection
As discussed in [17], the class of sosa:ObservationCollection can be
used to reduce redundancy when expressing environmental obser-
vations in graph format. For example, multiple individual wildfire
observations might relate to the same feature of interest – an in-
stance of kwg-ont:FireEvent, so leveraging the collection construct
integrating observations of the same feature of interest can reduce
the number of triples without loss of information (see Figure 4).
More robust SHACL shapes are required, however, to perform vali-
dation of SOSA observation collections. More concretely, previously
discussed sosa-shacl:ObservationConstraint_FOI shape (Listing 1)
has to be adjusted in order to consider the situation that a collec-
tion of observations might share the same filler for the property
sosa:hasFeatureOfInterest. In such a case, the individual obser-
vation itself should not be linked to any sosa:FeatureOfInterest
anymore. Listing 9 shows such a shape by using SPARQL-based
SHACL, capturing the constraint that either an observation or its
corresponding observation collection has to be linked to a fea-
ture of interest, but not both. Similarly, other constraints, such
as those regarding sosa:observedProperty, sosa:phenomenonTime,
and sosa:hasResult have their collection shape version as well.

sosa -shacl:Observation_Collection_FearureOfInterest
a sh:NodeShape ;
sh:targetClass sosa:Observation ;
sh:or [

sh:sparql [
sh:prefixes sosa: ;
sh:select """

SELECT { ?this sosa:hasFeatureOfInterest ?foi }
WHERE {
?this a sosa:Observation .

NOT EXISTS { ?this sosa:hasFeatureOfInterest ?x . }
?oc sosa:hasMember+ ?this .
NOT EXISTS {?oc sosa:hasFeatureOfInterest ?foi . }

} """ ;] ;
sh:sparql [

sh:prefixes sosa: ;
sh:select """

SELECT { ?this sosa:hasFeatureOfInterest ?foi }
WHERE {

?this a sosa:Observation ;
sosa:hasFeatureOfInterest ?x .

?oc sosa:hasMember+ ?this ;
sosa:hasFeatureOfInterest ?foi .

} """ ;
];

].

Listing 9: SHACL shape to constrain the relation between
sosa:Observation and sosa:ObservationCollection.
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6 DATA-DEPENDENT SHAPES
The aforementioned shapes are all at the level of constraining the
general usage of SOSA for materializing environmental data. Specif-
ically to an individual dataset, it is also worthwhile defining data-
dependent shapes that are further customized based on the nature
of the specific data. Take the earthquake observation as an exam-
ple (Section 3.2), we build two shapes in addition to SOSA-SHACL
to facilitate the validation of USGS’s Earthquake Dataset. First
of all, according to SOSA-SHACL (Section 4), each earthquake
observation (an instance of kwg-ont:EarthquakeObservation)
should have exactly one observable property (an instance of kwg-
ont:EarthquakeObservableProperty). However, SOSA-SHACL does
not impose any restrictions on the use of observable property.
Namely, if the input earthquake data mistakenly has an observable
property of temperature, for example, SOSA-SHACL is incapable
of detecting it. Consequently, we define a shape for USGS’s Earth-
quake Dataset that only allows a closed set of observable properties
(see Listing 10). Note that one can also use OWL to define a closed
list as the range of sosa:observedProperty. However, it won’t report
any violation if a temperature property is included in the data.

sosa -shacl:USGSEarthquakeConstraint_observableProperty
a sh:NodeShape ;
sh:targetClass kwg -ont:EarthquakeObservation ;
sh:property [

sh:path sosa:observedProperty ;
sh:class sosa:EarthquakeObservableProperty ;
sh:in (kwgr:observableproperty.depth
kwgr:observableproperty.mag
kwgr:observableproperty.magType
... ) .
]

Listing 10: SHACL shape to constrain the observable
property of USGS’s Earthquake Dataset. (... indicates the
omission of observable properies.)

Additionally, the location of an earthquake observation is often
reported using a position on the surface of the earth (i.e., epicenter),
which is represented as a geographic point with latitude and longi-
tude. So if the location of an earthquake was recorded as a polygon
or a polyline, a warning of potential violation should be reported to
the user. Listing 11 demonstrates such a shape using SHACL. This
shape is similar to the scoped range of using OWL. But again its
purpose is to validate the data rather than for reasoning.

sosa -shacl:USGSEarthquakeConstraint_location
a sh:NodeShape ;
sh:targetClass kwg -ont:EarthquakeObservation ;
sh:property [

sh:path geo:hasGeometry ;
sh:class sf:Point ;
] .

Listing 11: SHACL shape to constrain the location
geometry of USGS’s Earthquake Dataset.

In summary, this section simply uses the USGS’s Earthquake
Dataset to extend SOSA-SHACL to more customized shapes. Addi-
tional shapes can be defined for other environmental data such as
EPA’s air quality observation and MTBS’s wildfire observation by
considering their inherent characteristics.

7 CONCLUSION AND FUTUREWORK
Environmental observations are critical to understanding earth
system processes, and are becoming a vital part of the Semantic
Web – allowing major challenges such as climate change, disease
outbreaks, and disaster responses to be addressed more effectively
in an interdisciplinary and holistic way. While standards such as
the Sensor, Observation, Sample, and Actuator (SOSA) ontology
are available to formally represent environmental observation as
a RDF graph, adhere to such standards is hard to determine given
the Open World assumption of RDF/OWL. This work provides
a solution to evaluate whether the data in a Knowledge Graph
are in compliance with ontologies like SOSA, by using the Shapes
Constraint Language (SHACL). Specifically, we proposed a number
of shapes to conform, and confirm, the representation of different
environmental datasets according to specifications of the SOSA
ontology as well as the nature of environmental observations. If a
violationwas foundwhile constraining the shapes graph on the data
graph, an error would be reported to the user. Hence, these SHACL
shapes assist one to assess and refine the quality of RDF graphs by
using the SOSA ontology, providing a consistent representation of
observational data, with adequate classes and properties to inform
scientific interpretation and re-use.

Beyond developing a number of SOSA-SHACL patterns that can
be readily used by environmental scientists to conform their data
for ingestion into our KnowWhereGraph, other key contributions
of this work include: (1) a comparison between the fundamentals
underlying OWA-based OWL ontologies and SHACL, which moti-
vates the use of SHACL to validate more complete and consistent
reporting of environmental observations; and (2) the fact that SOSA-
SHACL is not simply built based on a one-to-one translation of the
SOSA ontology to its SHACL version; we instead use three real-
world use cases – air quality, earthquakes, and wildfires, to take
into account the complexity and diversity of environmental data. In
the future, we plan to apply SOSA-SHACL to validate a wider range
of environmental applications, to design more customized SHACL
shapes for environmental data on top of SOSA, and to explore the
feasibility of using SOSA-SHACL to summarize other large-scale,
heterogeneous, and multi-model environmental knowledge graphs.
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