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Abstract
A significant and recent development in neural-symbolic learning are deep neural networks that can
reason over symbolic knowledge graphs (KGs). A particular task of interest is KG entailment, which is
to infer the set of all facts that are a logical consequence of current and potential facts of a KG. Initial
neural-symbolic systems that can deduce the entailment of a KG have been presented, but they are
limited: current systems learn fact relations and entailment patterns specific to a particular KG and
hence do not truly generalize, and must be retrained for each KG they are tasked with entailing. We
propose a neural-symbolic system to address this limitation in this paper. It is designed as a differentiable
end-to-end deep memory network that learns over abstract, generic symbols to discover entailment
patterns common to any reasoning task. A key component of the system is a simple but highly effective
normalization process for continuous representation learning of KG entities within memory networks.
Our results show how the model, trained over a set of KGs, can effectively entail facts from KGs excluded
from the training, even when the vocabulary or the domain of test KGs is completely different from the
training KGs.
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1. Introduction

For many years, reasoning has been tackled as the task of building systems capable of infer-
ring new crisp symbolic logical rules. However, those traditional methods are too brittle to
be applied to noisy automatically created KGs. [1] provides a taxonomy of noise types in web
KGs with respect to its effects on reasoning and shows the detrimental impact of noises on
the result of the traditional reasoners. With the recent revival of interest in artificial neural
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networks, the more robust neural link prediction models have been applied vastly for the com-
pletion of KGs. These methods [2, 3, 4, 5, 6] heavily rely on the subsymbolic representation
of entities and relations learned through maximization of a scoring objective function over
valid factual triples. Thus, the success of such models hinges primarily on the power of those
subsymbolic representations in encoding the similarity/relatedness of entities and relations.
Recent attempts have focused on neural multi-hop reasoners [7, 8] to equip the model to deal
with more complex reasoning where multi-hop inference is required. More recently, a Neural
Theorem Prover [9] has been proposed in an attempt to take advantage of both symbolic and
sub-symbolic reasoning.

Despite their success, the main restriction common to machine learning-based reasoners is
that they are unable to recognize and generalize to different domains or tasks. This inherent
limitation follows from both the representations used and the learning process. The major issue
comes from the mere reliance of these models on the representation of entities learned during
the training or in the pre-training phase stored in a lookup table. Consequently, these mod-
els usually have difficulty to deal with out-of-vocabulary (OOV) entities. Although the OOV
problem has been addressed in part in the natural language processing (NLP) domain by tak-
ing advantage of character-level embedding [10], subword units [11], Byte-Pair-Encoding [12],
learning embeddings on the fly by leveraging text descriptions or spelling [13], copy mecha-
nism [14] or pointer networks [15], still these solutions are insufficient for transferring pur-
poses for reasoning. [16] shows that the success of natural language inference (NLI) methods is
heavily benchmark specific. An even greater source of concern is that reasoning in most of the
above sub-symbolic approaches hinges more on the notion of similarity and geometric-based
proximity of real-valued vectors (induction) as opposed to performing transitive reasoning (de-
duction) over them. Nevertheless, recent years have seen some progress in zero-shot relation
learning in sub-symbolic reasoning domain[17]. Zero-shot learning refers to the ability of the
model to infer new relations where that relation has not been seen before in training set[18].
This generalization capability is still quite limited and fundamentally different from our work
in terms of both methodology and purpose.

Inspired by these observations, we take a different approach in this work by investigating
the emulation of deductive symbolic reasoning using memory networks. Memory networks
[19] are a class of learning models capable of conducting multiple computational steps over an
explicit memory component before returning an answer. Their sequential nature corresponds,
conceptually, to the sequential process underlying some deductive reasoning algorithms. The
attention modeling corresponds to pulling only relevant information (logical axioms) necessary
for the next reasoning step. Besides, as attention can be traced over the run of a memory
network, we will furthermore get insights into the "reasoning" underlying the network output.

This paper contributes a recipe involving a simple but effective KG triple normalization be-
fore learning their representation within an end-to-end memory network. To perform logical
inference in more abstract level, and thereby facilitating the transfer of reasoning expertise
from one KG to another, the normalization maps entities and predicates in a KG to a generic
vocabulary. Facts in additional KGs are normalized using the same vocabulary, so that the net-
work does not learn to overfit its learning to entity and predicate names in a specific KG. This
emulates symbolic reasoning by neural embeddings as the actual names (as strings) of entities
from the underlying logic such as variables, constants, functions, and predicates are insub-



stantial for logical entailment in the sense that a consistent renaming across a theory does not
change the set of entailed formulas (under the same renaming). Thanks to the term-agnostic
feature of our representation, we are able to create a reasoning system capable of performing
reasoning over an unseen set of vocabularies in the test phase.

Our contributions are threefold: (i) We present the construction of memory networks for
emulating the symbolic deductive reasoning. (ii) We propose an optimization to this architec-
ture using normalization approach to enhance their transfer capability. We show that in an
unnormalized setting, they fail to perform well across KGs. (iii) We examine the efficacy of our
model for cross-domain and cross-KG deductive reasoning. We also show the scalability of our
model (in terms of reduced time and space complexity) for large datasets.

RelatedWork On the issue of doing logical reasoning using deep networks, we mention the
following selected recent contributions: Tensor-based approaches have been used [20, 9, 21],
following [3]. However, approaches are restricted in terms of logical expressivity and/or to
toy examples [22, 20]. [1] perform Resource Description Framework (RDF) reasoning based
on KG embeddings. [23] considers OWL RL reasoning [24]. There is a fundamental difference
between these contributions and our approach, though: We train our model once, and then
the model transfers to all other RDF KGs with good performance. In the above mentioned
publications, training is either done on (a part of the) KG which is also used for evaluation, or
training is explicitly done on similar KGs, in terms of topic. More precisely, in case of [23], it
requires re-training for obtaining embeddings for new vocabularies.

2. Problem Formulation

To explain what we are setting out to do, let us first re-frame the deductive reasoning problem
as a classification task. Any given logic  comes with an entailment relation ⊧ ⊆ 𝑇 × 𝐹,
where 𝐹 is a subset of the set of all logical formulas (or axioms) over , and 𝑇 is the set of
all theories (or sets of logical formulas) over . If 𝑇 ⊧ 𝐹, then we say that 𝐹 is entailed by 𝑇 .
Re-framed as a classification task, we can ask whether a given pair (𝑇 , 𝐹 ) ∈ 𝑇 × 𝐹 should be
classified as a valid entailment (i.e., 𝑇 ⊧ 𝐹 ) holds, or as the opposite (i.e., 𝑇 ̸⊧ 𝐹 ). We would
like to train a model on sets of examples (𝑇 , 𝐹 ), such that it learns to correctly classify them as
valid or invalid inferences.

We wish to train a neural model that will learn to reason over one set of theories, and can
then transfer that learning to new theories over the same logic. This way, our results will
demonstrate that the reasoning principles (entailment under the model-theoretic semantics)
that underlie the logic have been learned. If we were to train a model such that it learns only
to reason over one theory, or a few very similar theories, then that could hardly be demon-
strated. One of the key obstacles we face with our task is to understand how to represent
training and test data so that they can be used in deep learning settings. To use standard deep
learning approaches, formulas – or even theories – will have to be represented over the real
coordinate space 𝑅 as vectors, matrices or tensors. Many embeddings for RDF (i.e., KGs) have
been proposed [25, 6, 26], but we are not aware of an existing embedding that captures what
seems important for the deductive reasoning scenario. Indeed, the prominent use case explored



for KG embeddings is not deductive in nature; rather, it concerns the problem of the discovery
or suggestion of additional links or edges in the graph, together with appropriate edge labels.
In this link discovery setting, the actual labels for nodes or edges in the graph, and as such
their commonsense meanings, are likely important, and most existing embeddings reflect this.
However, for deductive reasoning the names of entities are insubstantial and should not be cap-
tured by an embedding. Another inherent problem in the use of such representations across
KGs is the OOV problem. While a word lookup table can be initialized with vectors in an unsu-
pervised task or during training of the reasoner, it still cannot generate vector representations
for unseen terms. It is further impractical to store the vectors of all words when vocabulary
size is huge [10]. Similarly, memory networks usually rely on word-level embedding lookup
tables, i.e., learned with the underlying rationale that words that occur in similar supervised
scenarios should be represented by similar vectors in the real coordinate space. That is why
they are known to have difficulties dealing with OOV, as a word lookup table cannot provide
a representation for the unseen, and thus cannot be applied to NLI over new words [13], and
for us this would pose a challenge in the transfer to new KGs.

We thus need embeddings that are agnostic to the terms (i.e., strings) used as primitives in
the KG. To build such an embedding, we use syntactic normalization: a renaming of primitives
from the logical language (variables, constants, functions, predicates) to a set of predefined
entity names that are used across different normalized theories. By randomly assigning the
mapping for the renaming, the network’s learning will be based on the structural information
within the theories, and not on the actual names of the primitives. Note that this normalization
does not only play the role of “forgetting” irrelevant label names, but also makes it possible
to transfer learning from one KG to the other. Indeed, for the approach to work, the network
should be trained with many KGs, and then subsequently tested on completely new ones which
had not been encountered during training. Our results show that our simple but very effective
normalization yields a word-agnostic system capable of deductive reasoning over previously-
unseen RDF KGs containing new vocabulary.

3. Model Architecture

We consider a model architecture that adapts the end-to-end memory network proposed by
[19] with fundamental alterations necessary for abstract reasoning. A high-level view of our
model is shown in Figure 1. It takes a discrete set 𝐺 of normalized RDF statements (called
triples) 𝑡1, ..., 𝑡𝑛 that are stored in memory, a query 𝑞, and outputs a “yes” or “no” answer to
determine if 𝑞 is entailed by 𝐺. Each of the normalized 𝑡𝑖 and 𝑞 contains symbols coming from
a general dictionary with 𝑉 normalized words shared among all of the normalized RDF theories
in both training and test sets. The model writes all triples to the memory and then calculates
a continuous embedding for 𝐺 and 𝑞. Through multiple hop attention over those continuous
representations, the model then classifies the query. The model is trained by back-propagation
of error from output to the input through multiple memory accesses. We discuss components
of the architecture in more detail below.



Figure 1: Diagram of the proposed model, for K=1

Model Description The model is augmented with an external memory component that
stores the embeddings of the normalized triples in our KG. This memory is defined as an 𝑛 × 𝑑
tensor where 𝑛 denotes the number of triples in the KG and 𝑑 is the dimensionality of the
embeddings. The KG is stored in the memory vectors from two continuous representations of
𝑚𝑖 and 𝑐𝑖 obtained from two input and output embedding matrices of A and C with size 𝑑 × 𝑉
where 𝑉 is the size of vocabulary. Similarly, the query 𝑞 is embedded via a matrix 𝐵 to obtain
an internal state 𝑢. In each reasoning step, those memory slots useful for finding the correct
answers should have their contents retrieved. To enable this, we use an attention mechanism
for 𝑞 over memory input representations by taking an internal product followed by a softmax:

𝑝𝑖 = Softmax(𝑢𝑇 (𝑚𝑖)) (1)

where Softmax(𝑎𝑖) =
𝑒(𝑎𝑖 )

∑𝑗 𝑒(𝑎𝑗 )
.

Equation (1) calculates a probability vector 𝑝 over the memory inputs, the output vector 𝑜 is
then computed as the weighted sum of the transformed memory contents 𝑐𝑖 with respect to
their corresponding probabilities 𝑝𝑖 by 𝑜 = ∑𝑖 𝑝𝑖𝑐𝑖 . This describes the computation within a
single hop. The internal state of the query vector updates for the next hop as 𝑢𝑘+1 = 𝑢𝑘 + 𝑜𝑘 .
The process repeats 𝐾 times where 𝐾 is the number of computational hops. The output of the
𝐾 𝑡ℎ hop is used to predict the label �̂� by passing 𝑜𝐾 and 𝑢𝐾 through a weight matrix of size
𝑉 × 𝑑 and a softmax:

�̂� = Softmax(𝑊 (𝑢𝐾+1)) = Softmax(𝑊 (𝑢𝑘 + 𝑜𝑘)).

Figure 1 shows the model for 𝐾 = 1 (1 hop). The learning parameters are the matrices 𝐴, 𝐵, 𝐶,
and 𝑊 .

Memory Content There is a plethora of logics which could be used for our investigation.
Here we use RDF. The RDF [27] is an established and widely used W3C standard for expressing



KGs. An RDF KG is a collection of statements stored as triples (𝑒1, 𝑟 , 𝑒2) where 𝑒1 and 𝑒2 are
called subject and object, respectively, while 𝑟 is a relation binding 𝑒1 and 𝑒2 together. State-
ments can constitute base facts (logically speaking, in this case 𝑒1 and 𝑒2 would be constants,
and 𝑟 a binary predicate) or simple logical axioms (e.g., 𝑒1 and 𝑒2 could identify unary prediates
or classes, and 𝑟 would be class subsumption or material implication). Every entity in an RDF
KG is represented by a unique Universal Resource Identifier (URI). We normalize these triples
by systematically renaming all URIs which are not in the RDF/RDFS (Schema) namespaces as
discussed previously. Each such URI is mapped to a set of arbitrary strings in a predefined set
 = {𝑎1, ..., 𝑎𝑛}, where 𝑛 is taken as a training hyper-parameter giving an upper bound for
the largest number of entities in a KG the system will be able to handle. Note that URIs in
the RDF/RDFS namespaces are not renamed, as they are important for the deductive reasoning
according to the RDF model-theoretic semantics. Consequently, each normalized RDF KG will
be a collection of facts stored as triples {(𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘)}.

It is important to note that each symbol is mapped into an element of  regardless of its
position in the triple, and whether it is a subject or an object or a predicate. Yet the position
of an element within a triple is an important feature to consider. Thus we employ a positional
encoding(PE) [19] to encode the position of each element within the triple. Let 𝑗th element of
𝑖th triple be 𝑡𝑖,𝑗 . This gives us memory vector representation of each triple as 𝑚𝑖 = ∑𝑗 𝑙𝑗◦𝑡𝑖,𝑗 ,
where ◦ is the Hadamard (element-wise) product and 𝑙𝑗 is a column vector with the structure
𝑙𝑘,𝑗 = (1− 𝑗/3)−(𝑘(1−2𝑗/3)/𝑑) (assuming 1-based indexing), where 𝑑 is the size of the embedding
vector in the memory embedding matrix and the 3 in the denominator corresponds to the num-
ber of elements in an RDF triplet. Each memory slot thus represents the positional-weighted
summation of each triplet. The positional encoding ensures that the order of the elements now
affects the encoding of each memory slot.

4. Evaluation

The RDF semantics standard specification [28] describes a prodecural semantics based on 13
completion rules, which can be used to algorithmically compute logical consequences. The
completion of an RDF KG is in general infinite because, by definition, there is an infinite set
of facts (related to RDF-encodings of lists) which are always entailed – however for practi-
cal reasons, and as recommended in the standard specification, only certain finite subsets are
computed as completions of RDF KGs, and we do the same.

Dataset There are many RDF KGs available on the World Wide Web that can be used to
create our own dataset. For this purpose, we have collected RDF datasets from the Linked Data
Cloud1 and the Data Hub2 to create our datasets.3 Our training set (which by coincidence was
based on RDF data conforming also to the OWL standard [24] and which we call an “OWL-
centric” dataset) is comprised of a set of RDF KGs each of size 1,000 triples, sampled from
populating around 20 OWL ontologies with different data. In order to test our model’s ability

1https://lod-cloud.net/
2https://datahub.io/
3https://github.com/Monireh2/kg-deductive-reasoner



to generalize to completely different datasets, we have collected another dataset which we call
the OWL-Centric Test Set. Furthermore, to assure our evaluation represents real-world RDF
data completely independent of the training data, we have used almost all RDF KGs listed in
a recent RDF quality survey [29]; we call this the Linked Data test set. Further, to test the
limitations of our model on artificially difficult data, we have created a small synthetic dataset
which requires long reasoning chains if done with a symbolic reasoner.

For each KG we have created the finite set of inferred triples using the Apache Jena4 API.
These inferred triples comprise our positive class instances. For generating invalid instances
we used the following two methods. In the first, we generated non-inferred triples by random
permutation of triple entities and removing those triples which were entailed. In the second
scenario, which serves as our final quality check for not including trivially invalid triples in our
dataset, we created invalid instances using the rdf:type predicate. More specifically, for each
valid triple in the dataset, we replaced one of the elements (chosen randomly), with another
random element which qualifies for being placed in that triple based on its rdf:type relation-
ships. The datasets created by this strategy are marked with superscript “a” in Table 1.

Training Details Trainings were done over 10 epochs using the Adam optimizer with a
learning rate of 𝜂 = 0.005, a learning rate decay of 𝜂/2, and a batch size of 100 over triples. For
the final batches of queries for each KG, we have used zero-padding to the maximum batch
size of 100. The capacity of the external memory is 1,000 which is also the maximum size of
our KGs. We used a linear starting of 1 epoch where we have removed the softmax from each
memory layer except for the final layer. L2 norm clipping of max 40 was applied to the gradient.
The memory input/output embeddings are vectors of size 20. The embedding matrices of A, B,
and C therefore are of size |𝑉 |×𝑑 = 3, 033×20, where 3,033 is the size of the normalized generic
vocabulary plus RDF(S) namespace vocabulary. Unless otherwise mentioned, we have used
𝐾 = 10. Adjacent weight sharing was used where the output embedding of one layer is the
input embedding of the next one, as in𝐴𝑘+1 = 𝐶 . Similarly, the answer prediction weight matrix
𝑊 gets copied to the final output embedding 𝐶𝐾 and query embedding is equal to the first layer
input embedding as in 𝐵 = 𝐴1. All the weights are initialized by a Gaussian distribution with
𝜇 = 0 and 𝜎 = 0.1. We would like to emphasize again that one and the same trained model was
used in the evaluation over different test sets. We did not retrain, e.g., on Linked Data for the
Linked Data test set.

Quantitative Results We now present and discuss our evaluation results. Our evaluation
metrics are average of precision and recall and f-measure over all the KGs in the test set, ob-
tained for both valid and invalid sets of triples. We also report the recall for the class of neg-
atives (specificity) to interpret the result more carefully by counting the number of true nega-
tives. Additionally, as mentioned earlier, we have done zero-padding for each batch of queries
with size less than 100. This implies the need for introducing another class label for such zero
paddings both in the training and test phase. We have not considered the zero-padding class in
the calculation of precision, recall and f-measure. Through our evaluations, however, we have
observed some missclassifications from/to this class. Thus, we report accuracy as well.

4https://jena.apache.org/



To the best of our knowledge there is no architecture capable of conducting deductive rea-
soning on completely unseen RDF KGs. In addition, NTP and LTNs appear to have severe
scalability issues, which means we cannot compare them to our system at scale. Neighbour-
hood approximated Neural Theorem Provers [30] heavily rely on entity embeddings, making
it unsuitable for our goal, as discussed. That is why we have considered the non-normalized
embedding version of our memory network as a baseline. Similarly, Graph-to-Graph learning
architecture [1] is ontology-specific model. In fact, after training such model on one domain,
you need to adapt the model hyper-parameters for another one and start the training from
scratch on a different width model. Beside that, the Graph-to-Graph model is not scalable to
large ontologies like DBpedia; instead it restricts the vocabulary to small restricted domain
datasets. These inherent limitations for cross-ontology adaptation and the generative nature
of the model (as opposed to classification in our setup) makes the comparison impossible.

Our technique shows a significant advantage over the baseline as shown in Table 1. A further
even more important benefit of using our normalization model is its training time. In fact,
this considerable time complexity difference is the result of the remarkable size difference of
embedding matrices in the original and normalized cases. For instance, the size of embedding
matrices to be learned by our algorithm for the normalized OWL-Centric dataset is 3, 033×20 as
opposed to 811, 261 × 20 for the non-normalized one (and 1, 974, 062 × 20 for Linked Data which
is prohibitively big). That has caused a remarkably high decrease in training time and space
complexity and consequently has helped the scalability of our memory networks. In case of the
OWL-Centric dataset, for instance, the space required for saving the normalized model is 80
times less than the intact model (≈ 4𝐺𝐵 after compression). Nevertheless, the normalized model
is almost 40 times faster to train than the non-normalized one for this dataset. Our normalized
model trained for just a day on OWL-Centric data but achieves better accuracy, whereas it
trained on the same non-normalized dataset more than a week on a 12-core machine. Hence,
the importance of using normalization cannot be emphasized enough.

To further get an idea of how our model performs on different data sources, we have applied
our approach on multiple datasets with various characteristics. The result across all variations
are given in Table 1. From this Table we can see that, apart from our strikingly good perfor-
mance compared to the baseline, there are number of other interesting points: Our model gets
even better results on the Linked Data task while it has trained on the OWL-Centric dataset.
We hypothesize that this may be due to a generally simpler structure of Linked Data, but vali-
dating this will need further research.

The large portion of our few false negative instances come from the inability of our model
to infer that all classes are subclass of themselves. Another interesting observation is the poor
performance of our algorithm when it has trained on the OWL-Centric dataset and tested on a
tricky version of the Linked Data. In that case our model has classified most of the triples to the
“yes” class and this has led to low specificity (recall for “no” class) of 16%. This seems inevitable
because in this case the negative instances bear close resemblance to the positives ones, making
differentiation more challenging. However, training the model on the tricky OWL-Centric
dataset has improved that by a substantial margin (more than three times). In case of our
particularly challenging synthetic data, performance is not as good, and this may be due to the
very different nature of this dataset which would require much longer reasoning chains than
the non-synthetic data. Our training so far has only been done on real-world datasets; it may



Training Dataset Test Dataset
Valid Triples Class Invalid Triples Class

Accuracy
Precision

Recall
/Sensitivity

F-measure Precision
Recall

/Specificity
F-measure

OWL-Centric Dataset Linked Data 93 98 96 98 93 95 96
OWL-Centric Dataset (90%) OWL-Centric Dataset (10%) 88 91 89 90 88 89 90
OWL-Centric Dataset OWL-Centric Test Set b 79 62 68 70 84 76 69
OWL-Centric Dataset Synthetic Data 65 49 40 52 54 42 52
OWL-Centric Dataset Linked Data a 54 98 70 91 16 27 86
OWL-Centric Dataset a Linked Data a 62 72 67 67 56 61 91
OWL-Centric Dataset(90%) a OWL-Centric Dataset(10%) a 79 72 75 74 81 77 80
OWL-Centric Dataset OWL-Centric Test Set ab 58 68 62 62 50 54 58
OWL-Centric Dataset a OWL-Centric Test Set ab 77 57 65 66 82 73 73
OWL-Centric Dataset Synthetic Data a 70 51 40 47 52 38 51
OWL-Centric Dataset a Synthetic Data a 67 23 25 52 80 62 50

Baseline
OWL-Centric Dataset Linked Data 73 98 83 94 46 61 43
OWL-Centric Dataset (90%) OWL-Centric Dataset (10%) 84 83 84 84 84 84 82
OWL-Centric Dataset OWL-Centric Test Set b 62 84 70 80 40 48 61
OWL-Centric Dataset Synthetic Data 35 41 32 48 55 45 48

a More Tricky Nos & Balanced Dataset b Completely Different Domain.

Table 1
Experimental results of proposed model

be interesting to more closely investigate our approach when trained on synthetic data, but
that was not the purpose of our study.

It appears natural to analyze the reasoning depth acquired by our network. We conjecture
that reasoning depth acquired by the network will correspond both to (1) the number of layers
in the deep network, and (2) the ratio of deep versus shallow reasoning required to perform
the deductive reasoning. Forward-chaining reasoners iteratively apply inference rules in order
to derive new entailed facts. In subsequent iterations, the previously derived facts need to
be taken into account. To gain a first understanding of what our model has learned in this
respect, we have mimicked this symbolic reasoner behavior in creating our test set. We first
started from our input KG 𝐾0 in hop 0. We then produced, subsequently, KGs of 𝐾1,..., 𝐾𝑛 until
no new triples are added (i.e. 𝐾𝑛+1 is empty) by applying the RDF inference rules from the
specification: The hop 0 dataset contains the original KG’s triples in the inferred axioms, hop
1 contains the RDF(S) axiomatic triples. The real inference steps start with 𝐾𝑛 where 𝑛 >= 2.
Table 2 summarizes our results in this setup. Unsurprisingly, we observe that result over our
synthetic data is poor. This may be because of the huge gap between the distribution of our
training data over reasoning hops and the synthetic data reasoning hop length distribution as
shown in the first row of Table 2. From that, one can see how the distribution of our training
set affects the learning capability of our model. Apart from our observations, previous studies
[31, 9, 32] also corroborate that the reasoning chain length in real-world KGs is limited to 3 or
4. Hence, a synthetic training toy set would have to be built as part of follow-up work.

General Embeddings Visualization In order to gain some insight on the nature of our nor-
malized embeddings, we have plotted a Principal Component Analysis (PCA) two-dimensional
vector visualization of embeddings computed for the RDF(S) terms and all normalized words in
the KGs, in Figure 2. The embeddings were fetched from the matrix B (embedding query lookup
table) in the hop 1 of our model trained over the OWL-Centric dataset. Words are positioned in
the plot based on the similarity of their embedding vectors. As anticipated, all the normalized



Dataset
Hop 1 Hop 2 Hop 3 Hop 4 Hop 5 Hop 6 Hop 7 Hop 8 Hop 9 Hop 10

F% D% F% D% F% D% F% D% F% D% F% D% F% D% F% D% F% D% F% D%
OWL-Centrica - 8 - 67 - 24 - 1 - - - - - - - - - - - -
OWL-Centricb 42 5 78 64 44 30 6 1 - - - - - - - - - - - -
Linked Datac 88 31 93 50 86 19 - - - - - - - - - - - - - -
Linked Data d 86 34 93 46 88 20 - - - - - - - - - - - - - -

Synthetic 38 0.03 44 1.42 32 1 33 1.56 33 3.09 33 6.03 33 11.46 31 20.48 31 31.25 28 23.65%
a Training set b Completely different domain c LemonUby Ontology d Agrovoc Ontology

Table 2
F-measure and Data Distribution over each reasoning hop

Figure 2: PCA projection of embeddings for the vocabulary

words tend to form one cluster as opposed to multiple ones. The PCA projection illustrates the
ability of our model to automatically organize RDF(S) concepts and learn implicitly the rela-
tionships between them. For instance, rdfs:domain and rdfs:range have been located very close
together and far from normalized entities. rdf:subject, rdf:predicate and rdf:object vectors are
very similar, and the same for rdf:seeAlso and rdf:isDefinedBy. Likewise, rdfs:container, rdf:bag,
rdf:seq, and rdf:alt are in the vicinity of each other. rdf:langstring is the only RDF(S) entity which
is inside the normalized entities cluster. We believe that it is because rdf:langString’s domain
and range is string and consequently it has mainly co-occurred with normalized instances in
the KGs. Another possible reason for this is its low frequency in our data.

5. Conclusions and Future Work

We have demonstrated that a deep learning architecture based on memory networks and pre-
embedding normalization is capable of learning how to perform deductive reason over previ-
ously unseen RDF KGs with high accuracy. We believe that we have thus provided the first



deep learning approach that is capable of high accuracy RDF deductive reasoning over previ-
ously unseen KGs. Normalization appears to be a critical component for high performance of
our system. We plan to investigate its scalability and to adapt it to other, more complex, logics.
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