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Abstract. Explainable artificial intelligence (XAI) requires domain in-
formation to explain a system’s decisions, for which structured forms
of domain information like Knowledge Graphs (KGs) or ontologies are
best suited. As such, readily available KGs are important to accelerate
progress in XAI. To facilitate the advancement of XAI, we present the
cycle-free Wikipedia Knowledge Graph (WKG) based on information
from English Wikipedia. Each Wikipedia article title, its corresponding
category, and the category hierarchy are transformed into different enti-
ties in the knowledge graph. Along with cycle-free version we also provide
the original knowledge graph as it is. We evaluate whether the WKG is
helpful to improve XAI compared with existing KGs, finding that WKG
is better suited than the current state of the art. We also compare the
cycle-free WKG with the Suggested Upper Merged Ontology (SUMO)
and DBpedia schema KGs, finding minimal to no information loss.
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1 Introduction

Artificial intelligence (AI)—including the subfields of machine learning and deep
learning—has advanced considerably in recent years. In tandem with these per-
formance improvements, understanding how AI systems make decisions has be-
come increasingly difficult due to many nonlinear transformations of input data
and the complex nature of the algorithms involved. The research area explainable
AI (XAI) [8,7,16] investigates techniques to examine these decision processes.

A main desideratum of XAI is user understandability [6,5], while explana-
tions should take into account the context of the problem and relevant domain
knowledge [10]. Humans understand and reason mostly in terms of concepts and
combinations thereof. A knowledge graph (KG) embodies such understanding in
links between concepts; such a natural conceptual network creates a pathway to
use knowledge graphs in XAI applications to improve overall understandability
of complex AI algorithms. For an overview of some of the current discussion on

? This material is based upon work supported by the Defense Advanced Research
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Fig. 1: Example of using knowledge graph to enhance explainability

utilizing knowledge graphs to enhance explanations, and possible limitations of
existing approaches, see [12,9].

One of the primary elements of knowledge graphs to use in the XAI context is
the notion of a concept hierarchy [4,18]. As illustrated in Figure 1, consider a sys-
tem trying to explain the decisions of an image classifier. It may determine that
an image should be given the label “Kitchen” because it contains a dishwasher,
refrigerator, and microwave, and with the help of a KG concept hierarchy, it
may produce the more general explanation that the image contains items in the
“Appliance” class. These kinds of explanation generation systems are based on
inductive logic programming (ILP) [14], and rich concept hierarchies play an
important role in the generation of satisfactory explanations. To advance the
state of XAI research, we provide a readily available knowledge graph with a
rich concept hierarchy.

Wikipedia is perhaps the largest high-quality free source of information on
the web. Wikipedia articles are classified into human-managed categories, which
form a hierarchy (albeit with cycles). These concepts embody humans’ natural
ways of thinking and are easily understood, providing a greater benefit in an
XAI context.

DBpedia [1], Suggested Upper Merged Ontology (SUMO) [15], Freebase [2],
and Yago [19] are among the many high-quality, publicly available knowledge
graphs providing domain information. These KGs use information from many
sources, including Wikipedia. The hierarchical category information of Wikiped-
ia, in which we are interested, is available in SUMO1 but not in Freebase. It also
exists in DBpedia and is accessible through SPARQL queries. Problematically,
though, the Wikipedia parts of SUMO and the DBpedia KG contain cycles. For
example, consider the following two axioms from DBpedia.

1 http://www.adampease.org/OP/

http://www.adampease.org/OP/
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I. 1949 establishments in Asia skos:broader 1949 establishments in India
II. 1949 establishments in India skos:broader 1949 establishments in Asia

These axioms form a cycle in the Wikipedia category hierarchy and hence
also in DBpedia. The Wikipedia category hierarchy contains many such cycles,
which complicates its use in XAI applications, as choosing parent concepts from
the KG becomes nondeterministic.

Fig. 2: Example architecture of the Wikipedia knowledge graph

To solve this problem, we provide a noncyclic version of the Wikipedia cate-
gory hierarchy knowledge graph. We also empirically evaluate how the noncyclic
knowledge graph performs in an XAI context and whether breaking cycles de-
grades its quality, finding that the Wikipedia knowledge graph performs better
in both scenarios than other existing knowledge graphs.

The rest of the paper is organized as follows. First, we describe the high level
architecture of the knowledge graph in section 2. Next, we describe the steps
involved in building the knowledge graph. Then, in section 4, we evaluate the
knowledge graph before concluding.

2 Knowledge Graph Architecture

We want to make the knowledge graph as simple as possible to enable use within
XAI applications with minimal preprocessing. In the knowledge graph, we will
have entities (named individuals in OWL 2), their types (classes in OWL 2),
and the types’ hierarchy. Many relations can be extracted from Wikipedia, but
for simplicity we will use only two: rdf:type and rdfs:subClassOf. The relation
rdf:type will be used to assign the individuals to their corresponding types, and
the rdfs:subClassOf relation will be used to create the hierarchy. The title of a
Wikipedia article (a.k.a. page) becomes an entity in our KG. Categories of a page
become the types of the corresponding individual. A subcategory relationship
becomes a rdfs:subClassOf relationship.
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Figure 2 shows the architecture of our knowledge graph with an example.
We can see that the article Albert Einstein is mapped into the knowledge graph
as an individual. This article belongs to many categories, including German
Nobel laureates and American inventors, which are converted into instances of
rdfs:Class. The category American inventors is a subcategory of Inventors by
nationality , among others, resulting in the relation

American inventors rdfs:subClassOf Inventors by nationality

in the KG.

3 Generating the Knowledge Graph

We now briefly describe a procedure for generating a knowledge graph like the
one discussed above from the version of Wikipedia for a particular language;
full details are in Appendix A. To construct the Wikipedia category hierarchy
knowledge graph from scratch, we explored two alternative approaches: travers-
ing and parsing the hierarchy page by page, and using a Wikipedia data dump.2

To get all page and category information from Wikipedia through a traversal, we

Fig. 3: Example of how cycles are broken

start at the top category3 and exhaustively look through its subcategories and
pages recursively, a time-consuming process complicated by the need to parse
each page to find the proper links to visit the next categories or pages. To deter-
mine how long this process takes in practice, we used Python to implement the

2 http://dumps.wikimedia.org/enwiki/latest
3 https://en.wikipedia.org/wiki/Category:Main topic classifications

https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Category:German_Nobel_laureates
https://en.wikipedia.org/wiki/Category:German_Nobel_laureates
https://en.wikipedia.org/wiki/Category:American_inventors
https://en.wikipedia.org/wiki/Category:Inventors_by_nationality
https://en.wikipedia.org/wiki/Category:Inventors_by_nationality
http://dumps.wikimedia.org/enwiki/latest
https://en.wikipedia.org/wiki/Category:Main_topic_classifications
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visiting and scraping program and found that it took roughly five days on a 2.2
GHz Intel Core i5 machine with 32 GB memory. As taking five days to produce
a knowledge graph is not reasonable, we will focus on the Wikipedia data dump
option.

A Wikipedia data dump contains all the information for each article: full
text, editor list, category, etc. As stated in Section 2, our knowledge graph in-
cludes article title, category name, and the hierarchy of categories. These data
are stored in the page and categorylinks tables. Using the Wikipedia data dump
is straightforward: we just need to download the dump, import it into a database,
and access it through SQL queries. After importing it, producing the full knowl-
edge graph took only one hour, on the order of 1% of the time of the previous
approach.

3.1 Concrete Implementation

Following the steps mentioned in Appendix A, we can create a concrete Wikipedia
knowledge graph, ensuring compliance with W3C standards to make it maintain-
able, reusable, and non-proprietary. Many tools are available for this; among the
most popular are the OWL API [11], the Apache Jena4 library, and Owlready2,5,
all of which are compliant with W3C’s standards.

Fig. 4: Wikipedia Knowledge Graph

As discussed in Section 1, the raw Wikipedia hierarchy has cycles, resulting in
cyclic relations in the knowledge graph. The Owlready2 library treats concepts
as Python classes, representing subclass relationships through inheritance; since
Python only supports inheritance without cycles, Owlready2 cannot handle these

4 https://jena.apache.org/
5 https://pythonhosted.org/Owlready2/

https://jena.apache.org/
https://pythonhosted.org/Owlready2/
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Table 1: Entity counts for Wikipedia, SUMO, and DBpedia knowledge graphs

Number of entities/facts SUMO DBpedia Wikipedia cyclic Wikipedia noncyclic

Concepts 4558 1183 1,901,708 1,860,342

Individuals 86,475 1 6,145,050 6,079,748

Object property 778 1144 2 2

Data property 0 1769 0 0

Axioms 175,208 7228 71,344,252 39,905,216

Class assertion axioms 167381 1 57,335,031 27,991,282

Subclass axioms 5330 769 5,962,463 3,973,845

cycles in relations. In contrast, the OWL API and Jena can support these cyclic
relations; we use the former.6

While making the KG we face some practical issues, one being that many
page titles on Wikipedia have non-ASCII characters, multiple spaces, and other
peculiarities. For example, the article https://en.wikipedia.org/wiki/Poli

sh People%27s Party %22Piast%22 (1913%E2%80%931931) has title Polish
People%27s Party %22Piast%22 (1913%E2%80%931931). From an ontological
perspective, this title as an entity name seems bad. We decide to replace spaces
and characters in the set

‘~!@#$%^&*()-+={}[]|\;’"<>,.?/

with underscores ( ) and then trim leading and trailing underscores from the re-
sulting string. Another technical issue consists in the fact that if proper Unicode
rendering is not selected, some article names will be saved as non–Unicode-
compliant names. For example, as of 20 January 2020, the article title Fabian’s
Lizard contains the additional character 0x92 just before the s. This character
only exists in windows encoding cp1252 and not in Unicode.7

3.2 Breaking Cycles

As stated above, the Wikipedia category hierarchy contains cycles, which we
break by visiting the categories using breadth-first search (BFS). Starting from
the root—Main topic classifications—we go level by level. An example of break-
ing a cycle is shown in Figure 3. In the example, if we start from A using BFS,
we will get B and D as subclasses of A. On the next level, starting from B,
we see that E is a subclass of B and store that information. On the next level,
starting at E, we see that A is subclass of E; this results in a cycle, so we discard
this information. Breaking cycles in this way results in some missing informa-
tion in the final graph; however, it simplifies the knowledge graph considerably,
allowing for efficient parent category determination, which is especially helpful
in the XAI context.

6 Our code is available at https://github.com/md-k-sarker/Wiki-KG.
7 https://stackoverflow.com/q/29419322/1054358

https://en.wikipedia.org/wiki/Polish_People%27s_Party_%22Piast%22_(1913%E2%80%931931)
https://en.wikipedia.org/wiki/Polish_People%27s_Party_%22Piast%22_(1913%E2%80%931931)
https://github.com/md-k-sarker/Wiki-KG
https://stackoverflow.com/q/29419322/1054358
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Entity counts for both the cyclic and noncyclic versions of the WKG are
shown in table 1. We see that breaking cycles results in losing 41,366 concepts
(0.02% of the total 1,901,708 concepts) and 65,302 individuals (0.01% of the
total 6,145,050 individuals). We further see that we lose a substantial number of
class assertion axioms—29,341,749, or 0.5% of the total noncyclic axioms. Figure
4 shows a top-level view of the complete knowledge graph.8

4 Evaluation

The goal of our experimental evaluation was to test the hypothesis that the
Wikipedia Knowledge graph produces XAI results comparable to or better than
existing knowledge graphs. As to the best of our knowledge only SUMO has
been used previously in a comparable context [18], to test this we compared
the performance of our newly created WKG with that of the SUMO KG. We
further hypothesized that breaking cycles in the Wikipedia knowledge graph
results in minimal information loss and evaluated WKG relative to SUMO and
the DBpedia schema.9

4.1 WKG’s Effectiveness in XAI

To the best of our knowledge, there is no previously established quantitative
measure of XAI quality, so we decided to use the accuracy metric of inductive
logic programming (ILP)—the backbone of XAI [18]—to explain a supervised
machine learning algorithm’s decisions in terms of a KG. ILP provides many
alternative solutions by using a KG. To measure a solution’s performance, we
used coverage score, described in equation (1), as the objective function. To
measure the overall performance of a KG, we calculated the average of all scores
of the produced solution for an experiment with equation (2).

Coverage(S) =
PS + NNS

PS + PNS + NS + NNS
(1)

where

PS = Number of positive individuals subsumed by the solution

PNS = Number of positive individuals not subsumed by the solution

NS = Number of negative individuals subsumed by the solution

NNS = Number of negative individuals not subsumed by the solution

Average coverage =

n∑
i=1

Coverage(Si) (2)

8 Available for download at https://osf.io/3wbyr/.
9 http://downloads.dbpedia.org/2014/dbpedia 2014.owl.bz2

https://osf.io/3wbyr/
http://downloads.dbpedia.org/2014/dbpedia_2014.owl.bz2
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Following [18], we used the ADE20K dataset [20], which contains over 20,000
images classified by scene type and annotated with contained objects, to com-
pare the results. We cast the ADE20k dataset, with annotations, into an OWL
ontology and aligned it with SUMO, as in [18]; in the present context, we also
aligned the ontology with WKG. We use all five experiments mentioned in [18],
but expand the range of the experiments. While the previous paper used only
3–10 images for each experiment, we took all the training images (around 100)
of the relevant categories from the ADE20K dataset. To get the explanation, we
use ECII [17] instead of DL-Learner [3] to avoid the latter’s considerable time
complexity.

Table 2: Comparison of average coverage for WKG and SUMO in XAI context

Experiment name #Images #Positive images
Wikipedia SUMO

#Solution Coverage #Solution Coverage

Market vs. WorkRoom and WareHouse 96 37 286 .72 240 .72

Mountain vs. Market and WorkRoom 181 85 195 .61 190 .53

OutdoorWarehouse vs. IndoorWarehouse 55 3 128 .94 102 .89

Warehouse vs. Workroom 59 55 268 .56 84 .24

Workroom vs. Warehouse 59 4 128 .93 93 .84

We will now briefly discuss each of the scenarios in turn, before we summarize;
Table 2 Figure 5 provide an overview of the results.

The first experiment involved finding a generalization of market images from
the market vs. workroom and warehouse images. The ADE20K training dataset
has, for those three categories, a total of 96 images, all of which we used. The
objective was to cover as many as possible of the 37 images of market scenes and
as few as possible of the images of workroom and warehouse scenes. When using
the Wikipedia knowledge graph, the explanation framework (ECII) produced
286 alternative rules to generalize the market images, while using the SUMO
knowledge graph results in 240 alternative rules. Average coverage score for both
Wikipedia and SUMO was 0.72, i.e. in this case the simple Wikipedia category
hierarchy knowledge graph performs as well as SUMO.

To produce a generalized rule of mountain scenes was the objective of the
second experiment. All 181 images from the ADE20K training set were taken
in this mountain vs. market and workroom experiment, where 85 images were
of mountain scenes. The average coverage for Wikipedia was 0.61, representing
slightly better performance than the 0.53 coverage we obtained for SUMO.

In the ADE20K training data, only three images are of outdoor warehouse
scenes, while 52 are of indoor warehouse scenes. We wanted to compare the
performances of the WKG and SUMO given such skewed sizes of sets of positive
and negative individuals, so we took the three images of outdoor warehouses
and 52 images of indoor warehouses, aiming to produce a generalized rule to
describe the outdoor warehouse scenes. As there are fewer images to describe,
both SUMO and Wikipedia performed well: ECII produced average coverages
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Fig. 5: Comparison of average coverage score between Wikipedia and SUMO
knowledge graphs

of 0.89 from SUMO and 0.94 from Wikipedia, leading us to conclude that the
Wikipedia KG again resulted in similar performance to the SUMO KG.

In the fourth and fifth experiments, we considered the case of warehouse vs.
workroom. The ADE20K training set has 55 warehouse images and four work-
room images. To produce a generalized rule to explain warehouse images SUMO
returned average coverage of 0.24, while Wikipedia returned 0.56, a significantly
larger difference than in previous cases. A large number of positive images com-
pared to that of negative images (55 to 4) may explain the improved coverage
score for the Wikipedia KG, as its depth and breadth of concepts exceeds those
of SUMO. In the converse experiment (experiment 5)—describing the workroom
scenes compared to the warehouse scenes—Wikipedia returned an average cov-
erage score of 0.93 and SUMO returned 0.84. In this case, only four images were
used to describe the workroom class, with 55 images on the negative side. Here
Wikipedia and SUMO produced comparable average coverage scores.

The results are visualized in Figure 5, showing the simple Wikipedia category
hierarchy’s superior performance in all experiments compared to the SUMO
ontology.

4.2 Noncyclic WKG Information Loss

For the second type of experiment, we evaluated the noncyclic WKG class hier-
archy with respect to the DBpedia schema and SUMO knowledge graph to see
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what proportion of subclass-superclass axioms remain in the WKG compared to
the SUMO and DBpedia after breaking cycles. We expected that some subclass-
superclass relations would be lost in the cycle-breaking process and hence not
exist in our noncyclic WKG despite being present in other KGs. However, our
experimental results show little to no information loss, with a substantial ma-
jority of the subclass-superclass relations in SUMO and DBpedia preserved in
the noncyclic WKG.

The experiment involved first finding matching concepts in the WKG, SUMO,
and DBpedia schema. To match the concepts we used a string similarity mea-
surement algorithm (specifically Levenshtein [13] distance=0), finding 22 match-
ing concepts, shown in Table 3. We extracted the asserted superclasses of those
concepts from all three KGs. Details of the parents are shown on table 3. In
the WKG, the number of asserted parents for some categories are quite large.
For example, the category Fish has 114 asserted parent categories in the non-
cyclic WKG. As such, here we show only some of the parent concepts for each
category.10

Table 3: Parents of all matching concepts in SUMO, DBpedia and noncyclic
Wikipedia knowledge graph

Concept
Parent concepts

#Wikipedia parent concepts
SUMO DBpedia Wikipedia

Aircraft Vehicle MeanOfTransportation Vehicles by type, Technology 5

Beer AlcoholicBeverage Beverage, Food Food and drink 5

Birth OrganismProcess PersonalEvent, LifeCycleEvent, Event Life 3

Boxing Sport, ViolentContest Sport, Activity Sports 5

Brain AnimalAnatomicalStructure, Organ AnatomicalStructure Human anatomy, Physical objects 15

Building StationaryArtifact ArchitecturalStructure, Place Construction, Engineering 12

Cheese PreparedFood, DairyProduct Food Foods 7

City LandArea, GeopoliticalArea Settlement, PopulatedPlace, Place Human habitats 42

Currency FinancialInstrument Thing International trade 60

Death OrganismProcess PersonalEvent, LifeCycleEvent, Event Life 3

Fish ColdBloodedVertebrate Animal, Eukaryote, Species Aquatic organisms 114

Grape Fruit FloweringPlant, Plant, Eukaryote, Species Edible fruits 20

Language LinguisticExpression Thing Culture 3

Medicine BiologicallyActiveSubstance Thing Health care, Health 4

Opera DramaticPlay MusicalWork, Work Performing arts, Entertainment 7

Painting Coloring, Covering Artwork, Work Arts 7

Sales Working Activity Marketing, Business 5

Sculpture ArtWork Artwork, Work Visual arts, Culture 7

Sound BodyOfWater Document, Work Consciousness, Mind 5

Spacecraft Vehicle MeanOfTransportation Spaceflight 13

Tax CharginAFee TopicalConcept Governmet finances 4

Wine AlcoholicBeverage, PlantAgriculturalProduct Beverage, Food Fermented drinks 32

Due to space constraints, we discuss only a subset of the 22 concepts that
matched across the three KGs. We can divide the 22 concepts into twelve subsets
by using the first letter of those concepts; among these, the letter B has the
largest subset, with five elements: Beer, Birth, Boxing, Brain, and Building.

The concept Beer is available in SUMO, DBpedia and WKG. The only
SUMO axiom related to the concept Beer is Beer v AlcoholicBeverage, while
in DBpedia we have Beer v Beverage and Beer v Food; finally, in the non-
cyclic WKG we have the related axioms Beer v Food and drink. We see that
all three KGs have semantically similar parents of varying specificity.

10 See https://github.com/md-k-sarker/Wiki-KG for full results.

https://github.com/md-k-sarker/Wiki-KG
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Axioms related to the concept Birth in DBpedia are Birth v LifeCycleEvent,
Birth v PersonalEvent and Birth v Event; in SUMO we have Birth v
OrganismProcess; and in the WKG, Birth v Life. We can see that these
parent concepts are again similar in meaning.

In SUMO, axioms related to the concept Boxing are Boxing v Sport and
Boxing v V iolentContest; DBpedia has Boxing v Sport and Boxing v
Activity; WKG has Boxing v Sports, among others. The parent concepts of
Boxing are Sport, Sport, and Sports in SUMO, DBpedia, and WKG, respectively;
all of these clearly have the same meaning. Minor changes like the pluralization
of the category name in Wikipedia are to be expected, as the SUMO and DB-
pedia schema are manually curated by domain experts and ontologists, while
Wikipedia categories are editable by the general public.

Brain is another concept common to all three KGs. In SUMO we have
Brain v AnimalAnatomicalStructure and Brain v Organ, and in DBpedia,
Brain v AnatomicalStructure. Some related axioms in WKG are Brain v
Human anatomy and Brain v Physical objects. We see that ontologically,
there exist some differences between Human anatomy and AnatomicalStructure,
but similar differences also exist between SUMO and DBpedia.

Finally, axioms related to the Building concept are: in SUMO, Building v
StationaryArtifact; in DBpedia, Building v ArchitecturalStructure and
Building v Place; and in WKG, ten axioms dealing with direct parents of
the concept, including Building v Construction and Building v Society. We
again see that the parents are similar in semantics, though slight differences exist
among the three ontologies.

Based on the above, we conclude that there is minimal information loss in
the noncyclic Wikipedia KG with respect to DBpedia and SUMO. There exist
some minor differences in an ontological sense with the WKG axioms, but such
minor differences exist between SUMO and DBpedia as well.

5 Conclusion

The readily available Wikipedia category hierarchy and its corresponding named
entities has great importance in artificial intelligence and its subfields. We make
the Wikipedia Knowledge Graph (WKG), break its cycles, and make available
both the original and cycle-free versions for public use. We evaluate the WKG
in the context of XAI and compare it with the DBpedia and SUMO KGs, find-
ing WKG to be highly effective compared to the other two. We also evalute the
noncyclic WKG relative to SUMO and the DBpedia schema, finding minimal in-
formation loss. Here we evaluate the WKG in a specific XAI application; further
work should focus on evaluating it in other such applications and in different
domains of artificial intelligence.
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A Steps for Building the Wikipedia Knowledge Graph

As of 20 January 2020, the page table11 (containing article information) has
around 49 million entries, while the categorylinks table12 (containing category
information) has around 140 million entries.

As these files are large (the larger is 24GB), proper settings must be applied
to the database before importing them to keep the import process from taking a
prohibitively long time. In particular, we must disable foreign key checking and
increase the buffer length.

There are different types of pages on Wikipedia: some pages are articles, some
pages are categories, and some pages are for administrative use. Administrative
pages are not of interest for the knowledge graph, so we omit them. Using the
information from the table categorylinks, we can identify which pages are articles,
which are categories, and so on. The column page namespace holds the page
type information; for categories, page namespace=14, while for articles, page
namespace=0. This table also provides the category hierarchical information,
in its columns cl from and cl to. The column cl from is the article name or
subcategory name, and column cl to is the category or parent category name
(depending on whether the page is an article or category). Each page has a
unique ID and title. The table page gives us the needed information like ID of
the page, title, etc.

The steps to create the knowledge graph are shown in Algorithm 1. By way
of example, we demonstrate part of the execution of Algorithm 1 on the article
Albert Einstein.13 Initially, we need to get the page id for Albert Einstein from
the page table downloaded from the dump by executing the following query.

SELECT page_id, page_title, page_namespace FROM page

WHERE page_title = ‘Albert_Einstein’ and page_namespace = 0;

11 Available for download at http://dumps.wikimedia.org/enwiki/latest/enwiki

-latest-page.sql.gz, with and described in detail at https://www.mediawiki.or

g/wiki/Manual:Page table.
12 Available for download at http://dumps.wikimedia.org/enwiki/latest/enwiki

-latest-categorylinks.sql.gz, and described in detail at https://www.mediaw

iki.org/wiki/Manual:Categorylinks table.
13 https://en.wikipedia.org/wiki/Albert Einstein

http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-page.sql.gz
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-page.sql.gz
https://www.mediawiki.org/wiki/Manual:Page_table
https://www.mediawiki.org/wiki/Manual:Page_table
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-categorylinks.sql.gz
http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-categorylinks.sql.gz
https://www.mediawiki.org/wiki/Manual:Categorylinks_table
https://www.mediawiki.org/wiki/Manual:Categorylinks_table
https://en.wikipedia.org/wiki/Albert_Einstein
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Algorithm 1: Wikipedia knowledge graph construction algorithm

1 Function Iterate(A) :
2 Find page id pd, title t, page namespace pn of page A;
3 if pn == 0 then
4 Declare title t as an entity e;
5 Find categories (c ∈ C) of entity e;
6 foreach c ∈ C do
7 Declare category c as a rdf:type (class);
8 Create facts: e rdf:type c;
9 Find the pages (p ∈ P ) which are entity of category c;

10 foreach p ∈ P do
11 Iterate(p) ;
12 end

13 end

14 end
15 else if pn == 14 then
16 Declare title t a category (class) c;
17 Find all sub-categories (sc v c) of category c;
18 foreach sc ∈ C do
19 Create relation: sc subClassOf c;
20 Iterate(sc);

21 end

22 end

23 end

24 Iterate(Main topic classifications) /* start the process from root */

The result of this query is in figure 6, and we can see that the page id of article
Albert Einstein is 736.

After getting the page id, we need to get the page’s category, which we can
get using the following query.

SELECT cl_from, cl_to FROM categorylinks WHERE cl_from = 736;

As of 20 January 2020, this page belongs to 148 different categories, a subset of
which is shown in Figure 7.

Using the results of these queries, we can create axioms like Albert Einstein
rdf:type German inventors and incorporate them into our knowledge graph. To
continue creating the full hierarchy, we must continue with the parent categories
of each the article’s categories.

To get the parent category of a category, we must find the page id of that
category and use that to find its parent. For example, if we want to find the
parent category of German inventors, we need to determine the page id of the
German inventors page as follows.

SELECT page_id, page_title, page_namespace FROM page

WHERE page_title = ‘German_inventors’ and page_namespace = 14;
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Fig. 6: Page id of the article
Albert Einstein

Fig. 7: Categories for the article
Albert Einstein

Fig. 8: Page id of category
German inventors

Fig. 9: Parent categories of the
category German inventors

This will return the result shown in Figure 8, where we see that the page id of
German inventors is 1033282.

After getting this page id, we can consult the categorylinks table for the
parent category:

SELECT cl_from, cl_to FROM categorylinks WHERE cl_from = 1033282;

This will provide the parent results as shown in Figure 9, where we see that the
parent categories of German inventors are Inventors by nationality and Science
and technology in Germany, among others.14 This kind of relationship creates
cycles in the category hierarchy, as discussed in Section 3.2.

We now see the complete process of creating an entity and adding axioms
for its types and supertypes. The example above is but one fragment of the
knowledge graph creation adventure; to complete the knowledge graph, we need
to start from the root of the category hierarchy and continue with Algorithm 1
until all pages have been processed to yield article titles with their categories,
along with the resulting category hierarchy.

14 It may seem odd to have Science and technology in Germany and similar as parent
categories of German inventors in an ontology; this reflects the somewhat messy
nature of Wikipedia.
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