
Modular Graphical Ontology Engineering
Evaluated

Cogan Shimizu1[0000−0003−4283−8701]�, Karl Hammar2[0000−0001−8767−4136],
and Pascal Hitzler1[0000−0001−6192−3472]

1 Data Semantics Lab, Kansas State University, USA
{coganmshimizu, phitzler}@ksu.edu

2 Jönköping AI Lab, Jönköping University, Sweden
karl.hammar@jail.ai

Abstract. Ontology engineering is traditionally a complex and time-
consuming process, requiring an intimate knowledge of description logic
and predicting non-local effects of different ontological commitments.
Pattern-based modular ontology engineering, coupled with a graphical
modeling paradigm, can help make ontology engineering accessible to
modellers with limited ontology expertise. We have developed CoMo-
dIDE, the Comprehensive Modular Ontology IDE, to develop and ex-
plore such a modeling approach. In this paper we present an evaluation
of the CoModIDE tool, with a set of 21 subjects carrying out some
typical modeling tasks. Our findings indicate that using CoModIDE im-
proves task completion rate and reduces task completion time, compared
to using standard Protégé. Further, our subjects report higher System
Usability Scale (SUS) evaluation scores for CoModIDE, than for Protégé.
The subjects also report certain room for improvements in the CoMo-
dIDE tool – notably, these comments all concern comparatively shallow
UI bugs or issues, rather than limitations inherent in the proposed mod-
eling method itself. We deduce that our modeling approach is viable, and
propose some consequences for ontology engineering tool development.

1 Introduction

Building a knowledge graph, as with any complex system, is an expensive en-
deavor, requiring extensive time and expertise. For many, the magnitude of re-
sources required for building and maintaining a knowledge graph is untenable.
Yet, knowledge graphs are still poised to be a significant disruptor in both the
private and public sectors [17]. As such, lowering the barriers of entry is very
important. More specifically, it will be necessary to increase the approachability
of knowledge graph development best practices, thus reducing the need for dedi-
cated expertise. Of course, we do not mean imply that no expertise is desirable,
simply that a dedicated knowledge engineer may be out of reach for small firms
or research groups. For this paper, we focus on the best practices according
to the eXtreme design (XD) [4] and modular ontology modeling (MOM) [12]
paradigms. To this point, we are interested in how tooling infrastructure can

2 C. Shimizu, K. Hammar, P. Hitzler

improve approachability. In the context of our chosen paradigms and focus on
tooling infrastructure, approachability may be proxied by the amount of effort
to produce correct and reasonable output, where effort is a function of tool-user
experience (UX) and time taken. Furthermore, by using tooling infrastructure
to encapsulate best practices, it improves the maintainability and evolvability
accordingly.

In particular, this paper investigates the use of a graphical modeling tool that
encapsulates the pattern-driven philosophies of XD and MOM. To do so, we have
developed CoModIDE (the Comprehensive Modular Ontology IDE – pronounced
“commodity”), a plugin for the popular ontology editing platform, Protégé [16].
In order to show that CoModIDE improves approachability of knowledge graph
development, we have formulated for the following hypotheses.

H1. When using CoModIDE, a user takes less time to produce correct and rea-
sonable output, than when using Protege.

H2. A user will find CoModIDE to have a higher SUS score than when using
Protege alone.

The remainder of this paper is organized as follows. Section 2 presents Co-
ModIDE. Section 3 discusses related work on graphical modeling and ontology
design pattern use and development. We present our experimental design in
Section 4, our results in Section 5, and a discussion of those results and their
implications in Section 6. Finally, Section 7 concludes the paper, and suggests
possibilities for future research.

2 CoModIDE: A Comprehensive Modular Ontology IDE

2.1 Motivator: A Graphical and Modular Ontology Design Process

CoModIDE is intended to simplify ontology engineering for users who are not
ontology experts. Our experience indicates that such non-experts rarely need or
want to make use of the full set of language constructs that OWL 2 provides;
instead, they typically, at least at the outset, want to model rather simple se-
mantics. Such users (and, indeed also more advanced users) often prefer to do
initial modeling in pair or group settings, and to do it graphically – whether that
be on whiteboards, in vector drawing software, or even on paper. This further
limits the modeling constructs to those that can be expressed somewhat intu-
itively using graphical notations (such that all involved participants, regardless
of their ontology engineering skill level, can understand and contribute).

This initial design process typically iterates rapidly and fluidly, with the
modeling task being broken down into individual problems of manageable com-
plexity3; candidate solutions to these problem pieces being drawn up, analysed

3 We find that the size of such partial solutions typically fit on a medium-sized white-
board; but whether this is a naturally manageable size for humans to operate with,
or whether it is the result of constraints of or conditioning to the available tooling,
i.e., the size of the whiteboards often mounted in conference rooms, we cannot say.

Modular Graphical Ontology Engineering Evaluated 3

and discussed; a suitable solution selected and documented; and the next step
of the problem then tackled. Many times, the formalization of the developed
solution into an OWL ontology is carried out after-the-fact, by a designated on-
tologist with extensive knowledge of both the language and applicable tooling.
However, this comes at a cost, both in terms of hours expended, and in terms
of the risk of incorrect interpretations of the previously drawn graphical repre-
sentations (the OWL standard does not define a graphical notation syntax, so
such representations are sometimes ambiguous).

The design process discussed above mirrors the principles of eXtreme Design
(XD) [4]: working in pairs, breaking apart the modeling task into discrete prob-
lems, and iterating and refactoring as needed. XD also emphasizes the use of
Ontology Design Patterns (ODPs) as solutions to frequently recurring modeling
problems. Combining ODP usage with the graphical modeling process discussed
above (specifically with the need to in an agile manner refactor and modify
partial solutions) requires that the partial solutions (or modules) derived from
ODPs are annotated, such that they can at a later time be isolated for study,
modified, or replaced.

In summary it would be useful for our target user group if there were tool-
ing available that supported 1) intuitive and agile graphical modeling, directly
outputting OWL ontologies (avoiding the need for the aforementioned post-
processing), and 2) reuse of ODPs to create and maintain ODP-based modules.
Hence, CoModIDE.

2.2 Design and Features

The design criteria for CoModIDE, derived from the requirements discussed
above, are as follows:

– CoModIDE should support visual-first ontology engineering, based on a
graph representation of classes, properties, and datatypes. This graphical
rendering of an ontology built using CoModIDE should be consistent across
restarts, machines, and operating system or Protégé versions.

– CoModIDE should support the type of OWL 2 constructs that can be easily
and intuitively understood when rendered as a schema diagram. To model
more advanced constructs (unions and intersections in property domains or
ranges, the property subsumption hierarchy, property chains, etc), the user
can drop back into the standard Protégé tabs.

– CoModIDE should embed an ODP repository. Each included ODP should
be free-standing and completely documented. There should be no external
dependency on anything outside of the user’s machine4. If the user wishes,
they should be able to load a separately downloaded ODP repository, to
replace or complement the built-in one.

4 Our experience indicates that while our target users are generally enthusiastic about
the idea of reusing design patterns, they are quickly turned off of the idea when they
are faced with patterns that lack documentation or that exhibit link rot.

4 C. Shimizu, K. Hammar, P. Hitzler

Fig. 1: CoModIDE User Interface featuring 1) the schema editor, 2) the pattern
library, and 3) the configuration view.

– CoModIDE should support simple composition of ODPs; patterns should
snap together like Lego blocks, ideally with potential connection points be-
tween the patterns lighting up while dragging compatible patterns. The re-
sulting ontology modules should maintain their coherence and be treated like
modules in a consistent manner across restarts, machines, etc. A pattern or
ontology interface concept will need be developed to support this.
CoModIDE is developed as a plugin to the versatile and well-established

Protégé ontology engineering environment. The plugin provides three Protégé
views, and a tab that hosts these views (see Figure 1). The schema editor view
provides an a graphical overview of an ontology’s structure, including the classes
in the ontology, their subclass relations, and the object and datatype properties
in the ontology that relate these classes to one another and to datatypes. All of
these entities can be manipulated graphically through dragging and dropping.
The pattern library view provides a set of built-in ontology design patterns,
sourced from various projects and from the ODP community wiki5. A user can
drag and drop design patterns from the pattern library onto the canvas to in-
stantiate those patterns as modules in their ontology. The configuration view lets
the user configure the behavior of the other CoModIDE views and their compo-
nents. For a detailed description, we refer the reader to the video walkthrough
on the CoModIDE webpage6. We also invite the reader to download and install
CoModIDE themselves, from that same site.

When a pattern is dragged onto the canvas, the constructs in that pattern
are copied into the ontology (optionally having their IRIs updated to corre-
spond with the target ontology namespace), but they are also annotated using

5 http://ontologydesignpatterns.org/
6 https://comodide.com

http://ontologydesignpatterns.org/
https://comodide.com

Modular Graphical Ontology Engineering Evaluated 5

Fig. 2: Factors affecting conceptual modeling, from [9].

the OPLa vocabulary, to indicate 1) that they belong to a certain pattern-based
module, and 2) what pattern that module implements. In this way module prove-
nance is maintained, and modules can, provided that tool support exists (see
Section 7) be manipulated (folded, unfolded, removed, annotated) as needed.

3 Related Work

Graphical Conceptual Modeling [9] proposes three factors (see Figure 2)
that influence the construction of a conceptual model, such as an ontology;
namely, the person doing the modeling (both their experience and know-how,
and their interpretation of the world, of the modeling task, and of model quality
in general), the modeling grammar (primarily its expressive power/completeness
and its clarity), and the modeling process (including both initial conceptualisa-
tion and subsequent formal model-making). Crucially, only the latter two fac-
tors can feasibly be controlled in academic studies. The related work discussed
below tends to focus on one or the other of these factors, i.e., studying the
characteristics of a modeling language or a modeling process. Our work on Co-
ModIDE straddles this divide: employing graphical modeling techniques reduces
the grammar available from standard OWL to those fragments of OWL that can
be represented intuitively in graphical format; employing design patterns affects
the modeling process.

Graphical modeling approaches to conceptual modeling have been extensively
explored and evaluated in fields such as database modeling, software engineering,
business process modeling, etc. Studying model grammar, [22] compares EER no-
tation with an early UML-like notation from a comprehensibility point-of-view.
This work observes that restrictions are easier to understand in a notation where
they are displayed coupled to the types they apply to, rather than the relations
they range over. [7] proposes a quality model for EER diagrams that can also
extend to UML. Some of the quality criteria in this model, that are relevant in
graphical modeling of OWL ontologies, include minimality (i.e., avoiding dupli-
cation of elements), expressiveness (i.e., displaying all of the required elements),
and simplicity (displaying no more than the required elements).

[1] study the usability of UML, and report that users perceive UML class
diagrams (closest in intended use to ontology visualizations) to be less easy-to-

6 C. Shimizu, K. Hammar, P. Hitzler

use than other types of UML diagrams; in particular, relationship multiplicities
(i.e., cardinalities) are considered frustrating by several of their subjects. UML
displays such multiplicities by numeric notation on the end of connecting lines
between classes. [13] analyses UML and argues that while it is a useful tool
in a design phase, it is overly complex and as a consequence, suffers from re-
dundancies, overlaps, and breaks in uniformity. [13] also cautions against using
difficult-to-read and -interpret adornments on graphical models, as UML allows.

Various approaches have been developed for presenting ontologies visually
and enabling their development through a graphical modeling interface, the most
prominent of which is probably VOWL, the Visual Notation for OWL Ontologies
[15], and its implementation viewer/editor WebVOWL [14,23]. VOWL employs a
force-directed graph layout (reducing the number of crossing lines, increasing leg-
ibility) and explicitly focuses on usability for users less familiar with ontologies.
As a consequence of this, VOWL renders certain structures in a way that, while
not formally consistent with the underlying semantics, supports comprehensi-
bility; for instance, datatype nodes and owl:Thing nodes are duplicated across
the canvas, so that the model does not implode into a tight cluster around such
often used nodes. It has been evaluated over several user studies with users rang-
ing from laymen to more experienced ontologists, with results indicating good
comprehensibility. CoModIDE has taken influence from VOWL, e.g., in how we
render datatype nodes. However, in a collaborative editing environment in which
the graphical layout of nodes and edges needs to remain consistent for all users,
and relatively stable over time, we find the force-directed graph structure (which
changes continuously as entities are added/removed) to be unsuitable.

For such collaborative modeling use cases, the commercial offering Grafo7

offers a very attractive feature set, combining the usability of a VOWL-like
notation with stable positioning, and collaborative editing features. Crucially,
however, Grafo does not support pattern-based modular modeling, and as a web-
hosted service, does not allow for customizations or plugins that would support
such a modeling paradigm.

CoModIDE is partially based on the Protégé plugin OWLAx, as presented in
[19]. This plugin supports one-way translation from graphical schema diagrams
drawn by the user, into OWL ontology classes and properties; however, it does
not render such constructs back into a graphical form. There is thus no way of
continually maintaining and developing an ontology using only OWLAx. There
is also no support for design pattern reuse in this tool.

Ontology Design Patterns Ontology Design Patterns (ODPs) were intro-
duced by Gangemi [8] and Blomqvist & Sandkuhl [2] in 2005, as a means of sim-
plifying ontology development. ODPs are intended to guide non-expert users, by
packaging best practices into reusable blocks of functionality, to be adapted and
specialised by those users in individual ontology development projects. Presutti
et al.[18] defines a typology of ODPs, including patterns for reasoning, nam-
ing, transformation, etc. The eXtreme Design methodology [4] describes how

7 https://gra.fo

https://gra.fo

Modular Graphical Ontology Engineering Evaluated 7

ontology engineering projects can be broken down into discrete sub-tasks, to be
solved by using ODPs. Prior studies indicate that the use of ODPs can lower
the number of modeling errors and inconsistencies in ontologies, and that they
are by the users perceived as useful and helpful [3,5].

Applying the XD method and ODPs requires the availability of both high-
quality ODPs, and of tools and infrastructure that support ODP use. Recent
work in this area, by the authors and others, includes XDP, a fork of the
WebProtégé ontology editor [10]; the OPLa annotations vocabulary that mod-
els how ontology concepts can be grouped into modules, and the provenance
of and interrelations between such modules, including to ODPs [11]; and the
MODL library, a curated and specially documented collection of high-quality
patterns for use in many domains [21]. CoModIDE draws influence from all of
these works, and includes the MODL library as its default pattern library, using
an OPLa-based representation of those patterns.

4 Research Method

Our experiment is comprised of four steps: a survey to collect subject background
data (familiarity with ontology languages and tools), two modeling tasks, and
a follow-up survey to collect information on the usability of both Protégé and
CoModIDE. The tasks were designed to emulate a common ontology engineering
process, where a conceptual design is developed and agreed upon by whiteboard
prototyping, and a developer is then assigned to formalizing the resulting white-
board schema diagram into an OWL ontology.

During each of the modeling tasks, participants are asked to generate a rea-
sonable and correct OWL file for the provided schema diagram. In order to
prevent a learning effect, the two tasks utilize two different schema diagrams.
To prevent bias arising from differences in task complexity, counterbalancing
was employed (such that half the users performed the first task with standard
Protégé and the second task with CoModIDE, and half did the opposite). The
correctness of the developed OWL files, and the time taken to complete each
tasks, were recorded (the latter was however, for practical reasons, limited to 20
minutes per task).

The following sections provide a brief overview of each the steps. The source
material for the entire experiment is available online8.

Introductory Tutorial As previously mentioned, our intent is to improve
the approachability of ontology modeling by making it more accessible to those
without expertise in knowledge engineering. As such, when recruiting our par-
ticipants for this evaluation, we did not place any requirements on ontology
modeling familiarity. However, to establish a shared baseline knowledge of foun-
dational modeling concepts (such as one would assume participants would have
in the situation we try to emulate, see above), we provided a 10 minute tutorial

8 http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47887

http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47887

8 C. Shimizu, K. Hammar, P. Hitzler

Fig. 3: Task A Schema Diagram

on ontologies, classes, properties, domains, and ranges. The slides used for this
tutorial may be found online with the rest of the experiment’s source materials.

a priori Survey The purpose of the a priori survey was to collect information
relating to the participants base level familiarity with topics related to knowledge
modeling, to be used as control variables in later analysis. We used a 5-point
Likert scale for rating the accuracy of the following statements.

CV1. I have done ontology modeling before.
CV2. I am familiar with Ontology Design Patterns.
CV3. I am familiar with Manchester Syntax.
CV4. I am familiar with Description Logics.
CV5. I am familiar with Protégé.

Finally, we asked the participants to describe their relationship to the test leader,
(e.g. student, colleague, same research lab, not familiar).

Modeling Task A In Task A, participants were to develop an ontology to
model how an analyst might generate reports about an ongoing emergency. The
scenario identified two design patterns to use:

– Provenance: to track who made a report and how;
– Event: to capture the notion of an emergency.

Modular Graphical Ontology Engineering Evaluated 9

Fig. 4: Task B Schema Diagram

Figure 3 shows how these patterns are instantiated and connected together.
Overall the schema diagram contains seven concepts, one datatype, one subclass
relation, one data property, and six object properties.

Modeling Task B In Task B, participants were to develop an ontology to
capture the steps of an experiment. The scenario identified two design patterns
to use:

– Trajectory: to track the order of the steps;
– Explicit Typing: to easily model different types of apparatus.

Figure 4 shows how these patterns are instantiated and connected together.
Overall, the schema diagram contains six concepts, two datatypes, two subclass
relations, two data properties, and four object properties (one of which is a
self-loop).

a posteriori Survey The a posteriori survey included the SUS evaluations for
both Protégé and CoModIDE. The SUS is a very common “quick and dirty,” yet
reliable tool for measuring the usability of a system. It consists of ten questions,
the answers to which are used to compute a total usability score of 0–100. Addi-
tional information on the SUS and its included questions can be found online.9

Additionally, we inquire about CoModIDE-specific features. These state-
ments are also rated using a Likert scale. However, we do not use this data
in our evaluation, except to inform our future work, as described in Section 7.
Finally, we requested any free-text comments on CoModIDE’s features.

9 https://www.usability.gov/how-to-and-tools/methods/

system-usability-scale.html

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

10 C. Shimizu, K. Hammar, P. Hitzler

Table 1: Mean, standard deviation, relative standard deviation, and median re-
sponses to a priori statements

mean σ relative σ median

CV1: I have done ontology modeling before 3.05 1.75 57 % 3
CV2: I am familiar with Ontology Design Patterns 3.05 1.32 43 % 3
CV3: I am familiar with Manchester Syntax 2.33 1.56 67 % 1
CV4: I am familiar with Description Logics 2.81 1.33 47 % 3
CV5: I am familiar with Protégé 2.95 1.63 55 % 3

5 Results

5.1 Participant Pool Composition

Of the 21 subjects, 12 reported some degree of familiarity with the authors, while
9 reported no such connection. In terms of self-reported ontology engineering
familiarity, the responses are as detailed in Table 1. It should be observed that
responses vary widely, with a relative standard deviation (σ/mean) of 43–67 %.

5.2 Metric Evaluation

We define our two metrics as follows:
– Time Taken: number of minutes, rounded to the nearest whole minute and

capped at 20 minutes due to practical limitations, taken to complete a task;
– Correctness is a discrete measure that corresponds to the structural ac-

curacy of the output. That is, 2 points were awarded to those structurally
accurate OWL files, when accounting for URIs; 1 point for a borderline case
(e.g one or two incorrect linkages, or missing a domain statement but in-
cluding the range); and 0 points for any other output.

For these metrics, we generate simple statistics that describe the data, per mod-
eling task. Tables 2a and 2b show the mean, standard deviation, and median for
the Time Taken and Correctness of Output, respectively.

In addition, we examine the impact of our control variables (CV). This anal-
ysis is important, as it provides context for representation or bias in our data set.
These are reported in Table 2c. CV1-CV5 correspond exactly to those questions
asked during the a priori Survey, as described in Section 4. For each CV, we cal-
culated the bivariate correlation between the sample data and the self-reported
data in the survey. We believe that this is a reasonable measure of impact on
effect, as our limited sample size is not amenable to partitioning. That is, the
partitions (as based on responses in the a priori survey) could have been tested
pair-wise for statistical significance. Unfortunately, the partitions would have
been too small to conduct proper statistical testing. However, we do caution
that correlation effects are strongly impacted by sample size.

We analyze the SUS scores in the same manner. Table 4 presents the mean,
standard deviation, and median of the data set. The maximum score while using

Modular Graphical Ontology Engineering Evaluated 11

Table 2: Summary of statistics comparing Protege and CoModIDE.

mean σ median

Protégé 17.44 3.67 20.0
CoModIDE 13.94 4.22 13.5

(a) Mean, standard deviation, and me-
dian time taken to complete each mod-
eling task.

mean σ median

Protégé 0.50 0.71 0.0
CoModIDE 1.33 0.77 1.5

(b) Mean, standard deviation, and me-
dian correctness of output for each
modeling task.

CV1 CV2 CV3 CV4 CV5

TT (P) -0.61 -0.18 -0.38 -0.58 -0.62
Cor. (P) 0.50 0.20 0.35 0.51 0.35
TT (C) 0.02 -0.34 -0.28 -0.06 0.01
Cor. (C) -0.30 0.00 -0.12 -0.33 -0.30

(c) Correlations control variables (CV)
on the Time Taken (TT) and Correct-
ness of Output (Cor.) for both tools
Protégé (P) and CoModIDE (C).

CV1 CV2 CV3 CV4 CV5

SUS (P) 0.70 0.52 0.64 0.73 0.64
SUS (C) -0.34 -0.05 -0.08 -0.29 -0.39

(d) Correlations with control variables
(CV) on the SUS scores for both tools
Protégé (P) and CoModIDE (C).

the scale is a 100. Table 2d presents our observed correlations with our control
variables.

Finally, we compare the each metric for one tool against the other. That is,
we want to know if our results are statistically significant—that as the statistics
suggest in Table 2, CoModIDE does indeed perform better for both metrics and
the SUS evaluation. To do so, we calculate the probability p that the samples
from each dataset come from different underlying distributions. A common tool,
and the tool we employ here, is the Paired (two-tailed) T-Test—noting that it
is reasonable to assume that the underlying data are normally distributed, as
well as powerful tool for analyzing datasets of limited size. The threshold for
indicating confidence that the difference is significant is generally taken to be
p < 0.05. Table 3 summarizes these results.

5.3 Free-text Responses

18 of the 21 subjects opted to leave free-text comments. We applied fragment-
based qualitative coding and analysis on these comments. I.e., we split the com-
ments apart per the line breaks entered by the subjects, we read through the

Table 3: Significance of results.

Time Taken Correctness SUS Evaluation

p ≈ 0.025 < 0.05 p ≈ 0.009 < 0.01 p ≈ 0.0003 < 0.001

12 C. Shimizu, K. Hammar, P. Hitzler

Table 4: Mean, standard deviation, and median SUS score for each tool. The
maximum score is 100.

mean σ median

Protégé 36.67 22.11 35.00
CoModIDE 73.33 16.80 76.25

fragments and generated a simple category scheme, and we then re-read the
fragments and applied these categories to the fragments (allowing at most one
category per fragment) [6,20]. The subjects left between 1–6 fragments each for a
total of 49 fragments for analysis, of which 37 were coded, as detailed in Table 5.

Of the 18 participants who left comments, 3 left comments containing no
codable fragments; these either commented upon the subjects own performance
in the experiment, which is covered in the aforementioned completion metrics,
or were simple statements of fact (e.g., “In order to connect two classes I drew
a connecting line”).

6 Discussion

Participant Pool Composition The data indicates no correlation (bivariate
correlation < ±0.1) between the subjects’ reported author familiarity, and their
reported SUS scores, such as would have been the case if the subjects who
knew the authors were biased. The high relative standard deviation for a priori
knowledge level responses indicates that our subjects are rather diverse in their
skill levels – i.e., they do not consist exclusively of the limited-experience class
of users that we hope CoModIDE will ultimately support. As discussed below,
this variation is in fact fortunate as it allows us to compare the performance of
more or less experienced users.

Metric Evaluation Before we can determine if our results confirm H1 and H2
(replicated in Figure 5 from Section 1), we must first examine the correlations
between our results and the control variables gathered in the a priori survey. In
this context, we find it reasonable to use these thresholds for a correlation |r|:

Table 5: Free text comment fragments per category
Code Fragment #

Graph layout 4
Dragging & dropping 6

Feature requests 5
Bugs 8

Modeling problems 5
Value/preference statements 9

Modular Graphical Ontology Engineering Evaluated 13

H1. When using CoModIDE, a user takes less time to produce correct and rea-
sonable output, than when using Protege.

H2. A user will find CoModIDE to have a higher SUS score than when using
Protege alone.

Fig. 5: Our examined hypotheses, restated from Section 1.

0-0.19 very weak, 0.20-0.39 weak, 0.40-0.59 moderate, 0.60-0.79 strong, 0.80-1.00
very strong.

As shown in Table 2c, the metric time taken when using Protégé is nega-
tively correlated with each CV. The correctness metric is positively correlated
with each CV. This is unsurprising and reasonable; it indicates that familiarity
with the ontology modeling, related concepts, and Protégé improves (shortens)
time taken to complete a modeling task and improves the correctness of the
output. However, for the metrics pertaining to CoModIDE, there are only very
weak and three weak correlations with the CVs. We may construe this to mean
that performance when using CoModIDE, with respect to our metrics, is largely
agnostic to our control variables.

To confirm H1, we look at the metrics separately. Time taken is reported bet-
ter for CoModIDE in both mean and median. When comparing the underlying
data, we achieve p ≈ 0.025 < 0.05. Next, in comparing the correctness metric
from Table 2b, CoModIDE again outperforms Protégé in both mean and me-
dian. When comparing the underlying data, we achieve a statistical significance
of p ≈ 0.009 < 0.01. With these together, we reject the null hypothesis and
confirm H1.

This is particularly interesting; given the above analysis of CV correlations
where we see no (or very weak) correlations between prior ontology modeling
familiarity and CoModIDE modeling results, and the confirmation of H1, that
CoModIDE users perform better than Protégé users, we have a strong indicator
that we have in fact achieved increased approachability.

When comparing the SUS score evaluations, we see that the usability of
Protégé is strongly influenced by familiarity with ontology modeling and fa-
miliarity with Protégé itself. The magnitude of the correlation suggests that
newcomers to Protege do not find it very usable. CoModIDE, on the other hand
is weakly, negatively correlated along the CV. This suggests that switching to a
graphical modeling paradigm may take some adjusting.

However, we still see that the SUS scores for CoModIDE have a greater mean,
tighter σ, and greater median, achieving a very strong statistical significance
p ≈ 0.0003 < 0.001. Thus, we may reject the null hypothesis and confirm H2.

As such, by confirming H1 and H2, we may say that CoModIDE, via graph-
ical ontology modeling, does indeed improve the approachability of knowledge
graph development, especially for those not familiar with ontology modeling—
with respect to our participant pool. However, we suspect that our results are

14 C. Shimizu, K. Hammar, P. Hitzler

generalizable, due to the strength of the statistical significance (Table 3) and
participant pool composition (Section 5.1).

Free-text Responses The fragments summarized in Table 5 paints a quite
coherent picture of the subjects’ perceived advantages and shortcomings of Co-
ModIDE, as follows:

– Graph layout: The layout of the included MODL patterns, when dropped on
the canvas, is too cramped and several classes or properties overlap, which
reduces tooling usability.

– Dragging and dropping: Dragging classes was hit-and-miss; this often caused
users to create new properties between classes, not move them.

– Feature requests: Pressing the “enter” key should accept and close the entity
renaming window. Zooming is requested, and an auto-layout button.

– Bugs: Entity renaming is buggy when entities with similar names exist.
– Modeling problems: Self-links/loops cannot easily be modeled.
– Value/preference statements: Users really appreciate the graphical modeling

paradigm offered, e.g., “Mich easier to use the GUI to develop ontologies”,
“Moreover, I find this system to be way more intuitive than Protégé”, , “co-
modide was intuitive to learn and use, despite never working with it before.”

We note that the there is a near-unanimous consensus among the subjects that
graphical modeling is intuitive and helpful. When users are critical of the CoMo-
dIDE software, these criticisms are typically aimed at specific and quite shallow
bugs or UI features that are lacking. The only consistent criticism of the model-
ing method itself relates to the difficulty in constructing self-links (i.e., properties
that have the same class as domain and range).

7 Conclusion

To conclude, we have shown how the CoModIDE tool allows ontology engineers,
irrespective of previous knowledge level, to develop ontologies more correctly and
more quickly, than by using standard Protégé; that CoModIDE has a higher us-
ability (SUS score) than standard Protégé; and that the CoModIDE issues that
concern users primarily derive from shallow bugs as opposed to methodological
or modeling issues. Taken together, this implies that the modular graphical on-
tology engineering paradigm is a viable way to improving the approachability of
ontology engineering.

Future Work CoModIDE is under active development and is not yet feature-
complete. Specifically, during the spring of 2020 we will implement the following
features:

– Wrapping instantiated modules (e.g., in dashed-line boxes) to indicate cohe-
sion and to allow module folding/unfolding.

Modular Graphical Ontology Engineering Evaluated 15

– An interface feature, allowing design patterns to express how they can be
connected to one another; and adding support for this to the canvas, lighting
up potential connection points as the user drags a pattern.

– Support for custom pattern libraries; and vocabulary specifications indicat-
ing hos pattern libraries should be annotated to be useful with CoModIDE.

In developing CoModIDE we have come across several trade-offs between us-
ability and expressiveness, as discussed in Section 2. We intend to follow these
threads, using CoModIDE as test bed, to study more precisely how the need for
graphical representability affects the use of modeling constructs and/or ontology
engineering methods. For instance, we initially assumed that a graphical mod-
eling paradigm would help users verify the correctness of their designs; but the
answers to our a posteriori survey questions on this matter proved inconclusive.

Acknowledgement Cogan Shimizu and Pascal Hitzler acknowledge partial support from
the following financial assistance award 70NANB19H094 from U.S. Department of
Commerce, National Institute of Standards and Technology and partial support from
the National Science Foundation under Grant No. 1936677.

References

1. Agarwal, R., Sinha, A.P.: Object-oriented modeling with uml: a study of develop-
ers’ perceptions. Communications of the ACM 46(9), 248–256 (2003)

2. Blomqvist, E., Sandkuhl, K.: Patterns in Ontology Engineering: Classification of
Ontology Patterns. In: Proceedings of the 7th International Conference on Enter-
prise Information Systems. pp. 413–416 (2005)

3. Blomqvist, E., Gangemi, A., Presutti, V.: Experiments on Pattern-based Ontology
Design. In: Gil, Y., Noy, N. (eds.) K-CAP ’09: Proceedings of the Fifth Interna-
tional Conference on Knowledge Capture. pp. 41–48. ACM (2009)

4. Blomqvist, E., Hammar, K., Presutti, V.: Engineering Ontologies with Patterns
– The eXtreme Design Methodology. In: Hitzler, P., Gangemi, A., Janowicz, K.,
Krisnadhi, A., Presutti, V. (eds.) Ontology Engineering with Ontology Design
Patterns: Foundations and Applications, Studies on the Semantic Web, vol. 25,
chap. 2, pp. 23–50. IOS Press (2016)

5. Blomqvist, E., Presutti, V., Daga, E., Gangemi, A.: Experimenting with extreme
design. In: Knowledge Engineering and Management by the Masses, pp. 120–134.
Springer (2010)

6. Burnard, P.: A method of analysing interview transcripts in qualitative research.
Nurse education today 11(6), 461–466 (1991)

7. Cherfi, S.S.S., Akoka, J., Comyn-Wattiau, I.: Conceptual modeling quality-from eer
to uml schemas evaluation. In: International Conference on Conceptual Modeling.
pp. 414–428. Springer (2002)

8. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Se-
mantic Web–ISWC 2005, pp. 262–276. Springer (2005)

9. Hadar, I., Soffer, P.: Variations in conceptual modeling: classification and ontolog-
ical analysis. Journal of the Association for Information Systems 7(8), 20 (2006)

10. Hammar, K.: Ontology Design Patterns in WebProtégé. In: Proceedings of the
ISWC 2015 Posters & Demonstrations Track co-located with the 14th Interna-
tional Semantic Web Conference (ISWC-2015), Betlehem, USA, October 11, 2015.
No. 1486 in CEUR-WS (2015)

16 C. Shimizu, K. Hammar, P. Hitzler

11. Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A.A., Presutti, V.: Towards a
simple but useful ontology design pattern representation language. In: Blomqvist,
E., Corcho, Ó., Horridge, M., Carral, D., Hoekstra, R. (eds.) Proceedings of the 8th
Workshop on Ontology Design and Patterns (WOP 2017) co-located with the 16th
International Semantic Web Conference (ISWC 2017), Vienna, Austria, October
21, 2017. No. 2043 in CEUR Workshop Proceedings (2017)

12. Hitzler, P., Krisnadhi, A.: A tutorial on modular ontology modeling with ontology
design patterns: The cooking recipes ontology. CoRR abs/1808.08433 (2018),
http://arxiv.org/abs/1808.08433

13. Krogstie, J.: Evaluating uml using a generic quality framework. In: UML and the
Unified Process, pp. 1–22. IGI Global (2003)

14. Lohmann, S., Link, V., Marbach, E., Negru, S.: Webvowl: Web-based visualization
of ontologies. In: International Conference on Knowledge Engineering and Knowl-
edge Management. pp. 154–158. Springer (2014)

15. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with vowl. Se-
mantic Web 7(4), 399–419 (2016)

16. Musen, M.A.: The Protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015)

17. Noy, N.F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-
scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43
(2019). https://doi.org/10.1145/3331166, https://doi.org/10.1145/3331166

18. Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Suárez-Figueroa, M.C.,
Montiel-Ponsoda, E., Poveda, M.: D2.5.1: A Library of Ontology Design Patterns:
Reusable Solutions for Collaborative Design of Networked Ontologies. Tech. rep.,
NeOn Project (2007)

19. Sarker, M.K., Krisnadhi, A.A., Hitzler, P.: OWLAx: A protégé plugin to support
ontology axiomatization through diagramming. In: Kawamura, T., Paulheim, H.
(eds.) Proceedings of the ISWC 2016 Posters & Demonstrations Track co-located
with 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan,
October 19, 2016. CEUR Workshop Proceedings, vol. 1690 (2016)

20. Seaman, C.B.: Qualitative methods. In: Guide to advanced empirical software en-
gineering, pp. 35–62. Springer (2008)

21. Shimizu, C., Hirt, Q., Hitzler, P.: MODL: A Modular Ontology Design Library.
In: Proceedings of the 10th Workshop on Ontology Design and Patterns (WOP
2019) co-located with 18th International Semantic Web Conference (ISWC 2019).
CEUR Workshop Proceedings, vol. 2459, pp. 47–58 (2019)

22. Shoval, P., Frumermann, I.: Oo and eer conceptual schemas: a comparison of user
comprehension. Journal of Database Management (JDM) 5(4), 28–38 (1994)

23. Wiens, V., Lohmann, S., Auer, S.: WebVOWL Editor: Device-Independent Vi-
sual Ontology Modeling. In: Proceedings of the ISWC 2018 Posters & Demonstra-
tions, Industry and Blue Sky Ideas Tracks. CEUR Workshop Proceedings, vol. 2180
(2018)

http://arxiv.org/abs/1808.08433
https://doi.org/10.1145/3331166
https://doi.org/10.1145/3331166

	Modular Graphical Ontology Engineering Evaluated

