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Abstract. We provide an in-depth example of modular ontology en-
gineering with ontology design patterns. The style and content of this
chapter is adapted from previous work and tutorials on Modular Ontol-
ogy Modeling. It offers expanded steps and updated tool information.
The tutorial is largely self-contained, but assumes that the reader is fa-
miliar with the Web Ontology Language OWL; however, we do briefly
review some foundational concepts. By the end of the tutorial, we expect
the reader to have an understanding of the underlying motivation and
methodology for producing a modular ontology.

1 Motivation

Knowledge graphs are poised to be significant disruptors in the public and private
sectors. They have become a popular paradigm for data synthesis, communica-
tion, and visualization. However, as with any sufficiently complex system, they
require a considerable commitment of resources (e.g. time and expertise). And,
indeed, a commitment to the maintenance and evolution of the knowledge graph.
There are a number of ways to mitigate these challenges, but perhaps two of the
most important are a) have a schema for the knowledge graph, and b) follow a
methodology that promotes known best practices.

The role of a schema is to specify how data is organized and can be possibly
interrelated. Moreover, we would want it to encapsulate our human conceptual-
ization. Ontologies, as “explicit specifications of conceptualizations,” seem like
a natural fit for the role [3]. Ontologies offer a human accessible organization
of immense amounts of data and act as a vehicle for the sharing and reuse of
knowledge [10].

Unfortunately, many ontologies often do not live up to these promises. Mono-
lithic ontologies, designed with very strong, or very weak, ontological commit-
ments are very difficult to reuse across the same domain, let alone different
domains. Strong ontological commitments lead to over-specification, to ontolo-
gies essentially only fit to the singular purpose for which they were originally
designed. Weak commitments lead to ambiguity in the model, sometimes to the
point where it is hard to determine the point of the model. We posit that one
effective way to obtain ontologies which are easier to reuse, is to build them in a
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modular fashion. Ontology modules are instantiated by adapting Ontology De-
sign Patterns to the domain and use-case [4,7]. These modules are then pieced
together to create a modular ontology. A sufficiently modularized ontology [11]
is designed such that individual users can easily adapt an ontology to their use
cases, while maintaining integration and relationships with other versions of the
ontology. A modular ontology is constructed by piecing together so-called ontol-
ogy modules.

The purpose of this chapter is to provide a full execution of the Modular
Ontology Modeling methodology, while promoting best practices, which in the
end produces a modular ontology to be used as a knowledge graph schema.

The remainder of this chapter is organized as follows. Section 2 introduces
preliminary concepts and context for our methodology. This section aims to pro-
vide a point of reference for our terminology used within the example. Section 3
provides a thorough description of the modular ontology modeling methodology
deeply intertwined with a step-by-step example.

2 Foundations & Conventions

This section briefly reviews the three key concepts for modular ontology model-
ing. It is not exhaustive, but instead should be used as a point of reference for
our terminology and conventions used throughout the chapter.

2.1 Foundations

Ontology Design Patterns (ODP) are the recognition of conceptual patterns
that occur across domains[2]. They are, in principle, analogous to design pat-
terns in Software Engineering. An ODP can be viewed as a tiny, self-contained
ontology that solves a single, invariant problem, leveraging community-identified
best practices. See http://www.ontologydesignpatterns.org for a list of ex-
ample ODPs, however the patterns and their documentation are of very differing
quality. For a smaller, self-contained, and curated list, see the Modular Ontology
Design Library [16].

Modules are ODPs that have been adapted to a particular purpose. To do so,
we use a pattern as a template. We therefore reusing the structure of the pat-
tern, but not axiomatically referencing it. Essentially, during the instantiation
process the ontology developer will replace the concept and property names to
those that are more suited to the domain at hand. This process is outlined in
detail, with additional motivation, in [5].

However, in doing so, we lose the connection to the original pattern as OWL
does not natively support modularization. In order to preserve the modulariza-
tion, one option is to make use of different namespaces for the different related
modules, and if a class can be understood as belonging to two different modules,
then we recommend to duplicate this class under different namespaces and to
set these classes to be equivalent using an owl:equivalentClass axiom.

http://www.ontologydesignpatterns.org


Modular Ontology Modeling: A Tutorial 3

Fig. 1: Generic node-edge-node schema diagram for explaining systematic ax-
iomatization

A cleaner and simpler solution for indicating modules is to make use of the
Ontology Design Pattern Representation Language (OPLa) which is a structured
set of annotations fully expressed in OWL.3 OPLa allows us to use a structured
set of annotations to connect the provenance of axioms and concepts to different
patterns. It further allows us to specify which ontological entities belong to
which module, pattern, or even other ontologies. Its original specification and
extensions can be found in [8] and [6], respectively.

2.2 Conventions

Axiomatization. The Modular Ontology methodology emphasizes a schema-
driven axiomatization. That is, we define and follow a systematic way of ax-
iomatizing a schema diagram by examining each node-edge-node construct in
the diagram. Given a node-edge-node construct with nodes A and B and edge
R from A to B, as depicted in Figure 1, we check which axioms should be in-
cluded.4 Figure 2 provides these axioms in Manchester syntax and our labels for
these axioms. All axiom types except disjointness and those utilizing inverses
also apply to datatype properties. A structural tautology is a logically mean-
ingless axiom; instead it is to convey human meaning. That is, its intent is to
indicate the proper or intended usage of two classes.

Visual Syntax for Schema Diagrams. A schema diagram is an informal,
but intuitive way for conveying information about the structure and contents
of an ontology. We do use, however, a consistent visual syntax for convenience.
Orange boxes are classes and indicate that they are central to the diagram. Blue
dashed boxes indicate a reference to another diagram, pattern, or module. Gray
frames, with a dashed outline, contain modules. Arrows depict relations and
open arrows represent subclass relations. Yellow ovals indicate data types (and
necessarily, arrows pointing to a datatype are data properties). Finally, purple
boxes represent controlled vocabularies. That is, they represent a controlled set
of IRIs that are of that type.

3 The OPLa Annotator plugin for Protégé can be used to easily add OPLa annotations
to your modular ontology.

4 The OWLAx plug-in [14] for Protégé provides a graphical interface for adding these
axioms. This behaviour is also supported in a limited fashion by the CoModIDE
plugin [15].
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1. A SubClassOf B (subclass)
2. A DisjointWith B (disjointness)
3. R some owl:Thing SubClassOf A (domain)
4. R some B SubClassOf A (scoped domain)
5. owl:Thing SubClassOf R only B (range)
6. A SubClassOf R only B (scoped range)
7. A SubClassOf R some B (existential)
8. B SubClassOf inverse R some A (inverse existential)
9. owl:Thing SubClassOf R max 1 owl:Thing (functionality)

10. owl:Thing SubClassOf R max 1 B (qualified functionality)
11. A SubClassOf R max 1 owl:Thing (scoped functionality)
12. A SubClassOf R max 1 B (qualified scoped functionality)
13. owl:Thing SubClassOf inverse R max 1 owl:Thing (inverse functionality)
14. owl:Thing SubClassOf inverse R max 1 A (inverse qualified functionality)
15. B SubClassOf inverse R max 1 owl:Thing (inverse scoped functionality)
16. B SubClassOf inverse R max 1 A (inverse qualified scoped functionality)
17. A SubClassOf R min 0 B (structural tautology)

Fig. 2: Most common axioms, represented in Manchester Syntax, which could be
produced from a single edge R between nodes A and B in a schema diagram.

3 Walkthrough

Step 1. Define use case or scope of use cases.
Every ontology is designed for a purpose; this purpose may be defined by a
use case, or by a set of use cases, or possibly by a set of potential use cases,
such as future extensions, refinements, or evolution of the ontology and reuse
of the ontology by others. Conventional wisdom may suggest that it is always
better for a use case to be more specific. However, in the context of ontology
modeling, the case is not as clear-cut. A very specific use case may give rise to
an ontology which is very specialized. That is, modeling choices, or ontological
commitments, may be made which fit only the very specific and detailed use
case. Consequently, later modifications become very cumbersome as they may
conflict with those earlier ontological commitments.

We now define a use case scenario for this tutorial. The setting that we have in
mind concerns online cooking recipes, and in particular the task of integrating
recipes from different websites in order to enable a fine-grained cross-website
search for recipes:

Design an ontology that can be used as part of a “recipe discovery” website.
The ontology shall be set up such that content from existing recipe websites can
be mapped into it (i.e. the ontology will be populated with data from the recipe
websites). On the discovery website, detailed graph-queries (using the ontology)
shall produce links to recipes from different recipe websites as results. The ontol-
ogy should be extendable towards incorporation of additional external data, e.g.,
nutritional information about ingredients or detailed information about cooking
equipment.
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First, we notice that data will come from multiple sources that are not well-
specified. This means that our ontology needs to be general enough to accommo-
date different conceptual representations on the source side. Second, the ontology
shall be extendable towards additional related data, meaning that we have to ac-
commodate such extension capabilities, to a reasonable extent, without knowing
what these future extensions will look like; this again requires a general model.
In contrast, fine-grained search for recipes shall be possible, meaning that our
ontology needs to be specific enough to allow these. The scenario thus calls for
a reasonable trade-off between specificity and generality, which is a typical use-
case for modular ontology modeling.

Step 2. Make competency questions while looking at possible data
sources and scoping the problem, i.e., decide on what should be mod-
eled now, and what should be left for a possible later extension.
Competency questions are queries, formulated in natural language, that may be
used to retrieve data from the knowledge base. They provide an initial framework
for the use cases; that is, the main concepts in each query should be represented
in the ontology. In other instances, they may be formulated by the domain
experts, expected users of the ontology or knowledge base, and the ontology
engineers themselves. It is important for competency questions to fall within
the scope of the use-case, as well as to cover a wide range of complexity (e.g.
simple vs. complex usages). For our scenario, we have generated some possible
competency questions, as follows.

1. What are some gluten-free, low-calorie desserts?
2. How do I make a low-carb pot roast?
3. How do I make a chili without beans?
4. What are some sweet breakfast items under 100 calories?
5. Breakfast dishes which can be prepared quickly with two potatoes, an egg,

and some flour.
6. How do I prepare chicken thighs in a slow cooker?
7. A simple recipe using pork shoulder and spring onions.
8. A side prepared using Brussels sprouts, bacon, and chestnuts.

It is also important, at this stage, to examine the possible data sources, or in
other cases intended or actual data sources. While in this example we did not
have data sources at hand, this is not always the case. Indeed, data sources are
generally acquired alongside the use-case scenario. Examining the data provides
can provide insight as to what can, or cannot, be represented in the ontology,
and is highly recommended. Sensor or telemetry limitations, bounded by physical
laws or policies like the GDPR, may prevent which data can possibly be collected,
therefore providing concrete limitations on what can be stored in the knowledge
graph.

Fortunately, for this example, searching online provides a number of cooking
websites and recipe repositories, to name a few: allrecipes.com, food.com, epi-
curious.com. Their recipe pages commonly list ingredients, cooking instructions,
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and supplementary information such as nutritional information. We note that
this chapter is only concerned with producing a suitable underlying ontology.5

With a few suitable data sources at hand, we may now iterate over the compe-
tency questions for their own suitability. Some competency questions may need
to be removed or modified to fit the available data. For example, the recipes
rarely mention equipment as explicit requirements or provide up-front, quali-
tative descriptions (e.g. sweet breakfast item). We should keep these in mind,
though, and make sure that the ontology that we produce is extendable towards
the future inclusion of such aspects. For example, had this tutorial been au-
thored some years ago, only a few recipes would have been indicated as low-carb
or gluten-free. Now, almost every recipe repository has categories that directly
cater to these recipe types. It is an obvious reminder that data evolves and we
must engineer ontologies that are capable of evolving alongside it.

At the same time, inspection of the data may yield further insights regard-
ing data that could now or in the future be included, such as recipe authors,
peer recommendations, cooking time, level of difficulty, or category tags such as
dessert or side. These concepts may be be initially incorporated, or alternatively,
extensibility towards future inclusion can be kept in mind during modeling. The
decision process regarding what to model now, later, or ever is called scoping.
By the end of this step, we should have a clear understanding of the scope of
the target ontology.

Step 3. Identify key notions from the data and the use case and iden-
tify which pattern should be used for each (if a suitable pattern is
available). Many can remain “stubs” if detailed modeling is not yet
necessary.
Consider the key notions to be the main concepts occurring in the competency
questions or those concepts identified as central in the available data sources.

From the competency questions we may find some insight as to what may be
important. We arrived at the below generalizing the competency questions into
broader usage scenarios. These are helpful for perspective and focusing terms
into key notions.
– Retrieval of cooking instructions.
– Search recipes by ingredients.
– Search by properties of the prepared food (e.g. calories or carb content).
– Search by properties of the recipe (e.g. cooking time or degree of complexity).

In our example, possible key notions are recipe, food (or ingredient), time,
equipment, classification of food prepared (e.g. dinner or side), difficulty level,
and nutritional information. We arrive at these by inspecting the competency
questions, use-case scenario, and available data. This is a subjective process, but
can be enhanced with objective measures, such as centrality, term frequency,
and so on.

There are also key notions that appear in relation to this first pass such as the
name for a recipe, the recipe instructions themselves, and from where the recipe

5 That is to say, we are only creating the ontology, not the overarching software system
that would extract and make use of the data contained in the knowledge base.
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Recipe Plan
RecipeName NameStub
RecipeInstructions Document
TimeInterval TimeInterval
QuantityOfFood QuantityOfStuff
Quantity Quantity
Equipment Stub
FoodType Stub
Difficultylevel Stub
RecipeClassification Stub
NutritionalInfo QuantityOfStuff
Source Provenance

Fig. 3: All key notions with their corresponding patterns.

was sourced (provenance). Some of these tangential concepts, while important
for context, are not essential (nor central) to the ontology at hand. The modeling
for them would need to be robust enough to be helpful, but do not require an
initial modeling in depth. One way to acknowledge this is through the use of the
Stub pattern, which can be seen in Figure 7.

In the interest of space, we introduce the corresponding patterns alongside
their module instantiations in the next step. For some of the key notions, we
also discuss different patterns that may be applicable.

Step 4. Instantiate these key notions from the pattern templates (if there is a
suitable pattern), and adapt/change the result as needed, arriving at modules.
Develop the remaining modules from scratch.
We will go through the key notions identified in the previous step one by one,
refine the list, and generate their corresponding schema diagrams.

Recipe is central to what we intend to do. We note that the name of the recipe,
which is often identical to the dish which is going to be prepared, should be
recorded. To do so, we will use the previously described NameStub pattern.6 We
now want to identify a pattern which will be the basis for the core of the recipe
modeling.

However, we have not yet discussed other patterns than NameStub and Agen-
tRole. One way to approach this is to go through a list of known patterns (such as
those mentioned in Section 2.1) and to contemplate which may fit best. Some-
times there may be more than one candidate pattern and it is necessary to
evaluate how accurately each models both our data and intent; let us look at
three such candidates.7

6 Names are complicated entities and we realize that the name for a particular dish
may vary significantly across the world. While this example does not intend to model
that upfront, we may wish to do so in the future and use the NameStub pattern to
facilitate future extensibility.

7 In the interest of space, we do not include the diagrams here, but they may be found
at http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs.

http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs


8 C. Shimizu, P. Hitzler, A. Krisnadhi

Fig. 4: The schema diagram for the Basic Plan ontology design pattern.

First, we check whether it makes sense to consider a recipe to be a Docu-
ment. There is certainly a perspective from which this this seems valid: in the
end, the recipse itself is simply a document that we download of the internet?
However, the Document pattern seems to be a rather generic notion which does
not naturally cater to the rest of our key notions. For example, we would not
indicate whether a document is low-carb or not. This line of thinking leads us
to the conclusion that a document may contain a recipe description, but that a
recipe as such is a different type of entity.

Since recipes generally contain step-by-step descriptions of the food prepa-
ration process, another alternative pattern is Sequence, which is a fundamental
ontology design pattern. Yet, in the same manner as Document, it seems clear
that it does not capture many of the aspects that are important for our com-
petency questions. This line of thinking leads us to the conclusion that some
parts of the recipe (e.g. the cooking steps) may be representable as a sequence,
but the whole of the recipe is much more than that. On the other hand, our
competency questions do not indicate that the sequence of the preparation steps
are particularly relevant to our task, namely the discovery of recipes.

We could also think of recipes as processes which may help us to emphasize
the input (the ingredients), their transformation (preparation and cooking), and
output (the dish) aspects. For some, this may indeed be a valuable perspective.
However, as with the others, it does not sufficiently cover our core use-case: that
being a resource for recipe discovery.

The perspective we will actually take here is that a recipe is a type of descrip-
tion. Indeed, the general Description pattern [1] has a specialization for plans; it
seems reasonable to think of recipes as plans to produce something. The Plan
pattern is depicted in Figure 4. A plan leads from an initial situation to another
situation, which is understood to be the goal of the plan. The initial situation
would have availability requirements (e.g. ingredients or equipment), while the
goal situation would have the prepared food available. The ingredients and equip-
ment listed in the recipe are necessary for these respective situations; that is,
they are constituents of the situations. Putting these these together, we arrive
at a first piece of the Recipe module, as an instantiation of the Plan template.
Its schema diagram is depicted in Figure 5.8

8 See [1] for a deeper discussion on descriptions, plans, situations, etc.
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Fig. 5: Recipe as plan

Food is a key notion, but unspecific. Food can be things such as cucumbers,
lasagna, or chicken Kiev. Should we distinguish between ingredients and resul-
tant dishes? But what about, say, Pesto Genovese? It is not a dish itself, but
an ingredient in some recipes; yet, there are recipes on how to make it. Indeed,
many cooking ingredients are made from even more basic ingredients. As such, it
does not make much sense to distinguish between ingredients and dishes, when
talking about recipes. This type of discussion is central to identifying good key
notions and modules. It is extremely helpful to have this discussion in a group,
as others are often so much better in finding flaws in our ideas than we are
ourselves.

Now, when we say Pesto Genovese, what exactly do we mean? Do we mean
Pesto Genovese in general, or do we mean, say, two teaspoons of it required by
some recipe? It seems for recipes that the quantity of a required or produced
food item is important. Thus, the Quantity pattern seems useful for our purposes,
and “a quantity of food” seems to be a central concept for modeling recipes as
plans, to be used both on the input and on the output side of the recipe as plan.

So we understand that there should be a concept of QuantityOfFood (e.g. 1
tsp. of butter) which is always of some quantity (e.g., 1 tsp.) and at the same time
is of some type of foodstuff (e.g. butter). The foodstuff can thus be understood
as a FoodType (like, Pesto, or potato), namely the type of stuff the quantity of
food consists of. See Figures 6a and 6b for their schema diagrams. Our pattern
for Quantity is directly derived from QUDT.9

Equipment, Classification, Difficulty Level come next on our list of key
notions. Equipment may be a slow cooker or a blender. However, while keeping
track of what special equipment is necessary, our scenario does not call for a
detailed modeling of kitchen equipment, itself, at this stage. Thus, we delay a
detailed modeling and consciously restrict the scope of our model.

Decisions, such as this, are very important during the modeling process.
Indeed, it is impossible to always model all details, as we would simply end
up with a model of almost everything! At the same time, we would like our
ontology capable of later reuse or possibly re-purposed for a scenario in which
a detailed modeling of equipment may be more important. This means, that we
do not want to merely introduce a data property, such as requiresEquipment with

9 See http://qudt.org/.

http://qudt.org/
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(a) The QuantityOfStuff pattern, the
inner box indicates the Quantity pat-
tern.

(b) The QuantityOfFood module, in-
stantiated from the Quantity pattern.

Fig. 6: The RecipeProvenance module instantiated from the Provenance pattern.

Fig. 7: The Stub pattern (above) and its instantiation for equipment (below).

range xsd:string for the names of the equipment. Instead, we want to utilize a
slightly more sophisticated approach where we use a node as placeholder for the
equipment entity. The corresponding ontology design pattern is called a Stub
[12], and it is depicted in Figure 7 together with the instantiation for equipment
which we will use. Note that we attach the CookingEquipment as constituent to
a Situation, which seems to be its natural place.

We opt to use the Stub pattern for other for DifficultyLevel and RecipeClas-
sification. Their corresponding schema diagrams are constructed analogously to
7. Stubs are also used in other places that we have not further talked about. For
example, FoodType, as it appears in Figure 6b, as it is conceivable that there
may be a sophisticated model of different food types.

Nutritional Information is the next keyword on our list, and we opt to model
this in somewhat more detail. More precisely, we will model the contents of
Nutritional Facts labels as mandated in the U.S.A. for most food products.10

While this may seem overly specific, by virtue of our modular modeling approach

10 See https://en.wikipedia.org/wiki/Nutrition_facts_label#United_States.

https://en.wikipedia.org/wiki/Nutrition_facts_label#United_States
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Fig. 8: Nutritional Information module. The box indicates a modified instance
of the QuantityOfStuff pattern.

it would be easy to replace the NutritionalInformation module with one tailored
to other countries or nutritional convictions. In fact, we will highlight this by
creating the class US-Nutrition-Label as a subclass of the NutritionalInformation
class.

These labels have highly structured content. We will not be concerned with
layout issues, nor is it necessary that we model all content, such as the “% Daily
Value” amounts for fat or sodium. We will list absolute amounts for fat, saturated
fat, trans fat, cholesterol, sodium, carbs, dietary fiber, sugars, and protein, and
“% Daily Value” amounts for Vitamins A and C, Calcium, and Iron. We represent
these as instances of the class NutritionalContentType.11 It seems obvious that we
will reuse the QuantityOfStuff pattern, however as a percentage value is not really
a quantity, we add an alternative to giving the quantity, which consists simply
of a datatype property isPercentageOfDailyValue with range xsd:positiveInteger.
We also need to record the serving size to which the nutritional information
refers, and this can again be done using the Quantity pattern, as well as the
calorie content and calories-from-fat content, but we use data properties here.
This module is shown in Figure 8.
Provenance does not initially appear in our list of key notions. Instead, we
identify this need not from the competency questions, but from use case. And
indeed, our scenario states that queries shall produce links to recipes from dif-
ferent recipe websites. However, our modeling so far has not covered anything
that would make it possible to track from where a recipe was obtained. Thus,
we need to do model some notion of provenance.

The schema diagram for a generic provenance pattern, presented in in [17],
is derived from the W3C recommendation, PROV-O [13], is provided in Figure
9a.

The key idea idea, here, is that any entity for which provenance is impor-
tant, was both generated by some Activity and derived that entity from some

11 This is essentially a small controlled vocabulary.
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(a) The Provenance pattern. (b) The RecipeProvenance module.

Fig. 9: The RecipeProvenance module instantiated from the Provenance pattern.

other entity. Analogously, a recipe is downloaded from a website and mapped
into the ontology. Recalling our discussion regarding Recipe, we may use the
Document pattern, to say that a Recipe wasDerivedFrom some web Document.
Our RecipeProvenance module is shown in Figure 9b.

We have now produced diagrams for each of our identified key notions and
used the schema diagrams of general ontology design patterns to produce them.
The list of key notions, together with the used patterns, can be found in Figure 3.

It is not always the case, however, that we will have an ontology design pat-
tern that is applicable to the key notion. In this case, our worked example deals
will relatively common concepts and thus by looking through the ontology design
patterns portal, existing literature, and the modular ontology design library, we
can find such patterns. In the event that a pattern cannot be identified, the de-
velopers and domain experts must work closely together to either develop a new
pattern that can cover that notion (and then instantiate it) or author a module
(that is a tiny ontology that solves exactly this modeling problem) directly.

Step 5. Add axioms for each module, informed by the pattern ax-
ioms.
We now produce the OWL axioms for each of the modules using the earlier
schema diagrams as guidance. In many cases, the axioms would be derived from
those provided with the patterns. Instead we will recreate them from scratch in
order to gain a deeper understanding. We will produce an exhaustive list of ax-
ioms that seem appropriate for our model, while steering away from overly strong
ontological commitments. In our examples, we will use Manchester syntax. This
axiomatization is done systematically for the node-edge-node constructs in the
diagram, according to the process described in Section 2.2.

Recipe, from Figure 5, is first on our list. The axioms can be found in Figure
10. Note that, generally speaking, we prefer the scoped versions of axioms, as
they are weaker axioms from the perspective of formal semantics.

Items 1 and 2 refer to the requires edge and adjacent nodes in Figure 5. Item
1 is a scoped range restriction; note that we do not specify a scoped domain,
because we feel that a statement which says that quantities of food can only
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1. Recipe SubClassOf requires only Situation
2. Recipe SubClassOf requires some Situation
3. Recipe SubClassOf produces only Situation
4. Recipe SubClassOf produces some Situation
5. hasCookingInstructions some RecipeInstructions SubClassOf Recipe
6. Recipe SubClassOf hasCookingInstructions only RecipeInstructions
7. Recipe SubClassOf hasCookingInstructions some RecipeInstructions
8. RecipeInstructions SubClassOf inverse hasCookingInstructions some Recipe
9. RecipeInstructions SubClassOf inverse hasCookingInstructions max 1 Recipe

10. RecipeInstructions SubClassOf hasRequiredTime only TimeInterval
11. Recipe SubClassOf requires some (hasConstituent some QuantityOfFood)
12. Recipe SubClassOf produces some (hasConstituent some QuantityOfFood)

Fig. 10: Axioms for Figure 5

be ingredients in recipes (and in nothing else) may seem too restrictive. For a
similar reason, we specify only one of the standard existential axioms, in Item
2.

Items 3 and 4 are analogous, for the produces edge and adjacent nodes. Items
5–9 refer to the hasCookingInstructions edge and adjacent nodes; in this case
we have scoped domain and scoped range expressions, both existentials, and a
cardinality expression. The cardinality expression 9 states that every entity in
the class RecipeInstructions can be associated as cooking instructions to at most
one recipe. Item 10 is a scoped range expression for the hasRequiredTime edge
and adjacent nodes; note that none of the other axioms seems fully appropriate
in this case, e.g., other things can have required times as well. Items 11 and 12
are additional axioms which involve two properties and thus do not come from
the list in Figure 2. They state that each recipe requires some QuantityOfFood
to begin with, and also always produces some QuantityOfFood.

In short, we include the following axioms. For requires: scoped range, exis-
tential; for produces: scoped range, existential; for hasCookingInstructions: scoped
domain, scoped range, existential, inverse existential, inverse qualified scoped
functionality; for hasRequiredTime: scoped range. We also have the additional
axioms 11 and 12 from Figure 10.

Furthermore, we declare disjointness axioms: Recipe, QuantityOfFood, Situa-
tion, RecipeInstructions, TimeInterval are mutually disjoint.

After going through the standard axiom candidates for each node-edge-node
tripel, we also contemplate whether there should be any axioms spanning more
nodes or edges. However, none such seem to be appropriate in this case.

QuantityOfFood We refer to Figure 6b. Instead of listing formal axioms, we
describe them by using the axiom names we have introduced in Figure 2. We
thus have the following standard axioms. For ofFoodType and ofQuantity: scoped
range, existential; for hasQuantityKind and hasQuantityValue: scoped domain,
scoped range, existential, inverse existential, scoped qualified functionality; for
hasUnit: scoped range, existential, scoped qualified functionality; for hasNumer-
icValue: scoped range, existential, functionality.
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Furthermore, we declare disjointness axioms: QuantityOfFood, FoodType,
QuantityKind, Quantity, QuantityValue, Unit are mutually disjoint. We do not add
any other axioms.

CookingEquipment, RecipeDifficultyLevel, RecipeClassification Stubs
We refer to Figure 7. The axioms are as follows. For hasConstituent: existential;
for hasRecipeDifficultyLevel and hasRecipeClassification: scoped domain, scoped
range, existential, inverse existential; for hasNameAsString and asString: scoped
range.

Furthermore, we declare disjointness axioms: Recipe, CookingEquipment, Dif-
ficultyLevel, RecipeClassification are mutually disjoint. We do not add any other
axioms.

NutritionalInformation We refer to Figure 8. The axioms are as follows. For
listsCalories, for listsCaloriesFromFat and for refersToServingSize: scoped range,
existential, functional; for lists: scoped domain, scoped range, existential; for
ofQuantity, ofType and isPercentageOfDailyValue: scoped range, existential.

Furthermore, we declare disjointness axioms: US-2014-Nutrition-Label, Nutri-
tionalContent, Recipe, Quantity, NutritionalContentType are mutually disjoint. We
do not add any other axioms.

RecipeProvenance We refer to Figure 9b. The axioms are as follows. For was-
DerivedFrom: scoped range, existential; for hasURL: scoped range. Furthermore,
we declare disjointness axioms: Recipe and, Document are disjoint. We do not
add any other axioms.

Step 6. Put the modules together and revise naming conventions for
all class, property, and individual names, as necessary.
To start, we simply join the different schema diagrams together, as shown in
Figure 11. Joining, in this case, is not axiomatic. It is simply overlapping the
diagrams (and moving things around, as necessary) so that concepts in one
schema diagram align where indicated. In the figure we have multiple uses of the
Quantity module, so we connect to the same one. We also try to reduce crossing
edges as much as possible. In the event that we could not, we would still want
to un-clutter the diagram by fully representing modules only once, and using
a blue-dashed box to indicate that the concept in question is fully represented
elsewhere. The diagram also indicates most modules using grey boxes. We have
already been very careful with proper naming, so in this case we do not have
to make any corresponding improvements. In general, however, these problems
may present as mismatch of key terms in different modules, especially if the
development of the ontology occurs over a long time.

Step 7. Add axioms which involve several modules and review the
entire, connected model for consistency.
Let us contemplate additional axioms that we may want to add to the result-

ing ontology. First, we add one datatype property, hasName as indicated in the
diagram, to give names to recipes. While a name may not appear central at
first sight, it should be easily retrievable (and it is often identical with the name
of the QuantityOfFood produced by the recipe), and it should be helpful when
displaying search results. We only declare a scoped range for hasName.
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Fig. 11: The schema diagram for the complete Recipe model.
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When inspecting the rest of the diagram, additional axioms are sometimes in-
dicated when the schema diagram, understood as an undirected graph, contains
cycles. There are several such cycles in the diagram, which we inspect carefully.
However, it turns out that in each case, no additional axioms are warranted.
For example, several classes refer to Quantity, but there are no additional rela-
tionships between the different quantities to indicate. Thus, we add additional
disjointness axioms, and in fact all classes depicted in the diagram are mutually
disjoint.

Finally, we revisit the competency questions listed in Step 2. We want to
assess to what extent our ontology captures the required information to answer
the competency questions. In cases where it does not, or not sufficiently, decisions
need to be made whether the ontology should be modified or extended.

The bulk of the competency questions concerns ingredients and equipment,
which our ontology models. For the first question, we notice that desserts (or
breakfasts or sides, as in questions 4, 5, and 8) are captured in the RecipeClassi-
fication stub, in a simple fashion. For gluten-free and low-calorie, we carry basic
information in the nutritional information, but do not provide corresponding cat-
egorizations. These categorizations could be added, the appropriate place would
be that they would be part of a refinement of the nutritional information mod-
ule. The same holds for the notion of low-carb in the second question. However,
as low-calorie or low-carb are relative measures, this may not be a job for the on-
tology. Pot roast, as in question 2, and chili, as in question 3, are names of foods
which are prepared following a recipe. The fact “under 100 calories” is captured
in NutritionalInformation, though incompletely so, as the nutritional content of
the final dish may need to be calculated from the ingredients and serving sizes.
Currently, our ontology can list this only if the web page from which the recipe
originates carries this information.

The fact that a breakfast may be “sweet” cannot be captured currently. How
to model this would need some contemplation: in the end it is a subjective assess-
ment in a similar way in which “low-calorie” or “simple” would be a subjective
assessment. On the other hand, given the use cases and the fact that recipes
are retrieved from Web resources, this may be a case for simply adding some
keyword tags obtained from the source.

This step can be summarized as the final pass over before the ontology is
complete. First, the diagram is inspected for any problematic cycles and deter-
mine disjointness. Then, we revisit our competency questions, as they inform
expectations on how the ontology will be used. If competency questions (that
have been determined to be in scope) cannot be answered, we must extend or
modify the ontology so that they may.

Step 8. Create OWL files.
After we have created a solid modular model, we move to creating a data artefact
in form of an OWL file which captures our ontology.

For this step, we recommend the use of an ontology editor. In particular,
we use Protégé and an assortment of plug-ins that we have developed, such
as CoModIDE (the comprehensive modular ontology integrated development
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environment), which allows us to automatically generate axioms by replicating
our schema diagram onto a graphical canvas, and the OPLa Annotator, which
allows us to very quickly and easily annotate the ontology with the modular
structure.

We also recommend to keep external models, such as the patterns used as
templates, entirely separate from our own modules,by exclusively using local
own, controlled namespaces within the modules, even if pieces from other on-
tologies are used verbatim. Instead, mappings to such external ontologies should
be provided as separate OWL files. This allows us to easily disentangle inter-
nal and external terms, allows the models to evolve separately, and provides
a mechanism for an exchangeable interface with external models, thus improv-
ing reuse. Finally, the completed ontology should be documented carefully and
clearly reflect the modular structure.

4 Conclusion

We have now produced a modular ontology that captures details about recipes.
We have developed a number of modules capturing the key notions, as extracted
from the use-case, competency questions, and available data. The patterns upon
which each module is based can be found in Figure 3. For each of the modules,
we followed our systematic axiomatization process, as outlined in 2.2. After
assembling the modular ontology, we briefly reviewed the axioms for consistency,
clarity, purpose, and accuracy. For a more in depth look into these processes, we
direct the reader to [11] and [9].

4.1 Advancing the Methodology

As we mentioned at the beginning of this chapter, knowledge graphs are com-
plex entities. The methodology to produce them is no less so—we still have
many considerations to take into account as we further mature the paradigm. In
particular, we see the following questions and advances to be made.

1. This methodology, generally, relies on face-to-face communication and ad
hoc graphical modeling. How can this methodology be adapted for remote
collaborations?

2. Are there additional patterns that we are missing?
3. What are better documentation strategies? And how can existing tools be

modified to incorporate modular structure into their documentation style?

Finally, we have plans to continue the development of the CoModIDE [15] plat-
form for graphical modeling. This platform allows for the direct creation of an
ontology by drawing a schema diagram on a graphical canvas. It is a plugin for
Protégé, which allows a developer to leverage the entire power of an ontology
editor, but also the convenience and ease of use a graphical editor. It offers sup-
port for patterns and modules by providing a drag-and-drop mechanism from
an embedded ODP library.
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Moving forward, we will be implementing a tighter integration between it
and OPLa, particular in the use of creating your own modules from scratch. We
will furthermore be adding the ability to swap out the embedded ODP library
for more domain specific collections. For those interested, the plug-in (and its
source code) can be found online.12
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