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Abstract. The ever increasing prevalence of publicly available struc-
tured data on the World Wide Web enables new applications in a variety
of domains. In this paper, we provide a conceptual approach that lever-
ages such data in order to explain the input-output behavior of trained
artificial neural networks. We apply existing Semantic Web technologies
in order to provide an experimental proof of concept.

1 Introduction

Trained neural networks are usually imagined as black boxes, in that they do
not give any direct indications why an output (e.g., a prediction) was made by
the network. The reason for this lies in the distributed nature of the information
encoded in the weighted connections of the network. Of course, for applications,
e.g., safety-critical ones, this is an unsatisfactory situation. Methods are therefore
sought to explain how the output of trained neural networks are reached.

This topic of explaining trained neural networks is not a new one, in fact there
is already quite a bit of tradition and literature on the topic of rule extraction
from such networks (see, e.g., [2,9,16]), which pursued very similar goals. Rule
extraction, however, utilized propositional rules as target logic for generating
explanations, and as such remained very limited in terms of explanations which
are human-understandable. Novel deep learning architectures attempt to retrieve
explanations as well, but often the use-case is only for computer vision tasks
like object or scene recognition. Moreover, explanations in this context actually
encode greater details about the images provided as input, rather than explaining
why or how the neural network was able to recognize a particular object or scene.

Semantic Web [4,12] is concerned with data sharing, discovery, integration,
and reuse. As field, it does not only target data on the World Wide Web, but its
methods are also applicable to knowledge management and other tasks off the
Web. Central to the field is the use of knowledge graphs (usually expressed using
the W3C standard Resource Description Framework RDF [3]) and type logics
attached to these graphs, which are called ontologies and are usually expressed
using the W3C standard Web Ontology Language OWL [11].

This paper introduces a new paradigm for explaining neural network be-
havior. It goes beyond the limited propositional paradigm, and directly targets
the problem of explaining neural network activity rather than the qualities of



2 Sarker, Xie, Doran, Raymer, Hitzler

the input. The paradigm leverages advances in knowledge representation on the
World Wide Web, more precisely from the field of Semantic Web technologies. It
in particular utilizes the fact that methods, tool, and structured data in the men-
tioned formats are now widely available, and that the amount of such structured
data on the Web is in fact constantly growing [5,18]. Prominent examples of
large-scale datasets include Wikidata [22] and data coming from the schema.org
[10] effort which is driven by major Web search engine providers. We will utilize
this available data as background knowledge, on the hypothesis that background
knowledge will make it possible to obtain more concise explanations. This ad-
dresses the issue in propositional rule extraction that extracted rulesets are often
large and complex, and due to their sizes difficult to understand for humans.
While the paper only attempts to explain input-output behavior, the authors
are actively exploring ways to also explain internal node activations.

An illustrative example

Let us consider the following very simple example which is taken from [14].
Assume that the input-output mapping P of the neural network without back-
ground knowledge could be extracted as

p1 ∧ q → r p2 ∧ q → r.

Now assume furthermore that we also have background knowledge K in form of
the rules

p1 → p p2 → p.

The background knowledge then makes it possible to obtain the simplified input-
output mapping PK , as

p ∧ q → r.

The simplification through the background knowledge is caused by p acting
as a “generalization” of both p1 and p2. For the rest of the paper it may be
beneficial to think of p, p1 and p2 as classes or concepts, which are hierarchically
related, e.g., p1 being “oak,” p2 being “maple,” and p being “tree.”

Yet this example is confined to propositional logic.1 In the following, we show
how we can bring structured (non-propositional) Semantic Web background
knowledge to bear on the problem of explanation generation for trained neu-
ral networks, and how we can utilize Semantic Web technologies in order to
generate non-propositional explanations. This work is at a very early stage, i.e.,
we will only present the conceptual architecture of the approach and minimal
experimental results which are encouraging for continuing the effort.

The rest of the paper is structured as follows. In Section 2 we introduce nota-
tion as needed, in particular regarding description logics which underly the OWL
standard, and briefly introduce the DL-Learner tool which features prominently
in our approach. In Section 3 we present the conceptual and experimental setup

1 How to go beyond the propositional paradigm in neural-symbolic integration is one
of the major challenges in the field [8].
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for our approach, and report on some first experiments. In Section 4 we conclude
and discuss avenues for future work.

2 Preliminaries

We describe a minimum of preliminary notions and information needed in order
to keep this paper relatively self-contained. Description logics [1,12] are a major
paradigm in knowledge representation as a subfield of artificial intelligence. At
the same time, they play a very prominent role in the Semantic Web field since
they are the foundation for one of the central Semantic Web standards, namely
the W3C Web Ontology Language OWL [11,12].

Technically speaking, a description logic is a decidable fragment of first-order
predicate logic (sometimes with equality or other extensions) using only unary
and binary predicates. The unary predicates are called atomic classes,2 while the
binary ones are refered to as roles,3 and constants are refered to as individuals.
In the following, we formally define the fundamental description logic known as
ALC, which will suffice for this paper. OWL is a proper superset of ALC.

Desciption logics allow for a simplified syntax (compared to first-order pred-
icate logic), and we will introduce ALC in this simplified syntax. A translation
into first-order predicate logic will be provided further below.

Let C be a finite set of atomic classes, R be a finite set of roles, and N be a
finite set of individuals. Then class expressions (or simply, classes) are defined
recursively using the following grammar, where A denotes atomic classes from
A and R denotes roles from R. The symbols u and t denote conjunction and
disjunction, respectively.

C,D ::= A | ¬C | C uD | C tD | ∀R.C | ∃R.C

A TBox is a set of statements, called (general class inclusion) axioms, of
the form C v D, where C and D are class expressions – the symbol v can be
understood as a type of subset inclusion, or alternatively, as a logical implication.
An ABox is a set of statements of the forms A(a) or R(a, b), where A is an
atomic class, R is a role, and a, b are individuals. A description logic knowledge
base consists of a TBox and an ABox. The notion of ontology is used in different
ways in the literature; sometimes it is used as equivalent to TBox, sometimes as
equivalent to knowledge base. We will adopt the latter usage.

We characterize the semantics of ALC knowledge bases by giving a transla-
tion into first-order predicate logic. If α is a TBox axiom of the form C v D,
then π(α) is defined inductively as in Figure 1, where A is a class name. ABox
axioms remain unchanged.

DL-Learner [6,17] is a machine learning system inspired by inductive logic
programming [20]. Given a knowledge base and two sets of individuals from the
knowledge base – called positive respectively negative examples – DL-Learner

2 or atomic concepts
3 or properties



4 Sarker, Xie, Doran, Raymer, Hitzler

π(C v D) = (∀x0)(πx0(C) → πx0(D))

πxi(A) = A(xi)

πxi(¬C) = ¬πxi(C)

πxi(C uD) = πxi(C) ∧ πxi(D)

πxi(C tD) = πxi(C) ∨ πxi(D)

πxi(∀R.C) = (∀xi+1)(R(xi, xi+1) → πxi+1(C))

πxi(∃R.C) = (∃xi+1)(R(xi, xi+1) ∧ πxi+1(C))

Fig. 1. Translating TBox axioms into first-order predicate logic. We use auxiliary func-
tions πxi , where the xi are variables. The axiom A v ∃R.∃S.B, for example, would be
translated to (∀x0)((A(x0)) → (∃x1)(R(x0, x1) ∧ (∃x2)(S(x1, x2) ∧B(x2)))).

Fig. 2. Michalski’s trains, picture from [15]. Positive examples on the left, negative
ones on the right.

attempts to construct class expressions such that all the positive examples are
contained in each of the class expressions, while none of the negative examples
is. DL-Learner gives preference to shorter solutions, and in the standard setting
returns approximate solutions if no fully correct solution is found. The inner
workings of DL-Learner will not matter for this paper, and we refer to [6,17] for
details. However, we exemplify its functionality by looking at Michalski’s trains
as an example, which is a symbolic machine learning task from [15], and which
was presented also in [17].

For purposes of illustrating DL-Learner, Figure 2 shows two sets of trains, the
positive examples are on the left, the negative ones are on the right. Following
[17], we use a simple encoding of the trains as a knowledge base: Each train is an
individual, and has cars attached to it using the hasCar property, and each car
then falls into different categories, e.g., the top leftmost car would fall into the
classes Open, Rectangular and Short, and would also have information attached
to it regarding symbol carried (in this case, square), and how many of them (in
this case, one). Given these examples and knowledge base, DL-Learner comes
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Fig. 3. Conceptual architecture – see text for explanations.

up with the class

∃hasCar.(Closed u Short)

which indeed is a simple class expression such that all positive examples fall
under it, while no negative example does.

3 Approach and Experiments

In this paper, we follow the lead of the propositional rule extraction work men-
tioned in the introduction, with the intent of improving on it in several ways.

1. We generalize the approach by going significantly beyond the propositional
rule paradigm, by utilizing description logics.

2. We include significantly sized and publicly available background knowledge
in our approach in order to arrive at explanations which are more concise.

More concretely, we use DL-Learner as the key tool to arrive at the ex-
planations. Figure 3 depicts our conceptual architecture: The trained artificial
neural network (connectionist system) acts as a classifier. Its inputs are mapped
to a background knowledge base and according to the networks’ classification,
positive and negative examples are distinguished. DL-Learner is then run on
the example sets and provides explanations for the classifications based on the
background knowledge.

In the following, we report on preliminary experiments we have conducted
using our approach. Their sole purpose is to provide first and very preliminary
insights into the feasibility of the proposed method. All experimental data is
available from http://daselab.org/projects/human-centered-big-data.

We utilize the ADE20K dataset [23,24]. It contains 20,000 images of scenes
which have been pre-classified regarding scenes depicted, i.e., we assume that the

http://daselab.org/projects/human-centered-big-data
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Fig. 4. Test images. Positive examples p1, p2, p3 on the left (from top), negative ex-
amples n1, n2, n3 on the right (from top).

classification is done by a trained neural network.4 For our initial test, we used
six images, three of which have been classified as “outdoor warehouse” scenes
(our positive examples), and three of which have not been classified as such (our
negative examples). In fact, for simplicity, we took the negative examples from
among the images which had been classified as “indoor warehouse” scenes. The
images are shown in Figure 4.

The ADE20K dataset furthermore provides annotations for each image which
identify information about objects which have been identified in the image. The
annotations are in fact richer than that and also talk about the number of
objects, whether they are occluded, and some more, but for our initial experiment
we only used presence or absence of an object. To keep the initial experiment
simple, we furthermore only used those detected objects which could easily be
mapped to our chosen background knowledge, the Suggested Upper Merged
Ontology (SUMO).5 Table 1 shows, for each image, the objects we kept. The
Suggested Upper Merged Ontology was chosen because it contains many, namely
about 25,000 common terms which cover a wide range of domains. At the same

4 Strictly speaking, this is not true for the training subset of the ADE20K dataset,
but that doesn’t really matter for our demonstration.

5 http://www.adampease.org/OP/

http://www.adampease.org/OP/
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image p1: road, window, door, wheel, sidewalk, truck, box, building
image p2: tree, road, window, timber, building, lumber
image p3: hand, sidewalk, clock, steps, door, face, building, window, road
image n1: shelf, ceiling, floor
image n2: box, floor, wall, ceiling, product
image n3: ceiling, wall, shelf, floor, product

Table 1. Objects recorded for each image.

time, the ontology arguably structures the terms in a relatively straightforward
manner which seemed to simplify matters for our initial experiment.

In order to connect the annotations to SUMO, we used a single role called
“contains.” Each image was made an individual in the knowledge base. Further-
more, for each of the object identifying terms in Table 1, we either identified
a corresponding matching SUMO class, or created one and added it to SUMO
by inserting it at an appropriate place within SUMO’s class hierarchy. We fur-
thermore created individuals for each of the object identifying terms, including
duplicates, in Table 1, and added them to the knowledge base by typing them
with the corresponding class. Finally, we related each image individual to each
corresponding object individual via the “contains” role.

To exemplify – for the image p1 we added individuals road1, window1,
door1, wheel1, sidewalk1, truck1, box1, building1, declared Road(road1), Win-
dow(window1), etc., and finally added the ABox statements contains(p1, road1),
contains(p1,window1), etc., to the knowledge base. For the image p2, we added
contains(p2, tree2), contains(p2, road2), etc. as well as the corresponding type
declarations Tree(tree2), Road(road2), etc.

The mapping of the image annotations to SUMO is of course very simple,
and this was done deliberately in order to show that a straightforward approach
already yields interesting results. As our work progresses, we do of course an-
ticipate that we will utilize more complex knowledge bases and will need to
generate more complex mappings from picture annotations (or features) to the
background knowledge.

Finally, we ran DL-Learner on the knowledge base, with the positive and
negative examples as indicated. DL-Learner returns 10 solutions, which are listed
in Figure 5. Of these, some are straightforward from the image annotations,
such as (1), (5), (8, (9) and (10). Others, such as (2), (4), (6), (7) are much
more interesting as they provide solutions in terms of the background knowledge
without using any of the terms from the original annotation. Solution (3) looks
odd at first sight, but is meaningful in the context of the SUMO ontology:
SelfConnectedObject is an abstract class which is a direct child of the class
Object in SUMO’s class hierarchy. Its natural language definition is given as
“A SelfConnectedObject is any Object that does not consist of two or more
disconnected parts.” As such, the class is a superclass of the class Road, which
explains why (3) is indeed a solution in terms of the SUMO ontology.
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∃contains.Window (1)

∃contains.Transitway (2)

∃contains.SelfConnectedObject (3)

∃contains.Roadway (4)

∃contains.Road (5)

∃contains.LandTransitway (6)

∃contains.LandArea (7)

∃contains.Building (8)

∀contains.¬Floor (9)

∀contains.¬Ceiling (10)

Fig. 5. Solutions produced by DL-Learner for the warehouse test.

We have conducted four additional experiments along the same lines as de-
scribed above. We briefly describe them below – the full raw data and results
are available from http://daselab.org/projects/human-centered-big-data.

In the second experiment, we chose four workroom pictures as positive exam-
ples, and eight warehouse pictures (indoors and outdoors) as negative examples.
An example explanation DL-Learner came up with is

∃contains.(DurableGood u ¬ForestProduct).

On of the outdoor warehouse pictures indeed shows timber. DurableGoods in
SUMO include furniture, machinery, and appliances.

In the third experiment, we chose the same four workroom pictures as neg-
ative examples, and the same eight warehouse pictures (indoors and outdoors)
as positve examples. An example explanation DL-Learner came up with is

∀contains.(¬Furniture u ¬IndustrialSupply),

i.e., “contains neither furniture nor industrial supply”. IndustrialSupply in SUMO
includes machinery. Indeed it turns out that furniture alone is insufficient for
distingushing between the positive and negative exaples, because “shelf” is not
classified as funiture in SUMO. This shows the dependency of the explanations
on the conceptualizations encoded in the background knowledge.

In the fourth experiment, we chose eight market pictures (indoors and out-
doors) as positive examples, and eight warehouse pictures (indoors and outdoors)
as well as four workroom pictures as negative examples. An example explanation
DL-Learner came up with is

∃contains.SentientAgent,

And indeed it turns out that people are shown on all the market pictures. There
is actually also a man shown on one of the warehouse pictures, driving a forklift,
however “man” or “person” was not among the annotations used for the picture.
This example indicates how our approach could be utilized: A human monitor
inquiring with an interactive system about the reasons for a certain classification
may notice that the man was missed by the software on that particular picture,
and can opt to interfere with the decision and attempt to correct it.

In the fifth experiment, we chose four mountain pictures as positive examples,
and eight warehouse pictures (indoors and outdoors) as well as four workroom

http://daselab.org/projects/human-centered-big-data
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pictures as negative examples. An example explanation DL-Learner came up
with is

∃contains.BodyOfWater.

Indeed, it turns out that all mountain pictures in the example set show either a
river or a lake. Similar to the previous example, a human monitor may be able
to catch that some misclassifications may occur because presence of a body of
water is not always indicative of presence of a mountain.

4 Conclusions and Further Work

We have laid out a conceptual sketch how to approach the issue of explaining
artificial neural networks’ classification behaviour using Semantic Web back-
ground knowledge and technologies, in a non-propositional setting. We have
also reported on some very preliminary experiments to support our concepts.

The sketch already indicates where to go from here: We will need to in-
corporate more complex and more comprehensive background knowledge, and
if readily available structured knowledge turns out to be insufficient, then we
foresee using state of the art knowledge graph generation and ontology learn-
ing methods [13,19] to obtain suitable background knowledge. We will need to
use automatic methods for mapping network input features to the background
knowledge [7,21], while the features to be mapped may have to be generated
from the input in the first place, e.g. using object recognition software in the
case of images. And finally, we also intend to apply the approach to sets of hidden
neurons in order to understand what their activations indicate.

Acknowledgements. This work was supported by the Ohio Federal Research Net-
work project Human-Centered Big Data.
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