
Rendering OWL in Description Logic Syntax

Cogan Shimizu1, Pascal Hitzler1, and Matthew Horridge2

1 Data Semantics (DaSe) Laboratory, Wright State University, Dayton, OH, USA
2 Bio-Medical Informatics Research Group, Stanford University, Stanford, CA, USA

Abstract. As ontology engineering is inherently a multidisciplinary pro-
cess, it is necessary to utilize multiple vehicles to present an ontology to
a user. In order to examine the formal logical content, description logic
renderings of the axioms appear to be a very helpful approach for some.
This paper introduces a number of changes made to the OWLAPI’s
LATEX rendering framework in order to improve the readability, conci-
sion, and correctness of translated OWL files, as well as increase the
number of renderable OWL files.

1 Motivation

For ontology developers and consumers intimately familiar with the logical and
formal semantic underpinnings of OWL, the presentation of OWL files in the
form of description logic syntax appears to be a very useful one for a quick
assessment of expressivity and formal content.

The OWLAPI [1], which is a powerful tool for the programmatic construc-
tion, manipulation, and rendering of ontologies, has for considerable time had
limited support for the rendering of OWL ontologies in description logic syn-
tax via LATEX. Unfortunately, this LATEX rendering framework, which outputs
description logic in a LATEX source file, was never developed beyond an early
experimental stage. As a consequence, translations suffered from a number of
syntax errors and poor readbility of the output. In practice, translations were
further impacted by the presence of illegal characters in the LATEX source, thus
preventing nearly all renderings from typesetting. In Section 3 we see that in a
test set of 117 OWL files, not a single one did typeset without error. This paper
addresses changes made to the OWLAPI LATEX rendering framework in order to
improve translations’ succinctness, readability, and syntax, as well as ensuring
that a larger number of translations will indeed typeset.

In Section 2 we describe in more detail the changes we made to the OWLAPI.
Note that no changes were made to the rendering behaviour of SWRL or an-
notations. In Section 3 we describe the tools we developed, our test set, and
rendering results.

2 Improvements

For context, we provide a very brief overview of how the OWLAPI renders an
ontology in LATEX. First, the renderer examines a loaded ontology. Then, for each



entity, (i.e Class, Object Property, Data Property, Individual, and Datatype) in
the ontology it prints associated axioms and facts. An axiom is associated to an
entity if it appears somewhere in the axiom. For example, the axiom

DisjointClasses(A, B, C)

is associated with classes A, B, and C. While this does result in redundantly
rendered axioms, we stress that the renderer is meant to summarize the entities
in an ontology, rather than exhaustively enumerate all axioms in the ontology.
Below, we describe the main changes made to enhance the framework’s ability
to do so.

Datatypes With respect to the syntax of datatypes, there were a number of
subtle changes necessary to align the LATEX renderer with the OWL standard [3].
These changes are doubly important in that they prevent the writing of illegal
characters (e.g. ‘#’) and increase the readability of the rendering. For datatypes
that are defined in the current namespace, their namespaces are omitted. Ex-
ternally defined datatypes’ namespaces are included using shortform notation.
For example, datatypes specified as XML Schema Datatypes or in RDFS are
prepended with the popular, shortened namespaces of xsd and rdfs, respectively.

Nominals Literals, when used as nominals, are now properly rendered using set
notation. In accordance with the above, the example below includes a shortform
namespace for its datatype.

∃hasSigrid3IceFormCode.{“05”ˆˆxsd:string}

DatatypeRestriction Axiom Previously, DatatypeRestriction axioms were
not rendered in an intuitive manner. We have made changes in order to make
it more similar to the functional syntax specified in [3]. However, we diverge
slightly from the specification in the interest of readability. The constrained
datatype is followed by a colon to differentiate it from its facets. Further, the
constraining facets are rendered using their respective relational operators in-
stead of keywords. In general, DatatypeRestriction axioms are now rendered
using the following form, where the ‘+’ indicates one or more of the preceding
tokens.

DatatypeRestriction(datatype: (constrainingFacet restrictionValue)+)

HasKey Axiom The HasKey axiom has no analog in description logic [2]. We
also contend that the functional syntax in [3] is unwieldy and that distinguishing
between Object Properties and Data Properties is unnecessary for axiomatic
rendering. As such, we have adopted the following syntax for a HasKey axiom,
where the ‘+’ means one or more of the preceding token.

ClassExpression hasKey (Property+)



Miscellaneous Fixes

– The Subproperty axiom now properly renders the subproperty.
– Extraneous spacing after logical symbols (e.g. ¬) has been fixed.
– Axioms expressing cardinality now correctly render cardinality.
– Role restriction axioms now have correct “.” syntax.

Spacing & Math Mode We have also made several general changes to increase
both the quality of the LATEX source and readability of the rendering itself. In
particular, the amsmath package is now included in the preamble so that we
may align related axioms over their principal relation (i.e. ≡, 6≡, v) or after a
function name. As such, axioms are now rendered in math mode.

Line Breaking Heuristics In some cases, axioms would result in an excessively
long rendering (i.e. result in hbox overflow, placing text in or even beyond the
page margin). For the most part, LATEX handles itself in knowing when to break
a line. However, this behavior does not occur in the math environments. As such,
it was necessary to look into methods for preventing unacceptable overflow.

The first option examined was the LATEX package, breqn. This package is an
experimental package that employs its own heuristics for breaking excessively
long equations. Unfortunately, breqn’s heuristics take into account only a se-
lect number of operators as potential breaking points. Due to the uncommon
operators that description logic employs, breqn was unable to find appropriate
breaking points.

The next option was the split environment from the LATEX package amsmath.
However, split does not dynamically split an equation; it is an entirely manual
process. At this point, we developed our own heuristics to determine when the
split environment would be necessary.

In the rendering tool, we have introduced a middle layer to the rendering
system. The OWLAPI LATEX framework renders normally, but to a special tem-
porary file. From this temporary file, we examine the LATEX source code. For
our test set, this approach did not result in significant additional runtime. The
heuristics is defined as follows.

First, we control for the LATEX commands that are employed by the rendering
framework and then count an empirically determined number of characters; we
found 125 characters to be a reasonable equation length before a newline would
be required. The following is an example rendering following this heuristics.

DataGranule(x1)→ ≥1x2 hasDataSet(x1, x2) ∧DataSet(x2)

∧ ≤1x3 hasDataSet(x1, x3) ∧DataSet(x3)

There are some limitations to this approach, as each entity’s subsection is a
single align environment. The split environment is, in turn, embedded in it. As
such, if the antecedent of an axiom is very long, the line breaks may occur in or
beyond the margin.



Fig. 1. Snapshot of the GUI tool.

Reduction of Duplicate Axioms Several OWL concepts provide a way for
succinctly expressing pairwise relations (e.g. equivalence and disjointness). How-
ever, the translations of these concepts into description logic can potentially gen-
erate a huge number of axioms. For example, in order to express that n classes
are mutually disjoint requires 2 ·

(
n
2

)
axioms. Furthermore, under the current

framework all these axioms are related and will thus be printed in each class’s
section, for a total of 2n ·

(
n
2

)
axioms. This can quickly obscure the actual re-

lationship between all the classes. As such, we adopt the functional syntax as
defined in the specification as follows

disjoint(c1, c2, c3, · · · , cn)

3 Results

All tools, source code, the test set, and rendering results are available for down-
load from the Data Semantics Lab website.3

Tools In order to make these changes to the LATEX renderer accessible, we have
developed GUI and CLI interfaces. Fig. 1 shows a capture of the developed GUI
tool. The tool can take any number of files located in a single directory and
output LATEX source files into a user specified directory. A small log window is
provided for monitoring job progress.

In addition, the changes described in this paper (and those used in the de-
veloped tools) have been submitted to the OWLAPI maintainers for review. At

3 http://daselab.org/content/owl2dl-rendering



the time of this writing, the changes are visible on the GitHub repository and
will appear in the version 5.0.6 release.

Test Set & Rendering Results In order to test our changes, we pulled on-
tology design patterns from the www.ontologydesignpatterns.org website. In
total, we collected 117 OWL files. These represent the subset of all Ontology De-
sign Patterns from this site that are well-formed, syntactically correct, and have
active download links. We chose to use Ontology Design Patterns as our test set,
as they are ideal use cases for the rendering framework. That is, examining the
logical structure of a module is an important step in ontology engineering.

First, we note that prior to our changes to the LATEX renderer, none of the 117
OWL files would typeset without error due to illegal characters present in the
expanded namespaces of the datatypes. Additionally, 2 of the 117 files generated
lines in excess of the margins of the page when rendering was forced.

After translating all 117 files using the GUI tool, all LATEX source files typeset
without error and without needing manual modification. Further, the heuristic
line breaking accurately and reasonably breaks the excessively long axioms found
previously.

Future Work The ontology engineering process necessarily includes domain ex-
perts. These domain experts are not expected to be experts in logic or OWL. We
view this tool (and the changes to the OWLAPI) as a necessary step in providing
multiple ways for domain experts to interface with OWL. Future work will con-
sider adapting the LATEX rendering framework and the lessons herein learned to
other logical syntaxes. Furthermore, as these changes have been submitted to the
OWLAPI, this is a perfect springboard to make the LATEX rendering available
via a plug-in to Protégé.

Demonstration For the demonstration, we will provide a brief tutorial on ac-
quiring the tool and its usage. Then, we will demonstrate its functionality via
live renderings of some ontologies. Furthermore, we will invite users to provide
their own ontology to view performance on ontologies outside of our testset.

Acknowledgement. The first two authors acknowledge support by the National
Science Foundation award 1440202 EarthCube Building Blocks: Collaborative
Proposal: GeoLink – Leveraging Semantics and Linked Data for Data Sharing
and Discovery in the Geosciences.

References

1. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL Ontologies.
Semantic Web, 2(1):11–21, 2011.

2. M. Krötzsch, F. Simanč́ık, and I. Horrocks. A description logic primer. In
J. Lehmann and J. Völker, editors, Perspectives on Ontology Learning, chapter 1.
IOS Press, 2014.

3. B. Motik, P. Patel-Schneider, and B. Parsia, editors. OWL 2 Web Ontology Lan-
guage: Structural Specification and Functional-Style Syntax (Second Edition). W3C
Recommendation 11 December 2012, 2012.


