
The Stub Metapattern

Adila A. Krisnadhi1,2 and Pascal Hitzler1

1 Wright State University, OH, USA
2 Universitas Indonesia, Depok, Indonesia

Abstract. We present a minimalistic metapattern which we call the
Stub pattern. It acts as a type of placeholder for future extensions of an
ontology in cases where a more fine-grained modeling would currently be
counterproductive, but future extensions may call for more details. We
motivate the Stub pattern, define it, and provide examples.

1 Introduction and Motivation

When modeling an ontology, one of the issues to be addressed is that of gran-
ularity: To what detail should the ontology represent the notions it captures?
Traditionally, this issue is resolved by looking at a concise definition of the use
cases, e.g. by means of competency questions. As a result of this, some parts
of the ontology may be modeled in a rather fine-grained manner, while other
parts remain relatively coarse. This is not a defect, of course, it is rather very
natural and cannot be avoided as such, since a model necessarily remains limited
in both detail and scope. However, as we argue in this paper, a straightforward
handling of differing granularity requirements in different parts of an ontology
can make it more difficult to repurpose or extend the ontology, or to use it in an
ontology-driven data integration setting.

Let us discuss an example. The W3C Organization Ontology [3] gives a rather
fine-grained account of notions such as roles and positions with respect to an
organization, which seems to be central in the context of models capturing orga-
nizations. At the same time, however, other parts of the model are not worked
out in similar detail.

Let us look at a specific instance of this, depicted in Figure 1 which is taken
from the class diagram of the Organization Ontology. Let us for a moment not
worry about the question why one would want to assign static locations to per-
sons, since persons are usually thought of as being rather mobile.1 Rather, let
us focus on the choice how location information is represented in this model,
namely by means of strings.

Representing locations as strings may sometimes seem the straightforward
thing to do, e.g., if the base data has only location names listed for the places it

1 It seems to us that the location information should rather be attached to the site a
person is based at – and in fact it should perhaps not be the person which is based
at a site, but rather that the role this person has with respect to the organization
be based at a particular site, and thus location. But this discussion leads us astray
from the key point we want to make.



2 Krisnadhi, Hitzler

Fig. 1. Snippet from the class diagram of the W3C Organization Ontology [3].

Fig. 2. Places Stub

refers to, such as “Dublin.” However, fundamentally, one has to question whether
locations are strings; at least to us locations are rather complex entities different
(indeed, disjoint) from strings. Locations, of course, can have names (which may
be representable as strings), but locations may also have GPS coordinates (with
or without indication of precision), bounding boxes, descriptions how to get
there or how to best see them,2 information who discovered them, what type of
climate they have, etc. Any of this type of information may be interesting for
some use case relevant to locations, or even relevant to organizations and their
locations.

A rather obvious and straightforward use case which cannot be realized with
strings as locations is that of co-location. Say, we would like to know whether the
location “Dublin” of the Online Computer Library Center OCLC3 is the same
as the location of IBM Dublin. Or in other words, we would like to enrich our
data with owl:sameAs links which identify which of the locations given for some
organizations are actually the same. Alas, if the location is given as a string
“Dublin” in both cases, we have no way to indicate easily that these refer to the
same, or to different, locations.

A solution, of course, lies in the acknowledgement that locations are not
strings, but rather – places. And that places in turn may have names. See Fig-
ure 2 for a schema diagram. Of course, in this case we still do not provide any
more detailed modeling of place or location, i.e., what we have depicted is not
a place pattern. However, it has advantages compared with the option depicted
in Figure 1, in that it provides a “hook” – the node labelled Place – which
can be used to attach additional information, or for providing owl:sameAs or
owl:differentFrom relationships. In fact, the stub can easily be replaced with

2 To see the Mont Blanc, most people do not actually go to the Mont Blanc, but rather
to the top of the Aiguille du Midi, which has a viewing platform with convenient
cable car access.

3 This location name ended up as part of the name of Dublin Core.



The Stub Metapattern 3

Fig. 3. The Stub metapattern (top) with an instance for Place (bottom)

a more fine-graned model of Place if needed for a new use case which calls for a
more fine-grained modeling of locations.

2 The Metapattern

The situation just described does, of course, not only apply to places. It can
likewise apply to persons, events, research projects, pets, movie characters, di-
nosaurs, emotions, particle accelerators and space stations. For each and many
more we can use stubs, whenever the type at hand would call for a complex
model, but at modeling time it is not (yet) called for to produce a more fine-
grained model. Because there is a reasonable “stub” pattern for almost every-
thing, the idea of a “stub” is a type of metapattern which has different instan-
tiations for different class types.

Moreover, rather than concrete competency questions, we would have ques-
tions that appear like a template, such as (i) “What X is associated with a given
object?”; or (ii) “Given an object and an instance of X associated with it, what
is that instance of X also known as?”, where X is the notion for which a stub
pattern is intended.

In Figure 3, top, we indicate this metapattern by using <ClassName> as a
type of variable for the target type; an instantiation for Place as the class type
is given underneath, for illustration. A particular stub for type ClassName thus
essentially consists of a class ClassName together with a known-as relation to
a string. We indicate that it is a stub, by refering to the pattern as a “stub”
pattern.

Concrete instantiations of the stub metapattern may of course deviate from
this very simple recipe, e.g. by allowing alternatives to the known-as link which
may be object properties pointing to controlled vocabularies. We have not re-
ally needed this yet, though, in our modeling ventures. Concrete instantiations
of the metapattern should most often also have alternative names for the bi-



4 Krisnadhi, Hitzler

nary relations, e.g. for the Place Stub with name, one could use “atPlace” and
“hasName” instead of the more generic ones we have indicated in Figure 3.

In terms of axioms, there are not many to be listed.4 Two range restrictions,
a scoped domain restriction, and possibly an existential, as given below in this
sequence, exhaust what should be said.

> v ∀hasAssociated<ClassName>.<ClassName>
> v ∀<ClassName>KnownAs.xsd:string

∃<ClassName>KnownAs.xsd:string v <ClassName>

<ClassName> v ∃<ClassName>KnownAs.xsd:string

Note that the <ClassName> notation should be understood as a place holder
for concrete names, and axioms we introduced above should be viewed as a
template, not a concrete reusable component. Obviously, this idea of stub meta-
pattern is also not a feature of the OWL as an ontology language. Hence, to use
this metapattern, one would need to instantiate it as a stub pattern by replacing
<ClassName> in the axioms with a concrete class name, resulting in an actual
OWL ontology. This could typically be achieved in ontology editors like Proégé,
e.g., by string find and replace command, or more generally, through framework
such as PatOMat [5].

Comparison with the Literal Reification Pattern

The stub metapattern is rather closely related with the Literal Reification pat-
tern.5 The latter allows any literal value to be given context or particular se-
mantics by associating the literal with a proper OWL individual. The association
is injective, i.e., different literal values are associated with different individuals.
The Literal Reification pattern then introduces the class litre:Literal, which
contains all such individuals. Also, this class is asserted to be a subclass of the
class region:Region,6 which is extracted from the DOLCE. Finally, this pat-
tern has a hook for the object to which the literal is supposedly attached, which
is simply represented as owl:Thing.

The conceptualization in the stub metapattern is somewhat similar: it con-
tains a hook for the object to which the stub is associated, the main class of
the stub, and a link to a literal value. However, the stub metapattern is actually
more general and imposes less ontological commitment than the Literal Reifi-
cation pattern. This is of course expected since the stub metapattern does not
intend to lift the literal value as a “first-class object”. Rather, it emphasizes
on making a place holder for the notion modeled by the instantiation of the
stub metapattern. Therefore, it imposes no restriction of one-to-one relationship
between the literal value and the main class of the stub. Furthermore, there

4 ODP Portal submission is at http://ontologydesignpatterns.org/wiki/

Submissions:Stub_Metapattern
5 http://ontologydesignpatterns.org/wiki/Submissions:Literal_Reification
6 http://ontologydesignpatterns.org/wiki/Submissions:Region

http://ontologydesignpatterns.org/wiki/Submissions:Stub_Metapattern
http://ontologydesignpatterns.org/wiki/Submissions:Stub_Metapattern
http://ontologydesignpatterns.org/wiki/Submissions:Literal_Reification
http://ontologydesignpatterns.org/wiki/Submissions:Region


The Stub Metapattern 5

Fig. 4. Three stubs used in the Chess Ontology [2,4]

is no relation with other external class like region:Region. As a result, after
instantiating the stub metapattern into a stub pattern for a particular notion,
one could simply add more details to the stub if desired, including attaching
additional literal values, without modifying the axioms originally obtained from
that instantiation.

3 Examples

As additional examples, we borrow from the Chess Ontology [2,4]. In this par-
ticular case, initial data was obtained from PGN files, which are text files with
information about specific chess games, including the move sequences, commen-
tary, and some metadata such as the names of the players and the name of the
tournament the game was played at. PGN files are the de-facto file type stan-
dard for chess games. Three stubs occur in this ontology; they are depicted in
Figure 4 and we will discuss each of them briefly in the following.

Regarding chess tournaments, PGN files list only names of tournaments as
strings. As argued in the introduction, in order to preserve the future possibility
to expand on tournament information, e.g. by adding further information about
specific tournaments which can be obtained from chess websites or Wikipedia,
and in order to make it possible to establish same-as links between multiply
mentioned tournaments with somewhat different name strings, stubs were our
method of choice.

Similarly, in order to represent the result of a chess game, we went with a
stub. However, in this case the result would be encoded as a string in Stan-
dard Algebraic Notation (SAN), as indicated by the property name. The stub
is helpful for future development of the ontology, as the result of a chess game
may be more than the simply score which indicates who won. E.g., the second
game of the 1972 World Chess Championship was not only won by Boris Spasski,
rather the game was remarkable because Bobby Fischer lost by forfeit, which is
a rather unexpected occurrence in such a high-profile event. If desired, our stub



6 Krisnadhi, Hitzler

could easily be extended to also indicate such additional information as loss by
forfeit, or win on time or by adjudication.

For chess openings, PGN files may indicate the opening by name or by the
corresponding code according to the Encyclopedia of Chess Openings (ECO);
correspondingly out stub bears two properties. Openings are rather central for
the game of chess, and there exists a vast literature on opening theory. Openings
can also be related to each other in complex ways. Using a stub provides the
option of future expansion of the ontology in this direction.

4 Conclusions

We believe that ontology modeling should be modular [1] and based on well-
designed, generic ontology design patterns. In particular, we believe that onto-
logical commitments need careful thought in order to improve reusability of an
ontology.

Using stubs makes it possible to deal with the seeminly contradictory re-
quirements to avoid oversimplication (locations are strings) on the one hand,
and overcomplication (locations modeled as very complex entities) on the other.
They provide a middle ground, a compromise, which simplifies future extensi-
bility but avoids modeling effort which is not required yet.

Acknowledgements. This work was supported by the National Science Founda-
tion under award 1017225 III: Small: TROn – Tractable Reasoning with On-
tologies and award 1440202 EarthCube Building Blocks: Collaborative Proposal:
GeoLink – Leveraging Semantics and Linked Data for Data Sharing and Discov-
ery in the Geosciences.

References

1. Krisnadhi, A., Hu, Y., Janowicz, K., Hitzler, P., Arko, R.A., Carbotte, S., Chandler,
C., Cheatham, M., Fils, D., Finin, T.W., Ji, P., Jones, M.B., Karima, N., Lehnert,
K.A., Mickle, A., Narock, T.W., O’Brien, M., Raymond, L., Shepherd, A., Schild-
hauer, M., Wiebe, P.: The GeoLink Modular Oceanography Ontology. In: Arenas,
M., Corcho, Ó., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P.T.,
Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) The Semantic Web –
ISWC 2015 – 14th International Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, 2015, Proceedings, Part II. Lecture Notes in Computer Science, vol.
9367, pp. 301–309. Springer (2015)

2. Krisnadhi, A., Rodŕıguez-Doncel, V., Hitzler, P., Cheatham, M., Karima, N., Amini,
R., Coleman, A.: An ontology design pattern for chess games. In: Blomqvist, E.,
Hitzler, P., Krisnadhi, A., Narock, T., Solanki, M. (eds.) Proceedings of the 6th
Workshop on Ontology and Semantic Web Patterns (WOP 2015) co-located with the
14th International Semantic Web Conference (ISWC 2015), Bethlehem, Pensylvania,
USA, October 11, 2015. CEUR Workshop Proceedings, vol. 1461. CEUR-WS.org
(2015)



The Stub Metapattern 7

3. Reynolds, D. (ed.): The Organization Ontology. W3C Recommendation (16 January
2014), http://www.w3.org/TR/vocab-org/

4. Rodŕıguez-Doncel, V., Krisnadhi, A.A., Hitzler, P., Cheatham, M., Karima, N.,
Amini, R.: Pattern-based linked data publication: The linked chess dataset case.
In: Hartig, O., Sequeda, J., Hogan, A. (eds.) Proceedings of the 6th International
Workshop on Consuming Linked Data co-located with 14th International Semantic
Web Conference (ISWC 2105), Bethlehem, Pennsylvania, US, October 12th, 2015.
CEUR Workshop Proceedings, vol. 1426. CEUR-WS.org (2015)

5. Zamazal, O., Svátek, V.: Patomat - versatile framework for pattern-based ontology
transformation. Computing and Informatics 34(2), 305–336 (2015), http://www.

cai.sk/ojs/index.php/cai/article/view/1138

http://www.w3.org/TR/vocab-org/
http://www.cai.sk/ojs/index.php/cai/article/view/1138
http://www.cai.sk/ojs/index.php/cai/article/view/1138

	The Stub Metapattern

