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Abstract—As pre-diagnostic technologies are becoming 

increasingly accessible, using them to improve the quality of care 

available to dementia patients and their caregivers is of 

increasing interest. Specifically, we aim to develop a tool for non-

invasively assessing task performance in a simple gaming 

application. To address this, we have developed Caregiver 

Assessment using Smart Technology (CAST), a mobile 

application that personalizes a traditional word scramble game. 

Its core functionality uses a Fuzzy Inference System (FIS) 

optimized via a Genetic Algorithm (GA) to provide customized 

performance measures for each user of the system. With CAST, 

we match the relative level of difficulty of play using the 

individual’s ability to solve the word scramble tasks. We provide 

an analysis of the preliminary results for determining task 

difficulty, with respect to our current participant cohort. 

Index Terms—dementia caregiver, fuzzy inference system, gaming 

technology, machine learning, task performance 

I. INTRODUCTION  

Alzheimer’s disease, and other Dementias, are degenerative 

neurological diseases that damages neurons in the brain, 

resulting in memory and cognition impairment [1]. Dementia 

related illness affects 1 in 10 individuals aged 65 years or 

older, equating to approximately 5.7 million Americans [2], 

with the number of individuals projected to grow to 14 million 

by 2050 [2]. Disease management is both challenging and 

costly. Paid professional care, as reactive healthcare, costs 

more than 17% of the United States gross domestic product 

even though the majority of care is unpaid family care [2]. An 

estimated 16.1 million Americans provide unpaid family care 

for dementia related diseases and 83% of dementia caregiving 

is unpaid family care [2]. 

Primary caregivers of dementia patients face an overwhelming 

amount of care responsibilities. These include assisting with 

the activities of daily living (ADLs) and providing emotional 

support, which causes burnout such as emotional exhaustion 

and depersonalization [3]. 

This study focuses on assisting caregivers by identifying 

caregiver task performance as a measure of caregiver stress 

via the Caregiver Assessment using Smart Technology 

(CAST) application, a mobile application for caregivers 

created in our previous study [4]. Gaming technologies have 

demonstrated effectiveness in detecting changes in behavior as 

a reaction to variations in environment [6], [7]. Anomalies in 

behavior during game play tend to result from psychological 

and physical changes induced by stress, and may therefore 

provide a noninvasive method for detecting stress in 

caregivers [4]. In this paper, we construct and evaluate a 

Fuzzy Inference System (FIS) for modeling a word scramble 

gaming application as a part of CAST to evaluate task 

performance. We chose the word scramble game as our 

feasibility study which enables system adaptation by assigning 

Individualized Word Difficulties (IWD) based on user 

interaction and word features. We address the following 

research questions to measure the proposed system’s 

performance and word discriminatory abilities which are 

necessities for detecting anomalies in game play accurately. 

RQ1. How can we design a game that can incorporate 

individual performance necessary to discern changes in task 

performance in individuals? 

RQ2. Using the FIS system from RQ1, how does it perform 

using established classification metrics? 



II. RELATED WORK 

A. Task Performance as a Biomarker 

Studies such as Gutshall et al. [5] used task performance (i.e., 

how well one performs on a task) to reflect changes in stress 

level, given that fluctuations in stress levels can alter task 

performance in various ways based on the level of stress. 

Gutshall et al. examined the impact of varying types of stress 

on working memory, the type of memory responsible for 

storing short-term information, problem solving, and decision 

making [5]. Stress not only affects memory but cognitive 

functioning as well. Korten et al. measured the stress levels 

and cognitive performance of older adults and found that 

individuals experiencing stress performed poorly on functions 

such as backward digit span and ordering tasks [6]. 

B. Gaming in Relation to Task Performance 

Holmgard et al. demonstrated gaming for measuring task 

performance by combining a usable measure of post-traumatic 

stress disorder (PTSD) with a computer game designed to 

provide intervention [7]. By tracking players’ performance 

over a week-long period, researchers determined the existence 

of PTSD symptoms and identified when players experienced 

increases in stress [7]. Although findings by Holmgard et al. 

were preliminary, they support the feasibility of gaming 

technology for stress detection. We create CAST to measure 

stress detection in individuals as a future aim to use this with 

caregivers.  

C. Gaming for Healthcare 

Ranjbartabar et al. discussed the framework required for 

gamification applications for clinical diagnostics such as 

PTSD, exam stress, and depression [8]. This research 

addressed the need for measuring participants’ stress levels 

using linguistic variables scaling such as very low, low, high, 

and very high. 

Although these studies highlight the utility of a gaming 

approach in dementia caregiver performance evaluation 

research, none discuss automatic adaptation of the game 

difficulty levels. Moreover, evaluation is crucial for the 

effectiveness of the games, as the caregiver burden spectrum 

varies. The innate individualism in the caregiver burden 

spectrum highlights the need for continual monitoring and 

personalization. To the end of detecting anomalies in 

gameplay behavior at the individual level, the goal of using 

CAST is to adapt the game to fit the individual’s behavior in a 

way that adequately reflects these variabilities and ultimately 

detects a decline in functioning as an increase in caregiver 

burden. 

Our research seeks to incorporate task performance 

measurement with CAST using an FIS to classify task 

performance. This enables CAST to provide information on 

why individual participants had a certain word difficulty (i.e., 

FIS are inherently explainable [9]). 

III. METHODS 

A. Data Collection and Description 

1) CAST (Caregiver Assessment using Smart Technology): 

We used CAST’s word scramble game to gather our data from 

48 participants. There are two buttons in the game: Guess is 

used to submit, and Skip to skip the current word. Once either 

Skip is pressed or the user correctly guesses the word, the 

system will generate a new word from our database. Finally, a 

popup appears after the user completed or skipped a word to 

ask for a User Rated Difficulty (URD) on a scale from 1-10 

(‘1’ being easy and ‘10’ being hard) to act as our ground truth 

for the system. 

Next, Institutional Review Board approved data gathering 

occurred via the word scramble game on a per-word basis. 

The participant cohort consisted of 48 individuals ranging 

from 20-60 years who had at minimum completed a 

baccalaureate degree program. Participants were recruited 

from a number of pools: research colleagues, corresponding 

professors, members of the sorority Zeta Tau Alpha (Eta Pi 

chapter), and graduate-level social work students at Wright 

State University. Out of the 1,344 data points gathered, 24 

were discarded due to user failure to provide a difficulty rating 

for the word. The order of the words presented to each user 

remained consistent for the entire study to prevent possible 

presentation bias. From the participant point of view, the 

CAST word scramble game is structured in an autonomous 

manner for data collection. When started, the word scramble 

game is presented to the participant in the same order for all 

participants, and once completed the app automatically closes. 

2) Word Dataset: The 28 words used in this study are a 

mixture from categories seen in Table I, which lists the words 

used in the CAST word scramble game in their respective 

categories. In addition to these words, hazardous appears 

twice in the dataset, as there are two scrambled variations. The 

first version (V1) appears towards the beginning of the game 

and the second version (V2) appears later. V1 has the “ous” 

suffix unscrambled and the rest is permuted. V2 does not 

differentiate between the suffix and root. 

TABLE I.  THE WORD SET POPULATING THE WORD SCRAMBLE GAME. 

General Edibles Items Acts Anms Colors 

hazardous water prize check manatee khaki 

liberty mustard nickel knock  ebony 

quakes avocado pickup defuse  orange 

bright raspberry gargoyle harvest  lavender 

twilight pistachio daffodil    

midnight  jasmine    

brilliant      

 

To demonstrate the perception of a word’s difficulty, we will 

discuss four words selected from the 28-word set, including 

each word’s scramble and URD distribution. The category 

thresholds are explained in Section III-B. The URD for certain 

words is more consistent than others; e.g., pistachio had 41 of 

46 ratings in the Hard category, and knock had 38 of 48 

ratings in the Easy category. Conversely, the words daffodil 



and twilight had similar ratings for two categories; daffodil 

had 19 Easy ratings and 23 Hard ratings, whereas twilight had 

16 Easy ratings and 28 Hard ratings. These imbalances do not 

exist for only these words, but appear throughout the user 

ratings. As mentioned in Section III-A1, 24 URD ratings are 

missing which accounts for the discrepancy between presented 

words and ratings. This may be explained by binary rating 

bias or split rating bias. 

B. Data Preprocessing 

To decide our category thresholds, we implemented the Rasch 

model, a psychometric technique used to improve the 

constructed instrument’s precision [10]. The Rasch model 

facilitates measurement of participants’ abilities in 

conjunction with word difficulties along a common scale. The 

created model, called the Threshold Model (TM), determines 

thresholds for our categories of Easy, Medium, and Hard and 

is constructed using the URD of the 28 words where all words 

share the same scale, i.e. all 28 words are assigned to a single 

group that shares the same scale definition. Given that the 

model is constructed using the URD, it produces the 

probabilities of a user choosing a specific rating value, which 

we use for determining the thresholds for our categories. The 

Rasch TM yielded a rating scale of 1-4, 5, and 6-10 for Easy, 

Medium, and Hard, respectively. 

C. Fuzzy Inference System (RQ1) 

Studies, such as the one by Yang et al. have used machine 

learning techniques to map objective data such as heart rate 

signals to subjective data (e.g., symptoms of pain reported by 

patients with sickle cell disease) [11]. We used a similar 

approach to map game-based features to difficulty levels. 

Specifically, we implemented a FIS, a supervised machine 

learning method. Fuzzy logic was developed by Lotfi Zadeh in 

1973 [14] and provides a powerful framework for performing 

automated reasoning while incorporating uncertainty (e.g., 

noisy data). An inference engine operates on linguistic rules 

that are structured in an IF-THEN format. The IF clause is 

called the antecedent, while the THEN clause is called the 

consequent. For this interdisciplinary project, the FIS was 

chosen due to its explainability [9] to domain experts not from 

a technical domain. The defuzzified output is compared to the 

URD ground truth, which is used to evaluate the system’s 

performance using standard performance metrics such as 

precision, recall, and F measure [12]. The FIS, created using 

MATLAB's Fuzzy Logic Designer toolbox, is described in 

three parts: the features that act as inputs to the system, the 

hierarchical construction of the system, and the rule base. 

1) Features: With respect to the word scramble game, we 

have created five input features (in italics) to be used in the 

FIS: Time Taken; Number of Guesses; Length of Word; 

Degree of Scramble; Was Skipped (i.e., the word was 

skipped). 

We chose these features with the intent of minimizing effort of 

feature extraction and complexity, but maximally describing a 

subtask. The parameter values of Table II are structured with 

respect to their form (i.e. Gaussian, Triangular, etc.). Inside 

the brackets are values representing how the specific curve is 

structured. For example, from Table IIa, Time Taken's Short 

label has a Gaussian form with an expected value of 0 

(position on the x-axis) and a standard deviation of 10.19 

(width of the curve). As seen in both Table IIa and Table IIb, a 

majority of our membership functions are Gaussian. These are 

chosen because we expect the data received from our 

participants to come from the normal distribution, i.e. a small 

number of good and bad performing participants and a large 

number of moderately performing participants. Last, the 

parameter values for each membership function are chosen 

heuristically to represent an even distribution of the functions 

over the input feature axis, which is further explained in 

Section III-C2.  

Of these features, only Degree of Scramble is not immediately 

intuitive; it was calculated as follows: consider a word W and 

its permutation P to be ordered n-tuples. Then, we aggregated 

degree of scramble for each letter, such that W and P do not 

share at the same index i, as shown in Equations 1 and 2. 

 

TABLE II.  MEMBERSHIP FUNCTIONS OF THE FIS. 

Input  

Features 

Membership Functions 

Label Form Parameter 

 

Number of 

Guesses 

Low Gaussian [1.699 0] 

Medium Gaussian [1.699 5] 

High Gaussian [1.699 10] 

 

Time Taken 

Short Gaussian [10.19 0] 

Medium Gaussian [10.19 30] 

Long Gaussian [10.19 60] 

Was Skipped 

True Triangular [-.01 0 .01] 

False Triangular [.99 1 1.01] 

 

Length of 

Word 

Short Gaussian [.85 5] 

Long Sigmoid [2.38 6.53] 

Very Long Gaussian [.85 10] 

 

Degree of 

Scramble 

Low Gaussian [.1699 0] 

High Sigmoid [.1699 .5] 

Very High Gaussian [.1699 1] 

(a) FIS Input Features 

 

 

 

 

 

 
 



Input 

Features 

Membership Functions 

Label Form Parameters 

User Effort 

Low Gaussian [.1699 0] 

Medium Gaussian [.1699 .5] 

High Gaussian [.1699 1] 

 

Complexity 

of Word 

Low Gaussian [2.123 0] 

Medium Gaussian [2.123 .5] 

High Gaussian [2.123 1] 

IWD 

Easy Gaussian [1 1.6] 

Medium Gaussian [1 4.6] 

Hard Gaussian [1.5 8.9] 

(b) FIS Output Features 
 

 I(wi, pi) = {
     𝑥 ≠ 𝑦        1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     0

 

 S(W, P) = ∑ 1/2𝑖 ∗ 𝐼(𝑤𝑖 , 𝑝𝑖)𝑛
𝑖=1  

In Equation 2, I(wi, pi) is defined in 1, which takes the ith letter 

of the word W and the permutation P and determines if the 

letters are the same, returning 1 if they are and 0 otherwise. 

We use a quickly converging series to indicate that shared 

letters at the beginning of a word have a larger impact on a 

solution attempt. We note that a “fully scrambled” word, i.e., a 

word that retains no letters in common index positions, 

approaches a value of 1 very quickly. In our manually curated 

word scramble set, this type of scramble does not occur. We 

compare the proposed degree of scramble to the Hamming 

distance [13], a metric for measuring the number of 

substitutions needed to change one string to another, by 

calculating it for each word in the word set and dividing the 

results by the length of said word. For example, the word 

water and its scrambled counterpart tarew has a Hamming 

distance of 3; which divided by 5 gives us 0.6. Our proposed 

metric yields a degree of scramble value of 0.66. Finally, we 

report the Pearson correlation between our proposed metric 

and the Hamming distance as moderate and positive (r = 0.47, 

p < 0.05). 

2) Hierarchical FIS Construction: The FIS is built in a 

hierarchical manner, which means the FIS has two stages as 

shown in Figure 1. The goal of the first stage is to differentiate 

between a specific user and word respectively so that the 

system can be implemented on an individual basis. The second 

stage calculates the difficulty for each word using the previous 

stage and the last input feature of Word Was Skipped. Each 

word in a session receives a difficulty value of Easy, Medium, 

or Hard. The overall hierarchical FIS consists of the five input 

features described above, two intermediate FIS nodes, and the 

final output FIS (Figure 1). 

 

Fig. 1. A graphical flow of the Hierarchical FIS employed by the CAST app.  

The Complexity of Word (CoW) comprises the conflated 

features that are inherent to an individual word, i.e., length of 

word and degree of scramble and is modeled by an 

intermediate FIS. User Effort (UE) is a conflation of features 

related to the user’s performance on a task, i.e., Number of 

Guesses and Time Taken. Finally, we input the results of CoW 

and UE and the first-layer input feature “Word Was Skipped” 

into the IWD. Clearly, the user experience is a function of 

both the user and the word, so they need to be incorporated for 

accurate decision-making. The membership function 

parameter values for the outputs of CoW and UE are shown in 

Table IIb. 

3) Rule System: The 16 rules used in the construction of the 2-

layer, hierarchical FIS were heuristically generated using our 

preliminary data and the domain expertise of our clinical 

collaborators. As mentioned, fuzzy logic rules are interpreted 

in a linguistic IF-ELSE manner [14]. All of our rules are 

conjunctive in the antecedent. Thus, from the UE rules in 

Table IIIa, we translate the first rule as “IF the Number of 

Guesses is Low AND the Time Taken is Short, THEN the 

User Effort is Low.” Here, the linguistic variables Low, 

Short, and Low are membership functions designed for the 

FIS; e.g., if a user attempted 2 guesses and only took 15 

seconds for the word in question, with a resulting user effort 

value of 0.348, we could conclude that the user exerted a low 

amount of effort into unscrambling that word. 

TABLE III.  THE FIS RULES WHICH FORM THE HIERARCHICAL FIS 

CONSTRUCTION. EACH SUBTABLE IS FORMATTED BY THE ANTECEDENT 

(INPUTS TO THE FIS) SEPARATED BY A BOLD LINE TO THE CONSEQUENT 

(OUTPUT OF THEFIS). EACH ROW OF A SUBTABLE REPRESENTS 1 RULE. THE 

X’S REPRESENT IF A VARAIBLE IS USED IN A RULE. 

Antecedent Consequent 

Number of 

Guesses 

Time Taken User Effort 

L M H S M L L M H 

X   X   X   

 X X  X   X  

  X   X   X 

   X   X   

     X   X 

(a) FIS Level 1 – UE Rules 

 
 



Antecedent Consequent 

Length of Word Degree of 

Scramble 

Complexity of 

Word 

S L VL L M H L M H 

X   X    X  

 X  X     X 

     X X   

  X  X    X 

X    X X X   

(b) FIS Level 1 – CoW Rules 
 

Antecedent Consequent 

User Effort Complexity of 

Word 

Was 

Skipped 

IWD 

L M H L M H T F E M H 

X       X X   

X X  X X   X X X  

X     X X    X 

  X        X 

X       X X   

X     X  X  X  

(c) FIS Level 2 – IWD Rules 
 

 

D. Genetic Algorithms 

To tune the membership functions’ parameters shown in Table 

IIa and IIb, we turned to evolutionary programming, an 

efficient way to test a large combination of membership 

function parameters to produce improved results. We used 

Genetic Algorithms (GA) as a global optimization solution by 

following the life sciences theory of evolution. GA begins by 

creating a population of chromosomes (i.e., the membership 

function values in a set) within the constraints of the problem. 

Next, a subset of chromosomes is selected that produces a 

higher fit by minimizing or maximizing a fitness function of 

choice. Finally, crossover occurs which takes two parent 

chromosomes from the original population and creates a child 

chromosome until the population reaches its original size [15]. 

List of input parameters, corresponding values, and a detailed 

description of all inputs used for the implmentation of the GA. 

Parameter and Description Value 

Population size of chromosomes 200 

Creation function, sampled from a uniform 

distribution 

Uniform 

Scaling function, from list where first is 

most fit  

Rank 

Selection function, randomly stepping w/ 

uniform probability through fitness sorted 

list 

Stochastic 

uniform 

Mutation function, randomly updated based 

on last generation 

Adaptive feasible 

Crossover function, random vector of 1’s 

and 0’s is created where the 1’s take the 

value at that position in the first parent and 

the same action for 0’s from the second 

parent. 

Scattered 

Upper and lower bounds, used to prevent 

unexpected results from occurring 

See Tables IIa and 

IIB Parameter 

Column 

 

The fitness function chosen to minimize error during training 

is the sum of squared error function, where the IWD is 

compared against the URD ground truth. The Was Skipped 

membership functions (i.e., true or false value) are the only 

functions not updated via GA. The settings used for the GA’s 

are presented in Table IV. 

IV. RESULTS 

A. IWD Predictions Using Heuristically Built FIS (RQ2) 

Using the thresholds calculated from the Rasch TM, we 

present the model comparison with the URD. The model 

consists of the heuristically built FIS and the resulting IWD 

resubstitution comparison to the URD. We also present the 

leave-one-out validation for the URD compared with IWD. 

The supporting performance metrics of precision, recall, and F 

measure for these comparisons are displayed in Table V. 

TABLE IV.  PERFORMANCE METRIC COMPARISONS OF THE 

HEURISTICALLY CONSTRUCTED FIS IWD TO THE URD GROUND TRUTH. 

 Resubstitution Leave-One-Out 

Easy Medium Hard Easy Medium Hard 

Precision 0.68 0.13 0.94 0.94 1.00 1.00 

Recall 0.95 0.18 0.66 1.00 0.50 1.00 

F Measure 0.79 0.15 0.77 0.97 0.67 1.00 

To start, the URD indicates that the Medium category is 

difficult to classify. The Medium difficulty for URD 

(precision 0.13, recall 0.18, F Measure 0.15) of resubstitution 

perform very poorly (Table V). Conversely, the Hard 

(precision 0.94, recall 0.66, F measure 0.77) and Easy 

(precision 0.68, recall 0.95, F measure 0.79) categories do 

quite well (Table V). We note the number of correct Easy and 

Hard classifications of 459 and 484 out of 1,320, respectively, 

supporting our initial observations of the bias split of URD. 

Clearly, more parameter fine-tuning would improve the 

current CAST system’s utility and will be completed with the 

implementation of the GA. 

B. IWD Predictions Using GA Improved FIS (RQ2) 

Table VI shows the metrics for the resubstitution and leave-

one-out methods of the GA improvements on the FIS. The 

metrics presented are precision, recall, and F measure for 

Easy, Medium, and Hard categories. We tried multiple GA 

training iterations such as no bounds, differently labeled 

outcome variables (rounded or unrounded), etc. However, the 

presented FIS model outperformed the other training 

experiments, so they are excluded. 

Compared to the results using the original FIS, the GA 

improved the classifier for the resubstitution Medium 

difficulty (precision 0.15, recall 0.53, F measure 0.23) as 

shown in Table VI. Furthermore, the Hard difficulty 

resubstitution comparison to IWD improved (precision 0.86, 

recall 0.85, F measure 0.86). By using the global optimization 

GA method, we improved the performance of the FIS, but the 



Medium difficulty is still affected by the participants Easy and 

Hard rating bias. 

TABLE V.  PERFORMANCE METRIC COMPARISONS OF THE GA IMPROVED 

FIS IWD TO THE URD GROUND TRUTH. 

 Resubstitution Leave-One-Out 

Easy Medium Hard Easy Medium Hard 

Precision 0.85 0.15 0.86 1.00 0.20 0.79 

Recall 0.49 0.53 0.85 0.27 1.00 1.00 

F Measure 0.62 0.23 0.86 0.45 0.33 0.88 

 

V. DISCUSSION 

A. IWD Predictions Using Heuristically Built FIS 

The performance of the heuristically created FIS is not 

surprising; there are clear challenges in measuring the 

effectiveness of a difficulty-based rating scale. As described in 

the study by Linacre et al. [16], there are challenges in moving 

from dichotomous (e.g., Easy, Hard) data to a more finely 

tuned scale (e.g., Easy, Medium, Hard), as respondents fail to 

react to a certain instrument (the word scramble game) in the 

manner intended by the system designers. However, our 

purpose is to detect the possible progression and regression of 

a user’s performance over time as the caregiver undergoes 

frequent life challenges. Having a three-category system for 

detecting changes in individual performances is more useful 

for day-to-day changes than a two-category system. 

While using the URD as the baseline, the performance metrics 

(see Table V) are poor for the Medium category in both the 

resubstitution and leave-one-out comparisons, i.e. we see a 

tendency of the FIS to generate IWDs closer to the extremes 

while performing poorly for the intermediate difficulty values. 

During gameplay, some participants indicated that they 

became frustrated if they were unable to unscramble the word 

in a short amount of time, generally rating it at a higher 

difficulty level even though they were eventually able to 

decode the words, conflating frustration and amount of time 

needed to unscramble with difficulty, which was 

retrospectively reported by some users. Such labeling using 

self-reporting caused our FIS to disagree with the URD, 

adversely affecting its performance. 

B. IWD Predictions Using GA Improved FIS 

We used the GAs as described in Section III-D to improve the 

FIS’s performance. The URD performance improved slightly 

in the Medium and Hard categories, where the F measure 

improved by 0.08 and 0.09 for Medium and Hard, respectively 

(Table VI). This is unsurprising, as in the case of trichotomous 

datasets, the middle category usually performs the worst [16]. 

Using only the Easy and Hard categories, it is relatively easy 

to create a two-category solution. This affects our original 

hypothesis of building a three-category system that allows 

users to progress or regress across a larger number of 

categories to allow the system to detect smaller changes in 

performance. However, as more data are collected, especially 

with our target caregiver cohort, we plan on further refining 

our FIS system to improve performance using the three-level 

system.  

Hence, a caregiver’s initial performance in the word scramble 

game can offer more information regarding their baseline. 

When CAST is deployed for a longer duration, the caregivers 

will only play a random sample of the game (i.e. 4 words) per 

day. Changes in their IWD over time can indicate changes in 

task performance, which could further be a sign of caregiver 

stress. 

VI. CONCLUSIONS 

In this study, we have implemented a prototype system, CAST 

that has shown promising results in generating individualized 

word level difficulty for the word scramble game. We 

heuristically built an FIS to calculate IWD, as well as provide 

a metric for categorizing the words into different difficulty 

classes, which successfully measured IWD (RQ1). Then, we 

used a GA to optimize the membership function parameters of 

the FIS, showing that it is possible to provide an 

individualized experience, allowing us to track changes in task 

performance via changes in gameplay performance. However, 

drawing further conclusions from this method is difficult, as it 

measures subjective data from the word scramble game, as 

well as classifying in a trichotomous category system. 

Sections IV-A and IV-B showed adequate performance results 

from standard metrics, such as 0.86 and 0.85 for the precision 

and recall, respectively, of the Hard category of the GA 

improved FIS (Table VI, RQ2). Future work focuses on: 

deploying CAST to the caregiver population, soliciting 

performance and usage characteristics feedback, and adding 

more words to the dictionary for testing with caregivers. 

In summary, CAST allows us to monitor older adults’ task 

performance in a non-intrusive manner by tracking changes in 

the IWD over time. For our future work, we plan to confirm 

these findings with other caregiver stress measures and extend 

the gaming technology paradigm to other task-oriented simple 

games (e.g., activity sequencing and structured card games) to 

assess caregiver task performance levels in a continuous 

manner, enabling early intervention to improve caregiver and 

patient outcomes. 
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